

FCC RADIO TEST REPORT

FCC ID	: A4RGTU8P
Equipment	: Wireless Device
Applicant	: Google LLC
	1600 Amphitheatre Parkway,
	Mountain View, California, 94043 USA
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Sep. 23, 2022 and testing was performed from Oct. 20, 2022 to Dec. 13, 2022. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested samplehas been evaluated in accordance with the test procedures and has been in compliance with theapplicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	.3
Sur	nmary	/ of Test Result	.4
1	Gene	ral Description	.5
	1.1	Product Feature of Equipment Under Test	.5
	1.2	Product Specification of Equipment Under Test	.5
	1.3	Modification of EUT	.5
	1.4	Testing Location	.6
	1.5	Applicable Standards	.6
2	Test	Configuration of Equipment Under Test	.7
	2.1	Carrier Frequency Channel	.7
	2.2	Test Mode	.8
	2.3	Connection Diagram of Test System	.9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Output Power Measurement	16
	3.3	Power Spectral Density Measurement	17
	3.4	Conducted Band Edges and Spurious Emission Measurement	22
	3.5	Radiated Band Edges and Spurious Emission Measurement	28
	3.6	AC Conducted Emission Measurement	32
	3.7	Antenna Requirements	34
4	List c	of Measuring Equipment	35
5	Unce	rtainty of Evaluation	37
Ар	oendix	A. Conducted Test Results	
Ар	oendix	B. AC Conducted Emission Test Result	
Ар	pendix	C. Radiated Spurious Emission	
Ар	oendix	CD. Radiated Spurious Emission Plots	

Appendix E. Duty Cycle Plots

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR100605-09B	01	Initial issue of report	Dec. 16, 2022

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3) 15.247(b)(4)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	ensity Pass	
3.4	15.247(d)	Conducted Band Edges and Spurious Emission Pass		-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	1.66 dB under the limit at 2483.520 MHz
3.6	15.207	AC Conducted Emission	AC Conducted Emission Pass	
3.7	15.203	Antenna Requirement	Pass -	

Declaration of Conformity:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results.

2. The measurement uncertainty please refer to report "Uncertainty of Evaluation".

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: William Chen

Report Producer: Doris Chen

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature		
Equipment	Wireless Device	
FCC ID	A4RGTU8P	
EUT supports Radios application	UWB WLAN 11b/g/n HT20 WLAN 11a/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80 WLAN 11ax HE20/HE40/HE80 Bluetooth BR/EDR/LE	

Remark: The above EUT's information was declared by manufacturer.

EUT Information List			
S/N Performed Test Item			
105650087900020228W0008A	RF Conducted Measurement		
WIP2919105H800CL3	Radiated Spurious Emission		
WIP2901105H8009EG	Conducted Emission		

1.2 Product Specification of Equipment Under Test

Product Specification is subject to this standard			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	40		
Carrier Frequency of Each Channel40 Channel (37 hopping + 3 advertising channel)			
Maximum Output Power to Antenna	Bluetooth – LE (1Mbps): 16.20 dBm / 0.0417 W		
Maximum Output Power to Antenna	Bluetooth – LE (2Mbps): 16.20 dBm / 0.0417 W		
99% Occupied Bandwidth	Bluetooth – LE (1Mbps): 1.039 MHz		
	Bluetooth – LE (2Mbps): 2.082MHz		
Antenna Type / Gain	PIFA Antenna with gain 2.50 dBi		
Type of Modulation Bluetooth - LE: GFSK			

Remark: The above EUT's information was declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.3 Modification of EUT

No modifications made to the EUT during the testing.

1.4 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton Site No.		
lest Sile NO.	CO05-HY(TAF Code: 1190)		
Remark	The Conducted Emission test item subcontracted to Sporton International Inc. EMC & Wireless Communications Laboratory.		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory	
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855	
Test Site No.	Sporton Site No. TH05-HY , 03CH11-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

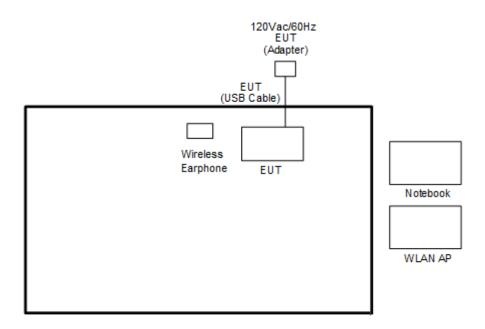
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

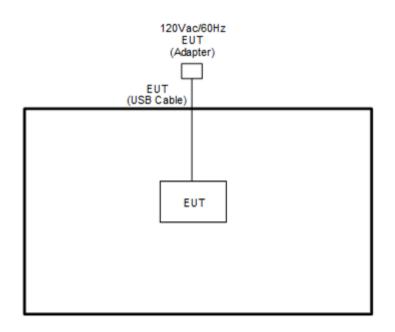
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape) and accessory (Adapter or Earphone), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


Summary table of Test Cases				
Test Item	Data Rate / Modulation			
	Bluetooth – LE / GFSK			
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps			
Conducted	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps			
Test Cases	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps			
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps			
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps			
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps			
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps			
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps			
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps			
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps			
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps			
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps			
AC Conducted	Mode 1: WLAN (2.4GHz) Link + Bluetooth Link + USB Cable (Charging from AC			
Emission	Adapter)			
	liation spurious emission, the modulation and the data rate picked for testing are			
determ	ined by the Max. RF conducted power.			

The following summary table is showing all test modes to demonstrate in compliance with the standard.



2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

<Bluetooth -LE TX Mode>

TEL : 886-3-327-0868	Page Number	: 9 of 37
FAX : 886-3-327-0855	Issue Date	: Dec. 16, 2022
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Report Version	: 01

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Wireless Earphone	Google	G1007/G1008	A4RG1007/ A4RG1008	N/A	N/A
2.	WLAN AP	ASUS	RT-AC66U	KA2DIR628A2	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude 3420	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "CMD v.10.0.18362.1256" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

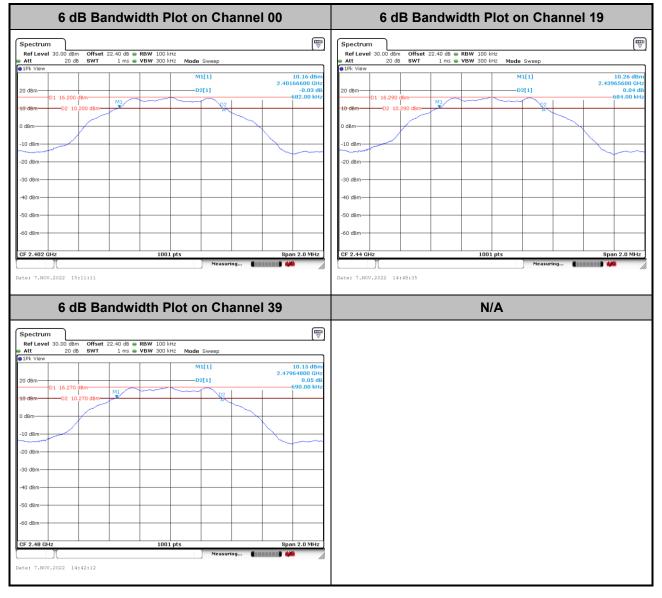
Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

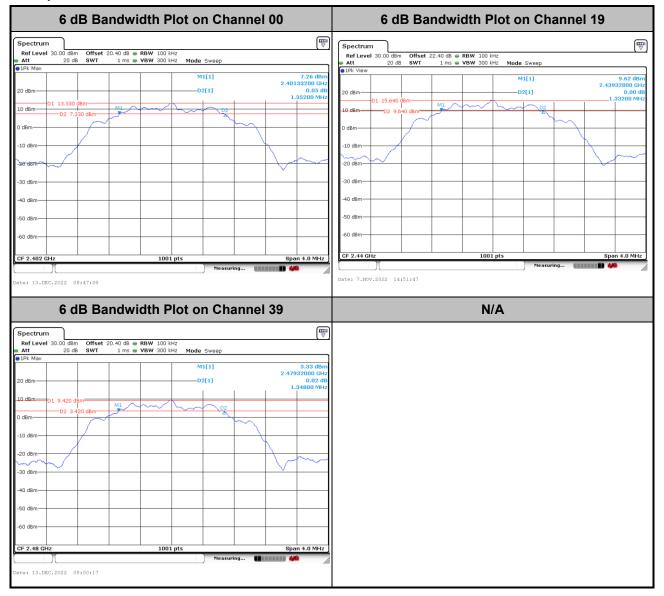
- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

EUT

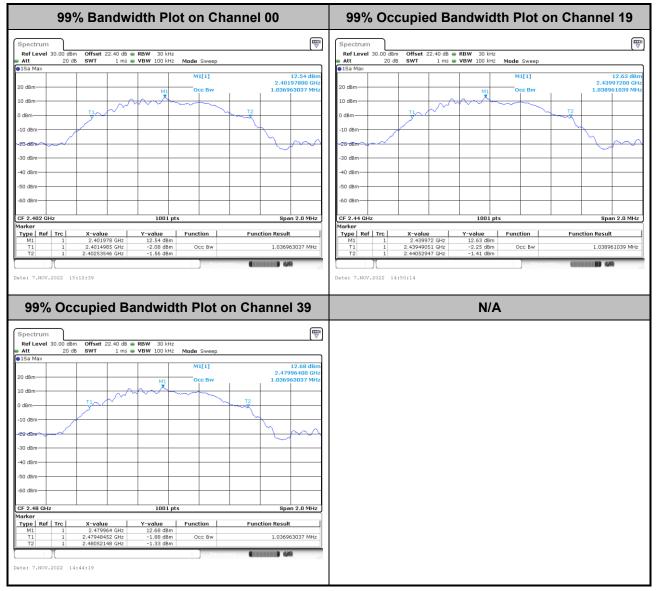

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth


Please refer to Appendix A.

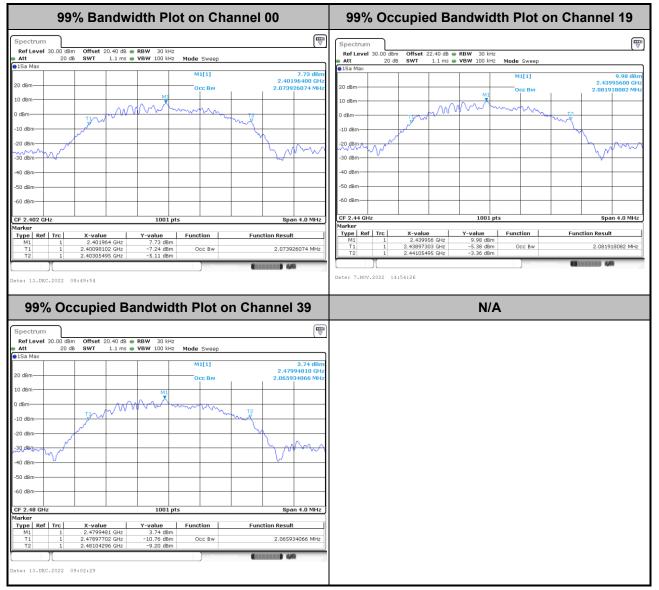
<1Mbps>

<2Mbps>



3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.


<1Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

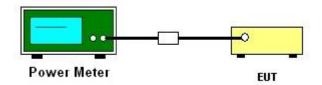
<2Mbps>

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

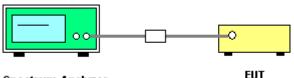
3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

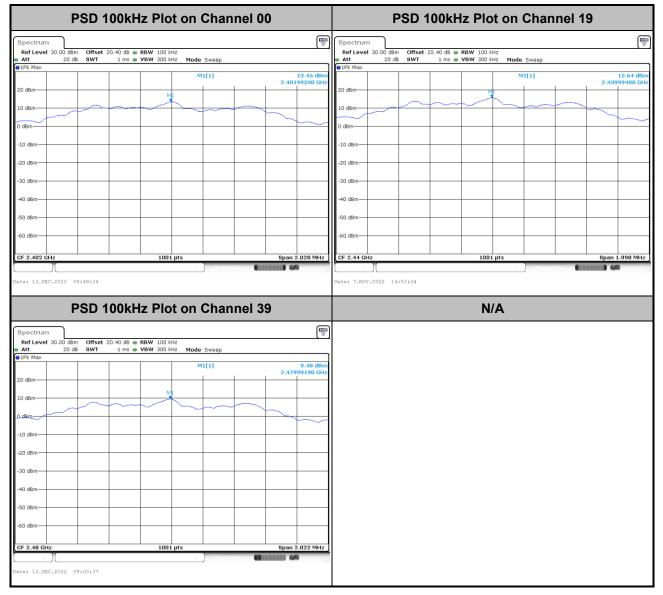
- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

Spectrum Analyzer

3.3.5 Test Result of Power Spectral Density

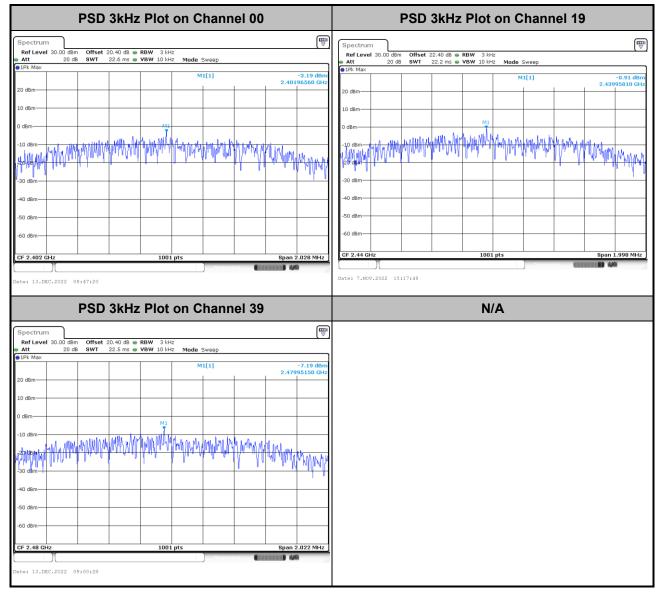
Please refer to Appendix A.


3.3.6 Test Result of Power Spectral Density Plots (100kHz)

<1Mbps>

PSD 10	0kHz Plot on Chann	el 00	PSD 1	00kHz Plot on Chan	nel 19
Spectrum Ref Level 30.00 dBm Offset 22.	40 dB 👄 RBW 100 kHz		Spectrum Ref Level 30.00 dBm Offset 3	22.40 dB 🖷 RBW 100 kHz	
Att 20 dB SWT IPk Max	1 ms e VBW 300 kHz Mode Sweep		Att 20 dB SWT IPk Max	1 ms 🖶 VBW 300 kHz Mode Sweep	
	M1[1]	16.20 dBm 2.40199900 GHz		M1[1]	16.28 dBm 2.43999900 GHz
20 dBm			20 dBm		
0 dBm			0 dBm		
-10 dBm			-10 dBm		
-20 dBm			-20 dBm		
-30 dBm			-30 dBm		
-40 dBm			-40 dBm		
-50 dBm			-50 dBm		
-60 dBm			-60 dBm		
CF 2.402 GHz	1001 pts	Span 1.023 MHz	CF 2.44 GHz	1001 pts	Span 1.026 MHz
Date: 7.NoV.2022 15:11:49	SISSED A		Date: 7.NOV.2022 14:49:29	563(0)	
PSD 10	0kHz Plot on Chann	el 39		N/A	
Spectrum		E			
Ref Level 30.00 dBm Offset 22.4 Att 20 dB SWT 1Pk Max	40 dB RBW 100 kHz 1 ms VBW 300 kHz Mode Sweep				
20 dBm-	M1[1]	16.32 dBm 2.47998860 GHz			
10 dBm					
0 dBm					
-10 dBm					
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
CF 2.48 GHz	1001 pts	Span 1.035 MHz			
Date: 7.NOV.2022 14:43:20	Nra+urion				

<2Mbps>


3.3.7 Test Result of Power Spectral Density Plots (3kHz)

<1Mbps>

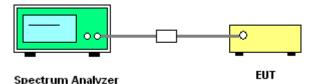
PSD 3kHz Plot on Channel 00	PSD 3kHz Plot on Channel 19
Spectrum Image: Constraint of the sector of t	Spectrum Image: Constraint of the sector of th
Image: Second	Image: Second
PSD 3kHz Plot on Channel 39	N/A
Spectrum Image: Control 30::00 dbm Offset 22:40 dbm Ref Lavel 30::00 dbm Offset 22:40 dbm Ref Lavel 30::00 dbm Offset 22:40 dbm Ref Lavel 30::00 dbm Image: Control 30:	

<2Mbps>

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

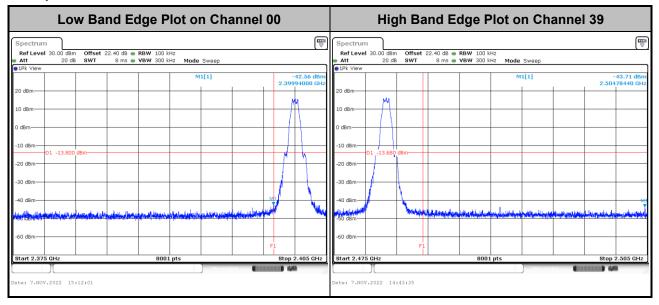
All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.


3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.


3.4.4 Test Setup

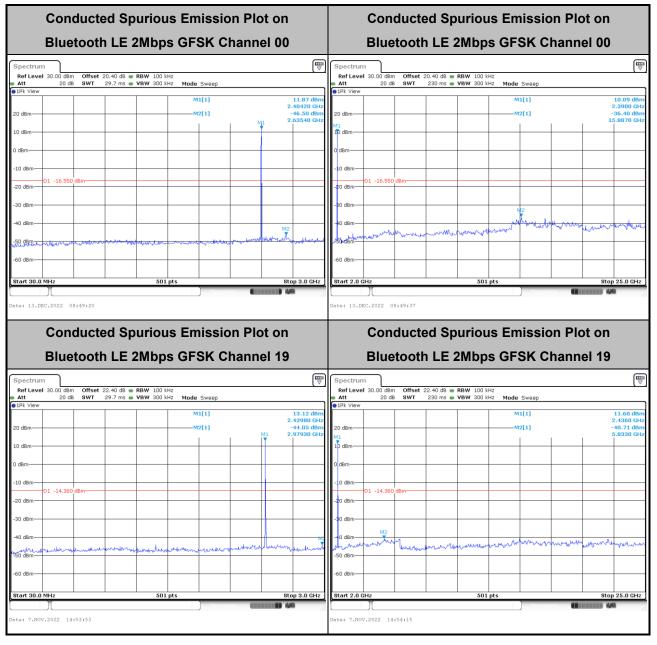
3.4.5 Test Result of Conducted Band Edges Plots

<1Mbps>

<2Mbps>

Low Band Edge Plot on Channel 00				High Ba	nd Edge I	Plot on Ch	annel 39	
Spectrum Ref Level 30.00 dBm Offset 20.40 dB Att 20 dB SWT 8 ms PK Max		-17,49 dBm	Spectrum Ref Level 30. Att 1Pk Max	20 dBm Offset 20 dB SWT	20.40 dB • RBW 100 8 ms • VBW 300	kHz kHz Mode Sweep M1[1]		-44.83 dBm
20 dBm		2.39998880 GHz	20 dBm 10 dBm 0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -60 dBm -60 dBm -60 dBm	F1		put a she pittatat		8995200 GH2
Date: 13.DEC.2022 08:48:56			Date: 13.DEC.20	22 09:00:45				

3.4.6 Test Result of Conducted Spurious Emission Plots


<1Mbps>

Diffuence Diffuence Diffuence Diffuence Diffuence Norme Diffuence Diffuence<	Conducte	d Spurious Emissi	Conducted Spurious Emission Plot on				
bit Low 20:00 mm Offeet 2::00 mm <td< th=""><th>Bluetooth</th><th>LE 1Mbps GFSK (</th><th>Channel 00</th><th>Blueto</th><th>ooth LE 1Mbps</th><th>GFSK Char</th><th>nnel 00</th></td<>	Bluetooth	LE 1Mbps GFSK (Channel 00	Blueto	ooth LE 1Mbps	GFSK Char	nnel 00
Milling Difference With With With With With With Steeps Heat Difference With With With With Steeps Milling	pectrum	40 db = PPW 100 kHz			Offert 22.40.40 - PPW 100.144		٦ ا
at M(1) 2.50 Work at M(1) 2.50 Work at M(1) 2.50 Work at M(1) 2.50 Work at M(1) 1.50 Work at M(1) 1.50 Work at M(1) 1.50 Work at M(1) 1.50 Work at M(1) M(1)	Att 20 dB SWT 2			Att 20 dB \$			
am	PK VIEW	M1[1]		The Alem		M1[1]	16.26 dE
an an <td< th=""><th>) dBm</th><th>M2[1]</th><th>M1 -43.32 dBm</th><th>120 dBm</th><th></th><th>M2[1]</th><th>2.3900 G -39.26 dE</th></td<>) dBm	M2[1]	M1 -43.32 dBm	120 dBm		M2[1]	2.3900 G -39.26 dE
and a) dBm		1.03480 GH2	10 dBm			15.7950 G
and a							
01 13.800 80 0	dBm			0 dBm			
1 1	0 dBm-01 -13,800 dBm-01				n		
and and a set of the s	0 dBm						
Image: Start 2.00 db Offset 22.40 db + RBW 200 bit Image: Start 2.00 db MIL1	0 dBm			-30 dBm			
Image: Start 2.00 db Offset 22.40 db + RBW 200 bit Image: Start 2.00 db MIL1						M2	
ignification ignification <td< td=""><td>) dBm</td><td>Maria and a start of the start of</td><td></td><td>and the second of the</td><td>har mouth manner</td><td>vermontor</td><td>monthown</td></td<>) dBm	Maria and a start of the start of		and the second of the	har mouth manner	vermontor	monthown
art 30.0 MHz S01 pts S	D dBm						
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Code of Offset 22.40 db e RBW 100 Hz Code offset 22.40 db e R	0 dBm			-60 dBm			
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19 Code of Offset 22.40 db e RBW 100 Hz Code offset 22.40 db e R							
Spectrum Spectrum dem 10.00 dem 0fset 22.40 de e RBW 100 kHz dem 10.00 dem 0fset 22.40 de e RBW 100 kHz dem 10.00 dem 0fset 22.40 de e RBW 100 kHz dem 10.00 dem 0fset 22.40 de e RBW 100 kHz dem 10.00 dem 0fset 22.40 de e RBW 100 kHz dem 10.00 dem 0fset 22.40 de e RBW 100 kHz dem 10.00 dem 0fset 22.40 de e RBW 100 kHz dem 10.00 dem 0fset 22.40 de e RBW 100 kHz dem 10.00 dem 0fset 22.40 de e RBW 100 kHz dem 10.00 dem 0fset 22.40 de e RBW 100 kHz dem 10.00 dem 0fset 22.40 de e RBW 100 kHz dem 10.00 dem 0fset 22.40 de e RBW 100 kHz dem 10.00 dem 10.00 dem 10 dem 10.00 dem 10.00 dem 0 dem 10.00 dem 11.3720 dem 0 dem 10.00 dem 11.3720 dem	art 30.0 MHz	501 pts	Stop 3.0 GHz	Start 2.0 GHz	501 pt	s	Stop 25.0 GH
Left Level 30.00 dbm Offset 22.40 db BBW 100 Hz Mde Sweep Nt 20 db SWT 29.7 ms W 300 Hz Mode Sweep Pk View M1[1] 16.02 dbm SWT 230 ms W 300 Hz Mode Sweep dbm M1[1] 16.02 dbm M1[1] 2.43980 dHz M1[1] 2.43 dbm M2[1] M1 -44.64 dbm -44.64 dbm -40.4 dbm M2[1] M1 -44.64 dbm -40.4 0 dbm 01 -13.720 dbm M2[1] -44.64 dbm -40.4 0 dbm 01 -13.720 dbm M2[1] -44.64 dbm -40.4 0 dbm 01 -13.720 dbm -40.4 -40.4 -40.4 0 dbm - - - - - - 0 dbm - - - - - - - 0 dbm - - - - - - - - - - 0 dbm - - - - - - - - -		d Spurious Emissi	on Plot on	Condu	ucted Spurious		
Left Level 30.00 dbm Offset 22.40 db BBW 100 Hz Mde Sweep Nt 20 db SWT 29.7 ms W 300 Hz Mode Sweep Pk View M1[1] 16.02 dbm SWT 230 ms W 300 Hz Mode Sweep dbm M1[1] 16.02 dbm M1[1] 2.43980 dHz M1[1] 2.43 dbm M2[1] M1 -44.64 dbm -44.64 dbm -40.4 dbm M2[1] M1 -44.64 dbm -40.4 0 dbm 01 -13.720 dbm M2[1] -44.64 dbm -40.4 0 dbm 01 -13.720 dbm M2[1] -44.64 dbm -40.4 0 dbm 01 -13.720 dbm -40.4 -40.4 -40.4 0 dbm - - - - - - 0 dbm - - - - - - - 0 dbm - - - - - - - - - - 0 dbm - - - - - - - - -	Conducte			Condu	ucted Spurious		
Pic View M1[1] 16.03 dBm dBm M2[1] M1 -44.64 dBm M2[1] -44.64 dBm dBm M2[1] M1 -44.64 dBm M2[1] -40.64 dBm dBm M2[1] M1 -44.64 dBm M2[1] -40.64 dBm dBm M2[1] M1 -44.64 dBm M2[1] -40.64 dBm dBm M2[1] M2 -44.64 dBm M2[1] -40.64 dBm dBm M2 M2 M2 M2 M2 M2 dBm M2 M2<	Conducted Bluetooth		Channel 19	Condu	ucted Spurious		nnel 19
dem	Conducted Bluetooth	LE 1Mbps GFSK (Channel 19	Condu Blueto	oth LE 1Mbps	GFSK Char	nnel 19
dem	Conducted Bluetooth	LE 1Mbps GFSK (Channel 19	Condu Blueto	oth LE 1Mbps	GFSK Char	nnel 19
Bm Image: Simple simp	Conducte Bluetooth ectrum ef Level 30.00 dBm Offset 22 20 dB SWT 21	LE 1Mbps GFSK (40 dB • RBW 100 kHz 9.7 ms • VBW 300 kHz Mode Sweep M1[1]	Channel 19	Condu Blueto	oth LE 1Mbps	GFSK Char Mode Sweep M1[1]	nnel 19
dBm 01 - 13.720 dBm 01	Conducted Bluetooth ectrum ef Level 30.00 dBm Offset 22 20 dB swr 2 % View	LE 1Mbps GFSK (40 dB • RBW 100 kHz 9.7 ms • VBW 300 kHz Mode Sweep M1[1]	Channel 19 	Condu Bluetc	oth LE 1Mbps	GFSK Char Mode Sweep M1[1]	14.55 d 2.4300 C -40.42 d
01 -13.720 dBm -	Conducted Bluetooth ectrum ef Level 30.00 dBm Offset 22 20 dB swr 2 % View	LE 1Mbps GFSK (40 dB • RBW 100 kHz 9.7 ms • VBW 300 kHz Mode Sweep M1[1]	Channel 19 	Condu Bluetc	oth LE 1Mbps	GFSK Char Mode Sweep M1[1]	nnel 19
dBm dBm <td>Conducted Bluetooth</td> <td>LE 1Mbps GFSK (40 dB • RBW 100 kHz 9.7 ms • VBW 300 kHz Mode Sweep M1[1]</td> <td>Channel 19 </td> <td>Condu Bluetc Bluetc Spectrum Ref Level 30.00 dfm (• Att 20 db • 1Pk View</td> <td>oth LE 1Mbps</td> <td>GFSK Char Mode Sweep M1[1]</td> <td>14.55 d 2.4300 C -40.42 d</td>	Conducted Bluetooth	LE 1Mbps GFSK (40 dB • RBW 100 kHz 9.7 ms • VBW 300 kHz Mode Sweep M1[1]	Channel 19 	Condu Bluetc Bluetc Spectrum Ref Level 30.00 dfm (• Att 20 db • 1Pk View	oth LE 1Mbps	GFSK Char Mode Sweep M1[1]	14.55 d 2.4300 C -40.42 d
dBm dBm max max <td>Conducted Bluetooth</td> <td>LE 1Mbps GFSK (40 dB • RBW 100 kHz 9.7 ms • VBW 300 kHz Mode Sweep M1[1]</td> <td>Channel 19 </td> <td>Condu Bluetc</td> <td>Offiset 22.40 db e RBW 100 kHz 230 ms e VBW 300 kHz</td> <td>GFSK Char Mode Sweep M1[1]</td> <td>14.55 d 2.4300 0 -40.42 d</td>	Conducted Bluetooth	LE 1Mbps GFSK (40 dB • RBW 100 kHz 9.7 ms • VBW 300 kHz Mode Sweep M1[1]	Channel 19 	Condu Bluetc	Offiset 22.40 db e RBW 100 kHz 230 ms e VBW 300 kHz	GFSK Char Mode Sweep M1[1]	14.55 d 2.4300 0 -40.42 d
dBm m2 m2 <	Conducted Bluetooth	LE 1Mbps GFSK (40 dB • RBW 100 kHz 9.7 ms • VBW 300 kHz Mode Sweep M1[1]	Channel 19 	Condu Bluetc	Offiset 22.40 db e RBW 100 kHz 230 ms e VBW 300 kHz	GFSK Char Mode Sweep M1[1]	14.55 d 2.4300 0 -40.42 d
dBm	Conducted Bluetooth	LE 1Mbps GFSK (40 dB • RBW 100 kHz 9.7 ms • VBW 300 kHz Mode Sweep M1[1]	Channel 19 	Condu Bluetc	Offiset 22.40 db e RBW 100 kHz 230 ms e VBW 300 kHz	GFSK Char Mode Sweep M1[1]	14.55 d 2.4300 0 -40.42 d
John Marketting John Marke	Conducted Bluetooth	LE 1Mbps GFSK (40 dB • RBW 100 kHz 9.7 ms • VBW 300 kHz Mode Sweep M1[1]	Channel 19 	Condu Bluetc	Offiset 22.40 db e RBW 100 kHz 230 ms e VBW 300 kHz	GFSK Char Mode Sweep M1[1]	14.55 d 2.4300 0 -40.42 d
	Conducted Bluetooth	LE 1Mbps GFSK (Channel 19	Condu Bluetc Spectrum Ref Level 30.00 dbm 9 Att 20 db 9 IPk View 10 dbm -20 dbm -20 dbm -20 dbm -20 dbm -30 dbm	Ucted Spurious	Mode Sweep M1[1] M2[1] M2[1] M2[1]	14.55 d 2.4360 15.8410 (15.8410 (1
	Conducted Bluetooth	LE 1Mbps GFSK (Channel 19	Condu Bluetc	Ucted Spurious	Mode Sweep M1[1] M2[1] M2[1] M2[1]	14.55 d 2.4360 15.8410 d 15.8410 d
rt 20.0 MHz 50.1 ats Stor 2.0 CHz Estart 2.0 CHz 50.1 atr 60.0 atr	Conducted Bluetooth	LE 1Mbps GFSK (Channel 19	Condu Bluetc	Ucted Spurious	Mode Sweep M1[1] M2[1] M2[1]	14.55 d 2.4360 15.8410 (15.8410 (1
aup au una mare au una au presenta	Conducted Bluetooth	LE 1Mbps GFSK (Channel 19	Condu Bluetc	Ucted Spurious	Mode Sweep M1[1] M2[1] M2[1]	14.55 d 2.4360 15.8410 (15.8410 (1
	Conducted Bluetooth	LE 1Mbps GFSK (Channel 19	Condu Bluetc	Ucted Spurious	GFSK Char	14.55 c 2.4360
Ar on a prise and p on a p o	Bluetooth pectrum Ref Level 30.00 dbm 20 db SWT 20 db 0 dbm 0 dbm	LE 1Mbps GFSK (Channel 19	Condu Bluetc	Ucted Spurious	Mode Sweep M1[1] M2[1] M2[1]	14. 2.43 -40. 15.84

Conducted Spurious Emission Plot on	Conducted Spurious Emission Plot on
Bluetooth LE 1Mbps GFSK Channel 39	Bluetooth LE 1Mbps GFSK Channel 39
10 dBm	Spectrum Image: Constraint of the second secon
-60 dBm Mt	40 dbm -50 dbm -60
Date: 7.NOV.2022 14:43:53	Date: 7.NOV.2022 14:44:05

<2Mbps>

Conducted Spurious Emission Plot on	Conducted Spurious Emission Plot on
Bluetooth LE 2Mbps GFSK Channel 39	Bluetooth LE 2Mbps GFSK Channel 39
Spectrum Ref Level 30.0 dBm Offset 20.40 dB BBW 100 kHz Att 20 dB SWT 29.7 ms VBW Mode Sweep IPk View M1[1] 6.72 2.4313 2.4313 2.4313 20 dBm M2[1] -47.65 2.9378 M2[1] -47.65 10 dBm M1 M1 0 M1 0 0 -10 dBm 0 M1 0 0 0 0 0 -30 dBm 01 -20.520 dBm 0 <th>I GHZ 2.4820 GHZ 2.4820 GHZ 4820 GHZ 35.60 dBm</th>	I GHZ 2.4820 GHZ 2.4820 GHZ 4820 GHZ 35.60 dBm
-60 dBm Start 30.0 MHz 501 pts Stop 3.0	GHz 501 pts Stop 25.0 GHz
Date: 13.DEC.2022 09:01:19	Date: 13.DEC.2022 09:02:16

3.5 Radiated Band Edges and Spurious Emission Measurement

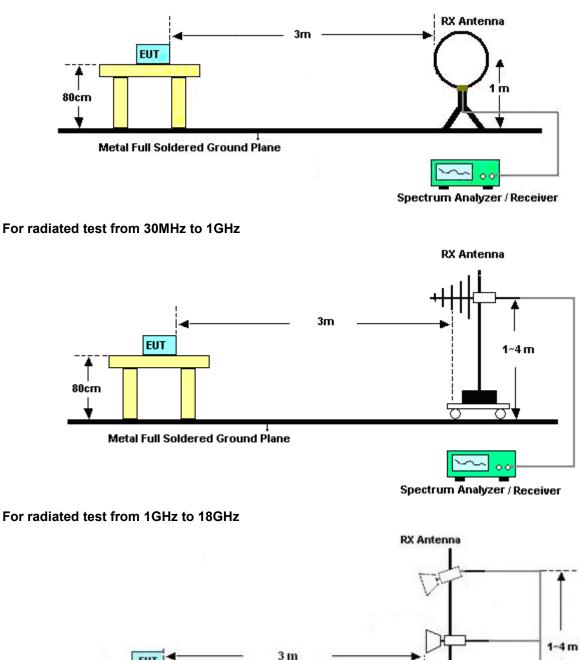
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

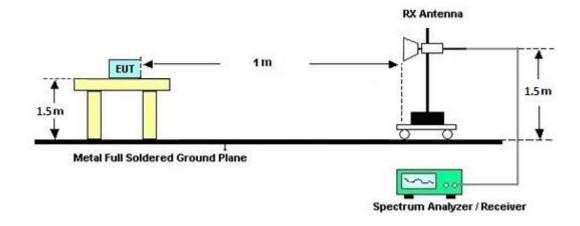
Please refer to the measuring equipment list in this test report.


3.5.3 Test Procedures


- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated test below 30MHz



Spectrum Analyzer / Receiver

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site -

semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

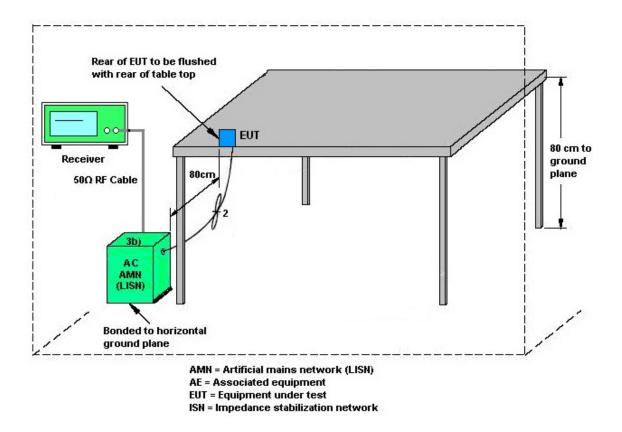
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

List of Measuring Equipment 4

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Nov. 10, 2022	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9kHz~3.6GHz	Dec. 01, 2021	Nov. 10, 2022	Nov. 30, 2022	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Nov. 17, 2021	Nov. 10, 2022	Nov. 16, 2022	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100081	9kHz~30MHz	Nov. 16, 2021	Nov. 10, 2022	Nov. 15, 2022	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32	N/A	N/A	N/A	Nov. 10, 2022	N/A	Conduction (CO05-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	00691	N/A	Aug. 01, 2022	Nov. 10, 2022	Jul. 31, 2023	Conduction (CO05-HY)
LISN Cable	MVE	RG-400	260260	N/A	Dec. 30, 2021	Nov. 10, 2022	Dec. 29, 2022	Conduction (CO05-HY)
LOOP Antenna	TESEQ	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 20, 2022	Oct. 28, 2022 ~ Nov. 11, 2022	Sep. 19, 2023	Radiation (03CH11-HY)
Bilog Antenna	TESEQ	CBL 6111D & N-6-06	35414 & AT-N0602	30MHz~1GHz	Oct. 08, 2022	Oct. 28, 2022 ~ Nov. 05, 2022	Oct. 07, 2023	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1212	1GHz ~ 18GHz	Mar. 10, 2022	Oct. 28, 2022 ~ Nov. 05, 2022	Mar. 09, 2023	Radiation (03CH11-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00993	18GHz~40GHz	Nov. 30, 2021	Oct. 28, 2022 ~ Nov. 05, 2022	Nov. 29, 2022	Radiation (03CH11-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Dec. 10, 2021	Oct. 28, 2022 ~ Nov. 05, 2022	Dec. 09, 2022	Radiation (03CH11-HY)
Preamplifier	Keysight	83017A	MY53270080	1GHz~26.5GHz	Nov. 10, 2021	Oct. 28, 2022 ~ Nov. 08, 2022	Nov. 09, 2022	Radiation (03CH11-HY)
Preamplifier	Keysight	83017A	MY53270080	1GHz~26.5GHz	Nov. 09, 2022	Nov. 09, 2022~ Nov. 11, 2022	Nov. 08, 2023	Radiation (03CH11-HY)
Preamplifier	Jet-Power	JPA0118-55-303	17100018000 55007	1GHz~18GHz	Jun. 15, 2022	Oct. 28, 2022 ~ Nov. 05, 2022	Jun. 14, 2023	Radiation (03CH11-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 28, 2022	Oct. 28, 2022 ~ Nov. 05, 2022	Jun. 27, 2023	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200486	10Hz~44GHz	Oct. 07, 2022	Oct. 28, 2022 ~ Nov. 05, 2022	Oct. 06, 2023	Radiation (03CH11-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY54130085	20MHz~8.4GHz	Oct. 18, 2022	Oct. 28, 2022 ~ Nov. 05, 2022	Oct. 17, 2023	Radiation (03CH11-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Oct. 28, 2022 ~ Nov. 05, 2022	N/A	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Oct. 28, 2022 ~ Nov. 05, 2022	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Oct. 28, 2022 ~ Nov. 05, 2022	N/A	Radiation (03CH11-HY)
Software	Audix	E3 6.2009-8-24	RK-001053	N/A	N/A	Oct. 28, 2022 ~ Nov. 05, 2022	N/A	Radiation (03CH11-HY)

FCC RADIO TEST REPORT

Report No. : FR100605-09B

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN11	1.53G Low Pass	Sep. 12, 2022	Oct. 28, 2022 ~ Nov. 05, 2022	Sep. 11, 2023	Radiation (03CH11-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0SS	SN3	3GHz High Pass Filter	Sep. 12, 2022	Oct. 28, 2022 ~ Nov. 05, 2022	Sep. 11, 2023	Radiation (03CH11-HY)
Filter	Wainwright	WHKX8-5872. 5-6750-18000- 40SS	SN3	6.75GHz High Pass Filter	Sep. 12, 2022	Oct. 28, 2022 ~ Nov. 05, 2022	Sep. 11, 2023	Radiation (03CH11-HY)
Filter	Wainwright	WHKX12-900- 1000-15000-60 SS	SN12	1GHz High Pass Filter	Sep. 12, 2022	Oct. 28, 2022 ~ Nov. 05, 2022	Sep. 11, 2023	Radiation (03CH11-HY)
Hygrometer	TECPEL	DTM-303B	TP140325	N/A	Nov. 26, 2021	Oct. 28, 2022 ~ Nov. 05, 2022	Nov. 25, 2022	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 10, 2022	Oct. 28, 2022 ~ Nov. 05, 2022	Mar. 09, 2023	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	9kHz-30MHz	Mar. 10, 2022	Oct. 28, 2022 ~ Nov. 05, 2022	Mar. 09, 2023	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4PE	30MHz-18GHz	Mar. 10, 2022	Oct. 28, 2022 ~ Nov. 05, 2022	Mar. 09, 2023	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	811852/4	30MHz-18GHz	Mar. 10, 2022	Oct. 28, 2022 ~ Nov. 05, 2022	Mar. 09, 2023	Radiation (03CH11-HY)
Hygrometer	TECPEL	DTM-303B	TP200886	N/A	Mar. 21. 2022	Oct. 20, 2022- Dec. 13, 2022	Mar. 20. 2023	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	15I00041SNO 10 (NO:248)	10MHz~6GHz	Dec. 29, 2021	Oct. 20, 2022- Dec. 13, 2022	Dec. 28, 2022	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101905	10Hz - 40GHz(amp)	Aug. 03, 2022	Oct. 20, 2022- Dec. 13, 2022	Aug. 02, 2023	Conducted (TH05-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.5 dB
of 95% (U = 2Uc(y))	5.5 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.3 dB
of 95% (U = 2Uc(y))	0.3 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~6000 MHz)

Measuring Uncertainty for a Level of Confidence	4.4 dB
of 95% (U = 2Uc(y))	4.4 uB

Uncertainty of Radiated Emission Measurement (6000 MHz ~18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.8 dB
of 95% (U = 2Uc(y))	4:8 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.3 dB
of 95% (U = 2Uc(y))	5.3 UB

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Mina Liu / Ching Chen	Temperature:	21~25	°C
Test Date:	2022/10/20-2022/12/13	Relative Humidity:	51~54	%

					<u>6dE</u>	-	RESULTS 6 Occupie	<u>DATA</u> d Bandwid
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	1Mbps	1	0	2402	1.037	0.682	0.50	Pass
BLE	1Mbps	1	19	2440	1.039	0.684	0.50	Pass
BLE	1Mbps	1	39	2480	1.037	0.690	0.50	Pass

						RESULTS ge Power				
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	15.50	30.00	2.50	18.00	36.00	Pass
BLE	1Mbps	1	19	2440	15.80	30.00	2.50	18.30	36.00	Pass
BLE	1Mbps	1	39	2480	16.20	30.00	2.50	18.70	36.00	Pass

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	16.20	1.01	2.50	8.00	Pass	
BLE	1Mbps	1	19	2440	16.28	1.10	2.50	8.00	Pass	
BLE	1Mbps	1	39	2480	16.32	1.44	2.50	8.00	Pass	

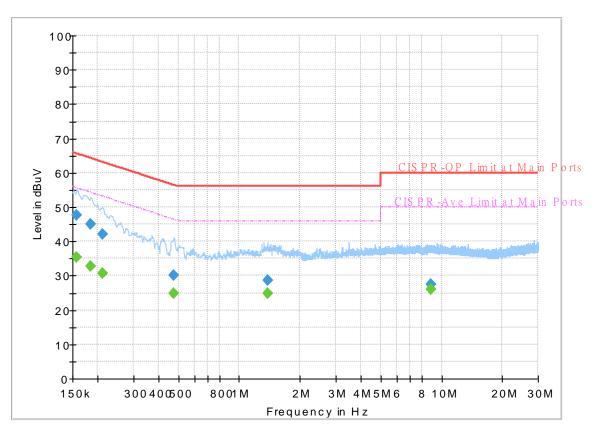
					<u>6dE</u>		RESULTS 6 Occupie	
Mod	Data Rate	Ντx	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	2Mbps	1	0	2402	2.074	1.352	0.50	Pass
BLE	2Mbps	1	19	2440	2.082	1.332	0.50	Pass
BLE	2Mbps	1	39	2480	2.066	1.348	0.50	Pass

TEST RESULTS DATA Average Power Table

Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	15.70	30.00	2.50	18.20	36.00	Pass
BLE	2Mbps	1	19	2440	16.20	30.00	2.50	18.70	36.00	Pass
BLE	2Mbps	1	39	2480	11.60	30.00	2.50	14.10	36.00	Pass

TEST RESULTS DATA
Peak Power Density

Mod.	Data Rate	Ντx	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	2Mbps	1	0	2402	13.45	-3.19	2.50	8.00	Pass	
BLE	2Mbps	1	19	2440	15.64	-0.91	2.50	8.00	Pass	
BLE	2Mbps	1	39	2480	9.48	-7.19	2.50	8.00	Pass	

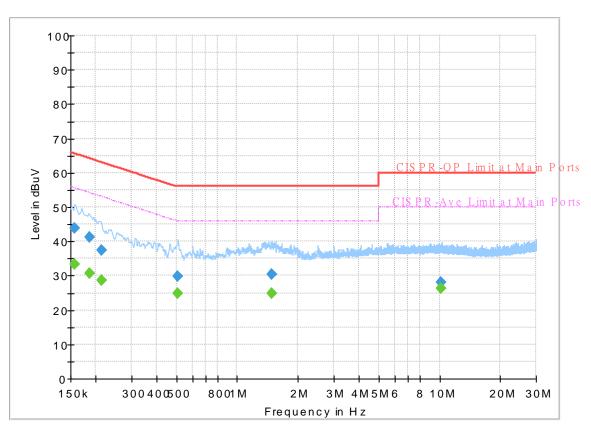


Appendix B. AC Conducted Emission Test Results

Test Engineer	·	Temperature :	23~26 ℃
Test Engineer :	1	Relative Humidity :	45~55%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 100605-09 Mode 1 120Vac/60Hz Line


FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.156750		35.44	55.63	20.19	L1	OFF	19.8
0.156750	47.77		65.63	17.86	L1	OFF	19.8
0.183750		32.86	54.31	21.45	L1	OFF	19.8
0.183750	44.95		64.31	19.36	L1	OFF	19.8
0.210750		30.70	53.18	22.48	L1	OFF	19.8
0.210750	42.15		63.18	21.03	L1	OFF	19.8
0.476250		24.71	46.40	21.69	L1	OFF	19.8
0.476250	30.03		56.40	26.37	L1	OFF	19.8
1.376250		24.97	46.00	21.03	L1	OFF	19.9
1.376250	28.79		56.00	27.21	L1	OFF	19.9
8.839500		25.99	50.00	24.01	L1	OFF	20.2
8.839500	27.46		60.00	32.54	L1	OFF	20.2

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 100605-09 Mode 1 120Vac/60Hz Neutral

FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.156750		33.41	55.63	22.22	Ν	OFF	19.8
0.156750	43.95		65.63	21.68	Ν	OFF	19.8
0.186000		30.57	54.21	23.64	Ν	OFF	19.8
0.186000	41.28		64.21	22.93	Ν	OFF	19.8
0.213000		28.56	53.09	24.53	Ν	OFF	19.8
0.213000	37.33		63.09	25.76	Ν	OFF	19.8
0.507750		24.94	46.00	21.06	Ν	OFF	19.8
0.507750	29.84		56.00	26.16	Ν	OFF	19.8
1.484250		24.75	46.00	21.25	Ν	OFF	19.9
1.484250	30.32		56.00	25.68	Ν	OFF	19.9
10.144500		26.20	50.00	23.80	Ν	OFF	20.2
10.144500	27.95		60.00	32.05	Ν	OFF	20.2

Appendix C. Radiated Spurious Emission

Test Engineer :	Yuan Lee, Fu Chen and Trove Hsieh	Temperature :	19.8~21.8°C
lest Engineer .		Relative Humidity :	57.2~68.8%

<1Mpbs>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2344.125	52.93	-21.07	74	42.36	27.3	17.23	33.96	299	123	Р	Н
		2378.565	42.89	-11.11	54	32.16	27.41	17.27	33.95	299	123	А	Н
	*	2402	110.13	-	-	99.27	27.51	17.3	33.95	299	123	Р	Н
	*	2402	109.07	-	-	98.21	27.51	17.3	33.95	299	123	А	Н
													Н
BLE CH 00													Н
2402MHz		2317.14	52.62	-21.38	74	42.1	27.3	17.19	33.97	356	187	Р	V
240210112		2379.72	42.87	-11.13	54	32.13	27.42	17.27	33.95	356	187	А	V
	*	2402	105.06	-	-	94.2	27.51	17.3	33.95	356	187	Р	V
	*	2402	104.07	-	-	93.21	27.51	17.3	33.95	356	187	А	V
													V
													V

BLE (Band Edge @ 3m)

				1		1	1	1			1		
		2380.72	52.89	-21.11	74	42.15	27.42	17.27	33.95	304	226	Р	н
		2370.32	42.99	-11.01	54	32.3	27.38	17.26	33.95	304	226	А	Н
	*	2440	111.43	-	-	100.35	27.66	17.36	33.94	304	226	Р	Н
	*	2440	110.5	-	-	99.42	27.66	17.36	33.94	304	226	А	н
		2484.16	53.01	-20.99	74	41.73	27.77	17.43	33.92	304	226	Р	Н
BLE		2496.8	43.5	-10.5	54	32.18	27.79	17.45	33.92	304	226	А	Н
CH 19 2440MHz		2369.04	52.34	-21.66	74	41.65	27.38	17.26	33.95	152	166	Р	V
2440101172		2381.04	42.97	-11.03	54	32.22	27.42	17.28	33.95	152	166	А	V
	*	2440	105.98	-	-	94.9	27.66	17.36	33.94	152	166	Р	V
	*	2440	105.07	-	-	93.99	27.66	17.36	33.94	152	166	А	V
		2492.96	52.66	-21.34	74	41.35	27.79	17.44	33.92	152	166	Р	V
		2489.52	43.63	-10.37	54	32.34	27.78	17.43	33.92	152	166	А	V
	*	2480	109.61	-	-	98.36	27.76	17.42	33.93	325	213	Р	н
	*	2480	108.58	-	-	97.33	27.76	17.42	33.93	325	213	А	н
		2483.52	54.92	-19.08	74	43.64	27.77	17.43	33.92	325	213	Р	н
		2483.72	45.58	-8.42	54	34.3	27.77	17.43	33.92	325	213	А	Н
													Н
BLE													Н
CH 39 2480MHz	*	2480	107.42	-	-	96.17	27.76	17.42	33.93	202	177	Р	V
2400111172	*	2480	106.52	-	-	95.27	27.76	17.42	33.93	202	177	А	V
		2483.56	53.48	-20.52	74	42.2	27.77	17.43	33.92	202	177	Р	V
		2483.52	44.7	-9.3	54	33.42	27.77	17.43	33.92	202	177	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and	Average lin	nit line.	·		·		·		

2.4GHz 2400~2483.5MHz

	Ī	ſ	ſ		SLE (Harm		5111)	-	Ī	F	1	r	
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4804	39.55	-34.45	74	53.89	32.22	11.38	57.94	-	-	Р	Н
													Н
													н
													н
													н
													Н
													Н
													н
													н
													Н
BLE													Н
CH 00													Н
2402MHz		4804	38.71	-35.29	74	53.05	32.22	11.38	57.94	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)		Line	Level (dBµV)	Factor	Loss (dB)	Factor (dB)	Pos	Pos	Avg.	/⊔^/
		4880	<u>(авµv/m)</u> 40.98	-33.02	(авµv/m) 74	(авµv) 54.71	(dB/m) 32.62	<u>(ав)</u> 11.65	(dB) 58	(cm)	(deg) -	(P/A) P	(H/V) H
		7320	41.25	-32.75	74	49.61	37.02	13.35	58.73	-	_	' P	н
		7320	41.25	-32.75	74	49.01	57.02	15.55	50.75	-	-	Г	н
													н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 19													Н
2440MHz		4880	40.85	-33.15	74	54.58	32.62	11.65	58	-	-	Р	V
		7320	41.76	-32.24	74	50.12	37.02	13.35	58.73	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4960	40.88	-33.12	74	54	33.02	11.92	58.06	-	-	Р	Н
		7440	40.49	-33.51	74	49.01	36.44	13.75	58.71	-	-	Ρ	Н
													Н
													н
													Н
													Н
													Н
													Н
													Н
													н
													н
BLE													н
CH 39		4960	41.31	-32.69	74	54.43	33.02	11.92	58.06	-	-	Р	V
2480MHz		7440	40.83	-33.17	74	49.35	36.44	13.75	58.71	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1 NI		found										V
		o other spurious I results are PA		Dook ono	Average lim	it line							
Remark		ne emission pos					ission found	l with suf	ficient man	nin anai	inst limit	line or	noise
		oor only.		145 ⁻ 11	Sans no sus				noiont mai	yn ayai	in ot infint		10130

<2Mpbs>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		2375.835	52.83	-21.17	74	42.11	27.4	17.27	33.95	302	222	P	Η
		2368.8	44.45	-9.55	54	33.76	27.38	17.26	33.95	302	222	А	Н
	*	2402	110.03	-	-	99.17	27.51	17.3	33.95	302	222	Р	Н
	*	2402	108.2	-	-	97.34	27.51	17.3	33.95	302	222	А	Н
BLE													Н
CH 00													Н
2402MHz		2358.3	52.56	-21.44	74	41.94	27.33	17.25	33.96	245	187	Ρ	V
240210112		2381.82	44.36	-9.64	54	33.6	27.43	17.28	33.95	245	187	А	V
	*	2402	102.97	-	-	92.11	27.51	17.3	33.95	245	187	Ρ	V
	*	2402	101.08	-	-	90.22	27.51	17.3	33.95	245	187	А	V
													V
													V
		2376.72	51.86	-22.14	74	41.13	27.41	17.27	33.95	296	219	Ρ	Н
		2382.16	44.4	-9.6	54	33.64	27.43	17.28	33.95	296	219	А	Н
	*	2440	112.01	-	-	100.93	27.66	17.36	33.94	296	219	Ρ	Н
	*	2440	110.35	-	-	99.27	27.66	17.36	33.94	296	219	А	Н
		2485.2	52.96	-21.04	74	41.68	27.77	17.43	33.92	296	219	Ρ	Н
BLE		2492.08	45	-9	54	33.7	27.78	17.44	33.92	296	219	А	Н
CH 19 2440MHz		2361.2	52.29	-21.71	74	41.66	27.34	17.25	33.96	259	180	Ρ	V
2440111172		2364.4	44.1	-9.9	54	33.45	27.36	17.25	33.96	259	180	А	V
	*	2440	106.39	-	-	95.31	27.66	17.36	33.94	259	180	Ρ	V
	*	2440	104.69	-	-	93.61	27.66	17.36	33.94	259	180	А	V
		2485.2	52.49	-21.51	74	41.21	27.77	17.43	33.92	259	180	Ρ	V
		2495.12	45.12	-8.88	54	33.81	27.79	17.44	33.92	259	180	А	V

	*	2480	102.28	-	-	91.03	27.76	17.42	33.93	300	213	Р	Н
	*	2480	100.17	-	-	88.92	27.76	17.42	33.93	300	213	А	Н
		2483.52	59.87	-14.13	74	48.59	27.77	17.43	33.92	300	213	Р	Н
		2483.52	52.34	-1.66	54	41.06	27.77	17.43	33.92	300	213	Α	Н
													Н
BLE CH 39													Н
2480MHz	*	2480	99.76	-	-	88.51	27.76	17.42	33.93	250	177	Р	V
24001112	*	2480	97.86	-	-	86.61	27.76	17.42	33.93	250	177	А	V
		2483.52	58.6	-15.4	74	47.32	27.77	17.43	33.92	250	177	Р	V
		2483.52	50.81	-3.19	54	39.53	27.77	17.43	33.92	250	177	А	V
													V
													V
Remark		o other spurious results are PA		^D eak and	Average lin	nit line.							

2.4GHz 2400~2483.5MHz

	1	-	[SLE (Harm			_	Ī	F	F	l.	
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)			(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4804	38.87	-35.13	74	53.21	32.22	11.38	57.94	-	-	Р	Н
													н
													Н
													н
													Н
													Н
													н
													H
													Н
													Н
BLE													Н
CH 00													Н
2402MHz		4804	39.13	-34.87	74	53.47	32.22	11.38	57.94	-	-	Р	V
240211112													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)		Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg.	
		4880	<u>(авруля)</u> 39.5	-34.5	<u>(авµv/m)</u> 74	(авру) 53.23	(dB /m) 32.62	(db) 11.65	(db) 58	(cm) -	(deg)	(P/A) P	(п/v) Н
		7320	40.7	-33.3	74	49.06	37.02	13.35	58.73	-	-	P	н
		7320	40.7	-33.3	74	49.00	37.02	13.35	50.75	-	-	Р	
													H
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													н
BLE													Н
CH 19 2440MHz		4880	40.47	-33.53	74	54.2	32.62	11.65	58	-	-	Р	V
244010112		7320	41.65	-32.35	74	50.01	37.02	13.35	58.73	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													v

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		4960	40.06	-33.94	74	53.18	33.02	11.92	58.06	-	-	Р	Н
		7440	41.33	-32.67	74	49.85	36.44	13.75	58.71	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													н
													н
BLE													Н
CH 39		4960	42.34	-31.66	74	55.46	33.02	11.92	58.06	-	-	Р	V
2480MHz		7440	39.9	-34.1	74	48.42	36.44	13.75	58.71	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													v
Remark		o other spurious results are PA		Peak and	Avorago lim	it line							

Emission after 18GHz

2.4GHz BLE (SHF)

BT	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		21608	39.33	-34.67	74	58.7	38.1	-2.77	54.7	-	-	Р	H H
													н
													H H
													н
													Н
													н
													H H
													н
2.4GHz BLE													Н
SHF		22532	38.82	-35.18	74	58.81	38.33	-3.85	54.47	-	-	Р	V
													V V
													V
													V
													V
													V V
													V
													V
													V
		41											V
		o other spuriou I results are PA		mit line.									
Remark		e emission po			eans no sus	pected em	ission found	l with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	or only.											

Emission below 1GHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		30	25.64	-14.36	40	33.11	23.92	0.97	32.36	-	-	Р	Н
		53.28	26.09	-13.91	40	44.85	12.63	1.09	32.48	-	-	Р	Н
		120.21	25.15	-18.35	43.5	38.52	17.28	1.76	32.41	-	-	Р	Н
		510.15	30.22	-15.78	46	35.2	23.76	3.48	32.22	-	-	Ρ	Н
		948.59	33.2	-12.8	46	29.2	30.1	4.8	30.9	-	-	Р	Н
		980.6	34.62	-19.38	54	30.16	30.3	4.85	30.69	-	-	Р	Н
													н
													H H
													н
													н
2.4GHz													н
BLE		42.61	31.91	-8.09	40	45.49	17.89	0.97	32.44	-	-	Р	V
LF		120.21	26.32	-17.18	43.5	39.69	17.28	1.76	32.41	-	-	Р	V
		510.15	31.58	-14.42	46	36.56	23.76	3.48	32.22	-	-	Р	V
		871.96	32.23	-13.77	46	30.41	28.66	4.54	31.38	-	-	Ρ	V
		953.44	33.17	-12.83	46	28.89	30.34	4.81	30.87	-	-	Р	V
		986.42	33.92	-20.08	54	29.5	30.21	4.86	30.65	-	-	Р	V
													V
													V
													V
													V
													V
													V
Remark	2. All 3. Th	o other spurious results are PA e emission pos ainst limit or er	SS against li sition marked	l as "-" m		pected err	nission foun	d and em	ission leve	el has a	t least 60	dB ma	rgin

2.4GHz BLE (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin (dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

- 1. Level(dB μ V/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

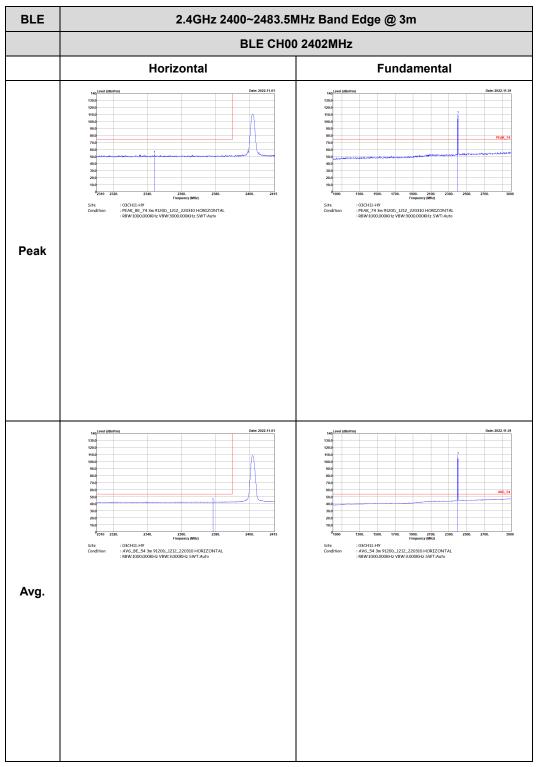
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Margin (dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

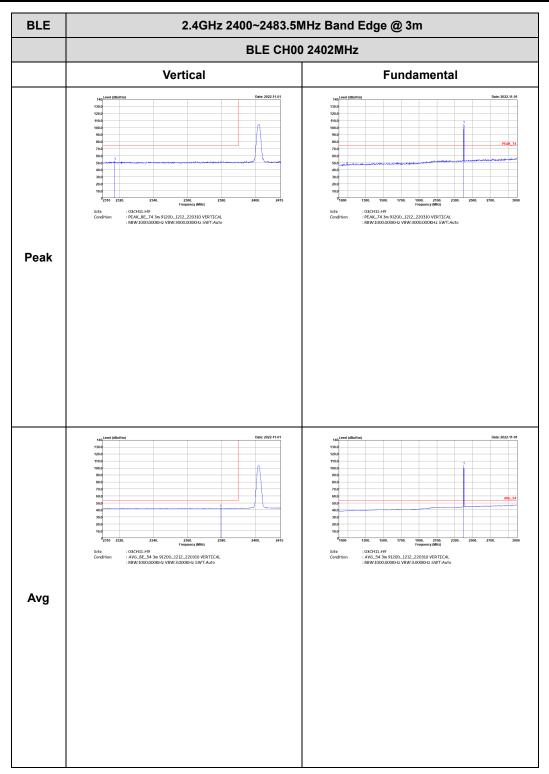
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Radiated Spurious Emission Plots

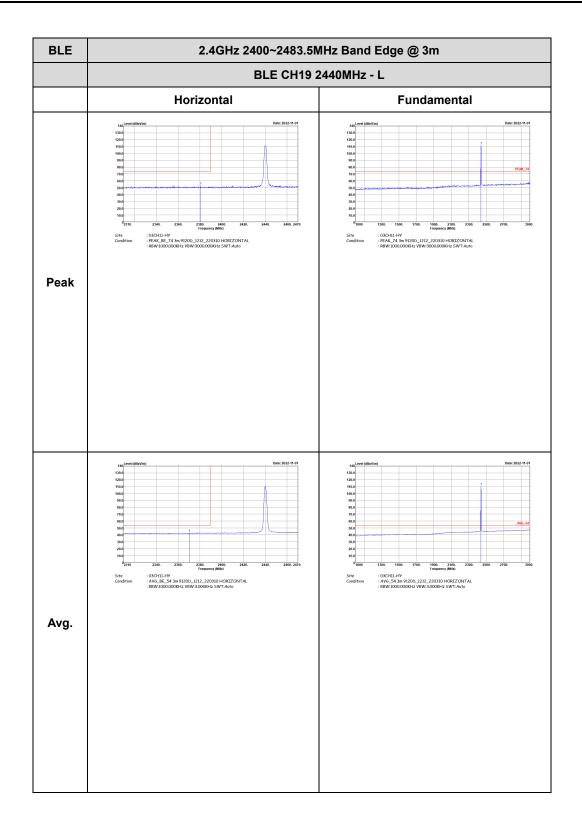
Toot Engineer	Yuan Lee, Fu Chen and Troye Hsieh	Temperature :	19.8~21.8°C
Test Engineer :		Relative Humidity :	57.2~68.8%

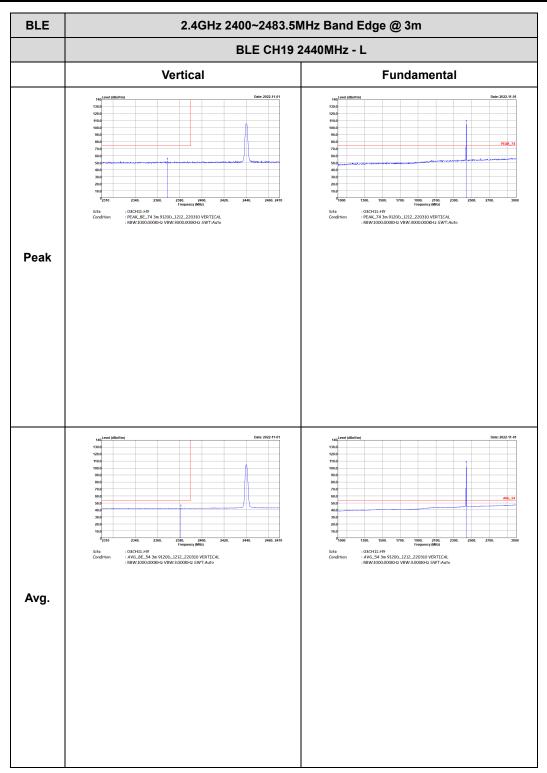
Note symbol


-L	Low channel location
-R	High channel location

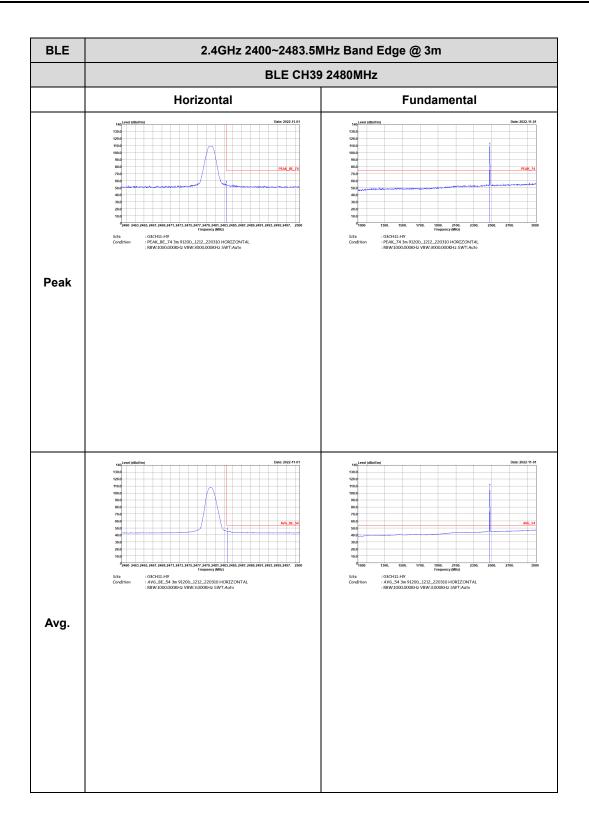

<1Mpbs>

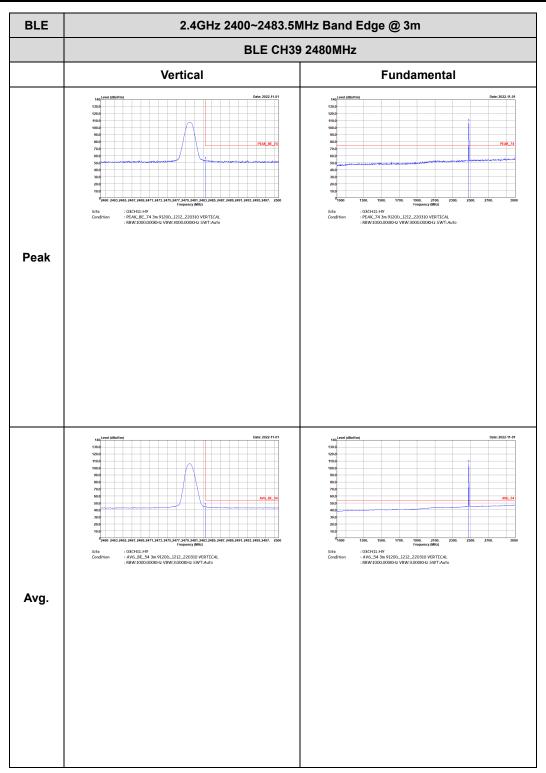
2.4GHz 2400~2483.5MHz


BLE (Band Edge @ 3m)

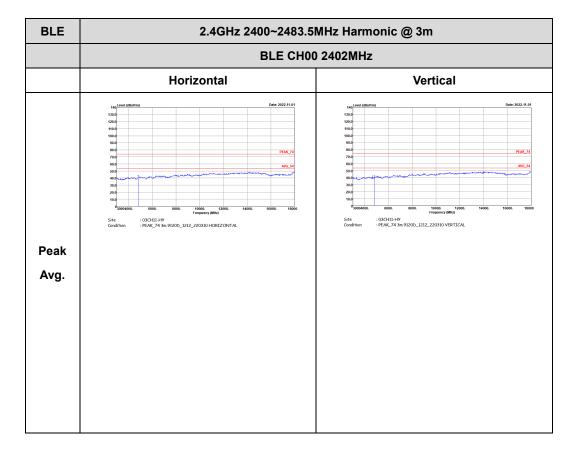


BLE	2.4GHz 2400~2483.5MHz	Band Edge @ 3m
	BLE CH19 2440	MHz - R
	Horizontal	Fundamental
Peak	Image: provide the state of	Left blank
Avg.	Met Handhim	Left blank

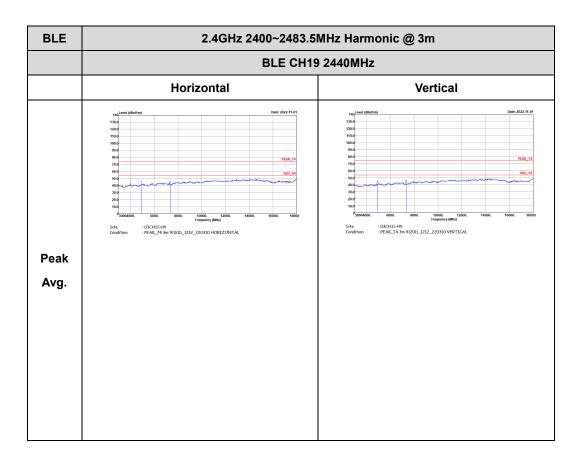


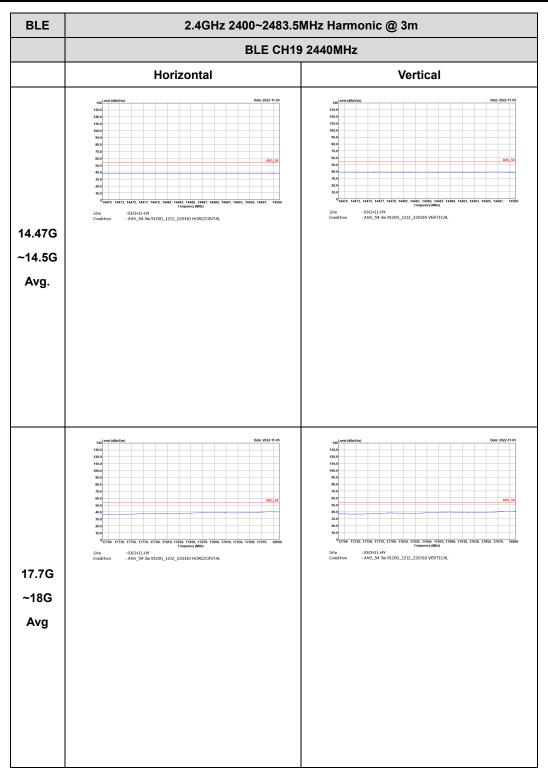


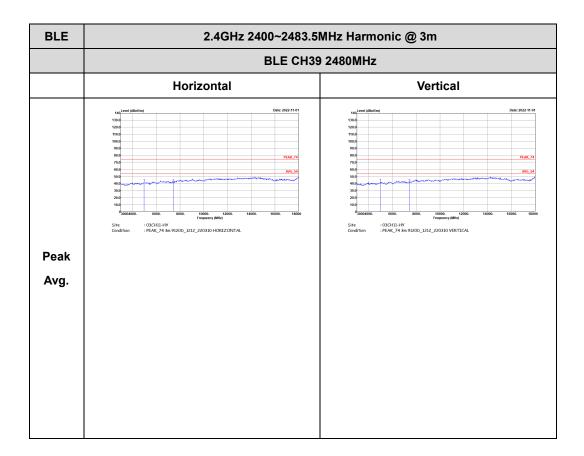
BLE	2.4GHz 2400~2483.5M	/Hz Band Edge @ 3m
	BLE CH19 2	2440MHz - R
	Vertical	Fundamental
Peak	Hardward Des: 2022 1.91 Hardward Hardward Hardward Hardward <td< th=""><th>Left blank</th></td<>	Left blank
Avg.	Image: state	Left blank

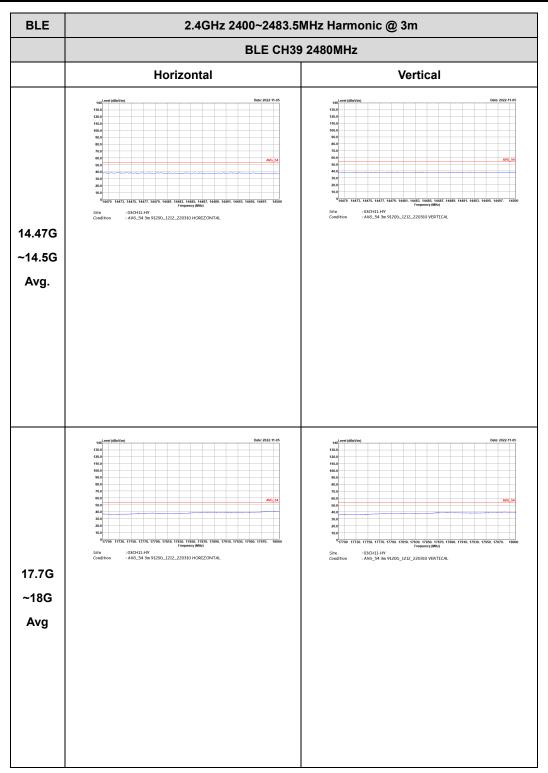


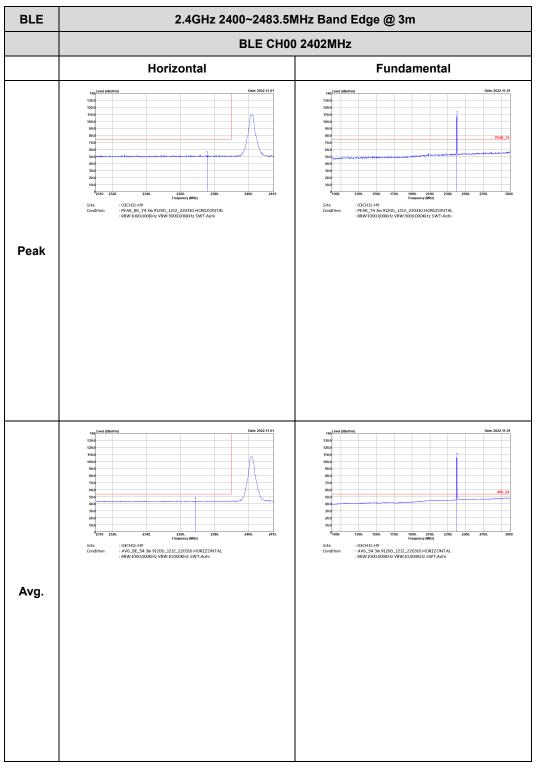
2.4GHz 2400~2483.5MHz

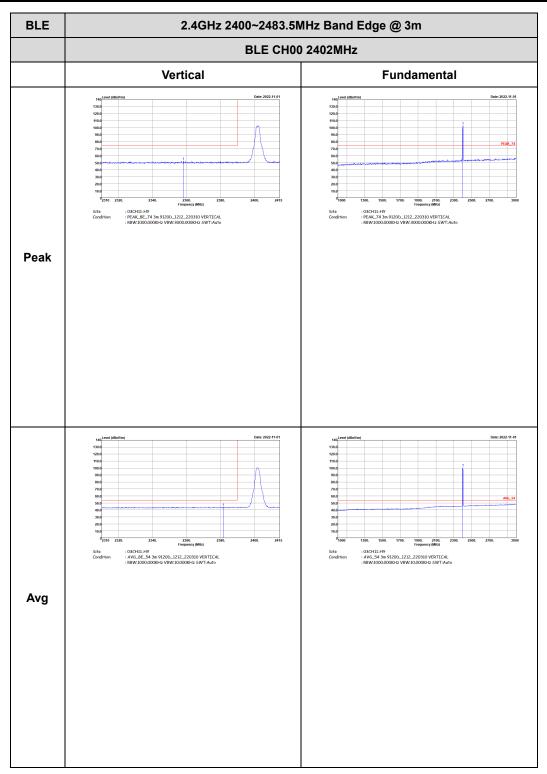

BLE (Harmonic @ 3m)



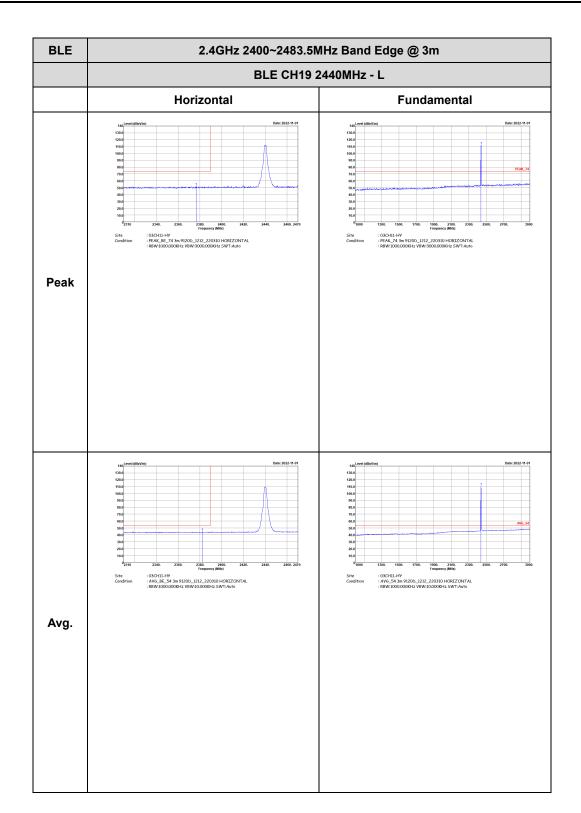


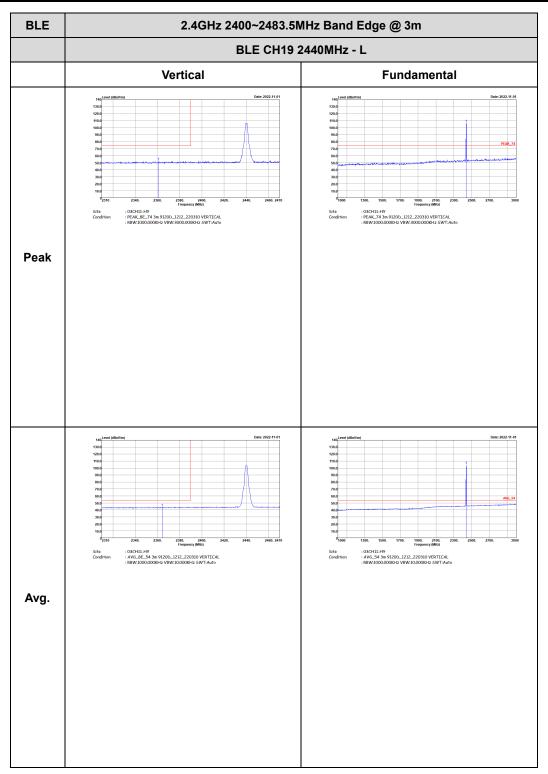




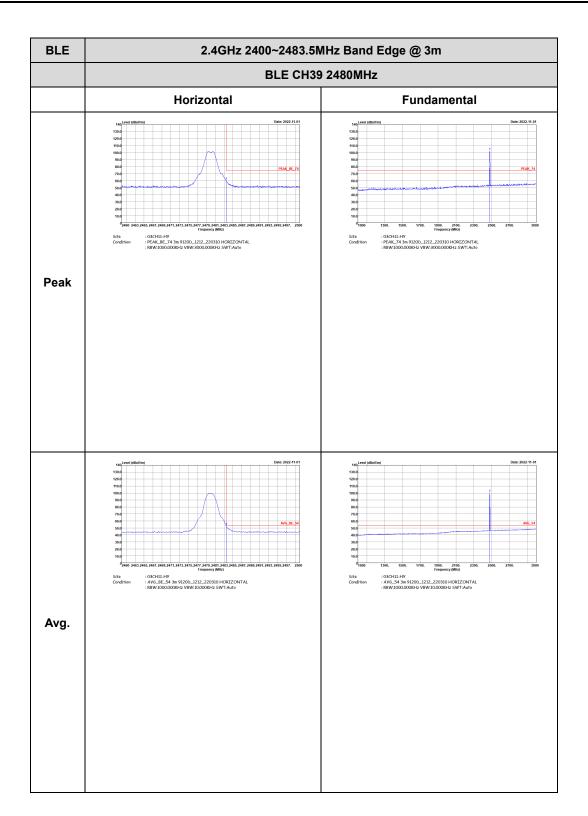

<2Mpbs>

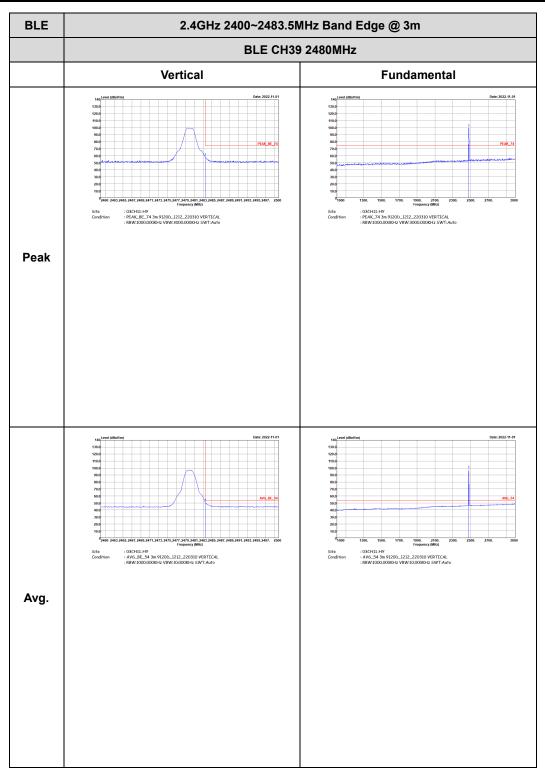
2.4GHz 2400~2483.5MHz


BLE (Band Edge @ 3m)

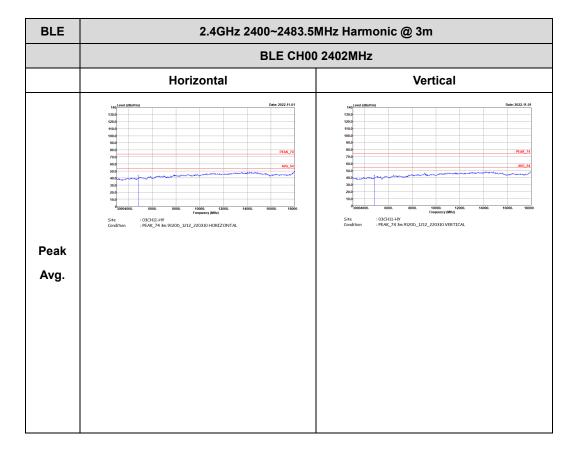


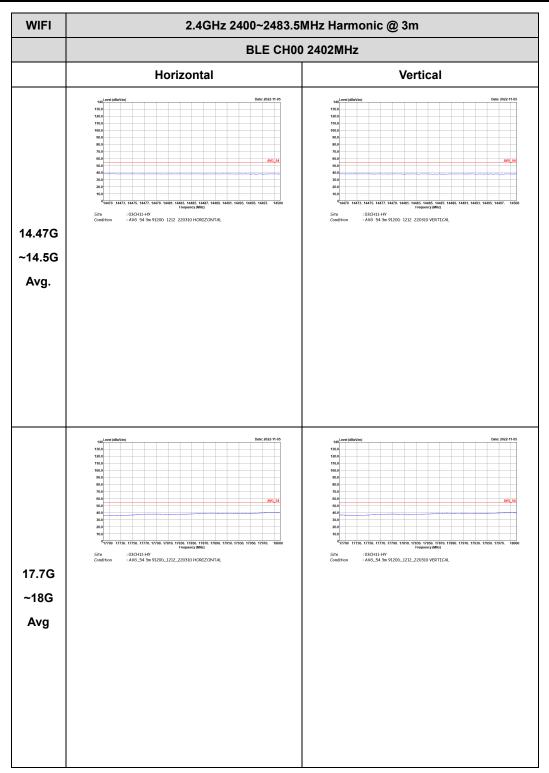
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2440MHz - R					
	Horizontal	Fundamental				
Peak	<figure>image: constraint of the second se</figure>	Left blank				
Avg.	<figure><figure><text></text></figure></figure>	Left blank				





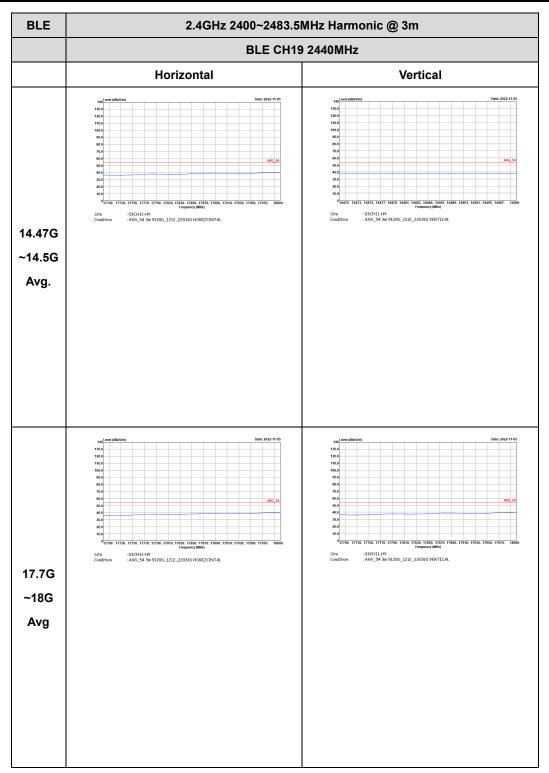
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2440MHz - R					
	Vertical	Fundamental				
Peak	<pre>image: image: imag</pre>	Left blank				
Avg.	The second se	Left blank				

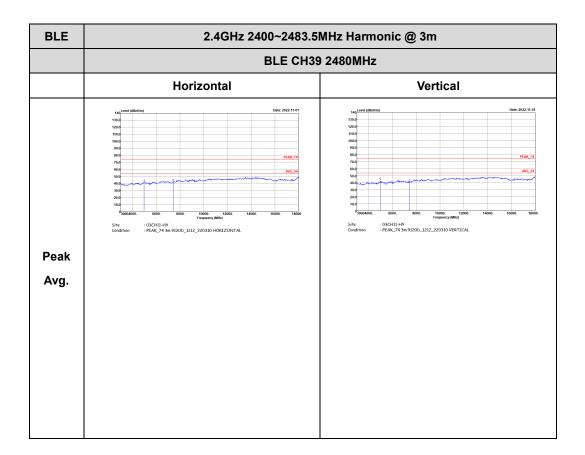




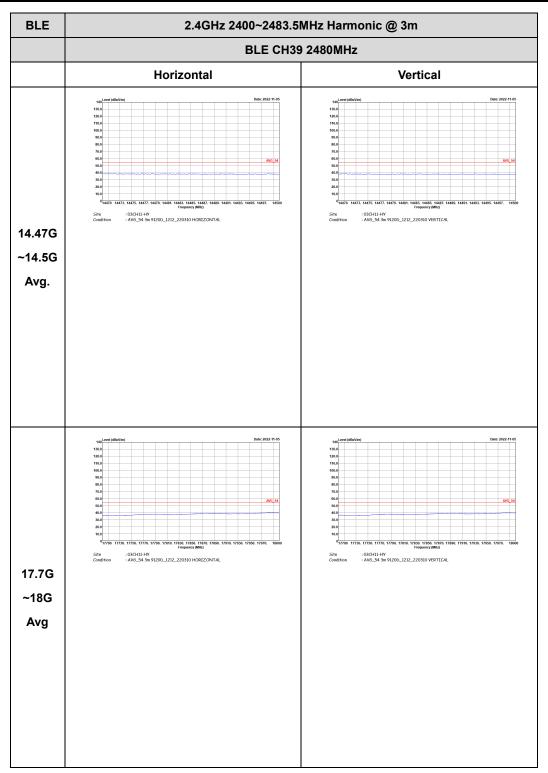
2.4GHz 2400~2483.5MHz

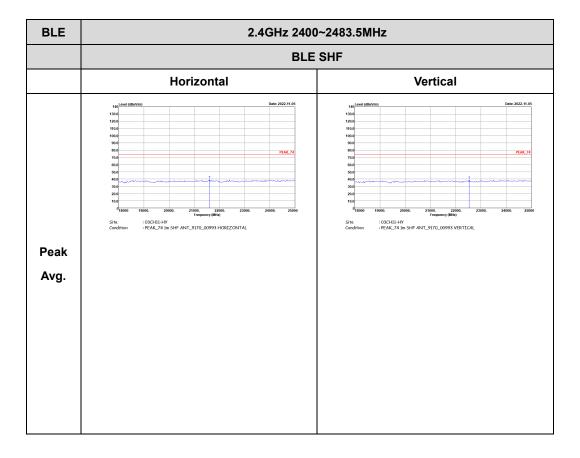
BLE (Harmonic @ 3m)

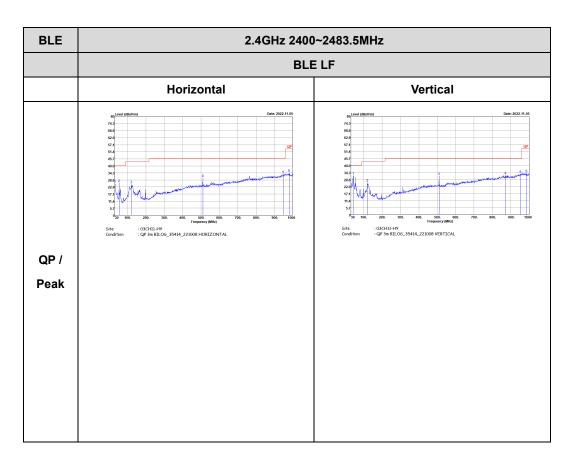




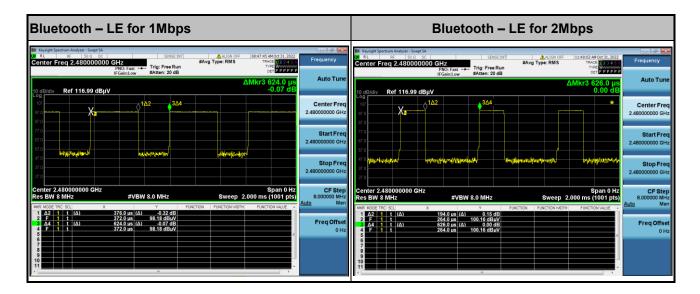
BLE	2.4GHz 2400~2483.5MHz Harmonic @ 3m					
	BLE CH19 2440MHz					
	Horizontal	Vertical				
Peak Avg.	Image: Instrument in the second se	<pre>text text time time time time time time time tim</pre>				






Emission after 18GHz

2.4GHz BLE (SHF @ 1m)


Emission below 1GHz

2.4GHz BLE (LF)

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth - LE for 1Mbps	60.26	376	2.66	3kHz
Bluetooth - LE for 2Mbps	30.99	194	5.15	10kHz

