Calibration Laboratory of Schmid & Partner Engineering AG

Client

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

UL		
Fremont, USA		

Certificate No.

EX-7807_Apr23

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7807
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	April 11, 2023
	nents the traceability to national standards, which realize the physical units of measurements (SI). ertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249_Oct22)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	16-Mar-23 (No. DAE4-660_Mar23)	Mar-24
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013_Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Jeffrey Katzman	Laboratory Technician	J. the
			0
Approved by	Sven Kühn	Technical Manager	Con
This calibration certificate	e shall not be reproduced except in	full without written approval of the lab	Issued: April 11, 2023 poratory.

Calibration Laboratory of Schmid & Partner

Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage С Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is
	normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz; R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- · ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- · Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (<i>k</i> = 2)
Norm (µV/(V/m)²) A	0.67	0.68	0.73	±10.1%
DCP (mV) ^B	100.2	102.4	100.5	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A	В	C	D	VR	Max	Max
			dB	$dB\sqrt{\mu V}$		dB	mV	dev.	Unc ^E
									<i>k</i> = 2
0	CW	X	0.00	0.00	1.00	0.00	126.8	±2.3%	±4.7%
		Y	0.00	0.00	1.00		134.8		
		Z	0.00	0.00	1.00		133.1		1
10352	Pulse Waveform (200Hz, 10%)	X	1.51	60.60	6.41	10.00	60.0	±3.3%	±9.6%
		Y	1.40	60.06	5.97		60.0		
		Z	1.63	61.14	6.60		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	46.00	80.00	11.00	6.99	80.0	±2.6%	±9.6%
		Y	0.83	60.00	4.83		80.0		
		Z	44.00	80.00	11.00		80.0	l	
10354	Pulse Waveform (200Hz, 40%)	X	0.17	143.32	0.06	3.98	95.0	±2.7%	±9.6%
		Y	0.13	136.45	0.00		95.0	1	
		Z	0.51	159.55	18.68		95.0	<	
10355	Pulse Waveform (200Hz, 60%)	X	6.65	105.85	4.98	2.22	120.0	±1.8%	±9.6%
		Y	6.89	159.82	22.65		120.0		
		Z	9.29	84.06	0.01		120.0		
10387	QPSK Waveform, 1 MHz	X	0.57	66.01	14.50	1.00	150.0	±3.3%	±9.6%
		Y	0.40	61.66	11.05		150.0		
		Z	0.67	66.27	14.01		150.0		
10388	QPSK Waveform, 10 MHz	X	1.44	68.02	14.97	0.00	150.0	±0.9%	±9.6%
		Y	1.13	64.84	12.86	ľ	150.0		
		Z	1.48	67.20	14.80		150.0		
10396	64-QAM Waveform, 100 kHz	X	1.63	63.96	15.91	3.01	150.0	±1.2%	±9.6%
		Y	1.65	64.42	15.77		150.0	i l	
		Z	1.76	65.18	16.27		150.0		
10399	64-QAM Waveform, 40 MHz	X	2.82	66.84	15.51	0.00	150.0	±2.0%	±9.6%
		Y	2.64	65.93	14.77		150.0		
		Z	2.91	66.65	15.41		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	3.85	66.93	15.75	0.00	150.0	±3.3%	±9.6%
		Y	3.70	66.38	15.25		150.0		
		Z	3.89	66.16	15.47		150.0	5	

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

 ^B Linearization parameter uncertainty for maximum specified field strength.
 ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

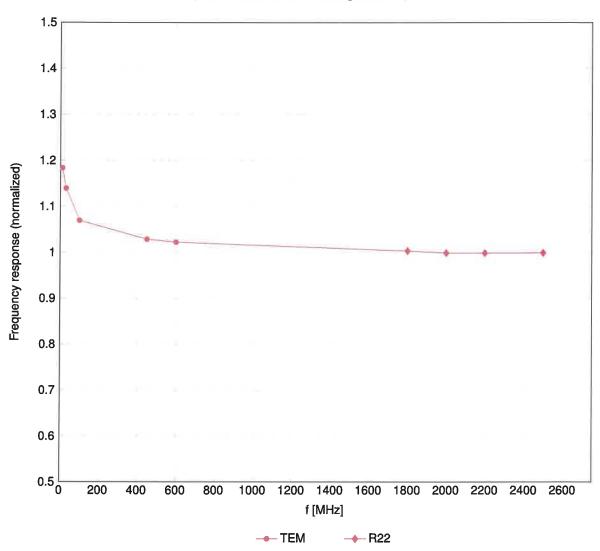
Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 msV ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ^{−1}	Т6
х	8.1	58.72	33.71	2.07	0.00	4.90	0.04	0.05	1.00
У	8.0	57.22	32.98	4.20	0.00	4.92	0.50	0.00	1.00
Z	10.1	73.68	33.87	3.14	0.00	4.90	0.57	0.00	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	90.5°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

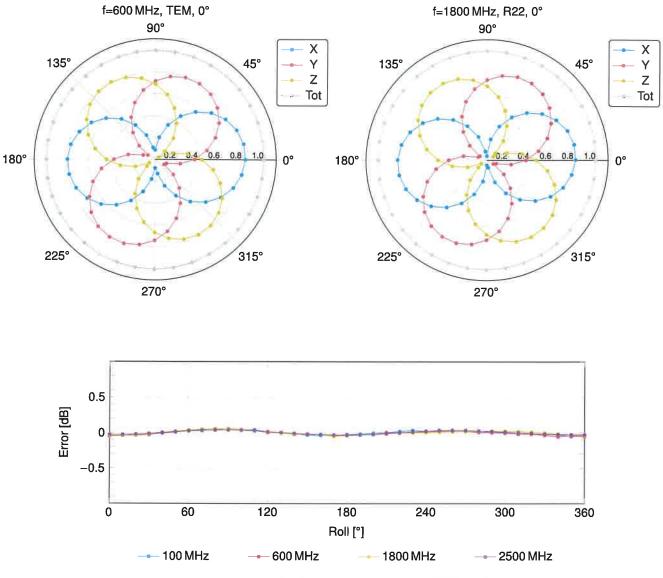
Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.


f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (<i>k</i> = 2)
750	41.9	0.89	9.18	9.80	9.21	0.38	1.27	±12.0%
900	41.5	0.97	8.56	9.20	8.59	0.37	1.27	±12.0%
1750	40.1	1.37	8.02	8.58	8.13	0.26	1.27	±12.0%
1900	40.0	1.40	7.53	8.12	7.58	0.29	1.27	±12.0%
2300	39.5	1.67	7.24	7.84	7.34	0.30	1.27	±12.0%
2450	39.2	1.80	7.04	7.63	7.15	0.30	1.27	±12.0%
2600	39.0	1.96	6.97	7.55	7.08	0.29	1.27	±12.0%
5250	35.9	4.71	5.27	5.73	5.38	0.38	1.53	±14.0%
5600	35.5	5.07	4.59	4.95	4.69	0.39	1.67	±14.0%
5750	35.4	5.22	4.79	5.17	4.92	0.37	1.75	±14.0%

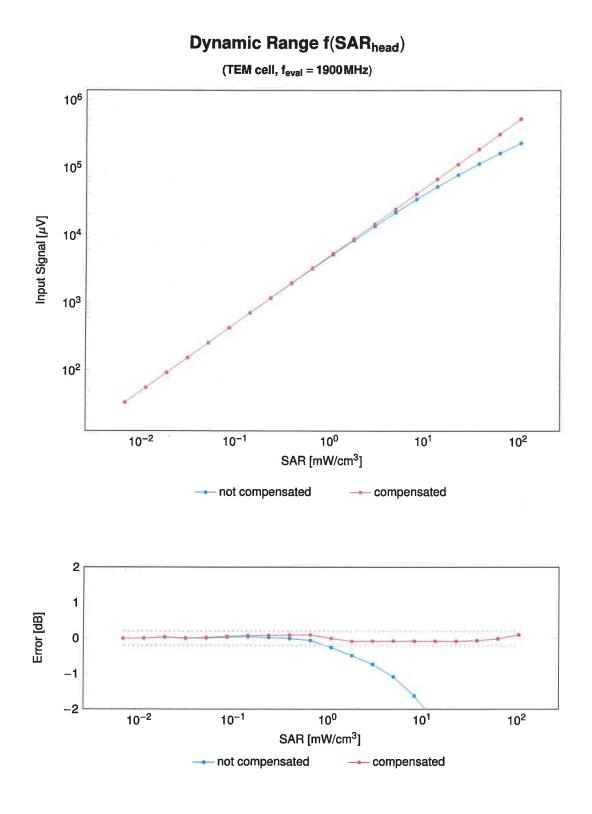
Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

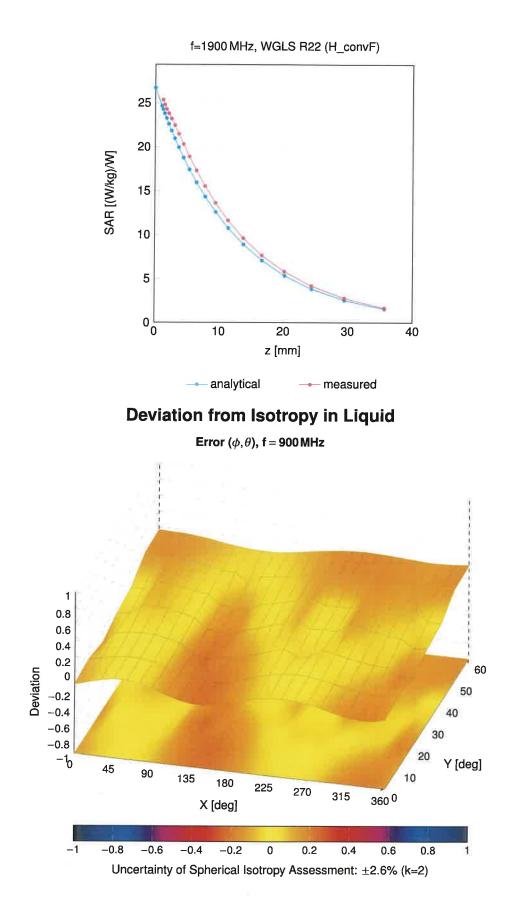
assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than \pm 5% from the target values (typically better than \pm 3%) and are valid for TSL with deviations of up to \pm 10%. If TSL with deviations from the target of less than \pm 5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)


Receiving Pattern (ϕ **),** $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Uncertainty of Linearity Assessment: ±0.6% (k=2)

Conversion Factor Assessment

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura

Accreditation No.: SCS 0108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Fremont, USA

UL

Certificate No.

EX-7656_May23

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7656
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	May 15, 2023
This calibration certificate docun The measurements and the unc	nents the traceability to national standards, which realize the physical units of measurements (SI). ertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been condu	icted in the closed laboratory facility: environment temperature (22 \pm 3) $^{\circ}$ C and humidity < 70%.
Calibration Equipment used (M&	TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249_Oct22)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	16-Mar-23 (No. DAE4-660_Mar23)	Mar-24
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013 Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Jeton Kastrati	Laboratory Technician	= Xup
Approved by	Niels Kuster	Quality Manager	1005
This calibration certificate shall r	not be reproduced except in full with	nout writton approval of the laborate	Issued: May 16, 2023 ory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

- C Service suisse d'étalonnage
- Servizio svizzero di taratura
 Swiss Calibration Service

-

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is
	normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- *NORMx,y,z*: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- *NORM(f)x,y,z* = *NORMx,y,z* * *frequency_response* (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \text{ MHz}$.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (<i>k</i> = 2)
Norm (µV/(V/m)²) ^A	0.72	0.65	0.64	±10.1%
DCP (mV) ^B	105.1	105.6	104.3	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	x	0.00	0.00	1.00	0.00	136.6	±1.9%	±4.7%
		Y	0.00	0.00	1.00	0.00	146.1		1 /0
		Z	0.00	0.00	1.00		125.4	1	
10352	Pulse Waveform (200Hz, 10%)	X	12.00	74.00	11.00	10.00	60.0	±3.0%	±9.6%
		Y	1.38	60.00	5.86		60.0		
		Z	1.47	60.27	5.88		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	0.84	60.00	4.82	6.99	80.0	±2.7%	±9.6%
		Y	0.83	60.00	4.66		80.0		
		Z	0.82	60.00	4.58		80.0	İ	
10354	Pulse Waveform (200Hz, 40%)	X	0.47	60.00	3.58	3.98	95.0	±2.6%	±9.6%
		Y	0.00	125.64	0.19		95.0	ĺ	
		Z	0.22	150.34	0.43	Î	95.0		
10355	Pulse Waveform (200Hz, 60%)	X	12.14	157.84	14.69	2.22	120.0	±1.7%	±9.6%
		Y	8.98	159.36	0.01		120.0		
		Z	5.57	159.94	13.53		120.0		
10387	QPSK Waveform, 1 MHz	X	0.58	63.08	11.49	1.00	150.0	±4.6%	±9.6%
		Y	0.68	64.40	11.81		150.0)
		Z	0.51	62.76	11.42		150.0		
10388	QPSK Waveform, 10 MHz	X	1.34	65.07	13.40	0.00	150.0	±1.4%	±9.6%
		Y	1.40	65.45	13.67		150.0		
		Z	1.29	65.15	13.48		150.0		
10396	64-QAM Waveform, 100 kHz	X	1.77	65.14	16.03	3.01	150.0	±1.3%	±9.6%
		Y	1.68	64.43	15.93		150.0		
		Z	1.62	63.78	15.58		150.0		
10399	64-QAM Waveform, 40 MHz	X	2.82	65.93	14.78	0.00	150.0	±2.8%	±9.6%
		Y	2.88	66.05	14.89		150.0		
		Z	2.76	65.84	14.83		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	3.85	65.64	15.03	0.00	150.0	±4.8%	±9.6%
		Y	3.96	65.70	15.16		150.0		
		Z	3.91	66.20	15.37		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

^B Linearization parameter uncertainty for maximum specified field strength. ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

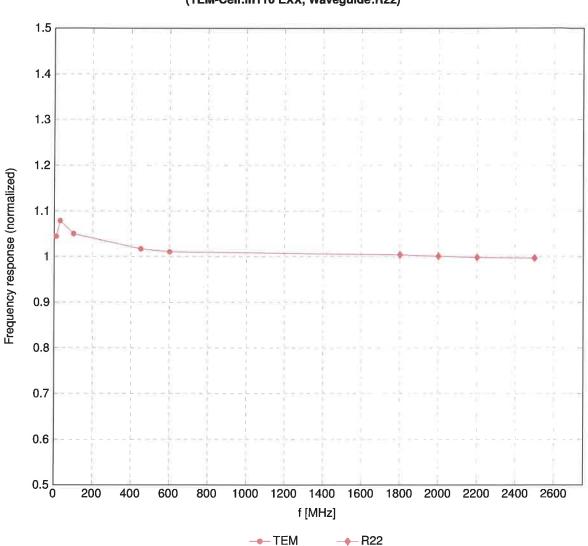
Sensor Model Parameters

	C1	C2	α	T1	T2	T3	T4	T5 v-1	Т6
	fF	fF	•	ms V ⁻²	ms V ⁻¹	ms	V	V	
x	11.1	79.28	32.86	4.14	0.00	4.90	0.61	0.00	1.00
У	12.6	92.11	33.98	4.26	0.00	4.92	0.49	0.02	1.01
Z	10.5	76.14	33.80	3.42	0.00	4.90	0.04	0.07	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-57.3°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

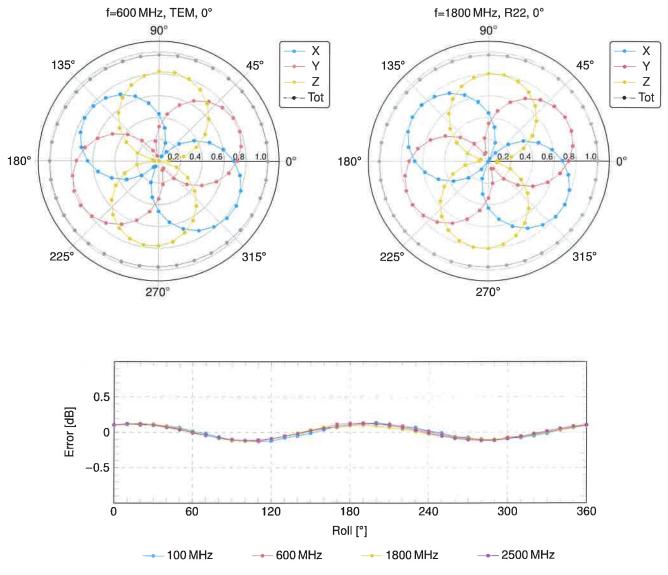
Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.


f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (<i>k</i> = 2)
750	41.9	0.89	9.37	10.41	9.74	0.37	1.27	±12.0%
900	41.5	0.97	8.98	9.67	9.15	0.37	1.27	±12.0%
1750	40.1	1.37	8.48	9.43	8.67	0.26	1.27	±12.0%
1900	40.0	1.40	7.71	8.52	7.85	0.29	1.27	±12.0%
2300	39.5	1.67	7.62	8.40	7.76	0.29	1.27	±12.0%
2600	39.0	1.96	7.55	8.25	7.69	0.28	1.27	±12.0%

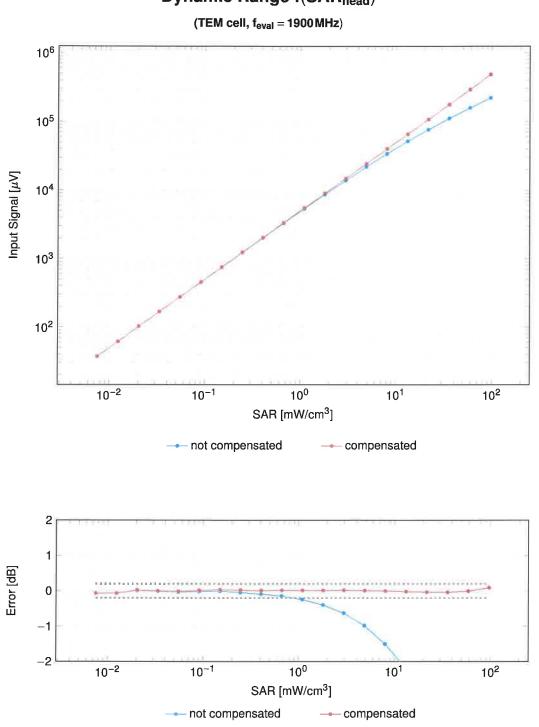
Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ϵ and σ by less than \pm 5% from the target values (typically better than \pm 3%) and are valid for TSL with deviations of up to \pm 10%. If TSL with deviations from the target of less than \pm 5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

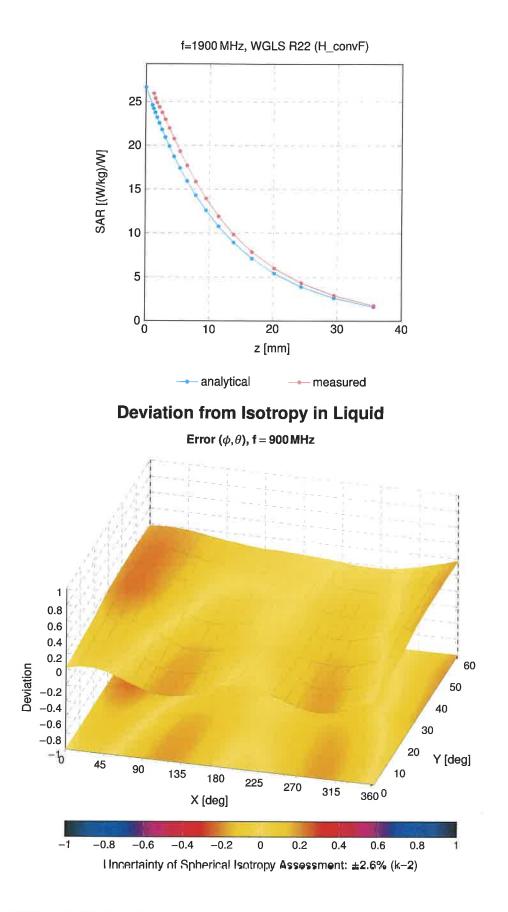

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$


Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Dynamic Range f(SAR_{head})

Uncertainty of Linearity Assessment: ±0.6% (k=2)

Conversion Factor Assessment

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Hac-MRA

S Schweizerischer Kalibrierdienst
 Service suisse d'étalonnage
 Servizio svizzero di taratura
 S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client U	Ļ
----------	---

Fremont, USA

Certificate No.

EX-3686_Jan24

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3686
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	January 12, 2024
This calibration certificate docur The measurements and the unc	nents the traceability to national standards, which realize the physical units of measurements (SI). ertainties with confidence probability are given on the following pages and are part of the certificate.

the man and the part of the center proceeding are given on the following pages and the part of the centered

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) $^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	05-Oct-23 (OCP-DAK3.5-1249_Oct23)	Oct-24
OCP DAK-12	SN: 1016	05-Oct-23 (OCP-DAK12-1016_Oct23)	Oct-24
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	16-Mar-23 (No. DAE4-660_Mar23)	Mar-24
Reference Probe EX3DV4	SN: 7349	03-Nov-23 (No. EX3-7349 Nov23)	Nov-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature			
Calibrated by	Joanna Lleshaj	Laboratory Technician	Allerh			
Approved by	Sven Kühn	Technical Manager	SiL			
Issued: January 15, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.						

Calibration Laboratory of

Schmid & Partner **Engineering AG**

Zeughausstrasse 43, 8004 Zurich, Switzerland

S

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	arphi rotation around probe axis
Polarization ϑ	artheta rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $artheta$ = 0 is
	normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y.z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvE
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- · ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (<i>k</i> = 2)
Norm $(\mu V/(V/m)^2)^A$	0.34	0.40	0.40	±10.1%
DCP (mV) ^B	103.0	98.6	100.7	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	Β dB√μV	С	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	131.6	±2.1%	±4.7%
		Y	0.00	0.00	1.00		130.2		
		Z	0.00	0.00	1.00		147.1]	
10352	Pulse Waveform (200Hz, 10%)	X	20.00	90.43	20.50	10.00	60.0	±3.2%	±9.6%
		Y	98.00	112.00	27.00		60.0		
		Z	20.00	93.42	22.75		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	20.00	91.53	19.87	6.99	80.0	±1.7%	±9.6%
		Y	20.00	91.86	20.45		80.0		
		Z	20.00	93.71	21.88		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	20.00	96.13	20.72	3.98	95.0	±1.0%	±9.6%
		Y	20.00	94.16	19.97		95.0		
		Z	20.00	96.40	21.87		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	20.00	106.73	24.36	2.22	120.0	±1.0%	±9.6%
		Y	20.00	95.41	19.04		120.0		
		Z	20.00	100.75	22.62		120.0		
10387	QPSK Waveform, 1 MHz	X	1.95	70.48	17.17	1.00	150.0	±2.7%	±9.6%
		Y	1.67	66.50	15.05		150.0		
		Z	1.63	65.23	14.54		150.0		
10388	QPSK Waveform, 10 MHz	X	2.50	71.06	17.49	0.00	150.0	±0.9%	±9.6%
		Y	2.26	68.56	15.88		150.0		
		Z	2.15	67.14	15.23		150.0		
10396	64-QAM Waveform, 100 kHz	X	3.44	74.84	20.83	3.01	150.0	±0.7%	±9.6%
		Y	2.98	70.30	18.69		150.0		
		Z	3.00	70.41	18.70		150.0		
10399	64-QAM Waveform, 40 MHz	X	3.62	68.34	16.53	0.00	150.0	±1.8%	±9.6%
		Y	3.54	67.47	15.92		150.0		
		Z	3.47	66.76	15.53		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.85	66.33	15.95	0.00	150.0	±3.5%	±9.6%
		Y	4.93	65.99	15.72		150.0		
		Z	4.86	65.46	15.39		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

^B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

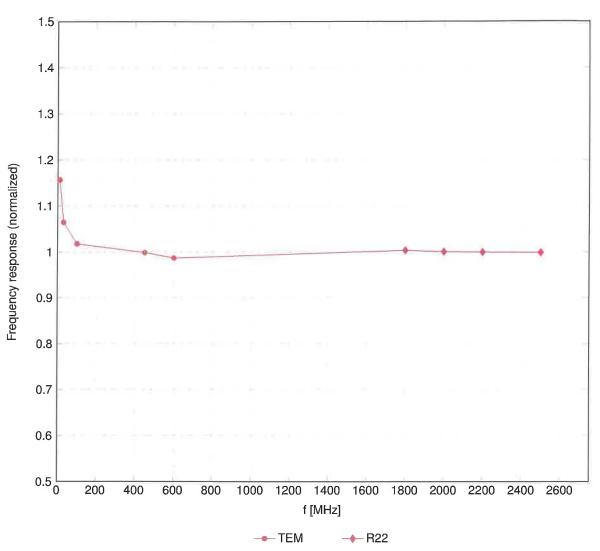
Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms V ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
Х	37.7	271.81	33.56	13.16	0.43	5.04	1.78	0.09	1.01
у	46.7	350.44	35.90	15.05	0.77	5.07	0.16	0.50	1.01
Z	48.3	358.77	35.22	24.35	0.36	5.10	1.22	0.28	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	65.9°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

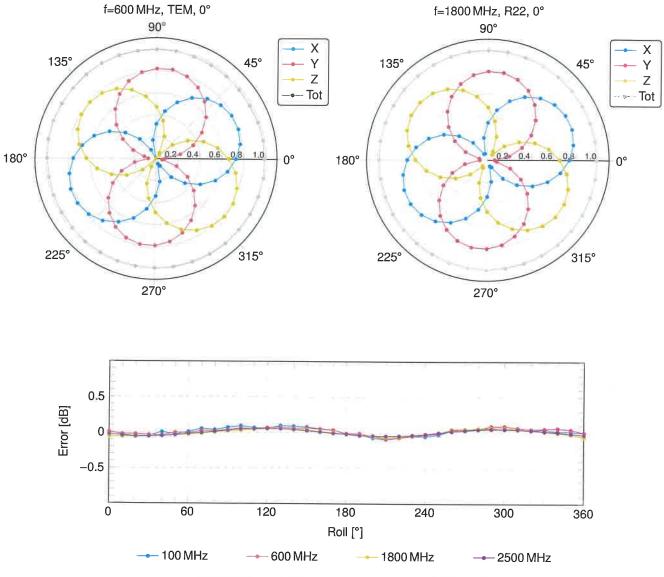
Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.


f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (<i>k</i> = 2)
6	55.0	0.75	15.94	15.94	15.94	0.00	1.25	±13.3%
13	55.0	0.75	13.53	13.53	13.53	0.00	1.25	±13.3%
30	55.0	0.75	12.32	12.32	12.32	0.00	1.25	±13.3%
64	54.2	0.75	10.91	10.91	10.91	0.00	1.25	±13.3%
750	41.9	0.89	8.23	8.74	8.99	0.40	1.27	±12.0%
900	41.5	0.97	7.67	8.23	8.49	0.37	1.27	±12.0%
1750	40.1	1.37	7.33	7.98	8.24	0.28	1.27	±12.0%
1900	40.0	1.40	7.06	7.69	7.86	0.30	1.27	±12.0%
2300	39.5	1.67	6.54	7.16	7.31	0.32	1.27	±12.0%
2600	39.0	1.96	6.46	7.06	7.18	0.31	1.27	±12.0%

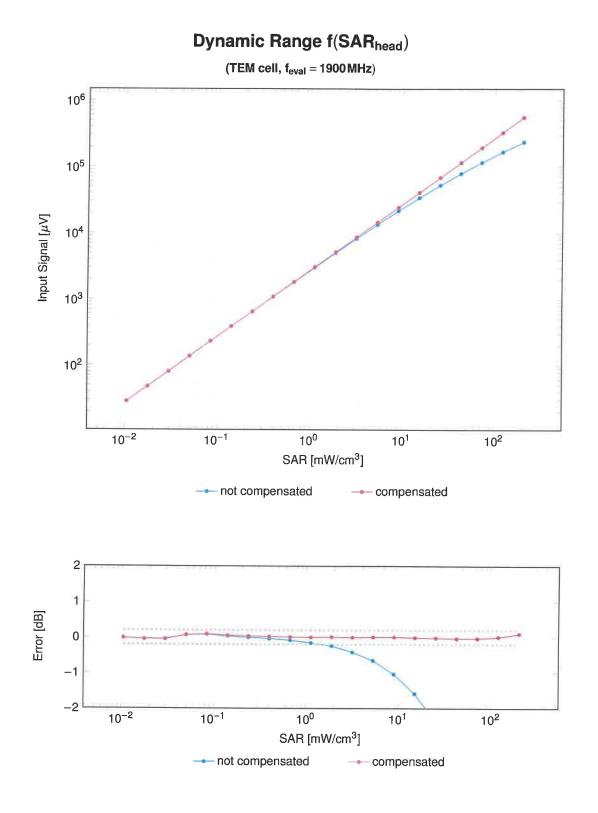
Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

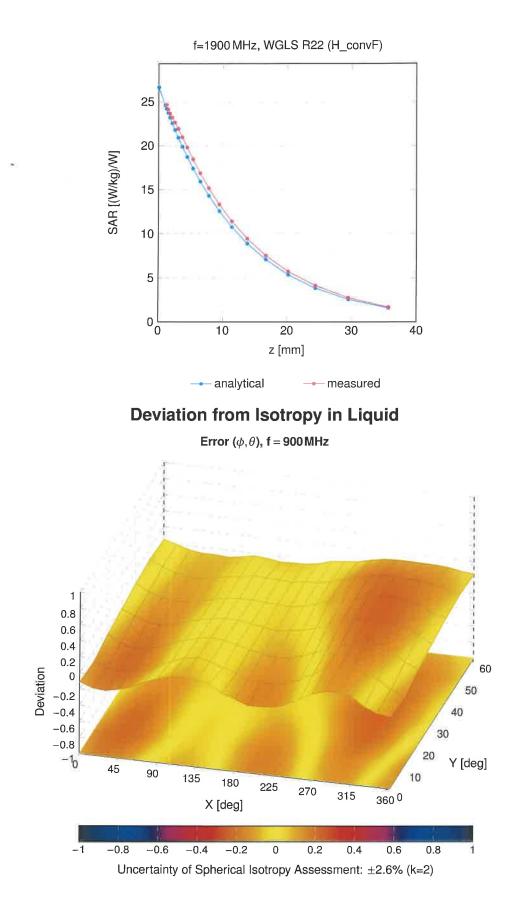
F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Uncertainty of Linearity Assessment: ±0.6% (k=2)

Conversion Factor Assessment

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

BC-MRA

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d'etalonnage Servizio svizzero di taratura

S Swiss Calibration Service

S

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Fremont, USA

UL

Certificate No.

EX-7589_Apr23

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7589					
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes					
Calibration date	April 18, 2023					
This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.						

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249 Oct22)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016 Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	16-Mar-23 (No. DAE4-660_Mar23)	Mar-24
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013_Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature /
Calibrated by	Jeffrey Katzman	Laboratory Technician	d.the
Approved by	Sven Kühn	Technical Manager	A. John
This calibration certificat	te shall not be reproduced except in	full without written approval of the labor	Issued: April 25, 2023 ratory.

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S

Service suisse d'étalonnage С

Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., ϑ = 0 is
	normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- · ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc $(k = 2)$
Norm $(\mu V/(V/m)^2)^A$	0.64	0.56	0.64	±10.1%
DCP (mV) ^B	100.9	98.6	97.8	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A	В	C	D	VR	Max	Max
			dB	dBõV		dB	mV	dev.	UncE
-									k = 2
0	CW	X		0.00	1.00	0.00	128.3	±1.5%	±4.7%
		Y	0.00	0.00	1.00		131.0	1	
10050		Z	0.00	0.00	1.00	1	123.8	1	
10352	Pulse Waveform (200Hz, 10%)	X	20.00	91.82	21.42	10.00	60.0	±3.3%	±9.6%
		Y	17.04	86.20	18.05	1	60.0		
10050		Z	20.00	90.67	20.04	1	60.0		
10353	Pulse Waveform (200Hz, 20%)	X	20.00	92.59	20.75	6.99	80.0	±2.0%	±9.6%
		Y	20.00	87.93	17.58		80.0		_0.070
10051		Z	20.00	93.05	20.10		80.0		
10354	Pulse Waveform (200Hz, 40%)	X	20.00	94.85	20.48	3.98	95.0	±1.0%	±9.6%
		Y	20.00	89.15	17.00		95.0		
10055	DIAN	Z	20.00	96.59	20.34		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	20.00	96.20	19.79	2.22	120.0	±0.8%	±9.6%
		Y	20.00	90.53	16.54		120.0		
40007	000// 1/	Z	20.00	92.70	17.21		120.0		
10387	QPSK Waveform, 1 MHz	X	1.56	63.85	13.69	1.00	150.0	±2.6%	±9.6%
		Y	1.65	66.07	14.81		150.0		
10000	0001010	Z	1.61	65.02	14.14		150.0		· · · · · · · · · · · · · · · · · · ·
10388	QPSK Waveform, 10 MHz	X	2.02	65.89	14.33	0.00	150.0	±1.0%	±9.6%
		Y	2.21	67.91	15.61	1	150.0		
10000	04.0041011	Z	2.14	66.99	14.90	1	150.0		
10396	64-QAM Waveform, 100 kHz	X	3.13	70.49	18.57	3.01	150.0	±0.9%	±9.6%
		Y	2.82	69.73	18.47	T I	150.0		
10000	01 00000	Z	2.48	67.05	17.13	T	150.0		
10399	64-QAM Waveform, 40 MHz	X	3.36	66.11	15.05	0.00	150.0	±2.1%	±9.6%
		Y	3.52	67.14	15.77	Ī	150.0		
10414	WI AN OODE of OALL ISTU	Z	3.50	66.84	15.48		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.81	65.09	15.09	0.00	150.0	±4.0%	±9.6%
		Y	4.89	65.76	15.61		150.0		1000.040
		Z	4.73	64.91	15.09		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).
 B Linearization parameter uncertainty for maximum specified field strength.
 E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

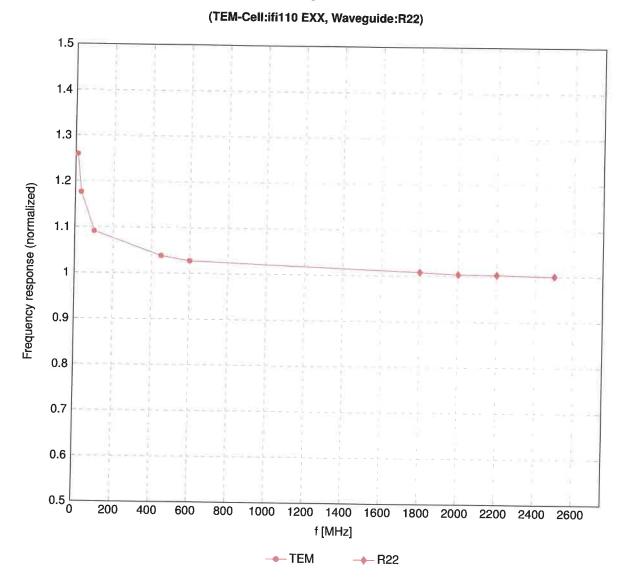
Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms V ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
x	54.1	403.18	35.24	19.09	0.21	5.10	1.25	0.35	1.01
у	44.8	337.98	36.16	16.28	0.00	5.06	0.65	0.34	1.01
z	49.1	373.85	36.64	11.81	0.00	5.10	0.00	0.45	1.01

Other Probe Parameters

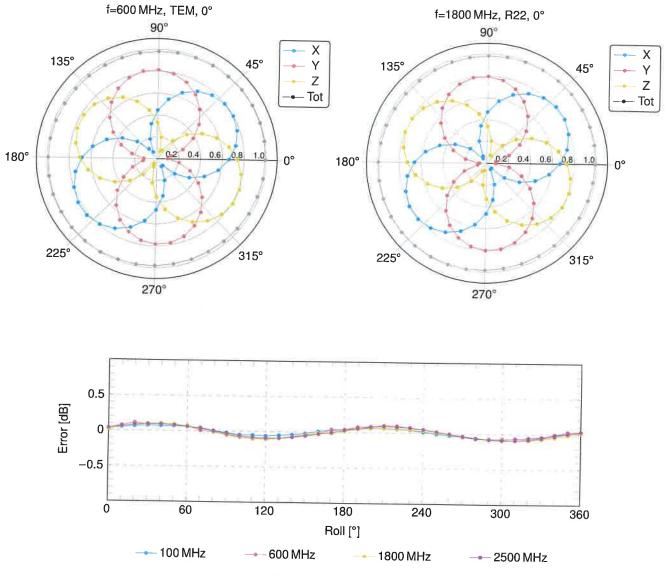
Sensor Arrangement	Triangular
Connector Angle	59.4°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

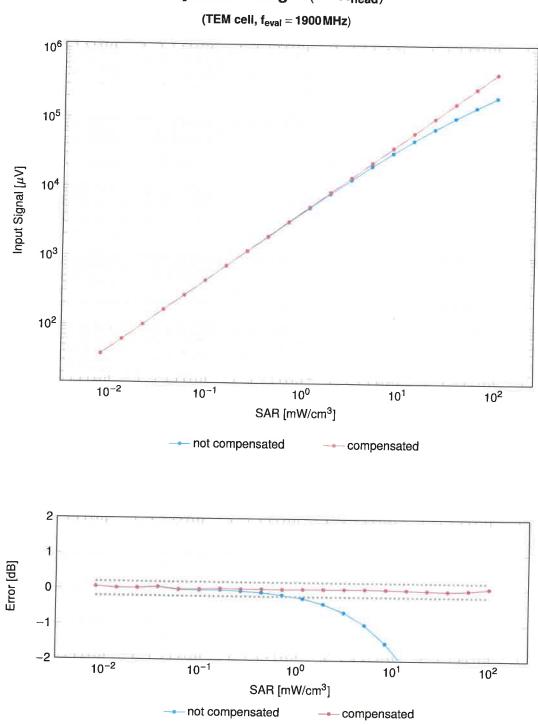

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (<i>k</i> = 2)
750	41.9	0.89	10.62	8.93	9.52	0.37	1.27	±12.0%
900	41.5	0.97	9.89	8.64	9.34	0.37	1.27	±12.0%
1750	40.1	1.37	8.62	8.15	8.64	0.24	1.27	±12.0%
1900	40.0	1.40	8.09	7.69	8.11	0.27	1.27	±12.0%
2300	39.5	1.67	7.85	7.54	7.90	0.28	1.27	±12.0%
2600	39.0	1.96	7.64	7.32	7.67	0.25	1.27	±12.0%

Calibration Parameter Determined in Head Tissue Simulating Media

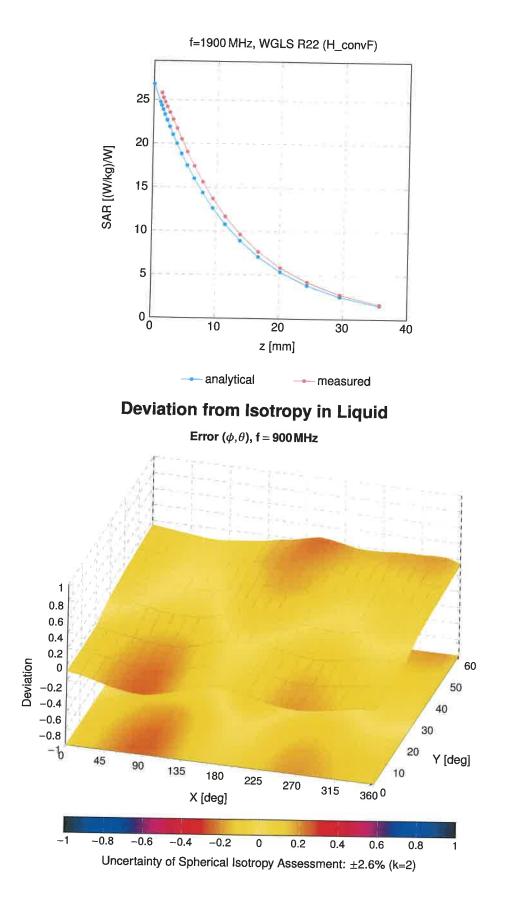
^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.


F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% for 3 - 6 GHz.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ (k=2)


Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Dynamic Range f(SAR_{head})

Uncertainty of Linearity Assessment: ±0.6% (k=2)

Calibration Laboratory of Schmid & Partner Engineering AG

UL

Fremont, USA

Client

Zeughausstrasse 43, 8004 Zurich, Switzerland

Iac-mra

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

- C Service suisse d'étalonnage Servizio svizzero di taratura
- S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Certificate No.

EX-7626_May23

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7626
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	May 15, 2023
This calibration certificate docu The measurements and the unc	ments the traceability to national standards, which realize the physical units of measurements (SI). certainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249_Oct22)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	16-Mar-23 (No. DAE4-660_Mar23)	Mar-24
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013 Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Jeton Kaştrati	Laboratory Technician	112
Approved by	Niels Kuster	Quality Manager	1000
This calibration certificate shall r	not be reproduced except in full with	nout written approval of the laborate	Issued: May 16, 2023 ory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taraturaSwiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., ϑ = 0 is
	normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- *NORMx,y,z*: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- *DCPx,y,z*: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \text{ MHz}$.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc $(k = 2)$
Norm $(\mu V/(V/m)^2)^A$	0.53	0.57	0.61	±10.1%
DCP (mV) ^B	107.6	106.2	106.7	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A	В	C	D	VR	Max	Max
			dB	dBõV		dB	mV	dev.	UncE
									<i>k</i> = 2
0	CW	X	0.00	0.00	1.00	0.00	141.0	±1.0%	±4.7%
		Y	0.00	0.00	1.00		137.0	1	
		Z	0.00	0.00	1.00	1	122.6	1	
10352	Pulse Waveform (200Hz, 10%)	X	1.56	60.62	6.06	10.00	60.0	±2.8%	±9.6%
		Y	1.49	60.43	6.16		60.0		
		Z	12.00	74.00	11.00		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	0.83	60.00	4.62	6.99	80.0	±2.7%	±9.6%
		Y	0.81	60.00	4.73		80.0	1	
		Z	54.00	76.00	9.00	· · · · ·	80.0	1	
10354	Pulse Waveform (200Hz, 40%)	X	0.23	150.85	1.44	3.98	95.0	±2.4%	±9.6%
		Y	0.01	127.97	0.08		95.0	1	
		Z	0.45	60.00	3.35		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	5.27	159.80	18.51	2.22	120.0	±1.6%	±9.6%
		Y	1.93	159.94	2.50		120.0		
		Z	9.80	128.55	5.61		120.0	1	
10387	QPSK Waveform, 1 MHz	X	0.42	62.94	11.94	1.00	150.0	±3.9%	±9.6%
		Y	0.40	62.18	11.10		150.0		
		Z	0.44	62.92	11.71		150.0		
10388	QPSK Waveform, 10 MHz	X	1.20	65.96	13.43	0.00	150.0	±0.8%	±9.6%
		Y	1.15	65.14	12.99		150.0		
		Z	1.19	65.66	13.13		150.0	ii	
10396	64-QAM Waveform, 100 kHz	X	1.58	63.76	15.59	3.01	150.0	±1.1%	±9.6%
		Y	1.77	65.67	16.46		150.0		
		Z	1.78	65.68	16.51		150.0		
0399	64-QAM Waveform, 40 MHz	X	2.69	66.36	15.03	0.00	150.0	±2.6%	±9.6%
		Y	2.65	66.01	14.83	Ì	150.0		
		Z	2.71	66.45	15.01		150.0		
0414	WLAN CCDF, 64-QAM, 40 MHz	X	3.72	66.67	15.42	0.00	150.0	±4.1%	±9.6%
		Y	3.72	66.46	15.33		150.0		
		Z	3.59	66.11	15.09		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

^B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

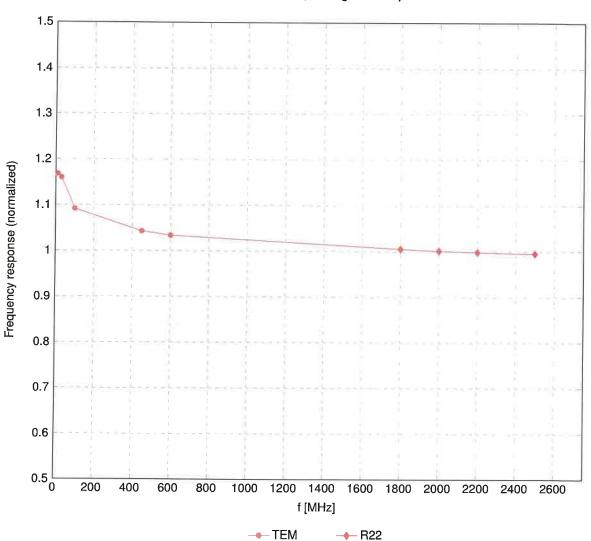
Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 msV ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
x	7.7	55.54	32.97	3.75	0.00	4.90	0.00	0.05	1.00
У	8.2	59.23	33.58	2.97	0.00	4.93	0.69	0.00	1.00
Z	7.6	54.66	32.99	3.76	0.00	4.90	0.53	0.00	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-24.6°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

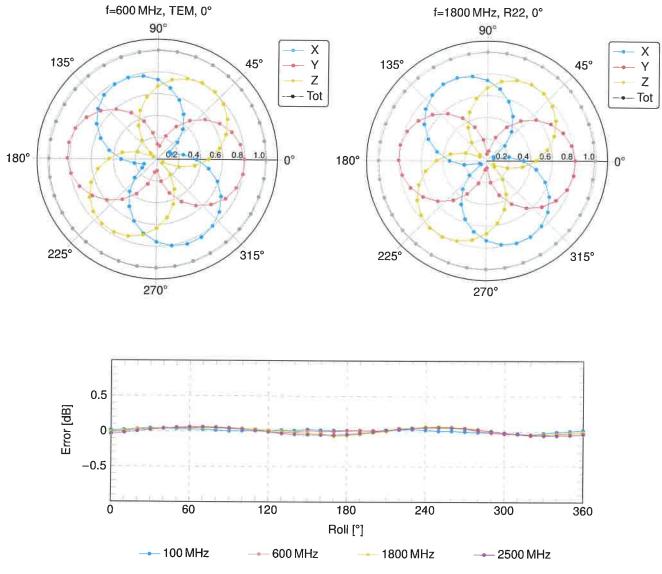
Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

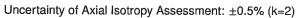

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
750	41.9	0.89	9.68	9.59	10.24	0.35	1.27	±12.0%
900	41.5	0.97	9.51	9.14	9.83	0.35	1.27	±12.0%
1750	40.1	1.37	8.53	8.34	8.86	0.26	1.27	±12.0%
1900	40.0	1.40	7.96	7.67	8.13	0.27	1.27	±12.0%
2300	39.5	1.67	7.76	7.48	7.96	0.30	1.27	±12.0%
2600	39.0	1.96	7.68	7.38	7.86	0.27	1.27	±12.0%

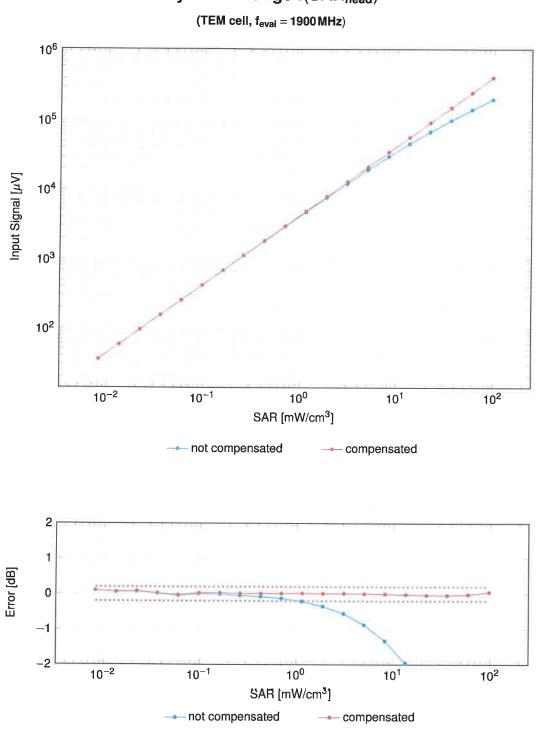
Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10 , 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ϵ and σ by less than $\pm 5\%$ from the target values (typically better than $\pm 3\%$)

The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

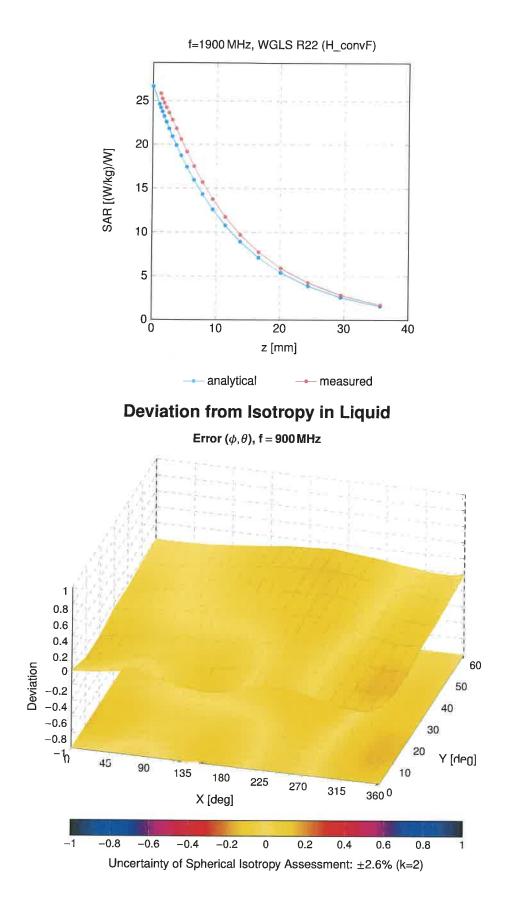

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)

Receiving Pattern (ϕ **),** $\vartheta = 0^{\circ}$



Dynamic Range f(SAR_{head})

Uncertainty of Linearity Assessment: ±0.6% (k=2)

Conversion Factor Assessment

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Client

UL Fremont, USA

Certificate No.

EX-7482_Apr23

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7482
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	April 18, 2023
This calibration certificate doo	suments the traceability to national standards, which realize the physical units of measurements (SI).

All calibrations have been conducted in the close the level of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) °C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249 Oct22)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	16-Mar-23 (No. DAE4-660 Mar23)	Mar-24
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013 Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Joanna Lleshaj	Laboratory Technician	Apline.
			A
Approved by	Sven Kühn	Technical Manager	
			09 11
This calibration certificate shall r	not be reproduced except in full with	out written approval of the laborate	Issued: April 23, 2023
	er be repredated except in fail with	out written approval of the laborato	n y.

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	arphi rotation around probe axis
Polarization ϑ	artheta rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $artheta$ = 0 is
	normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization $\vartheta = 0$ ($f \le 900$ MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y, z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \text{ MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from $\pm 50 \text{ MHz}$.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc $(k = 2)$
Norm $(\mu V/(V/m)^2)^A$	0.50	0.60	0.59	±10.1%
DCP (mV) ^B	95.5	97.3	98.3	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E
0	CW	x	0.00	0.00	1.00	0.00	120.9	±1.6%	k = 2 ±4.7%
		Y	0.00	0.00	1.00	0.00	145.1	1 - 1.0 /0	1 -4.7 %
		Z	0.00	0.00	1.00	1	136.0	-	
10352	Pulse Waveform (200Hz, 10%)	X	7.46	77.40	14.87	10.00	60.0	±3.8%	±9.6%
		Y	2.01	63.40	8.43		60.0	1.0.0 /0	-0.070
		Z	20.00	88.89	18.94		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	20.00	87.59	16.59	6.99	80.0	±2.8%	±9.6%
		Y	1.16	61.62	6.73		80.0		10.070
		Z	20.00	90.41	18.45		80.0		16
10354	Pulse Waveform (200Hz, 40%)	X	20.00	87.16	14.83	3.98	95.0	±1.6%	±9.6%
		Y	0.56	60.08	5.16		95.0		
		Z	20.00	92.13	17.80		95.0		
10355	Pulse Waveform (200Hz, 60%)	X	0.33	61.75	5.37	2.22	120.0	±1.3%	±9.6%
		Y	0.34	60.00	4.49		120.0		_0.070
		Z	20.00	89.74	15.41		120.0		
10387	QPSK Waveform, 1 MHz	X	1.53	66.99	14.74	1.00	150.0	±3.3%	±9.6%
		Y	1.58	66.25	14.59		150.0		2010 /0
		Z	1.50	65.00	13.93		150.0		
10388	QPSK Waveform, 10 MHz	X	2.06	67.81	15.63	0.00	150.0	±1.0%	±9.6%
		Y	2.12	67.60	15.44		150.0		_0.070
		Z	2.03	66.68	14.86	1	150.0		
0396	64-QAM Waveform, 100 kHz	X	2.40	67.90	17.82	3.01	150.0	±0.8%	±9.6%
		Y	2.56	68.65	18.02	t	150.0		
		Z	2.76	69.28	18.19	ł	150.0		
0399	64-QAM Waveform, 40 MHz	X	3.40	66.98	15.76		150.0	±2.3%	±9.6%
		Y	3.47	67.03	15.70		150.0		•
		Z	3.39	66.55	15.39		150.0		
0414	WLAN CCDF, 64-QAM, 40 MHz	X	4.70	65.66	15.63	0.00	150.0	±4.3%	±9.6%
		Y	4.81	65.74	15.60	F	150.0		
		Z	4.78	65.44	15.40		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

^B Linearization parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

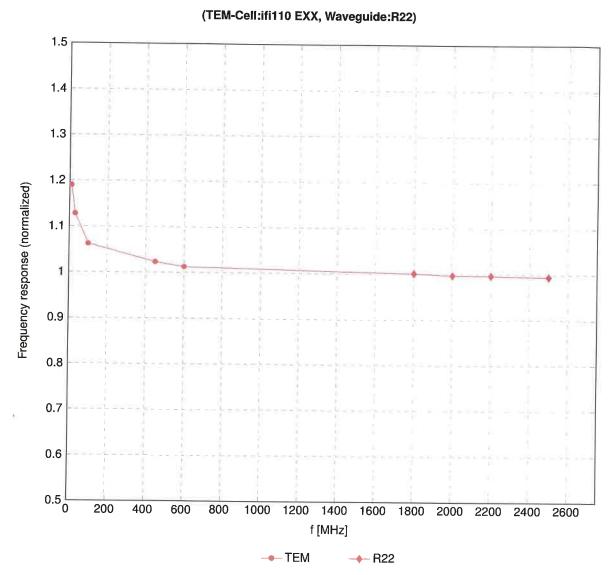
Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 msV ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
х	34.3	262.65	37.19	5.46	0.00	5.07	0.00	0.36	1.01
у	38.6	292.42	36.35	10.53	0.00	4.98	0.50	0.30	1.01
z	41.7	317.82	36.70	8.93	0.00	5.08	0.66	0.36	1.01

Other Probe Parameters

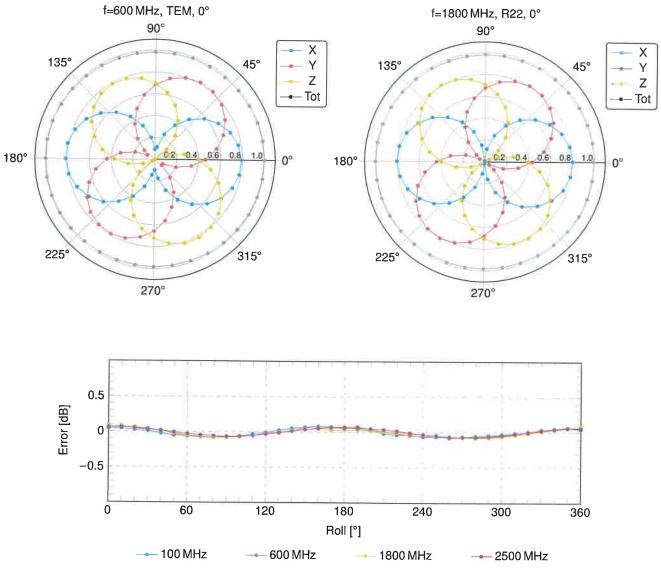
Sensor Arrangement	Triangular
Connector Angle	-83.7°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

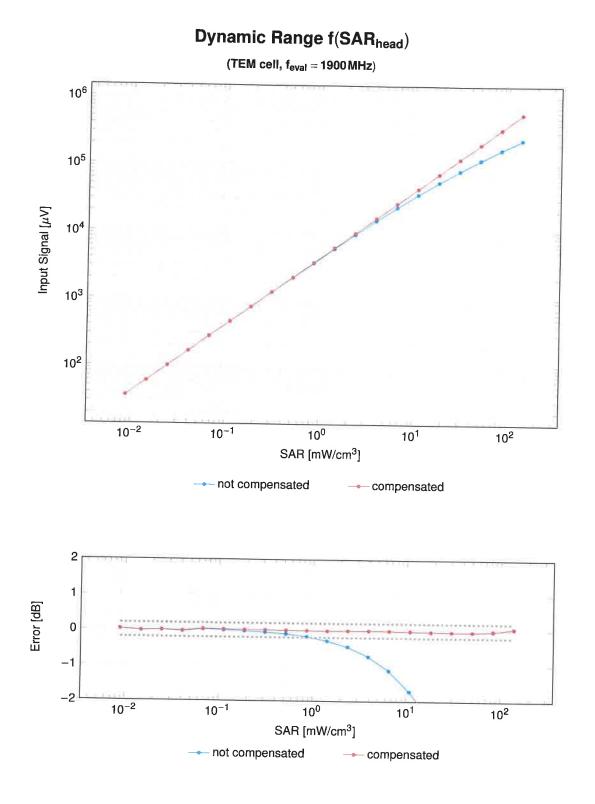

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
750	41.9	0.89	9.55	9.06	8.60	0.41	1.27	±12.0%
900	41.5	0.97	8.83	8.21	8.24	0.41	1.27	±12.0%
1750	40.1	1.37	8.20	7.61	7.30	0.27	1.27	±12.0%
1900	40.0	1.40	7.73	7.22	6.91	0.31	1.27	±12.0%
2300	39.5	1.67	7.71	7.21	6.93	0.31	1.27	±12.0%
2600	39.0	1.96	7.49	6.99	6.75	0.29	1.27	±12.0%

Calibration Parameter Determined in Head Tissue Simulating Media

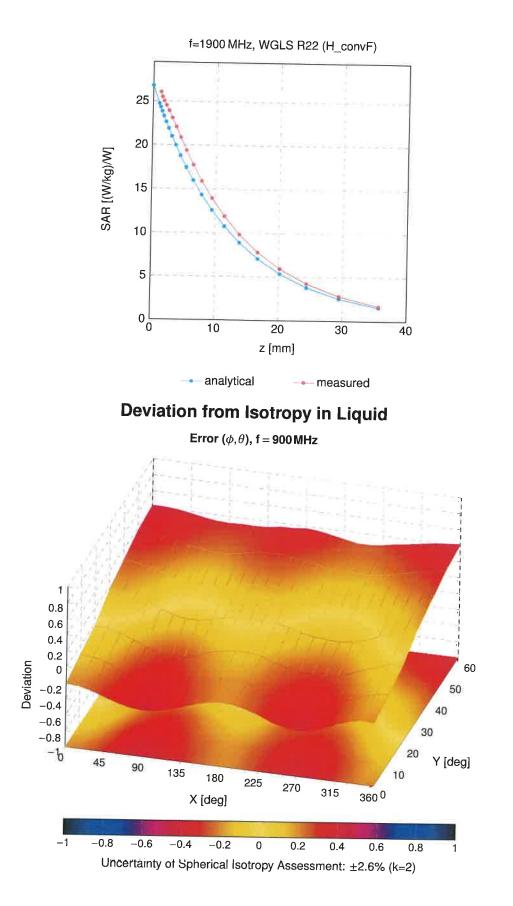
^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.


F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.


Frequency Response of E-Field

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)



Receiving Pattern (ϕ **),** $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ (k=2)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

IBC-MRA

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

CI	ie	nt

Fremont, USA

UL

Certificate No.

EX-7810_Apr23

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:7810
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	April 25, 2023
	uments the traceability to national standards, which realize the physical units of measurements (SI). ncertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been cond	ducted in the closed laboratory facility: environment temperature (22 \pm 3) $^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249_Oct22)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	16-Mar-23 (No. DAE4-660_Mar23)	Mar-24
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013_Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Aidonia Georgiadou	Laboratory Technician	REI
Approved by	Sven Kühn	Technical Manager	A. Kolla
This calibration certificate shal	I not be reproduced except in full wi	thout written approval of the labora	Issued: April 25, 2023 tory.

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is
	normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx, y, z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, y, z are only intermediate values, i.e., the uncertainties of NORMx, y, z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- · PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm (µV/(V/m)²) A	0.60	0.70	0.66	±10.1%
DCP (mV) ^B	105.0	101.0	101.0	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A	В	С	D	VR	Max	Max
			dB	dBõV		dB	mV	dev.	Unc ^E <i>k</i> = 2
0	CW	X	0.00	0.00	1.00	0.00	123.3	±2.4%	±4.7%
		Y	0.00	0.00	1.00		130.2		
		Z	0.00	0.00	1.00	1	130.1	1	
10352	Pulse Waveform (200Hz, 10%)	X	1.63	60.97	6.42	10.00	60.0	±3.0%	±9.6%
		Y	1.39	60.00	5.85	1	60.0	1	
		Z	12.00	74.00	11.00	1	60.0	1	
10353	Pulse Waveform (200Hz, 20%)	X	0.85	60.00	4.89	6.99	80.0	±2.6%	±9.6%
		Y	0.82	60.00	4.67		80.0	1	
		Z	0.80	60.00	4.89	1	80.0		
10354	Pulse Waveform (200Hz, 40%)	X	0.47	60.00	3.76	3.98	95.0	±2.7%	±9.6%
		Y	0.06	131.19	0.06		95.0	1	
		Z	0.21	147.02	0.09		95.0	1	
10355	Pulse Waveform (200Hz, 60%)	X	0.33	60.00	2.90	2.22	120.0	±1.7%	±9.6%
		Y	5.85	159.97	14.34		120.0		
		Z	5.89	160.00	12.57		120.0		
10387	QPSK Waveform, 1 MHz	X	0.55	66.59	14.49	1.00	150.0	±3.6%	±9.6%
		Y	0.47	62.73	11.65		150.0		
		Z	0.59	65.35	13.71		150.0		
10388	QPSK Waveform, 10 MHz	X	1.43	68.46	14.95	0.00	150.0	±1.1%	±9.6%
		Y	1.25	65.40	13.47		150.0		
		Z	1.42	67.04	14.67		150.0		
10396	64-QAM Waveform, 100 kHz	X	1.83	66.12	16.51	3.01	150.0	±1.1%	±9.6%
		Y	1.59	63.59	15.41		150.0		
		Z	1.65	64.27	16.00		150.0		
10399	64-QAM Waveform, 40 MHz	X	2.82	67.22	15.54	0.00	150.0	±1.9%	±9.6%
		Y	2.74	66.04	14.91		150.0		
		Z	2.85	66.53	15.34		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	3.70	66.69	15.49	0.00	150.0	±3.3%	±9.6%
		Y	3.85	66.46	15.43		150.0		
		Z	3.94	66.68	15.69		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^B Linearization parameter uncertainty for maximum specified field strength.

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Page 5).

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

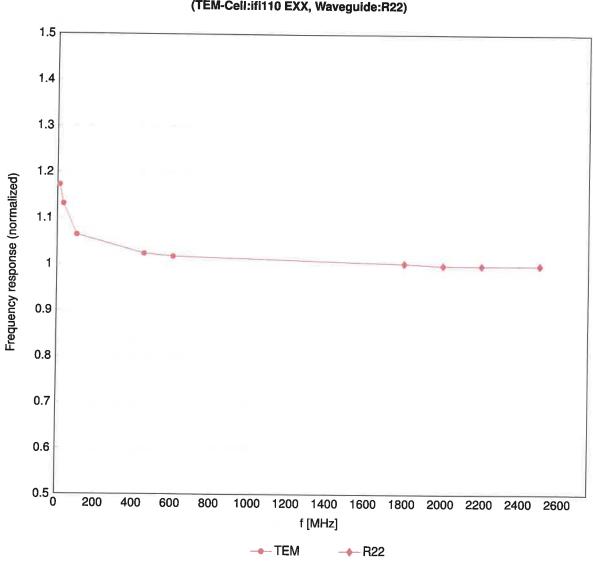
Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 ms V ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	Т6
x	7.7	54.24	31.71	4.70	0.00	4.90	0.71	0.00	1.00
У	9.2	66.45	33.40	3.54	0.00	4.90	0.05	0.06	1.00
z	9.5	68.86	33.63	2.86	0.00	4.90	0.30	0.01	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-39.2°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

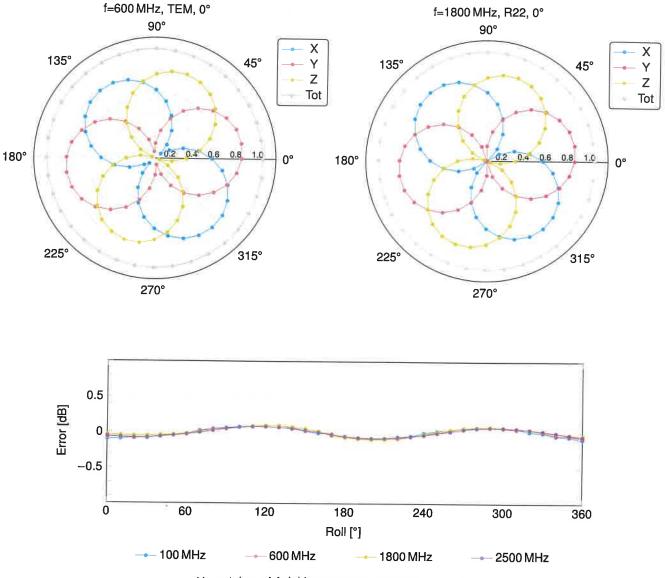
Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.


f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
750	41.9	0.89	9.27	9.34	9.58	0.39	1.27	±12.0%
900	41.5	0.97	8.89	9.01	8.99	0.37	1.27	±12.0%
1750	40.1	1.37	8.17	8.18	8.28	0.24	1.27	±12.0%
1900	40.0	1.40	7.84	7.81	7.90	0.28	1.27	±12.0%
2300	39.5	1.67	7.40	7.37	7.50	0.30	1.27	±12.0%
2450	39.2	1.80	7.28	7.24	7.38	0.29	1.27	±12.0%
2600	39.0	1.96	7.19	7.15	7.29	0.27	1.27	±12.0%
5250	35.9	4.71	5.56	5.50	5.70	0.33	1.62	±14.0%
5600	35.5	5.07	4.80	4.76	4.94	0.35	1.76	±14.0%
5750	35.4	5.22	4.86	4.83	5.04	0.37	1.75	±14.0%

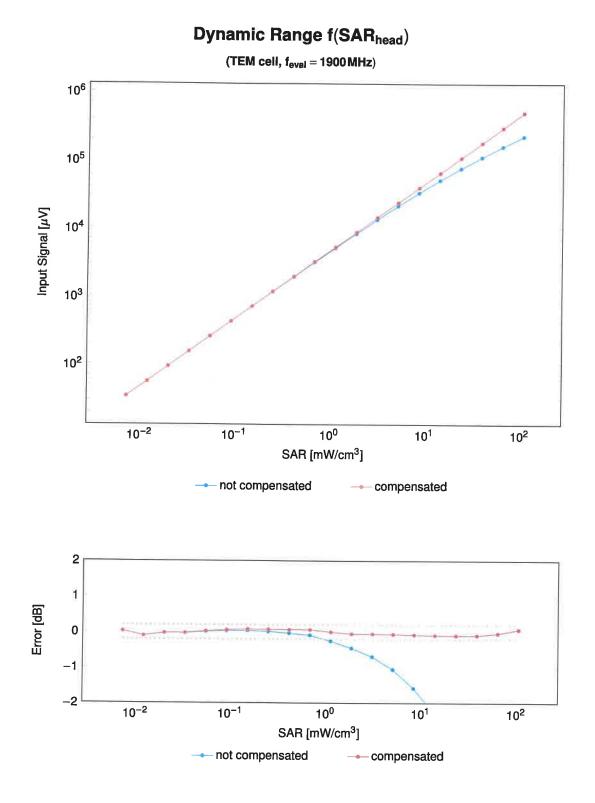
Calibration Parameter Determined in Head Tissue Simulating Media

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

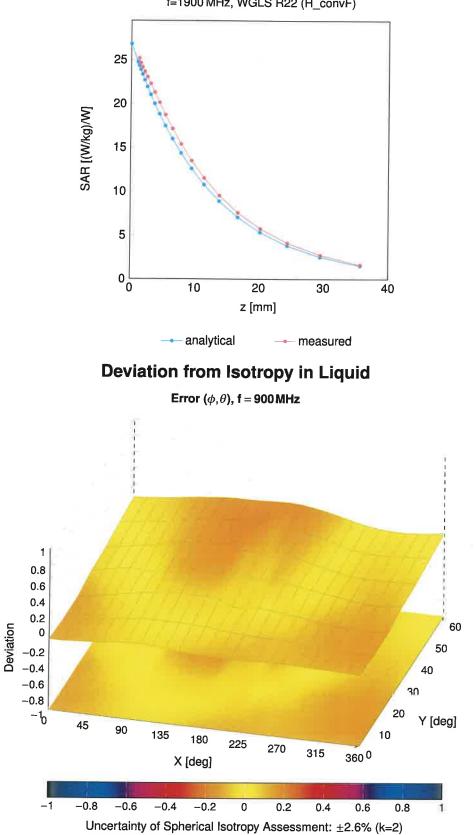
assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for e and σ by less than \pm 5% from the target values (typically better than \pm 3%) and are valid for TSL with deviations of up to \pm 10%. If TSL with deviations from the target of less than \pm 5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz and below $\pm 2\%$ for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)



Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Uncertainty of Linearity Assessment: ±0.6% (k=2)

f=1900 MHz, WGLS R22 (H_convF)

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA S Schweizerischer Kalibrierdienst

Service suisse d'étalonnage С

Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 0108

Multilateral Agreement for the recognition of calibration certificates

Client

Fremont, USA

UL

Certificate No.

EX-3990_Feb24

CALIBRATION CERTIFICATE

Object	EX3DV4 - SN:3990
Calibration procedure(s)	QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6, QA CAL-25.v8 Calibration procedure for dosimetric E-field probes
Calibration date	February 28, 2024
	nents the traceability to national standards, which realize the physical units of measurements (SI). ertainties with confidence probability are given on the following pages and are part of the certificate.
All calibrations have been condu	cted in the closed laboratory facility: environment temperature (22 \pm 3) $^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	05-Oct-23 (OCP-DAK3.5-1249_Oct23)	Oct-24
OCP DAK-12	SN: 1016	05-Oct-23 (OCP-DAK12-1016_Oct23)	Oct-24
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	23-Feb-24 (No. DAE4-660_Feb24)	Feb-25
Reference Probe EX3DV4	SN: 7349	03-Nov-23 (No. EX3-7349_Nov23)	Nov-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

	Name	Function	Signature
Calibrated by	Aidonia Georgiadou	Laboratory Technician	AP10
Approved by	Niels Kuster	Quality Manager	Issued: February 28, 2024
This calibration certificate shall n	ot be reproduced except in full with	out written approval of the laborate	

Calibration Laboratory of Schmid & Partner

Zeughausstrasse 43, 8004 Zurich, Switzerland

A CONTRACTOR

S Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

Engineering AG

TSL	tissue simulating liquid
NORMx,y,z	sensitivity in free space
ConvF	sensitivity in TSL / NORMx,y,z
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is
	normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx, y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- *Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D* are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx, y, z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm (µV/(V/m) ²) A	0.60	0.62	0.61	±10.1%
DCP (mV) ^B	100.8	101.0	101.0	±4.7%

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E <i>k</i> = 2
0	CW	X	0.00	0.00	1.00	0.00	133.7	±2.1%	±4.7%
		Y	0.00	0.00	1.00		129.2	\$	
		Z	0.00	0.00	1.00	1	135.6		
10352	Pulse Waveform (200Hz, 10%)	X	20.00	93.23	21.91	10.00	60.0	±2.7%	±9.6%
		Y	20.00	90.95	20.73	1	60.0		
		Z	20.00	94.10	22.41		60.0		
10353	Pulse Waveform (200Hz, 20%)	X	20.00	94.78	21.61	6.99	80.0	±1.2%	±9.6%
		Y	20.00	91.98	20.36		80.0		
		Z	20.00	98.41	23.53		80.0	1	
10354	Pulse Waveform (200Hz, 40%)	X	20.00	98.68	22.18	3.98	95.0	±1.1%	1% ±9.6%
		Y	20.00	95.63	21.00		95.0		
		Z	20.00	105.60	25.57		95.0	5.0	
10355	Pulse Waveform (200Hz, 60%)	X	20.00	103.57	23.21	2.22	120.0	±1.0%	±9.6%
		Y	20.00	100.91	22.35		120.0		
		Z	20.00	105.84	24.30		120.0	î.	
10387	QPSK Waveform, 1 MHz	X	1.67	65.30	14.49	1.00	150.0	±1.8%	±9.6%
		Y	1.66	65.16	14.54		150.0		
		Z	1.67	65.56	14.59		150.0	í	
10388	QPSK Waveform, 10 MHz	X	2.20	67.23	15.18	0.00	150.0	±1.1% ±	±9.6%
		Y	2.16	67.02	15.20		150.0		
		Z	2.21	67.42	15.31		150.0		
10396	64-QAM Waveform, 100 kHz	X	2.76	69.04	18.00	3.01	150.0	±0.8%	±9.6%
		Y	3.08	71.45	19.26		150.0		
		Z	2.72	69.03	18.11		150.0		
10399	64-QAM Waveform, 40 MHz	X	3.36	66.15	15.19	0.00	150.0	±1.0%	±9.6%
		Y	3.49	66.74	15.52		150.0		
		Z	3.38	66.26	15.27		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X	4.76	65.05	15.14	0.00	150.0	±2.1%	±9.6%
		Y	4.88	65.46	15.38		150.0		
		Z	4.77	65.14	15.22		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^B Linearlzation parameter uncertainty for maximum specified field strength.

E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Sensor Model Parameters

	C1 fF	C2 fF	α V ⁻¹	T1 msV ^{−2}	T2 msV ⁻¹	T3 ms	.⊤4 V~2	T5 V ⁻¹	Т6
х	48.0	355.73	35.00	14.83	0.08	5.08	0.74	0.30	1.01
y	47.9	355.16	34.97	21.09	0.00	5.07	1.93	0.11	1.01
z	46.4	346.14	35.37	14.75	0.05	5.10	0.64	0.29	1.01

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-36.7°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job.

Calibration Parameter Determined in Head Tissue Simulating Media

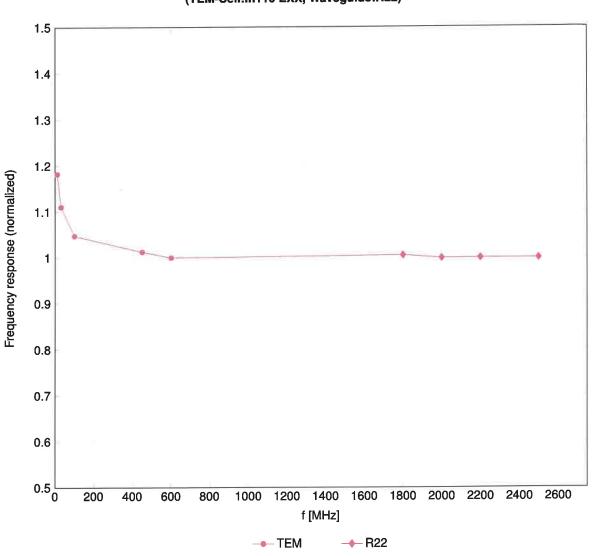
f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
750	41.9	0.89	9.47	10.07	9.14	0.38	1.27	±11.0%
900	41.5	0.97	9.11	9.51	8.87	0.37	1.27	±11.0%
1640	40.2	1.31	7.87	8.38	7.61	0.45	1.27	±11.0%
1750	40.1	1.37	8.32	9.06	8.04	0.27	1.27	±11.0%
1900	40.0	1.40	7.70	8.29	7.46	0.30	1.27	±11.0%
2100	39.8	1.49	7.55	8.09	7.33	0.31	1.27	±11.0%
2300	39.5	1.67	7.25	7.78	7.07	0.32	1.27	±11.0%
2450	39.2	1.80	7.10	7.63	6.93	0.31	1.27	±11.0%
2600	39.0	1.96	7.03	7.55	6.87	0.30	1.27	±11.0%
3300	38.2	2.71	6.61	6.98	6.46	0.34	1.27	±13.1%
3500	37.9	2.91	6.75	7.13	6.59	0.35	1.27	±13.1%
3700	37.7	3.12	6.63	7.00	6.48	0.35	1.27	±13.1%
3900	37.5	3.32	6.66	7.05	6.51	0.29	1.43	±13.1%
4100	37.2	3.53	6.53	6.91	6.36	0.37	1.27	±13.1%
4200	37.1	3.63	6.45	6.84	6.29	0.37	1.27	±13.1%
4400	36.9	3.84	6.20	6.55	6.03	0.37	1.27	±13.1%
4600	36.7	4.04	6.26	6.64	6.11	0.37	1.27	±13.1%
4800	36.4	4.25	6.38	6.76	6.22	0.39	1.27	±13.1%
4950	36.3	4.40	5.96	6.32	5.82	0.43	1.36	±13.1%
5250	35.9	4.71	5.34	5.69	5.21	0.35	1.62	±13.1%
5600	35.5	5.07	4.70	4.97	4.59	0.39	1.67	±13.1%
5750	35.4	5.22	4.72	5.01	4.61	0.39	1.75	±13.1%
5850	35.2	5.32	4.50	4.79	4.41	0.40	1.78	±13.1%

^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10 , 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ± 110 MHz.

assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. ^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than \pm 5% from the target values (typically better than \pm 3%) and are valid for TSL with deviations of up to \pm 10% if SAR correction is applied.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

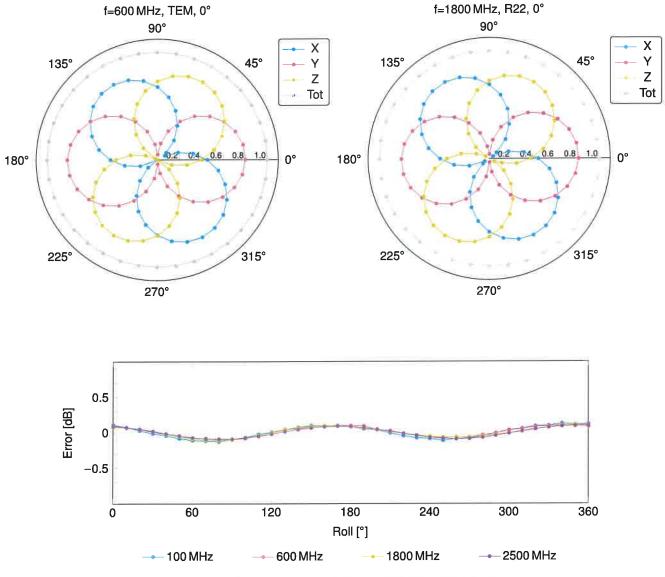
Calibration Parameter Determined in Head Tissue Simulating Media


f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (<i>k</i> = 2)
6500	34.5	6.07	5.00	5.18	4.76	0.20	2.50	±18.6%

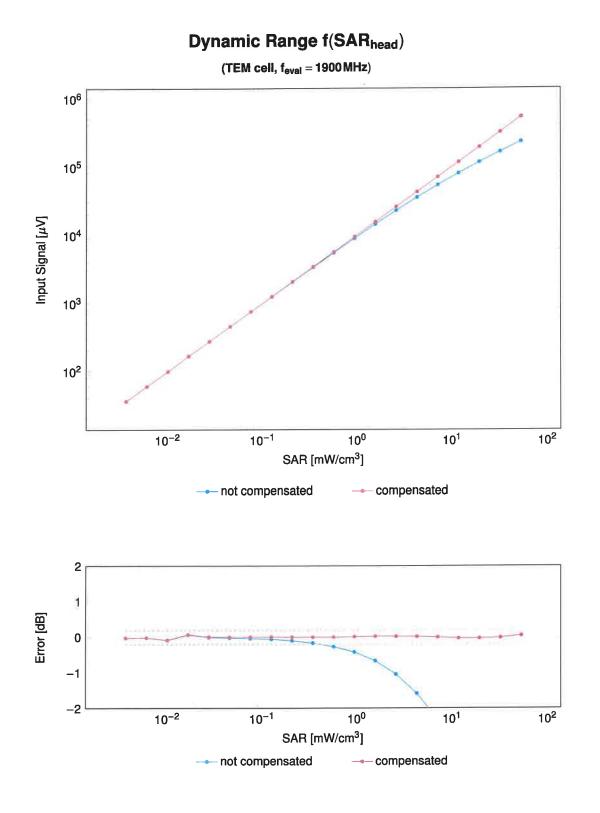
^C Frequency validity at 6.5 GHz is -600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration

frequency and the uncertainty for the indicated frequency band. F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ε and σ by less than ±10% from the target values (typically better than ±6%) and are valid for TSL with deviations of up to $\pm 10\%$.

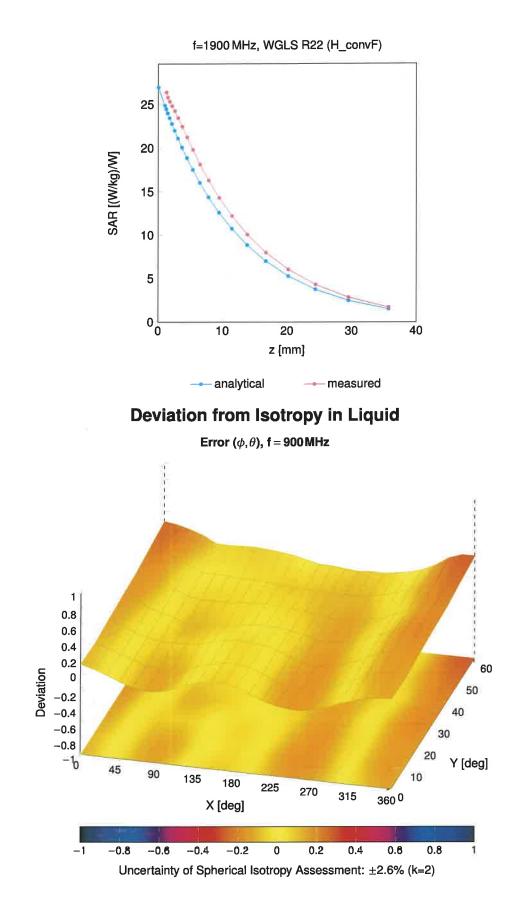
G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3-6 GHz; and below ±4% for frequencies between 6-10 GHz at any distance larger than half the probe tip diameter from the boundary.


Certificate No: EX-3990_Feb24

Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide:R22)

Uncertainty of Frequency Response of E-field: ±6.3% (k=2)


Receiving Pattern (ϕ **),** $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ±0.5% (k=2)

Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

Conversion Factor Assessment

