

FCC RADIO TEST REPORT

FCC ID	: A4RGWKK3
Equipment	: Phone
Applicant	: Google LLC
	1600 Amphitheatre Parkway,
	Mountain View, California, 94043 USA
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Aug. 05, 2022 and testing was performed from Sep. 15, 2022 to Oct. 05, 2022. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Sur	nmary	of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	5
	1.3	Modification of EUT	6
	1.4	Testing Location	6
	1.5	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	11
3	Test	Result	
	3.1	6dB and 99% Bandwidth Measurement	
	3.2	Output Power Measurement	
	3.3	Power Spectral Density Measurement	22
	3.4	Conducted Band Edges and Spurious Emission Measurement	31
	3.5	Radiated Band Edges and Spurious Emission Measurement	
	3.6	AC Conducted Emission Measurement	
	3.7	Antenna Requirements	
4	List c	f Measuring Equipment	49
5		rtainty of Evaluation	51
		A. Conducted Test Results	
		B. AC Conducted Emission Test Result	
		C. Radiated Spurious Emission	
Арр	pendix	D. Radiated Spurious Emission Plots	
A	a a sa al i s	E Duty Cycle Blate	

Appendix E. Duty Cycle Plots Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR280208-01B	01	Initial issue of report	Nov. 29, 2022
FR280208-01B	02	Revise 2.2 Test Mode	Nov. 30, 2022

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3) 15.247(b)(4)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	5.83 dB under the limit at 2483.880 MHz
3.6	15.207	AC Conducted Emission Pa		15.38 dB under the limit at 1.411 MHz
3.7	15.203	Antenna Requirement Pass		-

Declaration of Conformity:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.
 It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.

2. The measurement uncertainty please refer to report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: William Chen

Report Producer: Doris Chen

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature				
Equipment	Phone			
FCC ID	A4RGWKK3			
	GSM/EGPRS/WCDMA/HSPA/LTE/5G NR/			
	NFC/GNSS/ WPT Client			
	WLAN 11b/g/n HT20			
EUT supports Radios application	WLAN 11a/n HT20/HT40			
	WLAN 11ac VHT20/VHT40/VHT80			
	WLAN 11ax HE20/HE40/HE80			
	Bluetooth BR/EDR/LE			

Remark: The above EUT's information was declared by manufacturer.

EUT Information List				
S/N Performed Test Item				
27211FQHN00170	RF Conducted Measurement			
28251FQHN00017	Radiated Spurious Emission			
28251FQHN00005	Conducted Emission			

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	40		
Carrier Frequency of Each Channel	40 Channel (37 hopping + 3 advertising channel)		
Maximum Output Power to Antenna	<ant. 4=""> Bluetooth – LE (1Mbps): 18.70 dBm / 0.0741 W Bluetooth – LE (2Mbps): 18.80 dBm / 0.0759 W <ant. 3=""> Bluetooth – LE (1Mbps): 18.10 dBm / 0.0646 W</ant.></ant.>		
99% Occupied Bandwidth	Bluetooth – LE (2Mbps): 18.20 dBm / 0.0661 W Ant. 4> Bluetooth – LE (1Mbps): 1.017 MHz Bluetooth – LE (2Mbps): 1.990MHz Ant. 3> Bluetooth – LE (1Mbps): 1.017 MHz Bluetooth – LE (2Mbps): 1.994 MHz		
Antenna Type / Gain	<ant. 4="">: ILA Antenna with gain -1.30 dBi <ant. 3="">: IFA Antenna with gain 0.80 dBi</ant.></ant.>		
Type of Modulation	Bluetooth - LE: GFSK		

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.3 Modification of EUT

No modifications made to the EUT during the testing.

1.4 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855			
Test Site No.	Sporton Site No.		
	TH05-HY, CO07-HY, 03CH16-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

TEL : 886-3-327-0855	Page Number	: 6 of 51
FAX : 886-3-327-0868	Issue Date	: Nov. 30, 2022
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Report Version	: 02

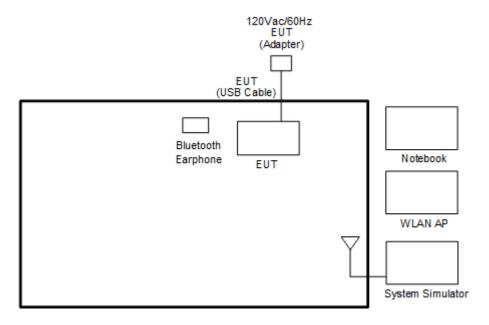
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

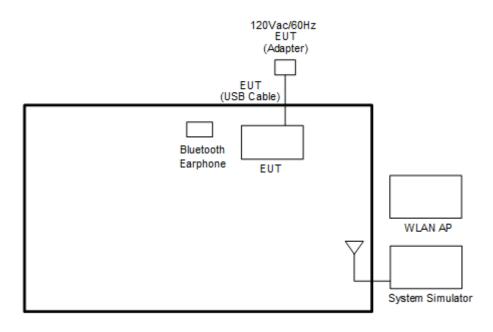
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15 16 17	2432	36	2474
		2434	37	2476
		2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

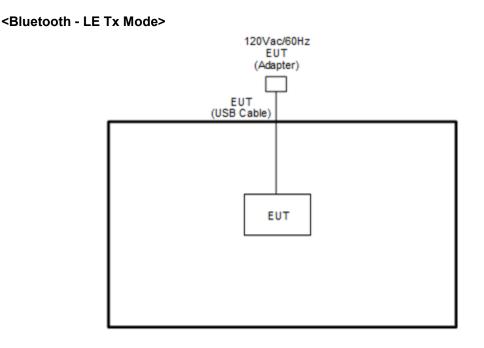
- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape) and accessory (Adapter or Earphone), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases					
Те	est Item	Data Rate / Modulation				
		Bluetooth – LE / GFSK				
		Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
Co	nducted	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
-	st Cases	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
Tes	si Gases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps				
		Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps				
		Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps				
B	adiated	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
		Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
Tes	st Cases	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
		Mode 1 : GSM850 Idle + WLAN (2.4GHz) link + Bluetooth Link + USB Cable 2				
AC C	Conducted	(Charging from AC Adapter 1)				
Er	nission	Mode 2 : WCDMA Band II Idle + WLAN (2.4GHz) Idle + Bluetooth Link + USB				
		Cable 2 (Charging from AC Adapter 1)				
	Remark:					
	- , , ,					
	For Radiated Test Cases, the tests were performed with Adapter 1 and USB Cable 2. During the preliminary test, both charging modes (Adapter mode and WPT client mode) were					
verified. It is determined that the adaptor mode is the worst case for official test.						
4.						



2.3 Connection Diagram of Test System


<AC Conducted Emission for WLAN Link Mode>

<AC Conducted Emission for WLAN Idle Mode>

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	R&S	CMU 200	N/A	N/A	Unshielded, 1.8 m
2.	Bluetooth Earphone	Kinyo	BTE-3622	N/A	N/A	N/A
3.	WLAN AP	ASUS	RT-AC52	N/A	N/A	Unshielded, 1.8 m
4.	Notebook	Dell	P79G	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT 4.0.00195.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

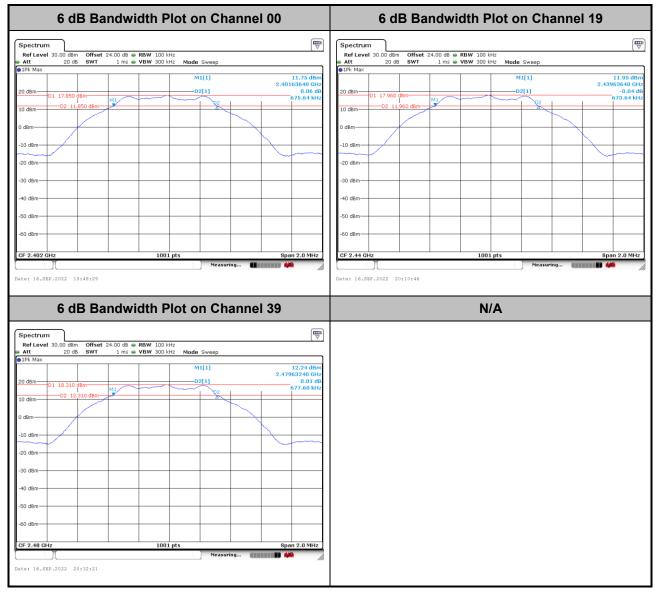
Please refer to the measuring equipment list in this test report.

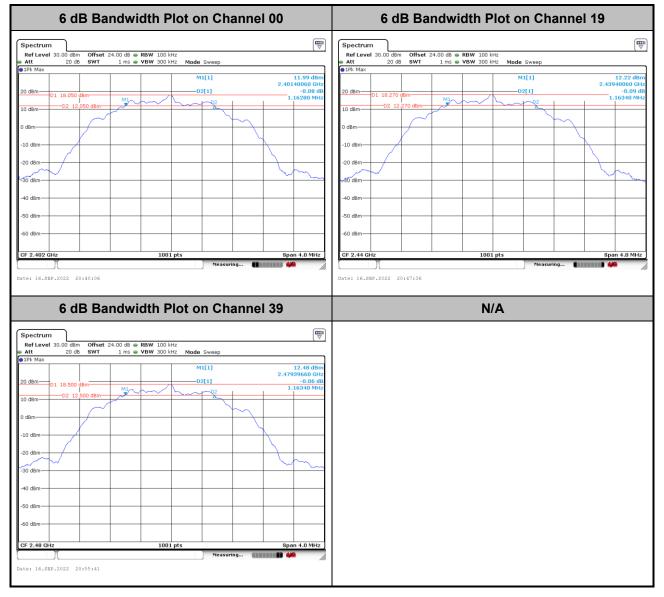
3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

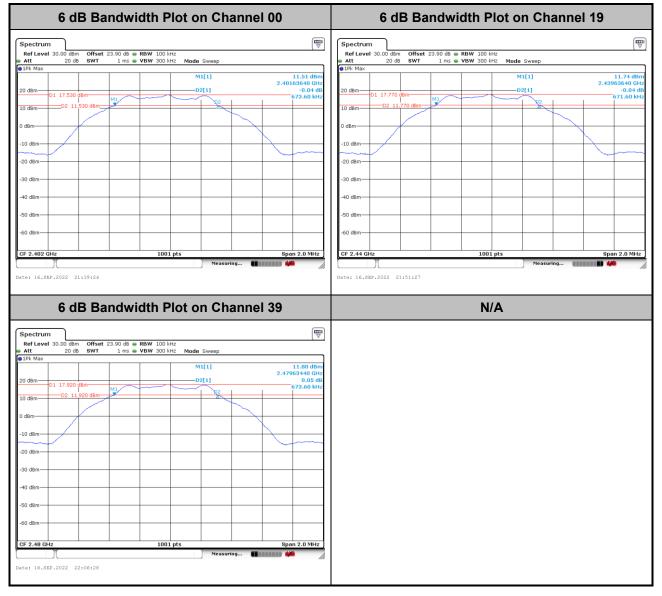
EUT

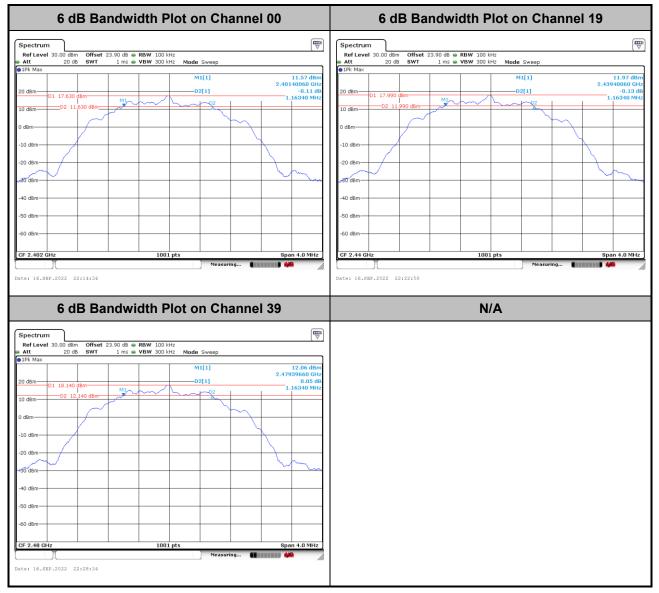

Spectrum Analyzer


3.1.5 Test Result of 6dB Bandwidth

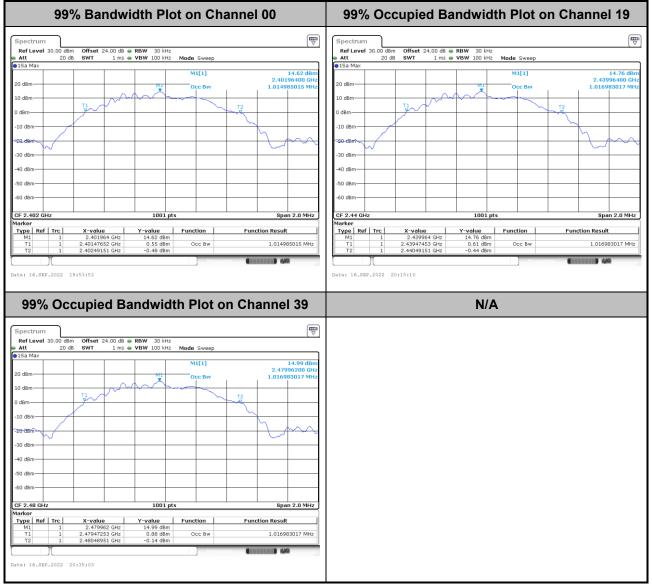
Please refer to Appendix A.

<Ant.4>

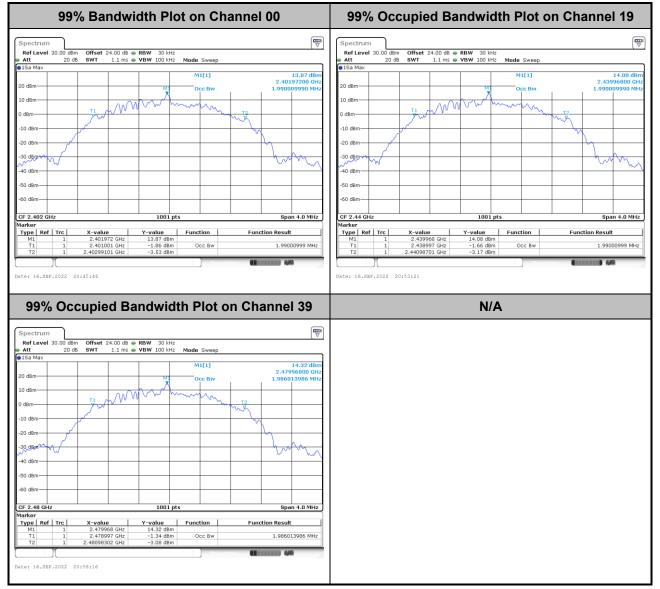




<Ant.3>

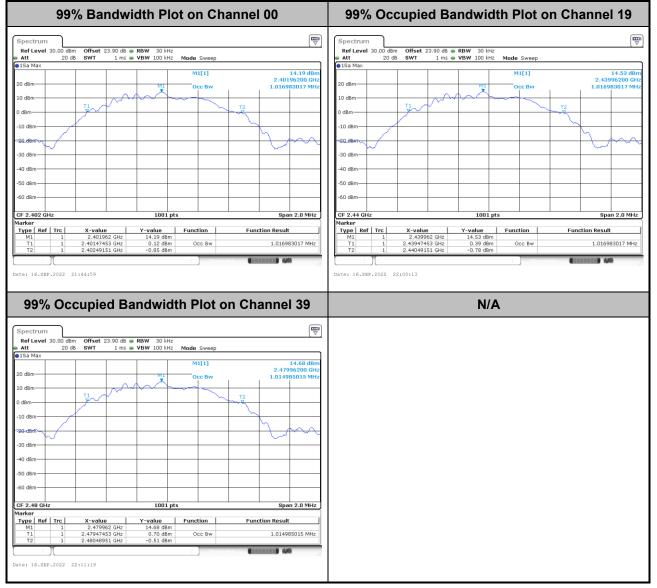


3.1.6 Test Result of 99% Occupied Bandwidth

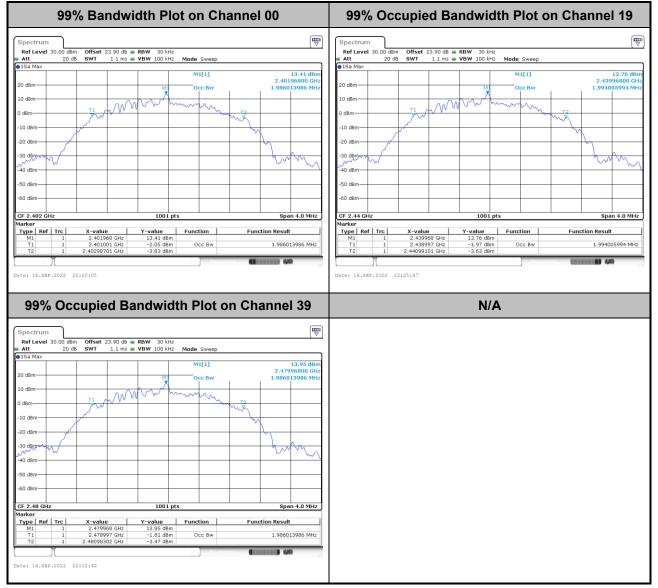

Please refer to Appendix A.

<Ant.4>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.



Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.


<Ant.3>

<1Mbps>

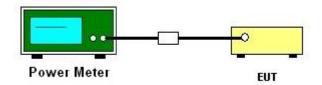
Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

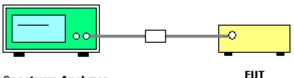
3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

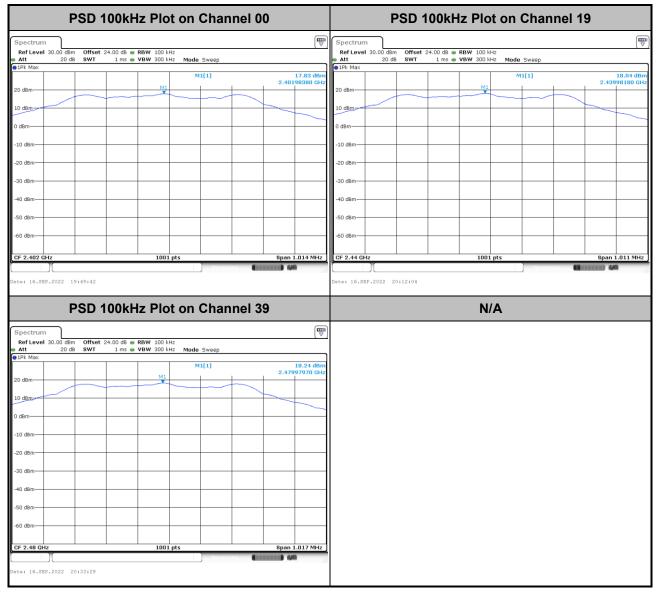
Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

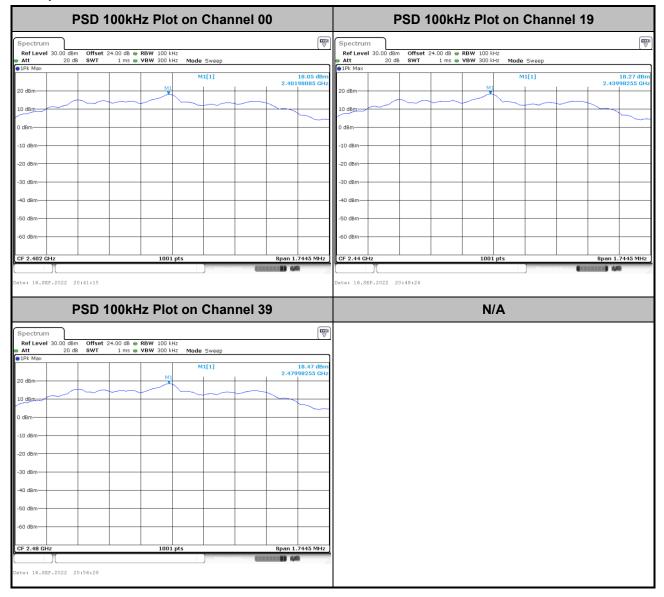
- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

Spectrum Analyzer

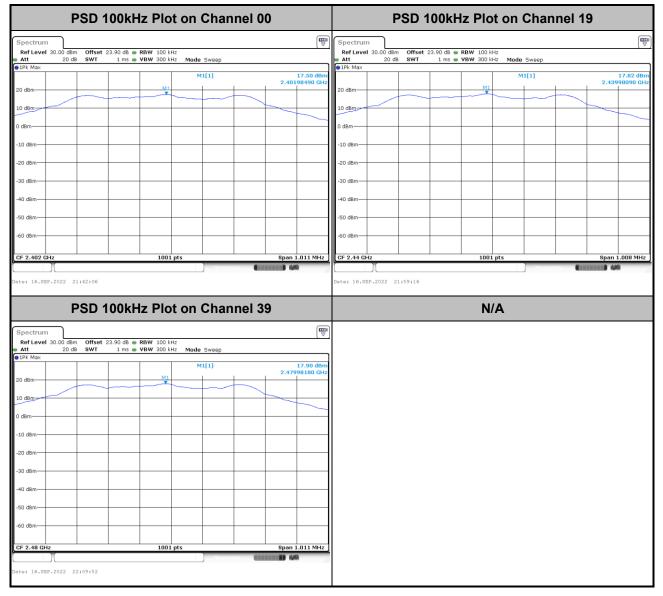

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

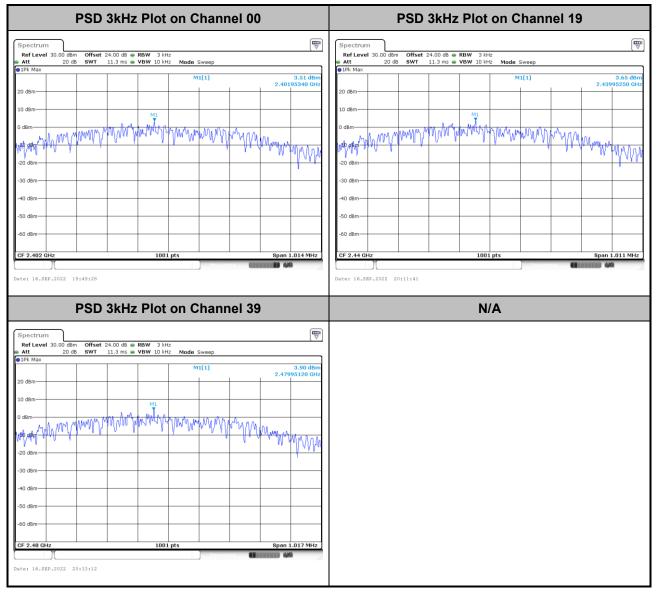


3.3.6 Test Result of Power Spectral Density Plots (100kHz)

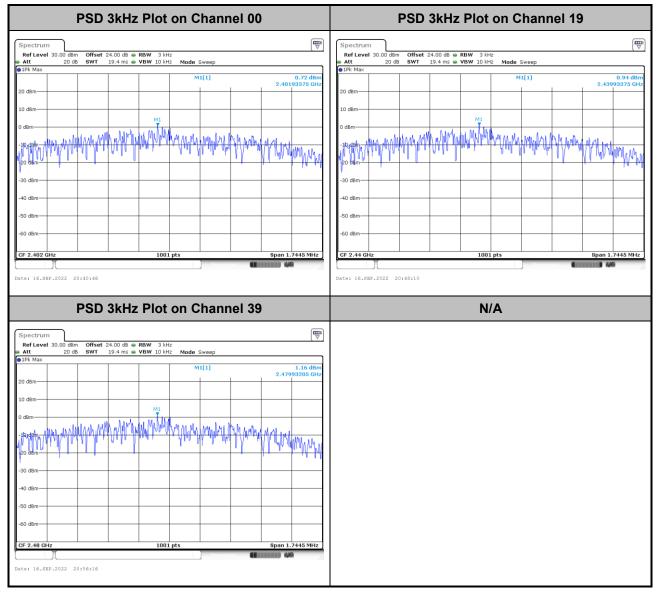
<Ant.4>



<Ant.3>

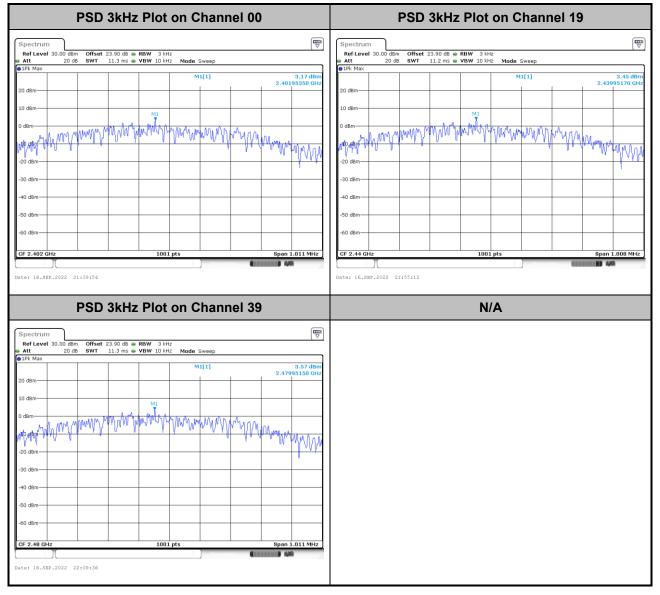


PSD 100kHz Plot on Channel 00	PSD 100kHz Plot on Channel 19			
Spectrum (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	Spectrum mm RefLevel 30.00 dBm Offset 23.90 dB ● RBW 100 kHz ● Att 20 dB SWT 1 ms ● VBW 300 kHz			
• IPk Max M1[1] 17.63 dBm 20 dBm 2.40198255 GHz 2.40198255 GHz 10 dBm 0 0 0 10 dBm 0 0 0 0 -10 dBm 0 0 0 0 0 -10 dBm 0	• IPk Max M1[1] 17.96 dBm 20 dBm M1 2.43990435 GHz 10 dBm 0 dBm 0 dBm -10 dBm -0 dBm -0 dBm -20 dBm -0 dBm -0 dBm -20 dBm -0 dBm -0 dBm -20 dBm -0 dBm -0 dBm -30 dBm -0 dBm -0 dBm -60 dBm -0 1001 pts Span 1.7445 MHz			
PSD 100kHz Plot on Channel 39	Date: 16.5EP.2022 22:24:50			
Ref Level 30.00 dem Offset 23.90 de e RBW 100 kHz Mode Sweep • Att 20 dB SWT 1 ms e VBW 300 kHz Mode Sweep • IPk Max 1 ms e VBW 300 kHz Mode Sweep 101 ms e VBW 300 kHz Mode Sweep • IPk Max 1 ms e VBW 300 kHz Mode Sweep 11 ms e VBW 300 kHz 10 ms e VBW 300 kHz				



3.3.7 Test Result of Power Spectral Density Plots (3kHz)

<Ant.4>



<Ant.3>

PSD 3kHz Plot on Channel 00	PSD 3kHz Plot on Channel 19
Spectrum Image: Constraint of the section of the sectio	Spectrum (™) RefLevel 30.00 dBm Offset 23.90 dB RBW 3 kHz Att 20 dB SWT 19.4 ms VBW 10 kHz Mode Sweep
1914: Max 0.31 dBm 20 dBm 2.40193375 GHz 10 dBm 0 dBm -10, gBm 0.41 dBm -30 dBm 0.41 dBm -50 dBm 0.41 dBm -60 dBm 0.41 dBm -50 dBm 0.41 dBm -60 dBm 0.41 dBm	• 1Pk Max 0.6 6 dbm 20 dbm 2.43993205 GHz 10 dbm 0.43993205 GHz 0 dbm 0.43993205 GHz -0 dbm 0.41 Hz -0
PSD 3kHz Plot on Channel 39	N/A
Spectrum Image: Spectrum Ref Level 30.00 dbm Offset 23.90 db @ RBW 3 kHz Att 20 dB SWT 10 dbm 0.82 dbm 0 dbm 0.47993205 GHz 0 dbm 0.411 0 dbm 0.47993205 GHz 0 dbm 0.47993205 GHz 0 dbm 0.47993205 GHz 0 dbm 0.47993205 GHz 0 dbm 0.44	

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

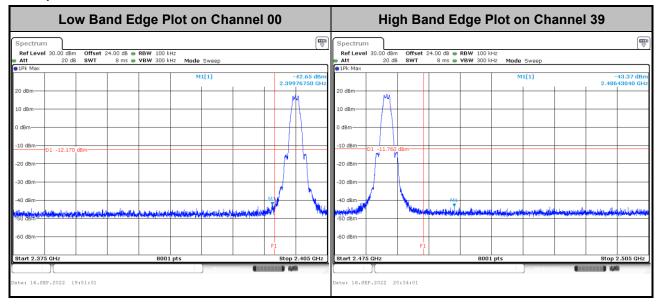
3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup



3.4.5 Test Result of Conducted Band Edges Plots

<Ant. 4>

<1Mbps>

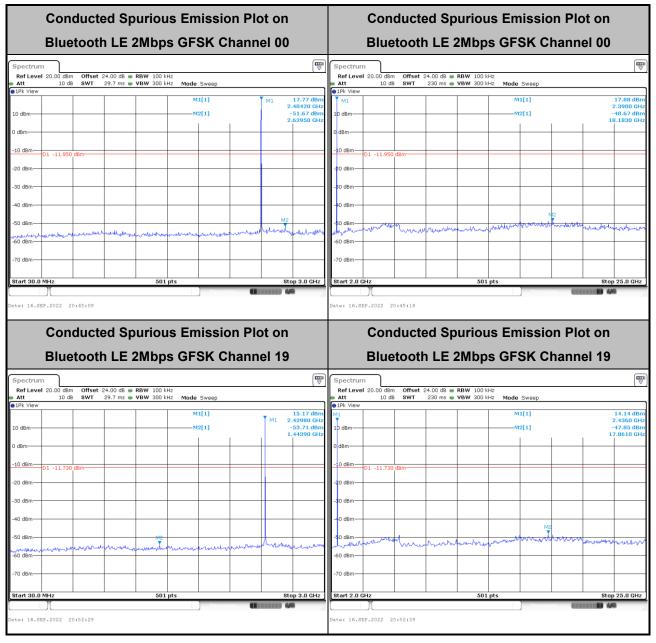
Low Band Edge Plot on Channel 00			High	Band Edge	Plot on Cha	annel 39
	RBW 100 kHz VBW 300 kHz Mode Sweep		Att 20 dB 4	Offset 24.00 dB	00 kHz 00 kHz Mode Sweep	
IPK Max 20 dBm 10 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 1 -11.950 dBm -20 dBm -30 dBm -30 dBm -40 dBm -40 dBm -50 dBm -50 dBm -50 dBm Date: 16.SEP.2022 20:42:21	M1[1]	F1	10 /bk Max 20 dBm 10 dBm 0 dBm 0 dBm 0 1 -11.530 dBm -10 dBm 01 -11.530 dBm -20 dBm -30 dBm -30 dBm -60 dBm -60 dBm -50 dBm -60 dBm -50 dBm -	F1 8	M1[1]	-43.35 dBm 2.5020850 GHz

<Ant. 3>

<1Mbps>

Low Band Edge Plot on Channel 00	High Band Edge Plot on Channel 39
Spectrum Image: Constraint of the sector of t	Spectrum Image: Construction of the construct
1/k Max -40.47 dBm 20 dBm 2.39994380 GHz 10 dBm 2.39994380 GHz 0 dBm -40.47 dBm 20 dBm -40.47 dBm -10 dBm -40.47 dBm -20 dBm -40.47 dBm -20 dBm -40.47 dBm -30 dBm -40.47 dBm -40 dBm -40.47 dBm -30 dBm -40.47 dBm -40 dBm -40.47 dBm -50 dBm -40.47 dBm -40 dBm -40.47 dBm -50 dBm -40.47 dBm -50 dBm -40.47 dBm -50 dBm -40.47 dBm -50 dBm -50.42 dBm -50 dBm -50.42 dBm -50.42 dBm -50.42 dBm -50.42 dBm -50.42 dBm	IPk Max -44.13 dBm 20 dBm 2.48645290 GHz 10 dBm -44.13 dBm 0 dBm -44.13 dBm 10 dBm -44.13 dBm -10 dBm -40 dBm -20 dBm -40 dBm -30 dBm -40 dBm -40 dBm -41.13 dBm -10 dBm -40 dBm -20 dBm -40 dBm -30 dBm -40 dBm -40 dBm -41.12 dBm -40 dBm -41.12 dBm -40 dBm -42.13 dBm -40 dBm -42.14 dBm -40 dBm -42.14 dBm -40 dBm -42.14 dBm -40 dBm -42.14 dBm -50 dBm -42.14 dBm -60 dBm -42.14 dBm F1 -42.14 dBm Start 2.475 GHz -42.14 dBm -40 dBm -42.14 dBm -50 dBm -42.14 dBm -60 dBm -42.14 dBm -51 dBm -42.14 dBm -51 dBm -42.14 dBm -52 dBm <t< th=""></t<>

Low Band Edge Plot on Channel 00			Hig	h Band Ed	ge Plot on C	hannel 39
Spectrum Ref Level 30.00 dBm Offset 2 • Att 20 dB SWT • 1Pk Max	13.90 dB ● RBW 100 kHz 8 ms ● VBW 300 kHz Mode Sweep		Spectrum Ref Level 30.00 dBm Att 20 dB	Offset 23.90 dB ● R SWT 8 ms ● V	BW 100 kHz BW 300 kHz Mode Sweep	(\vec{v})
20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -40 dBm -60 dBm -60 dBm -50 dBm -50 dBm -50 dBm -60 dBm	Image: Milling of the state of th	F1 Stop 2.405 GHz	20 dBm 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -60 dBm -60 dBm -50 d		MI[1]	44.25 dBm 2.48500940 GHz
Date: 16.SEP.2022 22:17:57	16 stor	(IIIIII) 49	Date: 16.SEP.2022 22	:30:39	Mea	(111111) 49


3.4.6 Test Result of Conducted Spurious Emission Plots

<Ant.4>

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00			Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00			
IPk View I0 dBm	M1[1] M2[1]	M1 16.98 dBm 2.40420 GHz -52.21 dBm	1Pk View M1 10 dBm		M1[1] M2[1]	15.97 dBm 2.3900 GHz -47.71 dBm
0 dBm		2.65320 GHz	0 dBm			17.8610 GHz
-10 dBm 01 -12.170 dBm20 dBm			-10 dBm D1 -12.170 dBm			
-30 dBm			-80 dBm			
	metroprisonalin mathematica	M2		man marken when	M2 M2	un and an area and and and and an and an
-60 dBm			-60 dBm			
Start 30.0 MHz	501 pts	Stop 3.0 GHz	Start 2.0 GHz	501	pts Measuring	Stop 25.0 GHz
Date: 16.SEP.2022 21:47:29		1	Date: 16.SEP.2022 21:47:38	3		
	d Courious Emissis	n Diat an			o Emission	Diston
Conducted	d Spurious Emissio LE 1Mbps GFSK Cf		Conduc	ted Spuriou th LE 1Mbps		
Conducted Bluetooth Spectrum Ref Level 20.00 dBm Offset 24.	LE 1Mbps GFSK Ch		Conduct Bluetoo	et 24.00 dB • RBW 100 kF	s GFSK Cha	
Conducted Bluetooth Spectrum Ref Level 20.00 dBm Offset 24.	LE 1Mbps GFSK C	nannel 19	Conduct Bluetoo	et 24.00 dB • RBW 100 kF	s GFSK Cha	nnel 19 ♥ 17.89 dBm 2.4360 GHz -48.66 dBm
Conducted Bluetooth	LE 1Mbps GFSK Cr	nannel 19	Conduct Bluetoo Spectrum Ref Level 20.00 dbm Offs Att 10 db SWT D dbm 0 0 dbm 0 0 dbm 0 0 dbm 0 0 dbm 0	et 24.00 dB • RBW 100 kF	s GFSK Cha	nnel 19
Conducted Bluetooth Spectrum Ref Level 20.00 dBm Offset 24. 10 dB SWT 29 10 dBm 0 dBm -10 dBm 01 -11.960 dBm	LE 1Mbps GFSK Cr	nannel 19	Spectrum Offsector Ref Level 20.00 dBm Offsector 10 dB WI 10 dBm 0 dBm 0 dBm 01 - 11.960 dBm -20 dBm 01 - 11.960 dBm	et 24.00 dB • RBW 100 kF	s GFSK Cha	nnel 19 ♥ 17.89 dBm 2.4360 GHz -48.66 dBm
Conducted Bluetooth Spectrum Ref Level 20.00 dBm Offset 24. • Att 10 dB SWT 29 • 1Pk View 10 dBm 01 -11.960 dBm	LE 1Mbps GFSK Cr	nannel 19	Conduct Bluetoo Spectrum Ref Level 20.00 dbm Offs Att 10 db Offs D dbm 01 -11.960 dbm	et 24.00 dB • RBW 100 kF	s GFSK Cha	nnel 19 ♥ 17.89 dBm 2.4360 GHz -48.66 dBm
Conducted Bluetooth	LE 1Mbps GFSK Cr	nannel 19	Spectrum Offsector Ref Level 20.00 dbm offsector 10 dbm 0 10 dbm 0 -10 dbm 01 -11.960 dbm -20 dbm -11.960 dbm -30 dbm -11.960 dbm	et 24.00 dB • RBW 100 kF	S GFSK Cha	nnel 19 ♥ 17.89 dBm 2.4360 GHz -48.66 dBm
Conducted Bluetooth Spectrum Ref Level 20.00 dBm of B 10 dB SWT 10 dBm 10 dBm 10 dBm 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	LE 1Mbps GFSK Cf	nannel 19	Spectrum Offsector Ref Level 20.00 dBm Offsector 10 dBm 0 dBm 10 dBm 0 dBm 10 dBm 0 dBm 20 dBm 01 - 11.960 dBm -20 dBm 01 - 11.960 dBm -30 dBm 0 dBm	et 24.00 dB et 24	S GFSK Cha	17.89 dBm 2.4380 GH2 -48.66 dBm 17.8610 GH2

Conducted Spurious Emission Plot on	Conducted Spurious Emission Plot on			
Bluetooth LE 1Mbps GFSK Channel 39	Bluetooth LE 1Mbps GFSK Channel 39			
Spectrum Mili Ref Level 20.00 dBm Offset 24.00 dB • RBW 100 kHz • Att 10 dB • SWT • IPk View Mili • 10 dBm Mili • 10 dBm Mili	12 M1 2.4820 GHz			
2.96740 G 0 d8m -10 d8m 01 -11.760 d8m -20 d8m -30 d8m				
-40 dBm	-0 dBm			
Start 30.0 MHz 501 pts Stop 3.0 GH Oute: 10.5859.2022 20:34:31 Maximum Outer Maximum Outer	z) Start 2.0 GHz 501 pts Stop 25.0 GHz Date: 16.5EP.2022 20:34:41			

Conducted Spurious Emission Plot on	Conducted Spurious Emission Plot on
Bluetooth LE 2Mbps GFSK Channel 39	Bluetooth LE 2Mbps GFSK Channel 39
No. No. <th>Mile Mile <th< th=""></th<></th>	Mile Mile <th< th=""></th<>
Start 30.0 MHz 501 pts Stop 3.0 GHz	Start 2.0 GHz Stop 25.0 GHz Start 2.0 GHz Monormalian Date: 16.SEP.2022 20:57:37

<Ant.3>

<1Mbps>

Conducted Spurious Emission Plot on			Conducted	Spurious Emiss	sion Plot on		
Bluetooth	LE 1Mbps GFSK Cha	annel 00	Bluetooth LE 1Mbps GFSK Channel 00				
	0 d8 ● RBW 100 kHz 7 ms ● VBW 300 kHz Mode Sweep	(vel 20.00 dBm Offset 23.90	dB e RBW 100 kHz ms e VBW 300 kHz Mode Sweep	p		
1Pk View 10 dBm 0 dBm	M1[1] M2[1]	M1 16.87 dBm 2.40420 GHz -53.09 dBm 2.99110 GHz 0 dBm-	W	M1[1] M2[1]	17.18 dBm 2.3900 GHz -47.56 dBm 17.8610 GHz		
-10 dBm 01 -12.500 dBm		-10 dBm -20 dBm -80 dBm	01 -12.500 dBm				
-40 dBm	MAR who who was a fear who	-40 dBm	www.www.www.www.	neweener	ME		
-70 dBm	501 pts	Stop 3.0 GHz	0 GHz .sep.2022 21:44:35	501 pts	Stop 25.0 GHz		
	I Spurious Emission LE 1Mbps GFSK Cha			Spurious Emiss E 1Mbps GFSK			
	0 dB e RBW 100 kHz 7 ms e VBW 300 kHz Mode Sweep	(vel 20.00 dBm Offset 23.90 10 dB SWT 230 r	dB e RBW 100 kHz ms e VBW 300 kHz Mode Sweep	p		
10 dBm	M1[1] 	M1 17.40 dBm 2.43980 GHz -53.36 dBm 1D dBm 2.95550 GHz 0 dBm -10 dBm		M1[1] 	16.11 dBm 2,4360 GHz -48.35 dBm 17,8610 GHz		
D1 -12.180 dBm		-20 dBm	D1 -12.180 dBm				
-20 dBm		30 dBm 40 dBm					
-30 dBm	Marken and a second		Martille Martine Will	and the and the former of the second	NS WWW. when when		
-30 dBm -40 dBm -50 dBm -60 dBm	501 pts	-0 dBm -0 dBm -50 dBm -60 dBm		مریاب کار میں	Stop 25.0 GHz		

Conducted Spurious Emission Plot on	Conducted Spurious Emission Plot on
Bluetooth LE 1Mbps GFSK Channel 39	Bluetooth LE 1Mbps GFSK Channel 39
No.01 Control of the second seco	Spectrum Image: Constraint of the second secon
-70 dBm	-70 dBm

<2Mbps>

Conducted	Spurious Emission	Plot on	Conducted Spurious Emission Plot on				
Bluetooth L	E 2Mbps GFSK Cha	nnel 00	Bluetooth LE 2Mbps GFSK Channel 00				
	dB e RBW 100 kHz ms e VBW 300 kHz Mode Sweep	(♥) Spectr RefLt ● Att	evel 20.00 dBm Offset 23.90 d	dB ● RBW 100 kHz ns ● VBW 300 kHz Mode Sweep			
1Pk View 10 dBm 0 dBm -10 dBm 01 -12.370 dBm	MI[1] M2[1]	M1 17.33 dBm 2.40420 GHz -52.68 dBm 2.94770 GHz 0 dBm -10 dBm -10 dBm	DW	M1[1] M2[1]	15.75 dBm 2.3900 GHz -48.24 dBm 17.8610 GHz		
-20 dBm -30 dBm -40 dBm -50 dBm -50 dBm -60 dBm	may when she man of the	-20 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -40 dBm -40 dBm -40 dBm -40 dBm	whenty me to the weather the second s				
-70 dBm	501 pts	Stop 3.0 GHz		501 pts	Stop 25.0 GHz		
	Spurious Emission E 2Mbps GFSK Cha			Spurious Emissior E 2Mbps GFSK Ch	annel 19		
	dB e RBW 100 kHz ms e VBW 300 kHz Mode Sweep	© Specti RefLt ■ Att	evel 20.00 dBm Offset 23.90 o 10 dB SWT 230 n	dB e RBW 100 kHz ns e VBW 300 kHz Mode Sweep			
10 dBm	M1[1] M2[1]	M1 17.72 dBm 2.43980 GHz -53.36 dBm 2.88440 GHz 0 dBm 	01 -12.040 dBm	M1[1] M2[1]	16.05 dBm 2.4360 GHz -48.07 dBm 17.8610 GHz		
-30 dBm -40 dBm -50 dBm -50 dBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-0 dam -0 dam -0 dam -0 dam -0 dam -0 dam -0 dam -0 dam		me manual the manual the	Malloll and a second and		
		-70 dBm					

Conducted Spurious Emission	Conducted Spurious Emission Plot on				nission Pl	ot on
Bluetooth LE 2Mbps GFSK Cha	nnel 39	Blu	etooth LE 2	Mbps GF	SK Chanr	nel 39
Offset 23.90 d8 RBW 100 kHz Att 10 d8 SWT 29.7 ms VBW 300 kHz Mode Sweep PIPk view M1[1]	M1 19.24 dBm 2.48130 GHz	Spectrum Ref Level 20.00 d Att 10 1Pk View M1		BW 300 kHz Mode	a Sweep	17.57 dBm 2.4820 GHz
10 dBm	-53.73 dBm 2.96740 GHz	10 dBm 0 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm	970 dBm	۸ 		-48.67 dBm 17.8150 GHz
-40 dBm	me me	-40 dBm	hand the second shades the	www.www.when.wh	M2 Www.waterate	
Start 30.0 MHz 501 pts Date: 16.SEF.2022 22:32:00 ************************************	Stop 3.0 GHz	Start 2.0 GHz	22:32:10	501 pts	Measuring	Stop 25.0 GHz

3.5 Radiated Band Edges and Spurious Emission Measurement

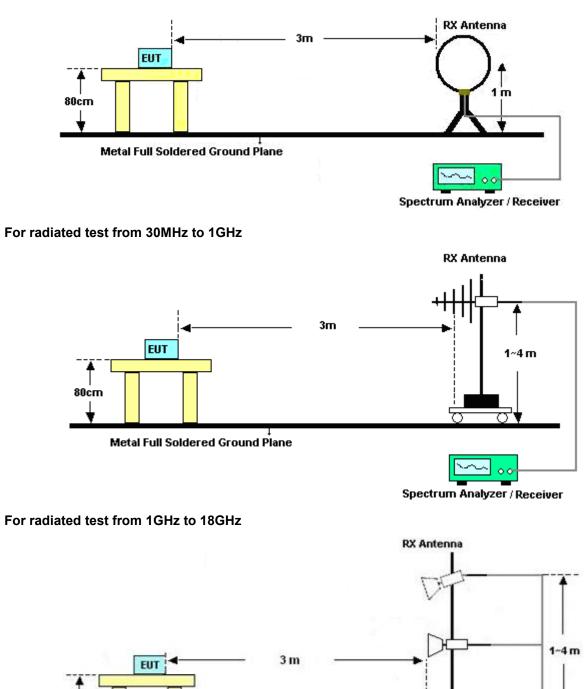
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

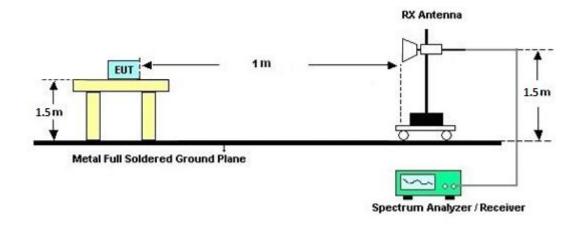
Please refer to the measuring equipment list in this test report.


3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated test below 30MHz



Page Number: 44 of 51Issue Date: Nov. 30, 2022Report Version: 02

1.5m

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site -

semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

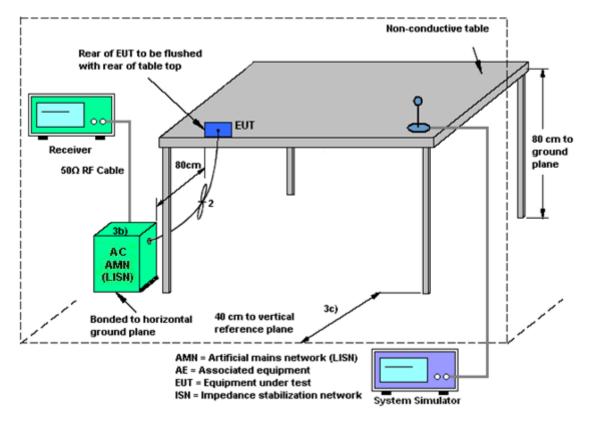
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	May 13, 2022	Sep. 15, 2022~ Oct. 05, 2022	May 12, 2023	Radiation (03CH16-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 28, 2022	Sep. 15, 2022~ Oct. 05, 2022	Jun. 27, 2023	Radiation (03CH16-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00993	18GHz-40GHz	Nov. 30, 2021	Sep. 15, 2022~ Oct. 05, 2022	Nov. 29, 2022	Radiation (03CH16-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1522	1GHz~18GHz	Mar. 10, 2022	Sep. 15, 2022~ Oct. 05, 2022	Mar. 09, 2023	Radiation (03CH16-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00802N1D01N -06	47020 & 06	30MHz~1GHz	Oct. 09, 2021	Sep. 15, 2022~ Oct. 05, 2022	Oct. 08, 2022	Radiation (03CH16-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Sep. 15, 2022~ Oct. 05, 2022	N/A	Radiation (03CH16-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Sep. 15, 2022~ Oct. 05, 2022	N/A	Radiation (03CH16-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Sep. 15, 2022~ Oct. 05, 2022	N/A	Radiation (03CH16-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY57290111	3Hz~26.5GHz	Dec. 15, 2021	Sep. 15, 2022~ Oct. 05, 2022	Dec. 14, 2022	Radiation (03CH16-HY)
Software	Audix	E3 6.2009-8-24	RK-001136	N/A	N/A	Sep. 15, 2022~ Oct. 05, 2022	N/A	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	805935/4	N/A	Aug. 09, 2022	Sep. 15, 2022~ Oct. 05, 2022	Aug. 08, 2023	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	802434/4	N/A	Aug. 09, 2022	Sep. 15, 2022~ Oct. 05, 2022	Aug. 08, 2023	Radiation (03CH16-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	EC-A5-300-5 757	N/A	Aug. 09, 2022	Sep. 15, 2022~ Oct. 05, 2022	Aug. 08, 2023	Radiation (03CH16-HY)
Amplifier	SONOMA	310N	371607	9kHz~1GHz	Jul. 04, 2022	Sep. 15, 2022~ Oct. 05, 2022	Jul. 03, 2023	Radiation (03CH16-HY)
Preamplifier	EMEC	EM1G18G	060812	1GHz~18GHz	Dec. 27, 2021	Sep. 15, 2022~ Oct. 05, 2022	Dec. 26, 2022	Radiation (03CH16-HY)
Preamplifier	Keysight	83017A	MY53270264	1GHz~26.5GHz	Dec. 09, 2021	Sep. 15, 2022~ Oct. 05, 2022	Dec. 08, 2022	Radiation (03CH16-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 16. 2021	Sep. 16, 2022	Nov. 15, 2022	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	15I00041SNO 10 (NO:248)	10MHz~6GHz	Dec. 29, 2021	Sep. 16, 2022	Dec. 28, 2022	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101905	10Hz - 40GHz(amp)	Aug. 03, 2022	Sep. 16, 2022	Aug. 02, 2023	Conducted (TH05-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Sep. 21, 2022	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Sep. 21, 2022	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Oct. 29, 2021	Sep. 21, 2022	Oct. 28, 2022	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 16, 2022	Sep. 21, 2022	Mar. 15, 2023	Conduction (CO07-HY)
Two-Line V-Network	TESEQ	NNB 51	45051	N/A	Feb. 16, 2022	Sep. 21, 2022	Feb. 15, 2023	Conduction (CO07-HY)
Four-Line V-Network	TESEQ	NNB 52	36122	N/A	Mar. 04, 2022	Sep. 21, 2022	Mar. 03, 2023	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Oct. 21, 2021	Sep. 21, 2022	Oct. 20, 2022	Conduction (CO07-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2.3 dB
of 95% (U = 2Uc(y))	2.3 UD

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.5 dB
of 95% (U = 2Uc(y))	8.5 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	4.6 dB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	4.5 dB
--	--------

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.6 dB
of 95% (U = 2Uc(y))	5.8 dB

Report Number : FR280208-01B

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Shiming Liu	Temperature:	21~25	°C
Test Date:	2022/9/16	Relative Humidity:	51~54	%
<ant.4></ant.4>				

					<u>6d</u> E	-	RESULTS Occupie	<u>DATA</u> d Bandwi	<u>idth</u>
BLE	Data Rate	Ntx	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	1.015	0.676	0.50	Pass	7
BLE	1Mbps	1	19	2440	1.017	0.674	0.50	Pass	
BLE	1Mbps	1	39	2480	1.017	0.678	0.50	Pass	

						<u>RESULTS</u> ge Power					
BLE	Data Rate	Ntx	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail	
BLE	1Mbps	1	0	2402	18.20	30.00	-1.30	16.90	36.00	Pass	
BLE	1Mbps	1	19	2440	18.50	30.00	-1.30	17.20	36.00	Pass	
BLE	1Mbps	1	39	2480	18.70	30.00	-1.30	17.40	36.00	Pass	

						-	RESULTS Power De			
BLE	Data Rate	Ntx	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	17.83	3.51	-1.30	8.00	Pass	
BLE	1Mbps	1	19	2440	18.04	3.65	-1.30	8.00	Pass	
BLE	1Mbps	1	39	2480	18.24	3.90	-1.30	8.00	Pass	

Report Number : FR280208-01B

	<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth										
<u> </u>											
Mod.	Data Rate	Nтx	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail			
BLE	2Mbps	1	0	2402	1.990	1.163	0.50	Pass			
BLE	2Mbps	1	19	2440	1.990	1.163	0.50	Pass			
BLE	2Mbps	1	39	2480	1.986	1.163	0.50	Pass			

TEST RESULTS DATA Average Power Table

Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	18.30	30.00	-1.30	17.00	36.00	Pass
BLE	2Mbps	1	19	2440	18.60	30.00	-1.30	17.30	36.00	Pass
BLE	2Mbps	1	39	2480	30 18.80 30.00		-1.30	17.50	36.00	Pass

							RESULTS Power De		
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	2Mbps	1	0	2402	18.05	0.72	-1.30	8.00	Pass
BLE	2Mbps	1	19	2440	18.27	0.94	-1.30	8.00	Pass
BLE	2Mbps	1	39	2480	18.47	1.16	-1.30	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

<Ant.3>

Report Number : FR280208-01B

					<u>6dE</u>	<u>TEST </u> 3 and 99%	RESULTS 6 Occupie	
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	1Mbps	1	0	2402	1.017	0.674	0.50	Pass
BLE	1Mbps	1	19	2440	1.017	0.672	0.50	Pass
BLE	1Mbps	1	39	2480	1.015	0.674	0.50	Pass

TEST RESULTS DATA Average Power Table

					-					
Mod.	Data Rate	Ντ×	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	18.10	30.00	0.80	18.90	36.00	Pass
BLE	1Mbps	1	19	2440	18.10	30.00	0.80	18.90	36.00	Pass
BLE	1Mbps	1	39	2480	18.20	30.00	0.80	19.00	36.00	Pass

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>											
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail		
BLE	1Mbps	1	0	2402	17.50	3.17	0.80	8.00	Pass		
BLE	1Mbps	1	19	2440	17.82	3.45	0.80	8.00	Pass		
BLE	1Mbps	1	39	2480	17.90	3.57	0.80	8.00	Pass		

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

Report Number : FR280208-01B

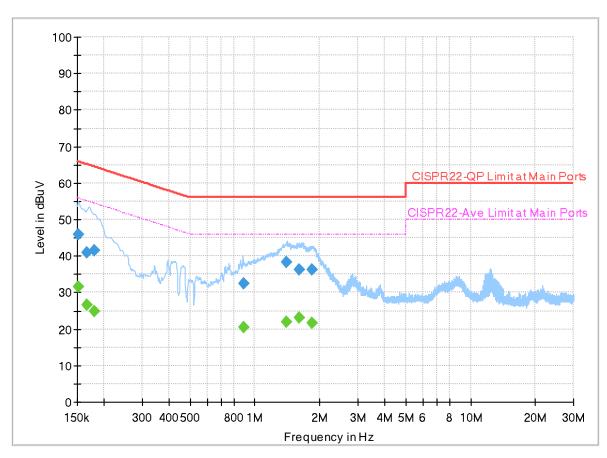
<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth											
<u> </u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail			
BLE	2Mbps	1	0	2402	1.986	1.163	0.50	Pass			
BLE	2Mbps	1	19	2440	1.994	1.163	0.50	Pass			
BLE	2Mbps	1	39	2480	1.986	1.163	0.50	Pass			

TEST RESULTS DATA Average Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	18.20	30.00	0.80	19.00	36.00	Pass
BLE	2Mbps	1	19	2440	18.20	30.00	0.80	19.00	36.00	Pass
BLE	2Mbps	1	39	2480	18.30	30.00	0.80	19.10	36.00	Pass

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>												
	Dette			- Free a	Peak PSD	Peak PSD	DC	Peak PSD				
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	(dBm /100kHz)	(dBm /3kHz)	DG (dBi)	Limit (dBm /3kHz)	Pass/Fail			
BLE	2Mbps	1	0	2402	17.63	0.31	0.80	8.00	Pass			
BLE	2Mbps	1	19	2440	17.96	0.66	0.80	8.00	Pass			
BLE	2Mbps	1	39	2480	18.13	0.82	0.80	8.00	Pass			

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

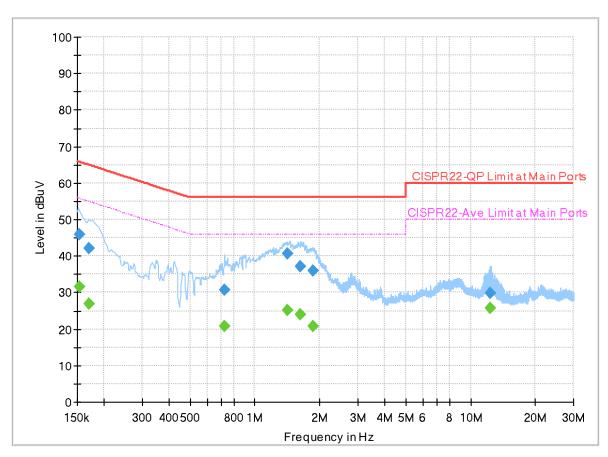


Appendix B. AC Conducted Emission Test Results

Test Engineer		Temperature :	23.1~26.7 ℃
Test Engineer :		Relative Humidity :	49.1~56.9%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 280208-01 Mode 2 120Vac/60Hz Line


FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.152093		31.57	55.89	24.32	L1	OFF	20.0
0.152093	45.91		65.89	19.98	L1	OFF	20.0
0.166380		26.62	55.14	28.52	L1	OFF	20.0
0.166380	40.94		65.14	24.20	L1	OFF	20.0
0.180150		24.99	54.48	29.49	L1	OFF	20.0
0.180150	41.63		64.48	22.85	L1	OFF	20.0
0.883140		20.32	46.00	25.68	L1	OFF	20.0
0.883140	32.42		56.00	23.58	L1	OFF	20.0
1.403250		22.03	46.00	23.97	L1	OFF	20.0
1.403250	38.34		56.00	17.66	L1	OFF	20.0
1.609980		23.03	46.00	22.97	L1	OFF	20.0
1.609980	36.30		56.00	19.70	L1	OFF	20.0
1.844250		21.68	46.00	24.32	L1	OFF	20.0
1.844250	36.19		56.00	19.81	L1	OFF	20.0

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 280208-01 Mode 2 120Vac/60Hz Neutral

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.154320		31.68	55.76	24.08	Ν	OFF	20.0
0.154320	45.84		65.76	19.92	Ν	OFF	20.0
0.170790		26.98	54.92	27.94	Ν	OFF	20.0
0.170790	42.21		64.92	22.71	Ν	OFF	20.0
0.726000		20.72	46.00	25.28	Ν	OFF	20.0
0.726000	30.69		56.00	25.31	Ν	OFF	20.0
1.410810		25.29	46.00	20.71	Ν	OFF	20.0
1.410810	40.62		56.00	15.38	Ν	OFF	20.0
1.625370		24.06	46.00	21.94	Ν	OFF	20.0
1.625370	37.19		56.00	18.81	Ν	OFF	20.0
1.852890		20.86	46.00	25.14	Ν	OFF	20.0
1.852890	35.93		56.00	20.07	Ν	OFF	20.0
12.309000		25.86	50.00	24.14	Ν	OFF	20.2
12.309000	29.89		60.00	30.11	Ν	OFF	20.2

Appendix C. Radiated Spurious Emission

Test Engineer :	Andy Yang, Karl Hay and Stoyon Wy	Temperature :	15~25°C
rest Engineer .	Andy Yang, Karl Hou and Steven Wu	Relative Humidity :	50~65%

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
4		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2363.76	55.69	-18.31	74	41.21	27.26	17.3	30.08	120	143	Ρ	н
		2373.21	45.48	-8.52	54	30.95	27.29	17.32	30.08	120	143	А	Н
	*	2402	114.15	-	-	99.43	27.41	17.38	30.07	120	143	Ρ	Н
	*	2402	113.54	-	-	98.82	27.41	17.38	30.07	120	143	А	н
BLE													Н
CH 00													Н
2402MHz		2368.485	55.97	-18.03	74	41.47	27.27	17.31	30.08	386	92	Ρ	V
240211112		2323.545	45.51	-8.49	54	31.18	27.2	17.22	30.09	386	92	А	V
	*	2402	111.77	-	-	97.05	27.41	17.38	30.07	386	92	Ρ	V
	*	2402	111.1	-	-	96.38	27.41	17.38	30.07	386	92	А	V
													V
													V
		2344.16	55.83	-18.17	74	41.46	27.2	17.26	30.09	116	112	Ρ	Н
		2376.64	45.39	-8.61	54	30.83	27.31	17.33	30.08	116	112	А	Н
	*	2440	114.11	-	-	99.09	27.64	17.44	30.06	116	112	Ρ	Н
	*	2440	113.53	-	-	98.51	27.64	17.44	30.06	116	112	А	Н
		2489.36	56.3	-17.7	74	40.97	27.86	17.51	30.04	116	112	Ρ	Н
BLE		2486.49	46.48	-7.52	54	31.16	27.85	17.51	30.04	116	112	А	Н
CH 19 2440MHz		2372.16	55.75	-18.25	74	41.22	27.29	17.32	30.08	377	91	Ρ	V
2440101712		2375.52	45.59	-8.41	54	31.04	27.3	17.33	30.08	377	91	А	V
	*	2440	112.1	-	-	97.08	27.64	17.44	30.06	377	91	Ρ	V
	*	2440	111.51	-	-	96.49	27.64	17.44	30.06	377	91	А	V
		2488.45	56.36	-17.64	74	41.04	27.85	17.51	30.04	377	91	Ρ	V
		2494.4	46.56	-7.44	54	31.2	27.88	17.52	30.04	377	91	А	V

	*	2480	113.11	-	-	97.84	27.82	17.5	30.05	100	99	Р	Н
	*	2480	112.33	-	-	97.06	27.82	17.5	30.05	100	99	А	Н
		2497.16	56.59	-17.41	74	41.21	27.89	17.53	30.04	100	99	Ρ	Н
		2484.32	47.01	-6.99	54	31.7	27.84	17.51	30.04	100	99	Α	Н
DI C													Н
BLE CH 39													Н
СП 39 2480MHz	*	2480	111.34	-	-	96.07	27.82	17.5	30.05	400	86	Р	V
240010112	*	2480	110.82	-	-	95.55	27.82	17.5	30.05	400	86	А	V
		2495.28	56.7	-17.3	74	41.34	27.88	17.52	30.04	400	86	Р	V
		2483.6	46.93	-7.07	54	31.63	27.83	17.51	30.04	400	86	А	V
													V
													V
Remark		o other spurious I results are PA		^D eak and	Average lin	nit line.							

2.4GHz 2400~2483.5MHz

			ſ		SLE (Harm				F	-		ſ	
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
4		(MHz)	(dBµV/m)		(dBµV/m)			(dB)	(dB)	(cm)	(deg)		
		4804	43.75	-30.25	74	66.3	32.32	11.3	66.17	-	-	Р	Н
													н
													н
													н
													Н
													Н
													H
													Н
													Н
													Н
B 1 E													н
BLE													н
CH 00		4804	43.78	-30.22	74	66.33	32.32	11.3	66.17	-	-	Р	V
2402MHz													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
4		(MHz)	(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4880	43.89	-30.11	74	65.94	32.72	11.35	66.12	-	-	P	Н
		7320	45.05	-28.95	74	60.2	37.08	13.49	65.72	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													н
													н
													Н
													Н
BLE													Н
CH 19		4880	44.4	-29.6	74	66.45	32.72	11.35	66.12	-	-	Р	V
2440MHz		7320	47.93	-26.07	74	63.08	37.08	13.49	65.72	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													v v
													v

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT	İ			Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
4	<u> </u>	(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		(H/V)
		4965	46.27	-27.73	74	67.79	33.13	11.41	66.06	-	-	Ρ	Н
		7440	44.11	-29.89	74	59.95	36.46	13.49	65.79	-	-	Ρ	Н
													Н
													Н
													Н
													Н
													Н
													H
													H
													H H
BLE													н
CH 39		4965	45.06	-28.94	74	66.58	33.13	11.41	66.06	-	-	Р	V
2480MHz		7440	46.65	-27.35	74	62.49	36.46	13.49	65.79	_	-	P	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
		o other spurious		N 1-	A	14 11							
Remark		results are PA e emission pos					ission found	l with cuf	ficient mar	nin enei	inst limit	line or	noise
		or only.		us - II					noiont mai	yin aya			10130

Emission above 18GHz

2.4GHz BLE (SHF)

BT ANT	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	Pol.
4 ANT		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		. –	(H/V)
		19035	36.23	-37.77	74	56.98	38.01	-3.67	55.09	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
2.4GHz BLE													Н
SHF		19035	36.68	-37.32	74	57.43	38.01	-3.67	55.09	-	-	Р	V
5111													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. N	o other spuriou	s found.										
Remark		ll results are PA											
		he emission pos	sition marked	as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	fle	oor only.											

Emission below 1GHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
4		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		83.35	25.75	-14.25	40	42.98	13.69	1.37	32.29	-	-	Р	Н
		95.96	32.62	-10.88	43.5	47.95	15.41	1.51	32.25	-	-	Р	Н
		178.41	33.57	-9.93	43.5	48.64	15.15	2.1	32.32	-	-	Ρ	Н
		298.69	19.58	-26.42	46	29.99	19.29	2.63	32.33	-	-	Ρ	Н
		656.62	27.36	-18.64	46	29.79	26.2	3.97	32.6	-	-	Ρ	Н
		956.35	32.94	-13.06	46	28.65	30.74	4.83	31.28	-	-	Р	Н
													Н
													Н
													Н
													Н
2.4GHz BLE													Н
													Н
LF		65.89	24.82	-15.18	40	43.91	12.04	1.16	32.29	-	-	Р	V
		94.99	29.94	-13.56	43.5	45.5	15.2	1.5	32.26	-	-	Р	V
		185.2	28.55	-14.95	43.5	43.86	14.88	2.13	32.32	-	-	Ρ	V
		447.1	24.47	-21.53	46	30.47	23.19	3.28	32.47	-	-	Ρ	V
		725.49	29.38	-16.62	46	30.26	27.43	4.17	32.48	-	-	Ρ	V
		942.77	33.13	-12.87	46	29.43	30.32	4.78	31.4	-	-	Ρ	V
													V
													V
													V
													V
													V
													V
Remark	2. All	o other spurious results are PA e emission pos	SS against li		ieans no sus	pected err	nission foun	d and em	iission leve	el has at	t least 60	dB ma	rgin
		ainst limit or er											-

2.4GHz BLE (LF)

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
3		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2389.905	57.06	-16.94	74	42.41	27.36	17.36	30.07	380	29	Р	Н
		2384.235	45.74	-8.26	54	31.12	27.34	17.35	30.07	380	29	Α	Н
	*	2402	115.21	-	-	100.49	27.41	17.38	30.07	380	29	Р	Н
	*	2402	114.59	-	-	99.87	27.41	17.38	30.07	380	29	Α	Н
BLE													Н
CH 00													Н
2402MHz		2363.235	55.61	-18.39	74	41.14	27.25	17.3	30.08	382	114	Р	V
240211112		2389.38	45.48	-8.52	54	30.83	27.36	17.36	30.07	382	114	Α	V
	*	2402	113.47	-	-	98.75	27.41	17.38	30.07	382	114	Р	V
	*	2402	112.88	-	-	98.16	27.41	17.38	30.07	382	114	А	V
													V
													V
		2320.22	54.86	-19.14	74	40.54	27.2	17.21	30.09	372	27	Р	Н
		2385.6	45.31	-8.69	54	30.69	27.34	17.35	30.07	372	27	А	Н
	*	2440	116.25	-	-	101.23	27.64	17.44	30.06	372	27	Ρ	Н
	*	2440	115.56	-	-	100.54	27.64	17.44	30.06	372	27	А	Н
515		2486	57.46	-16.54	74	42.15	27.84	17.51	30.04	372	27	Ρ	Н
BLE CH 19		2493	46.39	-7.61	54	31.04	27.87	17.52	30.04	372	27	А	Н
2440MHz		2377.34	55.67	-18.33	74	41.11	27.31	17.33	30.08	368	115	Ρ	V
		2351.3	45.21	-8.79	54	30.8	27.21	17.28	30.08	368	115	Α	V
	*	2440	113.26	-	-	98.24	27.64	17.44	30.06	368	115	Р	V
	*	2440	112.79	-	-	97.77	27.64	17.44	30.06	368	115	Α	V
		2496.15	55.93	-18.07	74	40.57	27.88	17.52	30.04	368	115	Р	V
		2484.88	46.3	-7.7	54	30.99	27.84	17.51	30.04	368	115	А	V

	*	2480	116.01	-	-	100.74	27.82	17.5	30.05	399	25	Р	Н
	*	2480	115.23	-	-	99.96	27.82	17.5	30.05	399	25	А	Н
		2483.56	59.68	-14.32	74	44.38	27.83	17.51	30.04	399	25	Ρ	Н
		2483.88	48.17	-5.83	54	32.86	27.84	17.51	30.04	399	25	Α	Н
DIE													Н
BLE CH 39													Н
2480MHz	*	2480	114.41	-	-	99.14	27.82	17.5	30.05	399	121	Р	V
24001112	*	2480	113.79	-	-	98.52	27.82	17.5	30.05	399	121	А	V
		2483.56	57.25	-16.75	74	41.95	27.83	17.51	30.04	399	121	Р	V
		2483.84	47.33	-6.67	54	32.02	27.84	17.51	30.04	399	121	А	V
													V
													V
Remark		o other spurious I results are PA		² eak and	Average lin	nit line.							

2.4GHz 2400~2483.5MHz

	[1		SLE (Harm		5111)	_	Ī	-		[[
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
3		(MHz)	(dBµV/m)		(dBµV/m)			(dB)	(dB)	(cm)	(deg)		
		4804	43.65	-30.35	74	66.2	32.32	11.3	66.17	-	-	Ρ	Н
													н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													н
CH 00		4804	42.62	-31.38	74	65.17	32.32	11.3	66.17	-	-	Р	V
2402MHz													V
													V
													V
													V
													V
													V
													V
											<u> </u>		V
													V
													V
													V
													v

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT			 	Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
3		· · ·	(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4880	43.58	-30.42	74	65.63	32.72	11.35	66.12	-	-	Р	Н
		7320	45.95	-28.05	74	61.1	37.08	13.49	65.72	-	-	Р	Н
													Н
													Н
													Н
													Н
													н
													н
													Н
													Н
													Н
BLE													н
CH 19 2440MHz		4880	41.51	-32.49	74	63.56	32.72	11.35	66.12	-	-	Р	V
2440101112		7320	47.19	-26.81	74	62.34	37.08	13.49	65.72	-	-	Ρ	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													v

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
ANT				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
3		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4960	46.35	-27.65	74	67.88	33.12	11.41	66.06	-	-	Ρ	Н
		7440	44.71	-29.29	74	60.55	36.46	13.49	65.79	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													H
													H
													H
BLE													H H
CH 39		4960	43.55	-30.45	74	65.08	33.12	11.41	66.06	_	-	Р	н V
2480MHz		7440	43.55	-30.45	74	59.65	36.46	13.49	65.79	-	-	г Р	V
		7440	43.01	-30.19	74	39.00	50.40	13.49	00.79	_	-	1	V
													v
													V
													V
													V
													V
													V
													V
													V
													V
	1. N	o other spuriou	s found.		1				1		1	1	
Remark	2. A	ll results are PA	SS against F	Peak and	Average lim	it line.							
Kennark		he emission po	sition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	oor only.											

Emission above 18GHz

2.4GHz BLE (SHF)

BT ANT	Note	Frequency	Level	Over Limit	Limit Line	Read Level	Antenna Factor	Path Loss	Preamp Factor	Ant Pos	Table Pos	Peak Avg.	Pol.
3		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		(H/V)
		19616	37.02	-36.98	74	57.86	37.75	-3.61	54.98	-	-	Р	Н
													Н
													н
													н
													Н
													н
													н
													н
													н
													Н
													Н
2.4GHz													Н
BLE		21696	37.65	-36.35	74	57.52	38.1	-3.27	54.7	-	-	Р	V
SHF													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. N	o other spurious	a found										V
		l results are PA		mit line									
Remark		ne emission pos			eans no sus	pected em	ission found	d with suf	ficient mar	ain aasi	nst limit	line or	noise
		oor only.		uu - 11					noiont mai	yin ayai			10130
	IIC	or only.											

Emission below 1GHz

					2.4GHz	•							
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant		Peak	
ANT 3		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	
		30	20.7	-19.3	40	27.72	24.63	0.53	32.18	-	-	P	н
		95.96	35.17	-8.33	43.5	50.5	15.41	1.51	32.25	-	-	Р	н
		183.26	31.95	-11.55	43.5	47.25	14.9	2.12	32.32	-	-	Р	н
		477.17	24.43	-21.57	46	29.94	23.64	3.36	32.51	-	-	Ρ	Н
		727.43	29.2	-16.8	46	29.97	27.53	4.18	32.48	-	-	Р	Н
		960.23	33.68	-20.32	54	29.17	30.91	4.84	31.24	-	-	Р	н
													Н
													Н
													Н
													Н
2.4GHz													н
BLE		55.22	18.66	-21.34	40	37.33	12.63	1.01	32.31	-	-	Р	H V
LF		66.86	24.89	-15.11	40	43.86	12.03	1.18	32.29	-	-	г Р	V
		93.05	30.06	-13.44	43.5	45.91	14.94	1.48	32.27	_	-	P	v
		186.17	30.04	-13.46	43.5	45.36	14.86	2.14	32.32	-	-	Р	V
		572.23	27.58	-18.42	46	30.61	25.86	3.72	32.61	-	-	Р	V
		844.8	31.81	-14.19	46	30.32	29.07	4.54	32.12	-	-	Р	V
		948.59	34.1	-11.9	46	30.14	30.51	4.8	31.35	-	-	Р	V
													V
													V
													V
													V
													V
		o other spurious											
Remark		l results are PA											
		e emission pos				pected err	nission foun	d and em	ussion leve	el has af	i least 6o	iB mai	gin
	ag	ainst limit or er	nission is no	ise floor	oniy.								

2.4GHz BLE (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin (dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

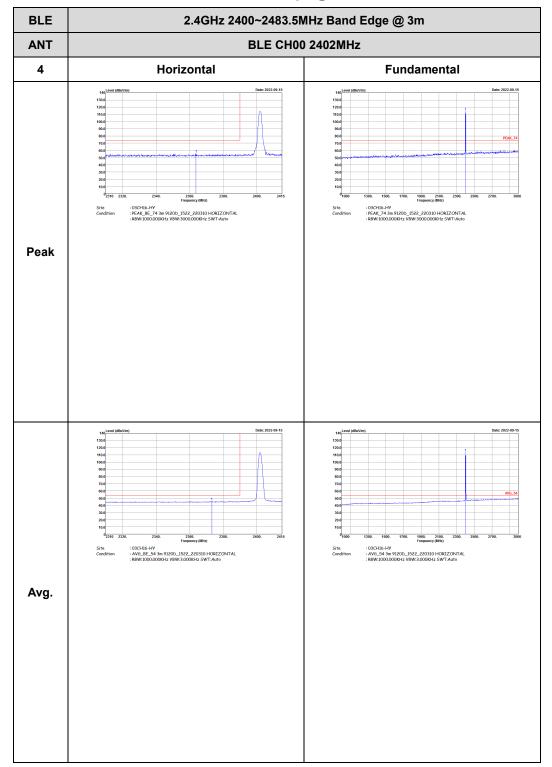
- 1. Level(dB μ V/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

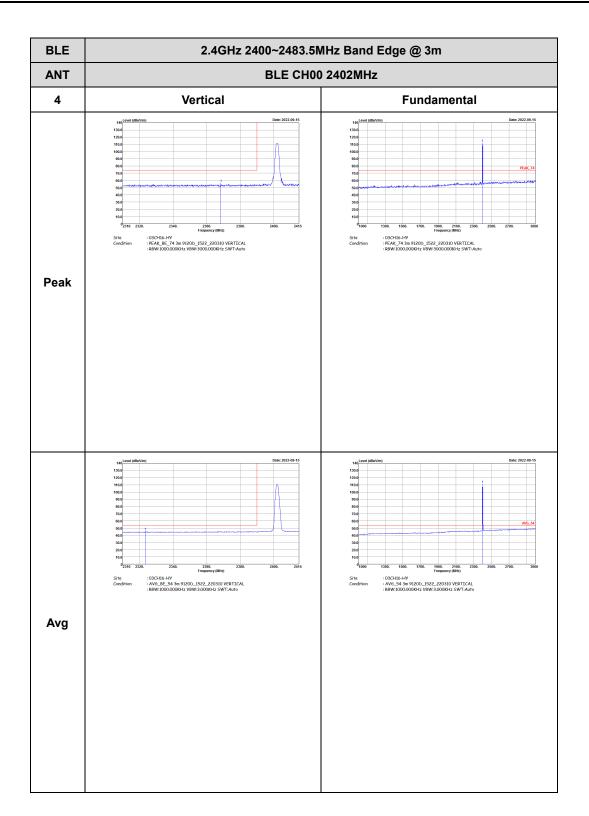
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Margin (dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

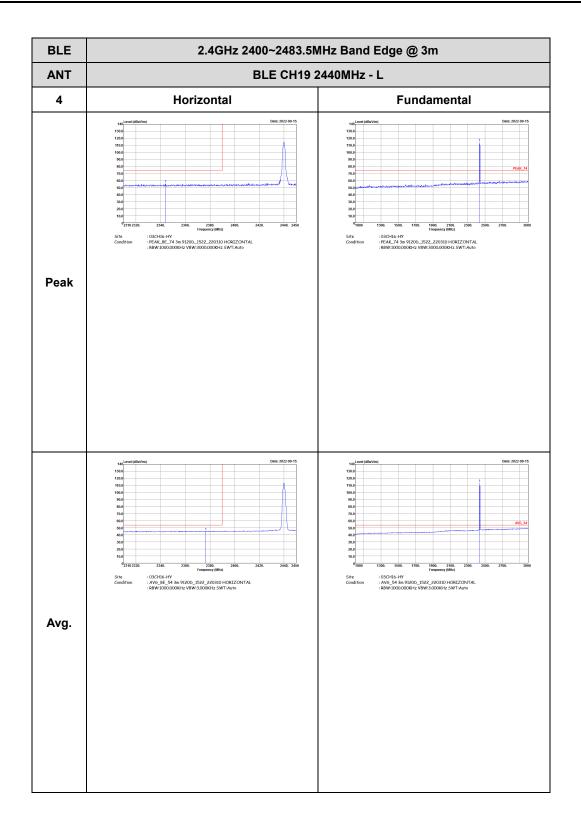
Both peak and average measured complies with the limit line, so test result is "PASS".

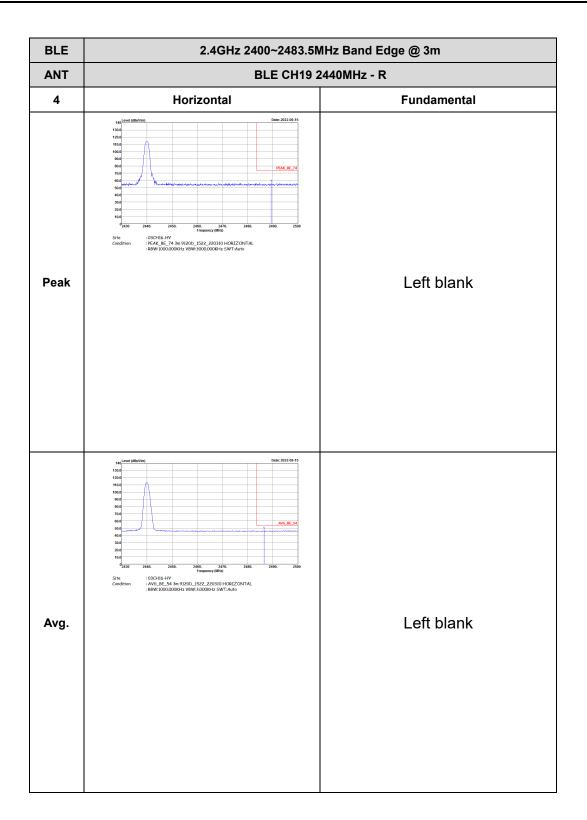
Appendix D. Radiated Spurious Emission Plots

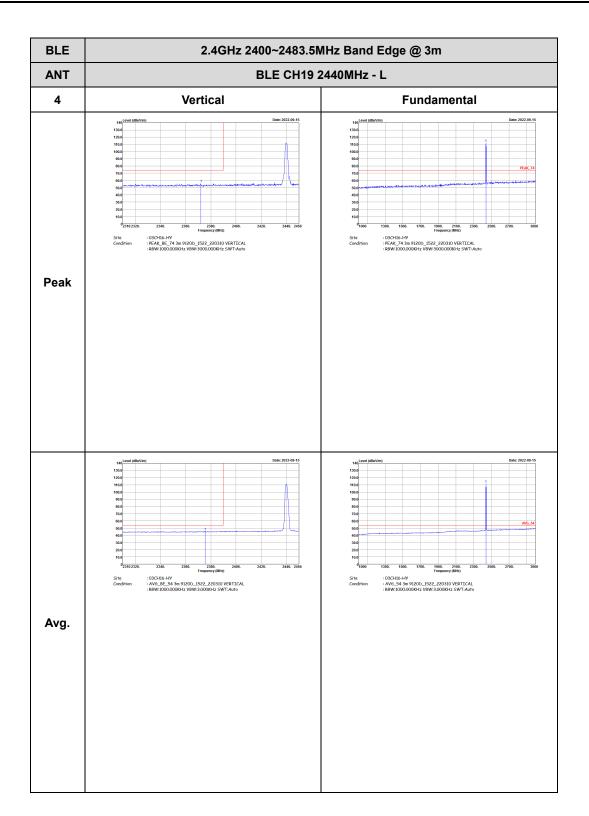

Test Engineer :	Andy Yang, Karl Hou and Steven Wu	Temperature :	15~25°C
Test Engineer .		Relative Humidity :	50~65%

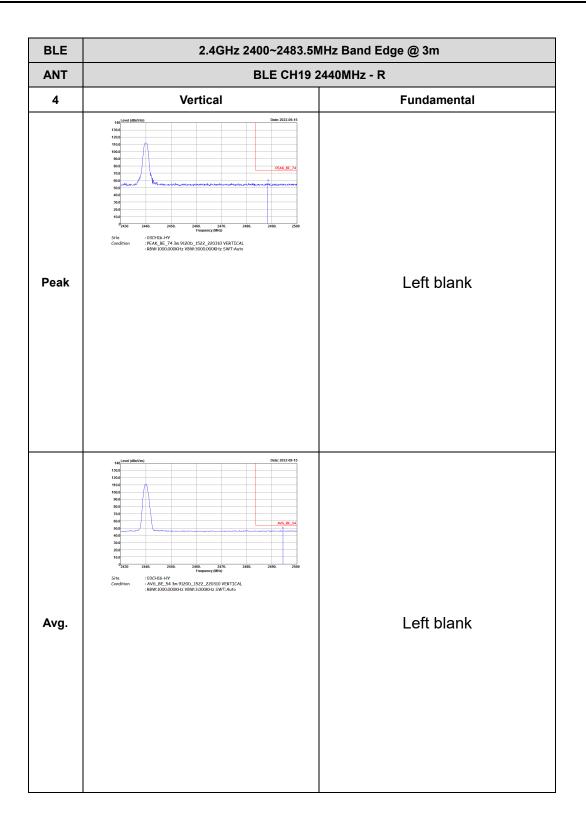
Note symbol

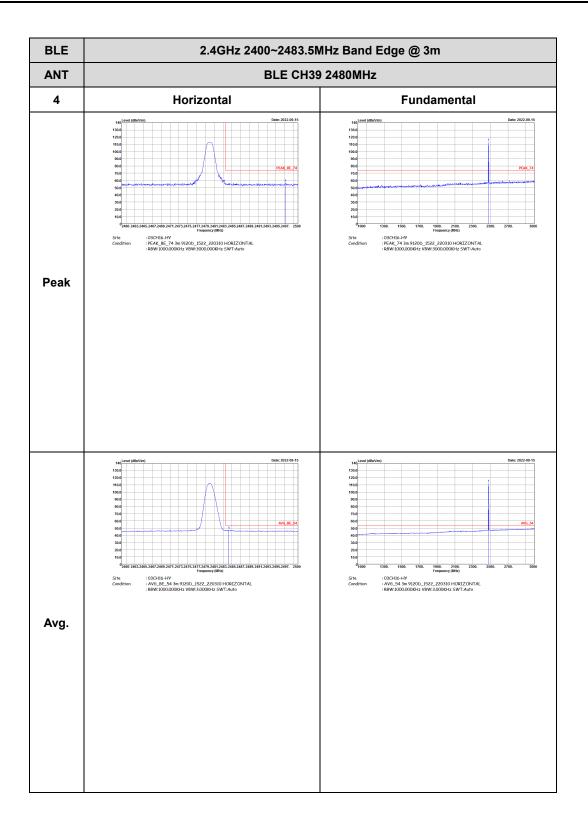

-L	Low channel location
-R	High channel location

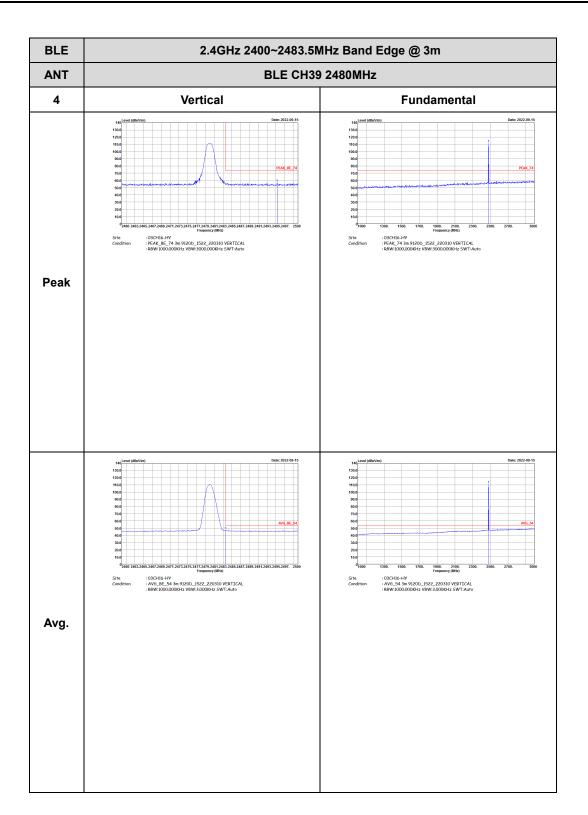

BLE (Band Edge @ 3m)

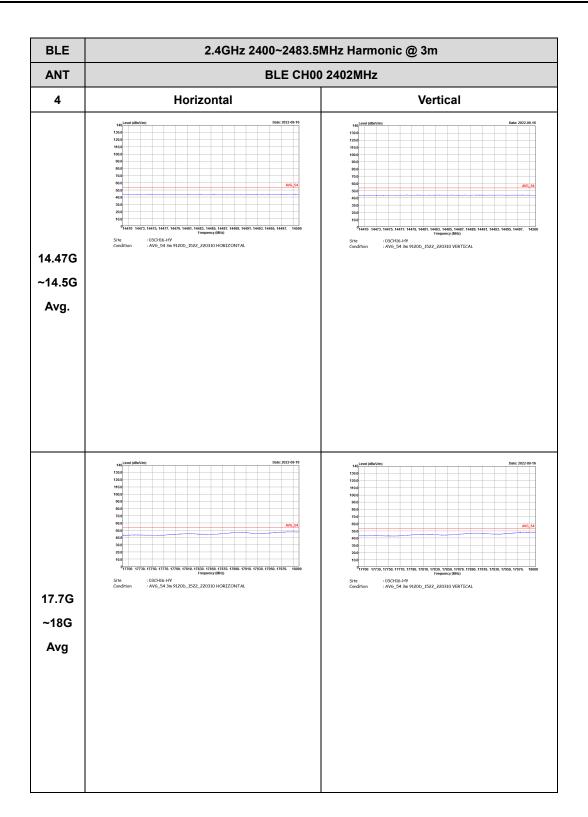


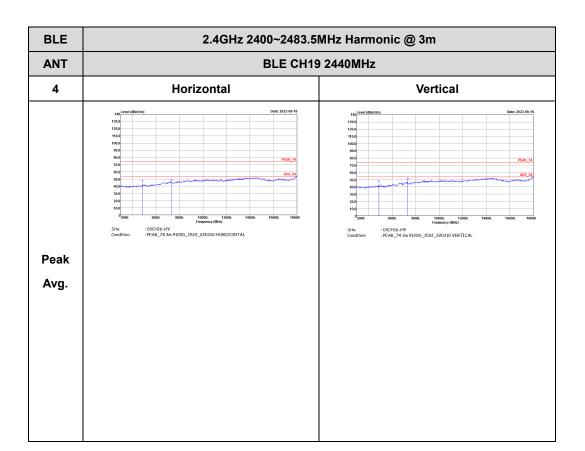


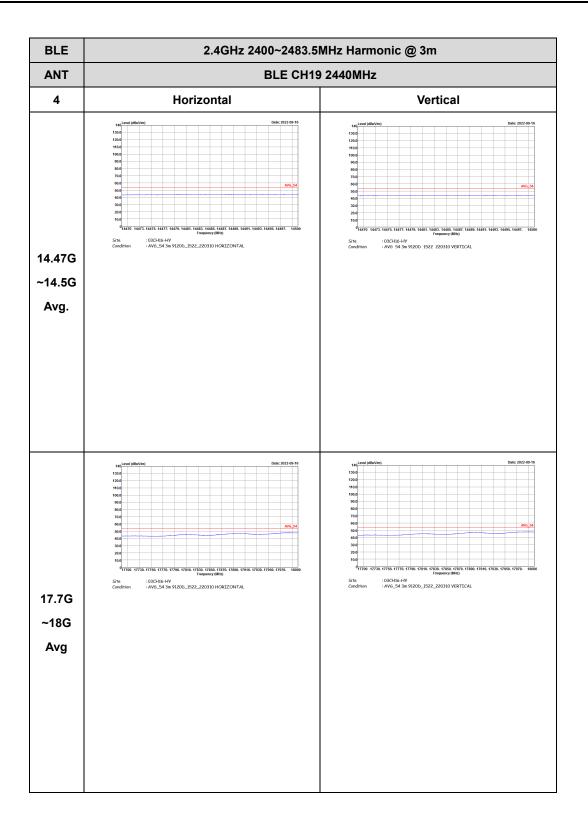


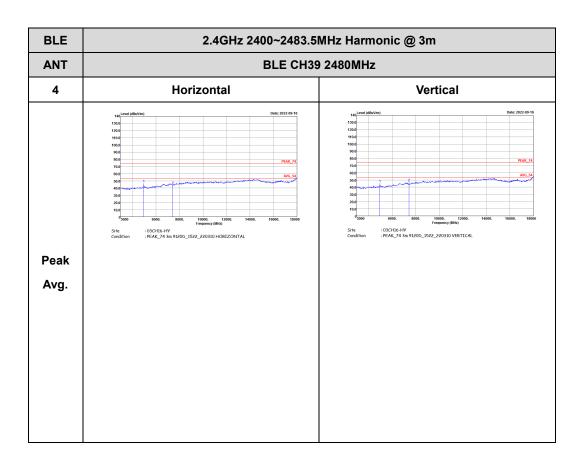


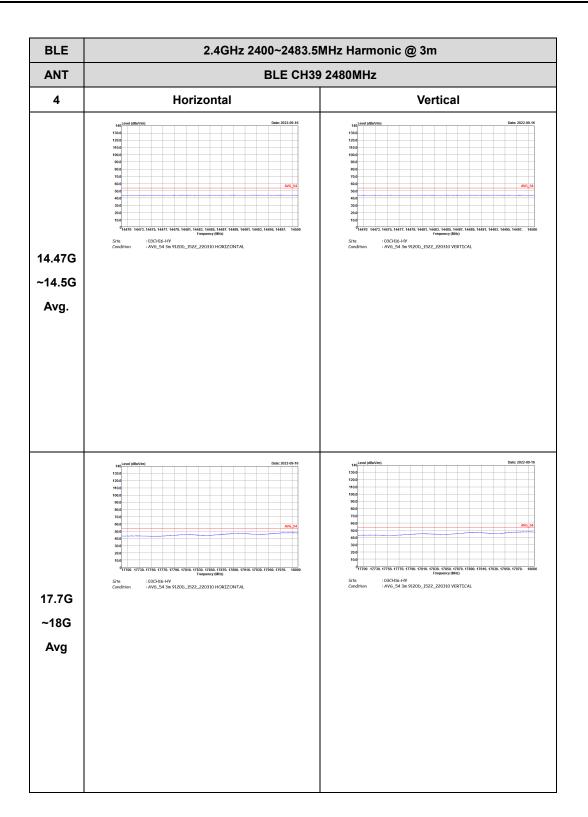


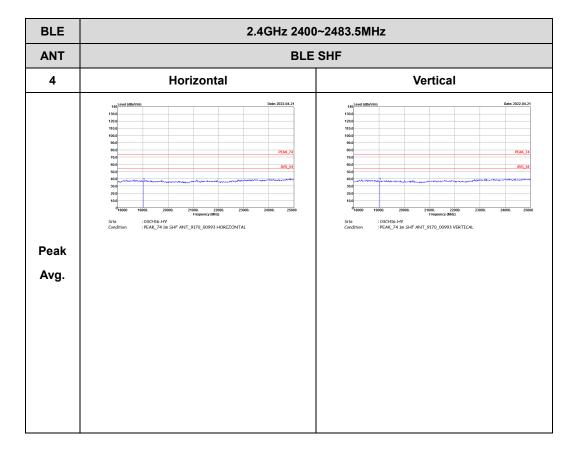


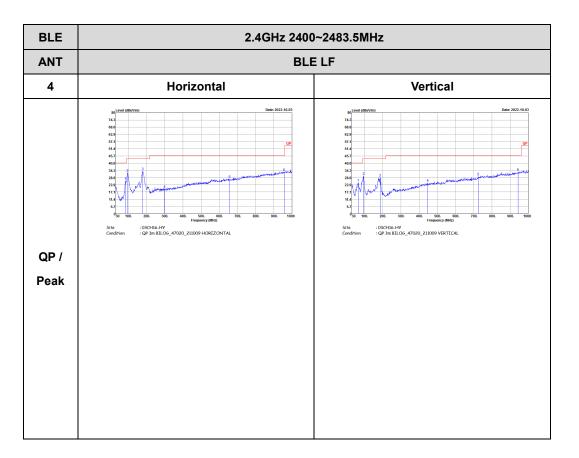

BLE (Harmonic @ 3m)



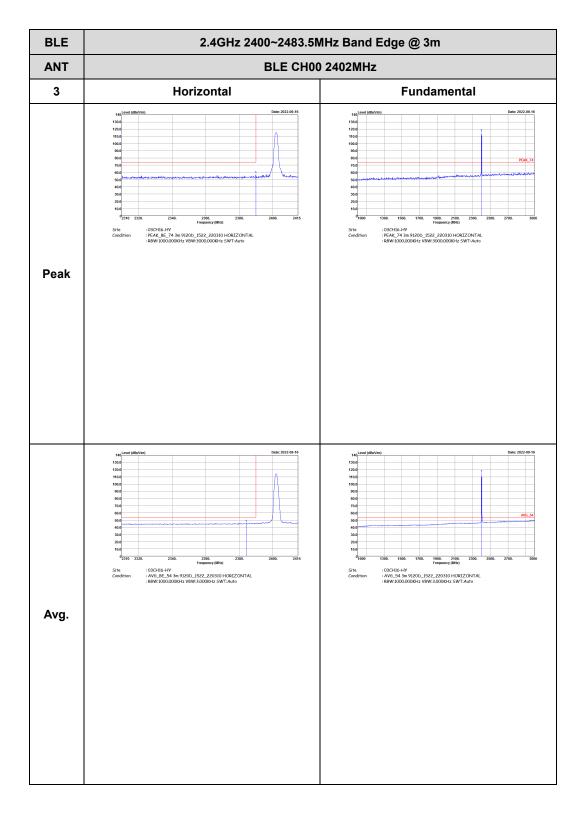


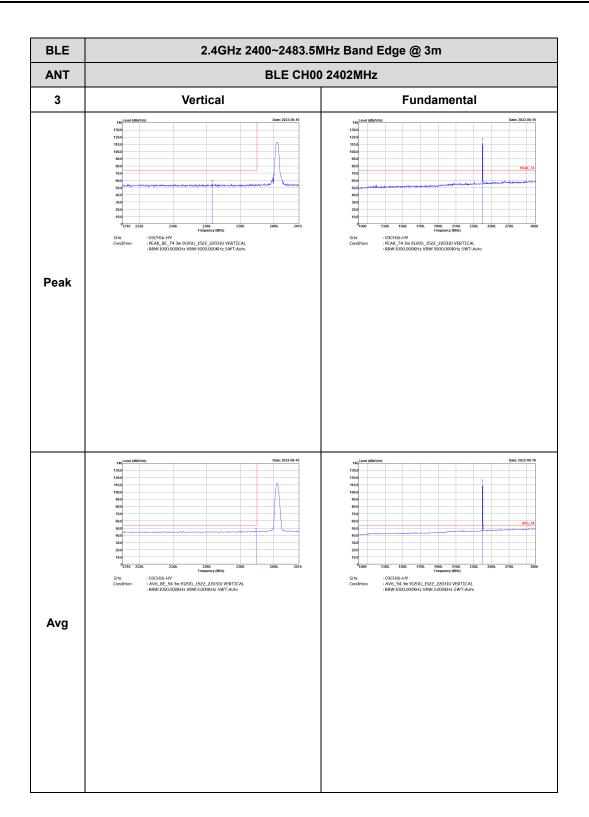


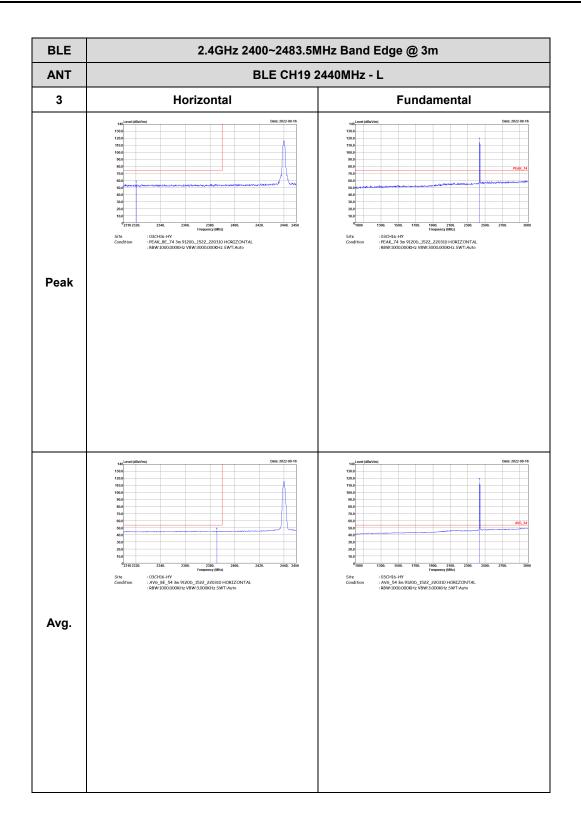


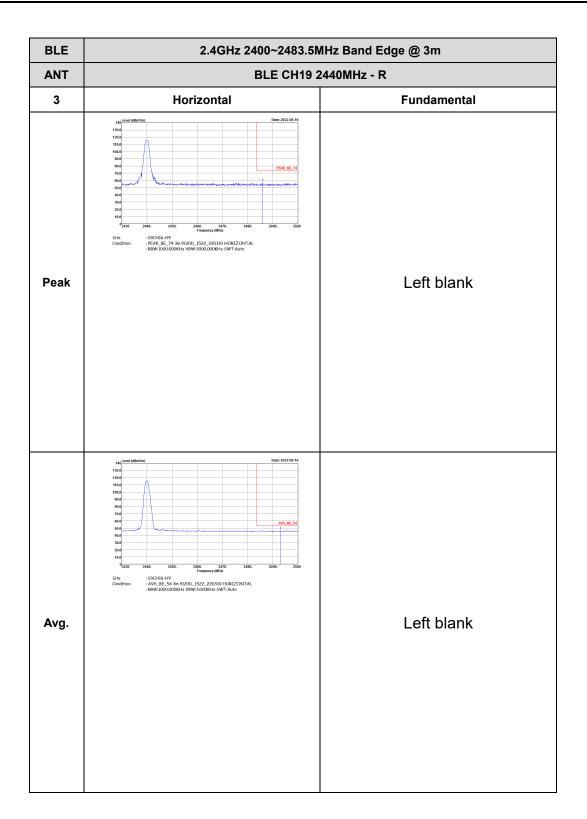

Emission above 18GHz

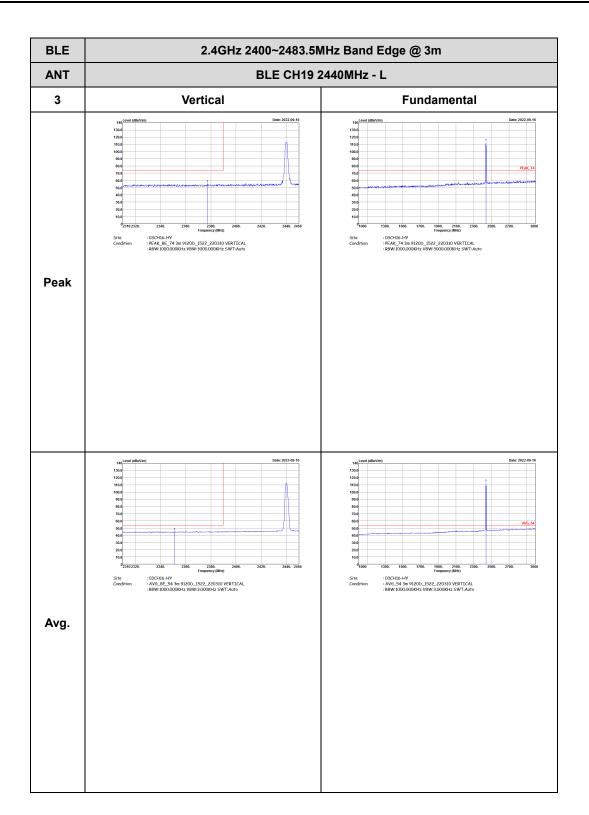
2.4GHz BLE (SHF @ 1m)

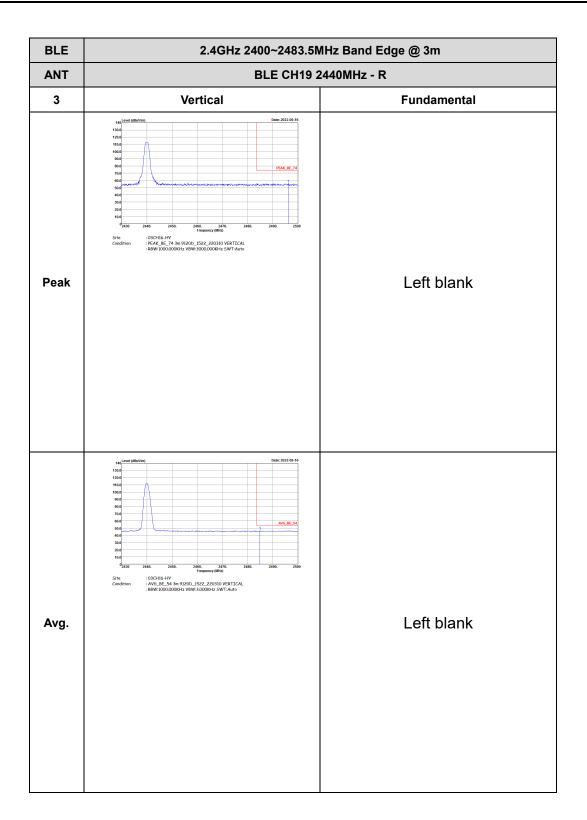

Emission below 1GHz

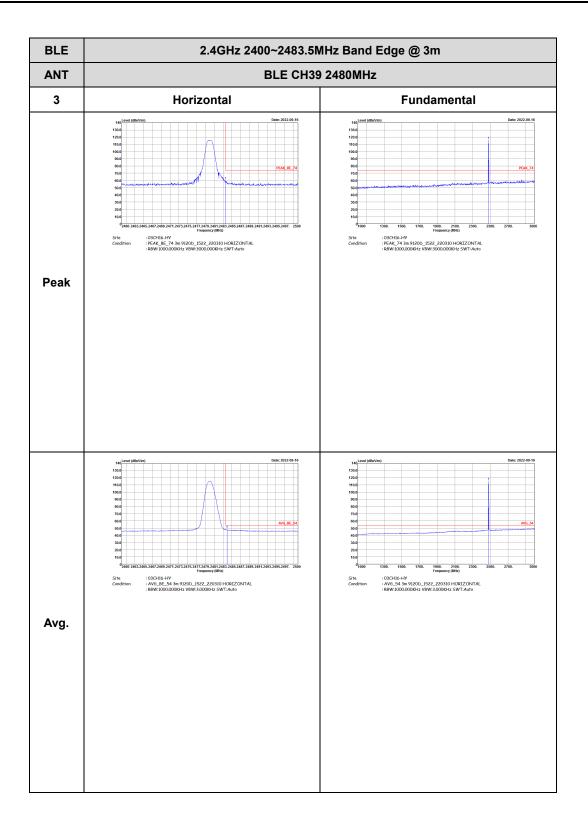

2.4GHz BLE (LF)

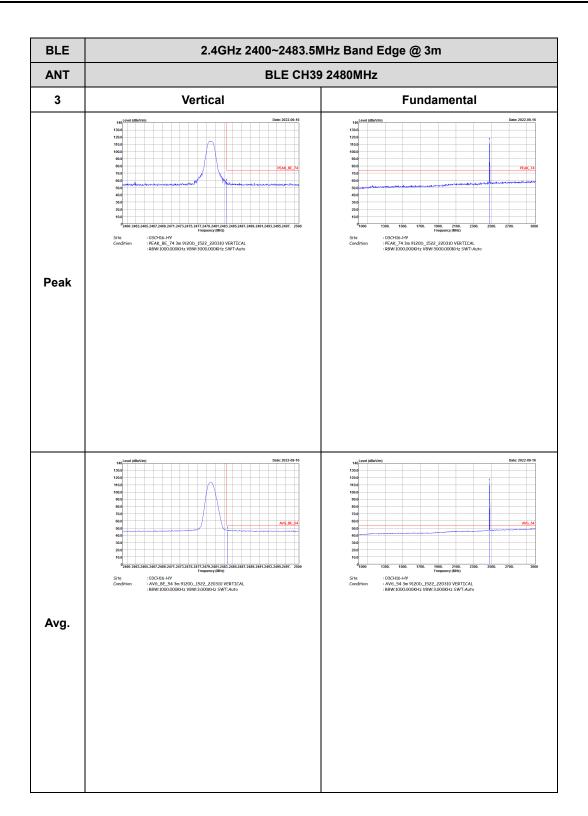

BLE (Band Edge @ 3m)

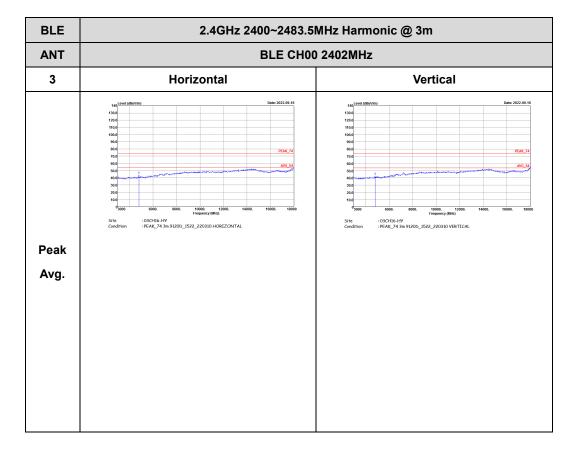


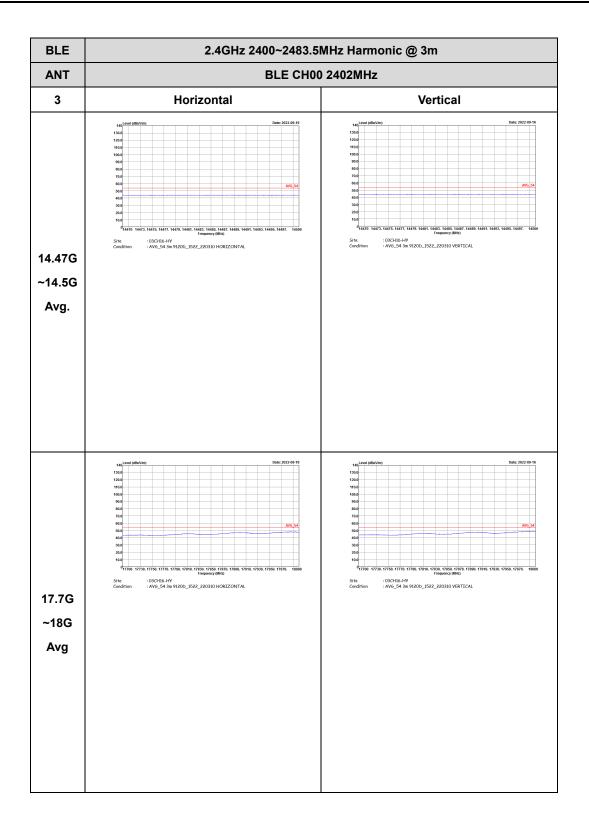


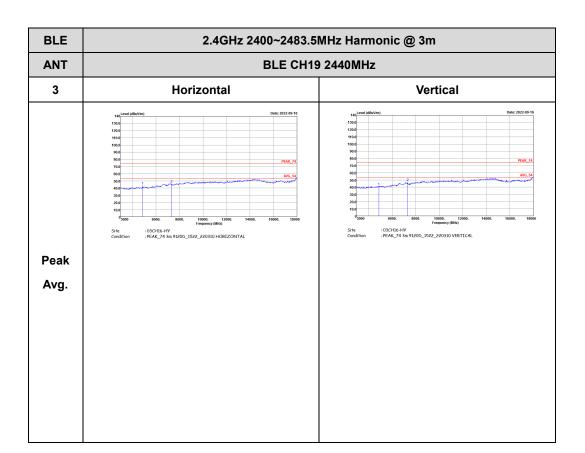


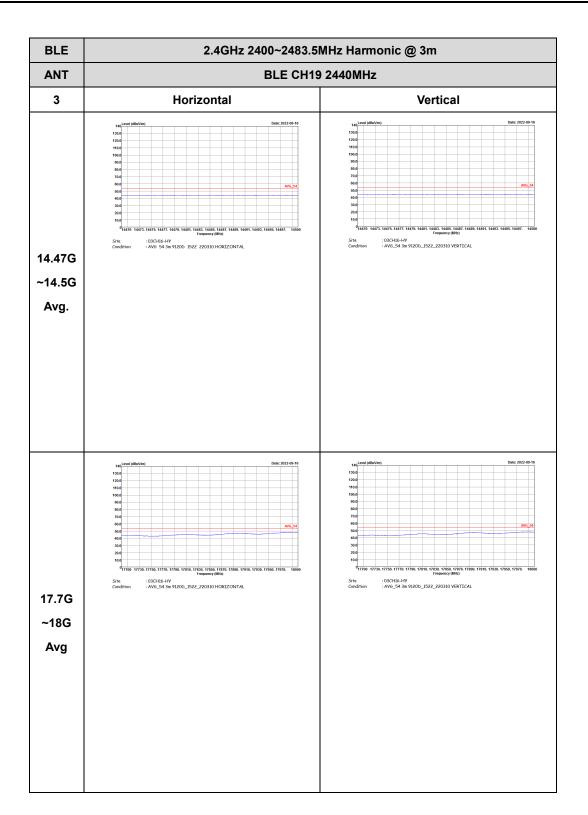


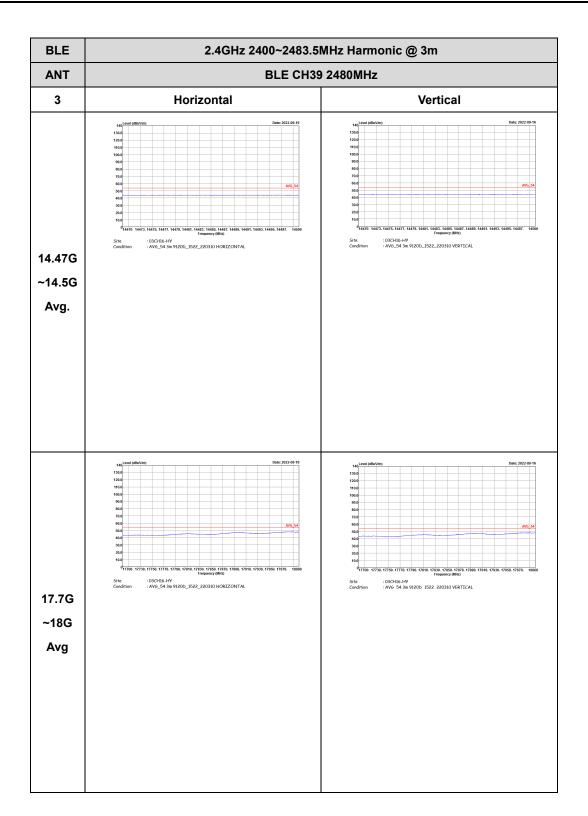




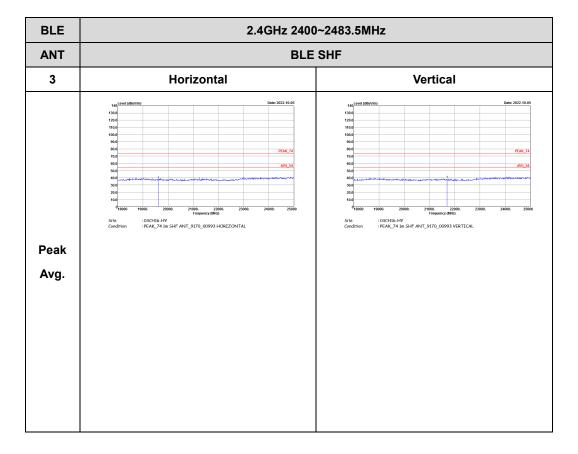


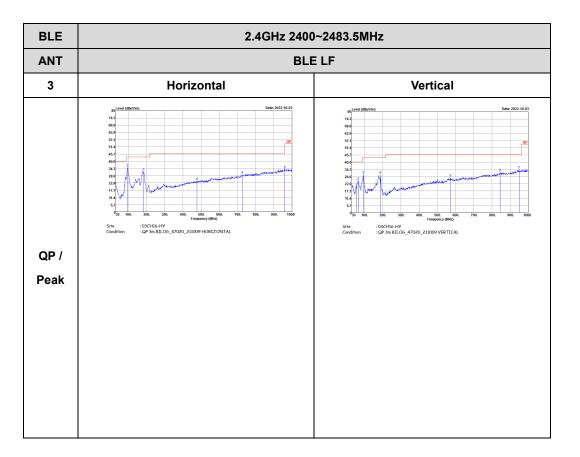

BLE (Harmonic @ 3m)





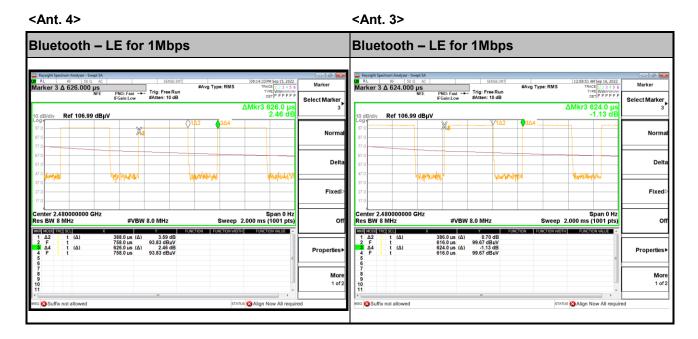
BLE	2.4GHz 2400~2483.5MHz Harmonic @ 3m								
ANT 3	BLE CH39 2480MHz								
	Horizontal	Vertical							
	140 Level (dBuV/m) Date: 2022-09-16	140_Level (dBaVim) Date: 2022.09.16							
	130.0	130.0							
	110.0	110.0							
	100.0	100.0							
	80.0	90.0 80.0							
	70.0 PEAK_74	80.0 PEAK_74 70.0 PEAK_74							
	60.0 AVG_54	60.0 AVG_54							
	50.0	50.0 40.0 million and a second s							
	30.0	30.0							
	20.0	20.0							
	10.0 ⁰ 3000 6000. 8000. 10000. 12000. 14000. 16000. 18000	10.0 ⁰ 3000 6000. 8000. 10000. 12000. 14000. 16000. 18000							
Peak									
Avg.									




Emission above 18GHz

2.4GHz BLE (SHF @ 1m)

Emission below 1GHz


2.4GHz BLE (LF)

Appendix E. Duty Cycle Plots

Antenna	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
4	Bluetooth - LE for 1Mbps	61.98	388	2.58	3kHz
3	Bluetooth - LE for 1Mbps	61.86	386	2.59	3kHz

—THE END——