

FCC RADIO TEST REPORT

FCC ID	: A4RGRY0E
Equipment	: Wireless Device
Model Name	: GRY0E
Applicant	: Google LLC 1600 Amphitheatre Parkway, Mountain View, California, 94043 USA
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Feb. 06, 2024 and testing was performed from Feb. 23, 2024 to Mar. 20, 2024. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Page Number: 1 of 24Issue Date: Apr. 18, 2024Report Version: 01

Table of Contents

His	tory o	f this test report	3
Sur	nmary	v of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	5
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Output Power Measurement	12
	3.3	Power Spectral Density Measurement	13
	3.4	Conducted Band Edges and Spurious Emission Measurement	14
	3.5	Radiated Band Edges and Spurious Emission Measurement	15
	3.6	AC Conducted Emission Measurement	19
	3.7	Antenna Requirements	21
4	List c	of Measuring Equipment	22
5	Meas	urement Uncertainty	24
Ар	oendix	A. Conducted Test Results	
Ар	oendix	B. AC Conducted Emission Test Result	
Ар	oendix	C. Radiated Spurious Emission	
Ар	oendix	D. Radiated Spurious Emission Plots	
Ар	oendix	E. Duty Cycle Plots	

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR420106B	01	Initial issue of report	Apr. 18, 2024

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3) 15.247(b)(4)	Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	9.69 dB under the limit at 2483.52 MHz
3.6	15.207	AC Conducted Emission	Pass	25.53 dB under the limit at 0.15 MHz
3.7	15.203	Antenna Requirement	Pass	-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Yun Huang Report Producer: Lucy Wu

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature

General Specs

WCDMA/LTE, Bluetooth, BLE, BLE (CH2-76), Wi-Fi 2.4GHz 802.11b/g/n/ax, Wi-Fi 5GHz 802.11a/n/ac/ax, NFC, UWB and GPS.

Antenna Type

Bluetooth: PIFA Antenna

EUT Information List				
S/N	Performed Test Item			
1JE65011331050541D03FC0	RF Conducted Measurement			
	Radiated Spurious Emission			
41311JEAYL0087	Conducted Emission			
Antenna information				

Antenna information					
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	-8.3			

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. TH05-HY, CO07-HY, 03CH13-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- + FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find Z plane as worst plane.
- b. AC power line Conducted Emission was tested under maximum output power.

	Summary table of Test Cases						
Test Item	Data Rate / Modulation						
	Bluetooth – LE / GFSK						
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps						
Conducted	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps						
	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps						
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps						
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps						
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps						
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps						
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps						
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps						
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps						
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps						
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps						
AC Conducted	Mode 1: Bluetooth Link + WLAN (2.4GHz) Link + USB Cable (Charging from AC						
Emission	Adapter)						
Remark: For rac	Remark: For radiation spurious emission, the modulation and the data rate picked for testing are						

The following summary table is showing all test modes to demonstrate in compliance with the standard.

2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

<Bluetooth-LE Tx Mode>

2.4 🕄	Support	Unit	used	in	test	configuration	and s	ystem
-------	---------	------	------	----	------	---------------	-------	-------

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony	SBH20	PY7-RD0010	N/A	N/A
2.	WLAN AP	ASUS	RT-AC52	MSQ-RTAC4A00	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Adapter	Chicony	G9BR1	N/A	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "adb command 1.0.36" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

Spectrum Analyzer

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

3.1.6 Test Result of 99% Occupied Bandwidth

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Average Output Power

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.

3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

Spectrum Analyzer

3.3.5 Test Result of Power Spectral Density

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 30 dB down from the highest emission level within the authorized band.

3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges Plots

Please refer to Appendix A.

3.4.6 Test Result of Conducted Spurious Emission Plots

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance	
(MHz)	(microvolts/meter)	(meters)	
0.009 - 0.490	2400/F(kHz)	300	
0.490 – 1.705	24000/F(kHz)	30	
1.705 – 30.0	30	30	
30 – 88	100	3	
88 – 216	150	3	
216 - 960	200	3	
Above 960	500	3	

3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW \ge RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f \geq 1 GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

3.5.4 Test Setup

For radiated test below 30MHz

Spectrum Analyzer / Receiver

For radiated test above 18GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site -

semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of omission (MHz)	Conducted limit (dBµV)					
Frequency of emission (MHZ)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

3.7 Antenna Requirements

3.7.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100315	9 kHz~30 MHz	Feb. 23, 2024	Mar. 09, 2024~ Mar. 20, 2024	Feb. 22, 2025	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9k~30M	Mar. 06, 2024	Mar. 09, 2024~ Mar. 20, 2024	Mar. 05, 2025	Radiation (03CH13-HY)
Amplifier	SONOMA	310N	187282	9kHz~1GHz	Dec. 13, 2023	Mar. 09, 2024~ Mar. 20, 2024	Dec. 12, 2024	Radiation (03CH13-HY)
Bilog Antenna	TESEQ	CBL 6111D & 00802N1D01N -06	47020 & 06	30MHz~1GHz	Oct. 07, 2023	Mar. 09, 2024~ Mar. 20, 2024	Oct. 06, 2024	Radiation (03CH13-HY)
EMI Test Receiver	Agilent	N9038A(MXE)	MY53290045	20MHz~8.4GHz	Apr. 25, 2023	Mar. 09, 2024~ Mar. 20, 2024	Apr. 24, 2024	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1326	1GHz~18GHz	Aug. 17, 2023	Mar. 09, 2024~ Mar. 20, 2024	Aug. 16, 2024	Radiation (03CH13-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590074	1GHz~18GHz	May 16, 2023	Mar. 09, 2024~ Mar. 20, 2024	May 15, 2024	Radiation (03CH13-HY)
Preamplifier	EM Electronics	EM01G18G	060803	1GHz~18GHz	Jan. 09, 2024	Mar. 09, 2024~ Mar. 20, 2024	Jan. 08, 2025	Radiation (03CH13-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 27, 2023	Mar. 09, 2024~ Mar. 20, 2024	Jun. 26, 2024	Radiation (03CH13-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	1223	18GHz-40GHz	Jul. 10, 2023	Mar. 09, 2024~ Mar. 20, 2024	Jul. 09, 2024	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010B	MY62170337	10Hz~44GHz	Aug. 17, 2023	Mar. 09, 2024~ Mar. 20, 2024	Aug. 16, 2024	Radiation (03CH13-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN4	1.53GHz Low Pass Filter	Jun. 14, 2023	Mar. 09, 2024~ Mar. 20, 2024	Jun. 13, 2024	Radiation (03CH13-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0SS	SN2	3GHz High Pass Filter	Jul. 10, 2023	Mar. 09, 2024~ Mar. 20, 2024	Jul. 09, 2024	Radiation (03CH13-HY)
Filter	Wainwright	WHKX8-5872. 5-6750-18000- 40ST	SN5	6.75GHz High Pass Filter	Mar. 08, 2024	Mar. 09, 2024~ Mar. 20, 2024	Mar. 07, 2025	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0030/126E	30MHz~18GHz	Feb. 07, 2024	Mar. 09, 2024~ Mar. 20, 2024	Feb. 06, 2025	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	804011/2, 804012/2	18GHz ~40GHz	Jan. 02, 2024	Mar. 09, 2024~ Mar. 20, 2024	Jan. 01, 2025	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	804793/4	30MHz~18GHz	Feb. 07, 2024	Mar. 09, 2024~ Mar. 20, 2024	Feb. 06, 2025	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24961/4	30MHz~18GHz	Feb. 07, 2024	Mar. 09, 2024~ Mar. 20, 2024	Feb. 06, 2025	Radiation (03CH13-HY)
Hygrometer	TECPEL	DTM-303A	TP215159	N/A	Sep. 13, 2023	Mar. 09, 2024~ Mar. 20, 2024	Sep. 12, 2024	Radiation (03CH13-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Mar. 09, 2024~ Mar. 20, 2024	N/A	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Mar. 09, 2024~ Mar. 20, 2024	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Mar. 09, 2024~ Mar. 20, 2024	N/A	Radiation (03CH13-HY)
Software	Audix	N/A	RK-001124	N/A	N/A	Mar. 09, 2024~ Mar. 20, 2024	N/A	Radiation (03CH13-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Mar. 15, 2024	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Mar. 15, 2024	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Oct. 20, 2023	Mar. 15, 2024	Oct. 19, 2024	Conduction (CO07-HY)
Two-Line V-Network	TESEQ	NNB 51	45051	N/A	Mar. 10, 2024	Mar. 15, 2024	Mar. 09, 2025	Conduction (CO07-HY)
Four-Line V-Network	TESEQ	NNB 52	36122	N/A	Mar. 07, 2024	Mar. 15, 2024	Mar. 06, 2025	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Sep. 20, 2023	Mar. 15, 2024	Sep. 19, 2024	Conduction (CO07-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 07, 2023	Feb. 23, 2024~ Feb. 29, 2024	Nov. 06, 2024	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	15I00041SNO 10 (NO:248)	10MHz~6GHz	Jun. 05, 2023	Feb. 23, 2024~ Feb. 29, 2024	Jun. 04, 2024	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 23, 2023	Feb. 23, 2024~ Feb. 29, 2024	Aug. 22, 2024	Conducted (TH05-HY)

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2 44 dP
of 95% (U = 2Uc(y))	3.44 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	e e de
of 95% (U = 2Uc(y))	0.5 UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4.2 dB
of 95% (U = 2Uc(y))	4.2 UB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.6 dB	
of 95% (U = 2Uc(y))	4.0 aB	

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.3 dB
of 95% (U = 2Uc(y))	5.3 UB

Report Number : FR420106B

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Shiming Liu	Temperature:	21~25	°C
Test Date:	2024/2/23~2024/2/29	Relative Humidity:	51~54	%

<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth											
Mod. Data Rate NTX CH. Freq. 99% (MHz) BW 6dB BW (MHz) 6dB BW Limit (MHz) Pass/Fail											
BLE	1Mbps	1	0	2402	(MHz) 1.035	0.711	(MHz) 0.50	Pass			
BLE	1Mbps	1	19	2440	1.035	0.718	0.50	Pass			
BLE	1Mbps	1	39	2480	1.031	0.717	0.50	Pass			

<u>TEST RESULTS DATA</u> <u>Average Power Table</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	18.00	30.00	-8.30	9.70	36.00	Pass
BLE	1Mbps	1	19	2440	17.70	30.00	-8.30	9.40	36.00	Pass
BLE	1Mbps	1	39	2480	18.00	30.00	-8.30	9.70	36.00	Pass

<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>										
					· · · · · · · · · · · · · · · · · · ·					
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	16.76	2.13	-8.30	8.00	Pass	
BLE	1Mbps	1	19	2440	16.66	2.08	-8.30	8.00	Pass	
BLE	1Mbps	1	39	2480	17.21	2.60	-8.30	8.00	Pass	
Note: F	PSD (dBr	m/ 10	00kHz)	is a refe	rence level	used for Cor	nducted Band	d Edges and	Conducted	Spurious Emission 30dBc limit.

Report Number : FR420106B

						<u>6d</u>	<u>TEST</u> B and 99%	RESULTS 6 Occupie	<u>DATA</u> d Bandwie
Γ		_				0001			
	Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
	BLE	2Mbps	1	0	2402	2.070	1.248	0.50	Pass
	BLE	2Mbps	1	19	2440	2.070	1.247	0.50	Pass
	BLE	2Mbps	1	39	2480	2.066	1.249	0.50	Pass

<u>Average Power Table</u>										
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	18.80	30.00	-8.30	10.50	36.00	Pass
BLE	2Mbps	1	19	2440	18.30	30.00	-8.30	10.00	36.00	Pass
BLE	2Mbps	1	39	2480	18.80	30.00	-8.30	10.50	36.00	Pass

						Peak	Power De	nsity		
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE	2Mbps	1	0	2402	17.49	1.04	-8.30	8.00	Pass	
BLE	2Mbps	1	19	2440	16.70	0.24	-8.30	8.00	Pass	
BLE	2Mbps	1	39	2480	17.37	0.95	-8.30	8.00	Pass	

6dB Bandwidth

<1Mbps>

<2Mbps>

99% Occupied Bandwidth

<1Mbps>

<2Mbps>

Power Spectral Density (dBm/3kHz)

<1Mbps>

<2Mbps>

Band Edge and Conducted Spurious Emission

<1Mbps>

<2Mbps>

Appendix B. AC Conducted Emission Test Results

Test Engineer		Temperature :	20.5~21.7 ℃
rest Engineer.		Relative Humidity :	41.2~46.4%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 420106 Mode 1 120Vac/60Hz Line

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.153105		25.07	55.83	30.76	L1	OFF	19.9
0.153105	40.30		65.83	25.53	L1	OFF	19.9
0.174750		19.27	54.73	35.46	L1	OFF	19.9
0.174750	37.69		64.73	27.04	L1	OFF	19.9
0.210750		15.77	53.18	37.41	L1	OFF	19.9
0.210750	29.12		63.18	34.06	L1	OFF	19.9
0.379500		16.48	48.29	31.81	L1	OFF	19.9
0.379500	26.70		58.29	31.59	L1	OFF	19.9
0.441780		17.47	47.03	29.56	L1	OFF	19.9
0.441780	24.71		57.03	32.32	L1	OFF	19.9
0.549420		16.55	46.00	29.45	L1	OFF	19.9
0.549420	22.67		56.00	33.33	L1	OFF	19.9

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 420106 Mode 1 120Vac/60Hz Neutral

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.154185		23.74	55.77	32.03	Ν	OFF	19.9
0.154185	38.54		65.77	27.23	Ν	OFF	19.9
0.173670		19.75	54.78	35.03	Ν	OFF	19.9
0.173670	38.00		64.78	26.78	Ν	OFF	19.9
0.199500		17.12	53.63	36.51	Ν	OFF	19.9
0.199500	30.21		63.63	33.42	Ν	OFF	19.9
0.380040		17.03	48.28	31.25	Ν	OFF	19.9
0.380040	27.21		58.28	31.07	Ν	OFF	19.9
0.435840		15.55	47.14	31.59	Ν	OFF	19.9
0.435840	20.42		57.14	36.72	Ν	OFF	19.9
0.555000		14.35	46.00	31.65	Ν	OFF	19.9
0.555000	17.79		56.00	38.21	Ν	OFF	19.9

Appendix C. Radiated Spurious Emission

Tost Engineer :	Pain Loo, Jocky Hong and Manoy Chou	Temperature :	20~26°C
rest Engineer .		Relative Humidity :	40~65%

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
			(dBu)//m)		Line		Factor	Loss	Factor	Pos	Pos	Avg.	(1177)
		(IVIFIZ)	(авµv/m)	(ab)	(авµv/m) 74	(αΒ μν)	(ав/т)	(0B)	(GB)	(cm)	(aeg)	(P/A)	(H/V) ⊔
		2372.095	49.42	-24.30	74	44.56	27.33	14.0	37.09	100	99		п
		2362.71	39.55	-14.45	54	34.75	27.3	14.59	37.09	100	99	A	н
	*	2402	107.15	-	-	102.1	27.5	14.63	37.08	100	99	Р	Н
	*	2402	106.56	-	-	101.51	27.5	14.63	37.08	100	99	Α	Н
													Н
BLE													Н
		2340.765	48.73	-25.27	74	44.04	27.21	14.57	37.09	306	262	Р	V
2402MHZ		2377.62	39.54	-14.46	54	34.63	27.38	14.61	37.08	306	262	А	V
	*	2402	99.77	-	-	94.72	27.5	14.63	37.08	306	262	Ρ	V
	*	2402	99.25	-	-	94.2	27.5	14.63	37.08	306	262	А	V
													V
													V
		2364.88	49.17	-24.83	74	44.36	27.3	14.6	37.09	119	102	Ρ	Н
		2387.98	39.62	-14.38	54	34.6	27.48	14.62	37.08	119	102	А	Н
	*	2440	107.27	-	-	102.08	27.6	14.67	37.08	119	102	Ρ	Н
	*	2440	106.69	-	-	101.5	27.6	14.67	37.08	119	102	А	Н
51.5		2488.17	49.18	-24.82	74	43.72	27.8	14.73	37.07	119	102	Ρ	Н
BLE		2497.48	39.93	-14.07	54	34.46	27.8	14.74	37.07	119	102	А	Н
CH 19 2440MHz		2353.68	48.51	-25.49	74	43.71	27.3	14.59	37.09	363	353	Ρ	V
244010112		2373.84	39.66	-14.34	54	34.8	27.34	14.61	37.09	363	353	А	V
	*	2440	102.64	-	-	97.45	27.6	14.67	37.08	363	353	Ρ	V
	*	2440	101.93	-	-	96.74	27.6	14.67	37.08	363	353	А	V
		2491.11	49.5	-24.5	74	44.04	27.8	14.73	37.07	363	353	Ρ	V
		2491.67	39.96	-14.04	54	34.5	27.8	14.73	37.07	363	353	А	V

Page Number : C1 of C14

	*	2480	108.27	-	-	102.82	27.8	14.72	37.07	100	104	Р	Н
	*	2480	107.62	-	-	102.17	27.8	14.72	37.07	100	104	А	Н
		2485.36	50.11	-23.89	74	44.66	27.8	14.72	37.07	100	104	Ρ	Н
		2483.56	40.97	-13.03	54	35.52	27.8	14.72	37.07	100	104	А	Н
													Н
													Н
2480MH7	*	2480	104.91	-	-	99.46	27.8	14.72	37.07	359	360	Р	V
240011112	*	2480	104.23	-	-	98.78	27.8	14.72	37.07	359	360	А	V
		2484.56	49.51	-24.49	74	44.06	27.8	14.72	37.07	359	360	Р	V
		2483.56	40.61	-13.39	54	35.16	27.8	14.72	37.07	359	360	А	V
													V
													V
Remark	1. N 2. Al	o other spuriou: Il results are PA	s found. SS against I	[⊃] eak and	Average lim	iit line.							

2.4GHz 2400~2483.5MHz

						<u> </u>	1						
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4804	39.33	-34.67	74	57.12	32.32	7.29	57.4	-	-	Р	Н
													Н
													Н
													н
													Н
													Н
													Н
													н
													н
													н
													н
BLE													н
CH 00		4804	40.06	-33.94	74	57.85	32.32	7.29	57.4	-	-	Р	V
2402MHz													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1		1		1		1		1		1	1	

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBuV/m)	(dB)	Line (dBuV/m)	Level	Factor	Loss (dB)	Factor	Pos	Pos	Avg.	
		4880	41.12	-32.88	74	58.11	32.66	7.53	57.18	-	(ueg) -	P	<u>(ни у</u> Н
		7320	46.7	-27.3	74	57.14	36.92	9.48	56.84	_	_	Р	н
													н
													н
													н
													н
													н
													н
													н
													н
BLE CH 19 2440MHz -													н
													н
		4880	40.85	-33.15	74	57.84	32.66	7.53	57.18	-	-	Р	v
		7320	45.54	-28.46	74	55.98	36.92	9.48	56.84	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
					<u></u>								V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBuV/m)	(dB)	Line (dBuV/m)	Level (dBuV)	Factor	Loss (dB)	Factor	Pos (cm)	Pos (deg)	Avg.	(H/V)
		4960	41.05	-32.95	74	57.17	33.06	7.77	56.95	-	-	P	н
		7440	45.4	-28.6	74	56.57	36.42	9.46	57.05	-	-	Р	Н
													Н
													Н
													н
													н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 39		4960	41.7	-32.3	74	57.82	33.06	7.77	56.95	-	-	Р	V
2460IVITIZ		7440	44.29	-29.71	74	55.46	36.42	9.46	57.05	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
Remark	2. All	results are PA	SS against F	Peak and	Average lim	it line.			. .				
	3. Th	e emission pos	sition marked	as "-" m	eans no sus	pected emi	ission found	d with suf	ticient mar	gin agai	nst limit	line or	noise

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m) BLE Antenna Table Peak Pol. Note Frequency Level Margin Limit Read Path Preamp Ant Factor Pos Line Level Factor Pos Avg. Loss (dBµV/m) (MHz) (dB) (dBµV/m) (dBµV) (dB/m) (dB) (dB) (cm) (deg) (P/A) (H/V) 49.15 -24.85 2375.1 74 44.27 27.35 14.61 37.08 121 103 Ρ н 2355.465 40.98 -13.02 36.18 27.3 14.59 37.09 121 103 54 А Н * 27.5 37.08 103 Р 2402 107.39 102.34 14.63 121 Н --* 2402 106.07 _ _ 101.02 27.5 14.63 37.08 121 103 А Н Н BLE Н CH 00 379 360 Ρ V 2386.23 48.87 -25.13 74 43.87 27.46 14.62 37.08 2402MHz 2361.135 41.75 -12.25 27.3 14.59 37.09 379 360 V 54 36.95 А * 2402 104.77 99.72 27.5 14.63 37.08 379 360 Р V -* 2402 103.47 98.42 27.5 14.63 37.08 379 360 А V --V V Р 2315.6 -25.68 74 43.66 27.2 14.55 37.09 100 98 н 48.32 2381.54 41.24 -12.76 54 36.29 27.42 14.61 37.08 100 98 Н А * 2440 106.83 101.64 27.6 14.67 37.08 100 98 Ρ н --* 2440 105.63 100.44 27.6 14.67 37.08 100 Н --98 А 2499.02 48.47 -25.53 74 43 27.8 14.74 37.07 100 98 Ρ н BLE 2487.54 41.46 -12.54 54 36 27.8 14.73 37.07 100 98 А Н CH 19 2389.94 48.89 -25.11 74 43.85 27.5 14.62 37.08 360 353 Ρ V 2440MHz 2370.06 41.01 27.3 14.6 37.09 353 V -12.99 54 36.2 360 А * 2440 102.69 --97.5 27.6 14.67 37.08 360 353 Ρ V * 2440 101.21 -96.02 27.6 14.67 37.08 360 353 А V -2498.74 360 353 Ρ V 48.89 -25.11 74 43.42 27.8 14.74 37.07 2486.63 41.6 -12.4 54 36.14 27.8 14.73 37.07 360 353 А V

	*	2480	109.3	-	-	103.85	27.8	14.72	37.07	100	97	Р	Н
	*	2480	107.87	-	-	102.42	27.8	14.72	37.07	100	97	А	Н
		2483.64	50.12	-23.88	74	44.67	27.8	14.72	37.07	100	97	Ρ	Н
		2483.52	44.31	-9.69	54	38.86	27.8	14.72	37.07	100	97	А	Н
													Н
													Н
2480MH7	*	2480	103.35	-	-	97.9	27.8	14.72	37.07	400	344	Ρ	V
2480MHz	*	2480	101.98	-	-	96.53	27.8	14.72	37.07	400	344	А	V
		2496.48	49.31	-24.69	74	43.84	27.8	14.74	37.07	400	344	Р	V
		2483.64	42.21	-11.79	54	36.76	27.8	14.72	37.07	400	344	А	V
													V
													V
Remark	1. N 2. A	o other spurious Il results are PA											

2.4GHz 2400~2483.5MHz

						<u> </u>	1						
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4804	39.59	-34.41	74	57.38	32.32	7.29	57.4	-	-	Р	Н
													Н
													Н
													н
													Н
													Н
													Н
													н
													н
													н
													н
BLE													н
CH 00		4804	39.07	-34.93	74	56.86	32.32	7.29	57.4	-	-	Р	V
2402MHz													V
													V
													V
													V
													V
													V
													V
													V
													v
													v
													v
_												1	v

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBuV/m)	(dB)	Line (dBuV/m)	Level (dBuV)	Factor	Loss (dB)	Factor	Pos	Pos (deg)	Avg. (P/A)	(H/V)
		4880	40.9	-33.1	74	57.89	32.66	7.53	57.18	-	-	Ρ	н
		7320	46.28	-27.72	74	56.72	36.92	9.48	56.84	-	-	Р	Н
													н
													Н
													Н
													Н
													Н
													Н
													Н
BLE CH 19 2440MHz -													Н
													Н
													Н
		4880	40.85	-33.15	74	57.84	32.66	7.53	57.18	-	-	Р	V
		7320	45.7	-28.3	74	56.14	36.92	9.48	56.84	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
			(dBu)//m)	(dB)	Line		Factor	Loss	Factor	Pos	Pos	Avg.	
		4960	<u>(авруля)</u> 41 74	-32 26	(авµ v /ш) 74	(α Β μ V) 57 86	33.06	(ub) 777	56 95	(cm) -	(ueg)	(F/A) P	(п/v) Н
		7440	46.62	-27.38	74	57 70	36.42	0.46	57.05			, D	н
		7440	40.02	-27.30	/4	51.19	50.42	9.40	57.05	-		1	
													н
													н
													н
													н
													н
													н
													н
BLE													н
CH 39		4960	41 26	-32 74	74	57.38	33.06	7 77	56 95	_	_	P	V
2480MHz		7440	45.07	-28.93	74	56.24	36.42	9.46	57.05	_	_	P	v
		7110	10.01	20.00		00.21	00.12	0.10	01.00				v
													V
													v
													v
													V
													v
													V
													v
													v
													V
	1. No	o other spurious	s found.										
	2. All	results are PA	SS against F	Peak and	Average lim	it line.							
Remark	3. Th	e emission pos	ition marked	as "-" m	eans no sus	pected emi	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
	flo	or only.								- 0			

Emission above 18GHz

BT	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		20492	39.77	-34.23	74	60.05	37.98	-3.26	55	-	-	Р	Н
													Н
													Н
													н
													Н
													н
													Н
													Н
													н
													Н
2 4GHz													Н
BI F													Н
SHF		21108	39.09	-34.91	74	59.12	38.23	-3.36	54.9	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
Remark	2. All	results are PA	ວວ against li	l ac " " m		pootod om	ission four	h with out	ficiont mar	ain agai	not limit	line er	noice
	S. III	or only	Suon markeu	i ao - 11	cans no sus				illicient mai	yin ayai	1131 111111	in e of	nuise
	10	or only.											

Emission below 1GHz

BLENoteFrequencyLevelMarginLimitReadAntennaPathPreampAntTablePeakImage: Image: Image	Pol. (H/V) H H H H H H
Image: constraint of the state index i	(H/V) H H H H H H
(MHz) (dBµV/m) (dBµV/m) (dBµV/m) (dBµV/m) (dBm) (dB) (dB) (dm) (de) (PA) 30.81 23.88 -16.12 40 31.07 24.03 1.1 32.32 P 95.61 31.39 -12.11 43.5 46.81 15.38 1.48 32.28 P 270.57 23.53 -22.47 46 34.61 18.99 2.05 32.12 P 550.6 27.67 -18.33 46 31.89 25.35 2.63 32.22 P 953.1 33.42 -12.58 46 30.28 30.79 3.31 30.96 P 996.5 33.68 -20.32 54 30.45 30.4 3.41 30.58 P 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th>(H/V) H H H H H H</th>	(H/V) H H H H H H
30.81 23.88 -16.12 40 31.07 24.03 1.1 32.32 - - P 95.61 31.39 -12.11 43.5 46.81 15.38 1.48 32.28 - - P 270.57 23.53 -22.47 46 34.61 18.99 2.05 32.12 - - P 550.6 27.67 -18.33 46 31.89 25.35 2.63 32.2 - - P 953.1 33.42 -12.58 46 30.28 30.79 3.31 30.96 - - P 996.5 33.68 -20.32 54 30.45 30.4 3.41 30.58 - - P 1	H H H H H H
95.61 31.39 -12.11 43.5 46.81 15.38 1.48 32.28 - - P 270.57 23.53 -22.47 46 34.61 18.99 2.05 32.12 - - P 550.6 27.67 -18.33 46 31.89 25.35 2.63 32.2 - - P 953.1 33.42 -12.58 46 30.28 30.79 3.31 30.96 - P 996.5 33.68 -20.32 54 30.45 30.4 3.41 30.58 - P 1	H H H H H
270.57 23.53 -22.47 46 34.61 18.99 2.05 32.12 - - P 550.6 27.67 -18.33 46 31.89 25.35 2.63 32.2 - - P 953.1 33.42 -12.58 46 30.28 30.79 3.31 30.96 - - P 996.5 33.68 -20.32 54 30.45 30.4 3.41 30.58 - P 1 <td>H H H H</td>	H H H H
550.6 27.67 -18.33 46 31.89 25.35 2.63 32.2 - - P 953.1 33.42 -12.58 46 30.28 30.79 3.31 30.96 - - P 996.5 33.68 -20.32 54 30.45 30.4 3.41 30.58 - P 1 </td <td>H H H</td>	H H H
953.1 33.42 -12.58 46 30.28 30.79 3.31 30.96 - - P 996.5 33.68 -20.32 54 30.45 30.4 3.41 30.58 - - P	H H H
996.5 33.68 -20.32 54 30.45 30.4 3.41 30.58 - - P	H H
	Н
	H
	н —
2.4GHz	н
BLE 30 28.35 -11.65 40 35.18 24.4 1.08 32.31 P	V
P 92.64 26.24 -17.26 43.5 42.1 14.95 1.47 32.28 - - P	V
266.79 22.68 -23.32 46 33.28 19.48 2.04 32.12 P	V
708.8 29.65 -16.35 46 32.18 26.68 2.91 32.12 P	V
955.2 33.37 -12.63 46 30.14 30.85 3.32 30.94 P	V
963.6 33.99 -20.01 54 30.5 31.02 3.34 30.87 P	V
	V
	V
	V
	V
1 No other spurious found	
2. All results are PASS against limit line.	
Remark 3. The emission position marked as "-" means no suspected emission found and emission level has at least 6dB marked	gin
against limit or emission is noise floor only.	

2.4GHz BLE (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is Margin line.
P/A	Peak or Average
H/V	Horizontal or Vertical

SPORTON LAB.

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00	I			<u> </u>			<u>├</u>	I]		+	
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin (dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dB μ V/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Margin (dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- = 43.54(dBµV/m) 54(dBµV/m)
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Radiated Spurious Emission Plots

Tost Engineer :	Pain Loo, Jacky Hong and Manay Chau	Temperature :	20~26°C	
rest Engineer .		Relative Humidity :	40~65%	

Note symbol

-L	Low channel location
-R	High channel location

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m							
	BLE CH19 2440MHz - R							
	Horizontal	Fundamental						
Peak	<pre>bit 2016.0.17 integrating the second s</pre>	Left blank						
Avg.	Tel: Tel: 2014 <th< th=""><th>Left blank</th></th<>	Left blank						

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

Emission above 18GHz

2.4GHz BLE (SHF @ 1m)

Emission below 1GHz

2.4GHz BLE (LF)

Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth - LE for 1Mbps	60.06	376	2.66	3kHz
Bluetooth - LE for 2Mbps	31.31	196	5.10	10kHz

------THE END------