<Dipole Verification Data> - D3900V2, serial no. 1017 (Data of Measurement : 04.21.2023) 3900 MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 # <Dipole Verification Data> - D3900V2, serial no. 1017 (Data of Measurement : 04.20.2024) 3900 MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton **Taoyuan City** Certificate No. D5GHzV2-1006_May23 ### **CALIBRATION CERTIFICATE** Object D5GHzV2 - SN:1006 Calibration procedure(s) QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: May 25, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP2 | SN: 104778 | 30-Mar-23 (No. 217-03804/03805) | Mar-24 | | Power sensor NRP-Z91 | SN: 103244 | 30-Mar-23 (No. 217-03804) | Mar-24 | | Power sensor NRP-Z91 | SN: 103245 | 30-Mar-23 (No. 217-03805) | Mar-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Type-N mismatch combination | SN: 310982 / 06327 | 30-Mar-23 (No. 217-03810) | Mar-24 | | Reference Probe EX3DV4 | SN: 3503 | 07-Mar-23 (No. EX3-3503_Mar23) | Mar-24 | | DAE4 | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | Power sensor HP 8481A | SN: MY41093315 | 07-Oct-15 (in house check Oct-22) | In house check: Oct-24 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-22) | In house check: Oct-24 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | | Name | Function | Signature | | Calibrated by: | Krešimir Franjić | Laboratory Technician | W. | | Approved by: | Sven Kühn | Technical Manager | C.C | Issued: May 25, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D5GHzV2-1006 May23 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - · SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, $dy = 4.0 mm$, $dz = 1.4 mm$ | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz
5850 MHz ± 1 MHz | | Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.60 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.18 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.2 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 4.97 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.52 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 84.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.44 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.2 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1006_May23 ### Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.4 ± 6 % | 5.08 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.15 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.31 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.9 W/kg ± 19.5 % (k=2) | ## Head TSL parameters at 5850 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.2 | 5.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.2 ± 6 % | 5.15 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5850 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.24 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL |
condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.34 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.2 W/kg ± 19.5 % (k=2) | ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 54.4 Ω - 7.5 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.6 dB | ### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 57.1 Ω - 7.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 20.5 dB | | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 59.1 Ω + 4.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 20.8 dB | ### Antenna Parameters with Head TSL at 5850 MHz | Impedance, transformed to feed point | 52.7 Ω + 0.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 31.4 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.200 ns | |----------------------------------|----------| | | 11200110 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | 0.000 | |-----------------|-------| | Manufactured by | SPEAG | Page 5 of 8 Certificate No: D5GHzV2-1006_May23 ### **DASY5 Validation Report for Head TSL** Date: 25.05.2023 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1006 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz, Frequency: 5850 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.6$ S/m; $\epsilon_r = 34.8$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.97$ S/m; $\epsilon_r = 34.6$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.08$ S/m; $\epsilon_r = 34.4$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5850 MHz; $\sigma = 5.15$ S/m; $\varepsilon_r = 34.2$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz, ConvF(4.99, 4.99, 4.99) @ 5850 MHz; Calibrated: 07.03.2023 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 76.81 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 27.7 W/kg ### SAR(1 g) = 8.18 W/kg; SAR(10 g) = 2.34 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 71.2% Maximum value of SAR (measured) = 18.5 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.46 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 31.1 W/kg ### SAR(1 g) = 8.52 W/kg; SAR(10 g) = 2.44 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 68.6% Maximum value of SAR (measured) = 19.8 W/kg Certificate No: D5GHzV2-1006_May23 ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.42 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 31.5 W/kg SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.31 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 66.8% Maximum value of SAR (measured) = 19.3 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5850 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 73.29 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 32.6 W/kg SAR(1 g) = 8.24 W/kg; SAR(10 g) = 2.34 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65.8% Maximum value of SAR (measured) = 20.0 W/kg 0 dB = 20.0 W/kg = 13.01 dBW/kg ### Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Issued: February 23, 2023 Client Sporton Certificate No: D5GHzV2-1128_Feb23 ### CALIBRATION CERTIFICATE Object D5GHzV2 - SN:1128 Calibration procedure(s) QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: February 22, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | NAME OF TAXABLE PARTY. | Cal Date (Certificate No.) | Scheduled Calibration | |--|---|--| | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | SN: 103244 | | Apr-23 | | SN: 103245 | | Apr-23 | | SN: BH9394 (20k) | | Apr-23 | | SN: 310982 / 06327 | | Apr-23 | | SN: 3503 | U. T. P T. T. L. L. T. F T. | Mar-23 | | SN: 601 | 19-Dec-22 (No. DAE4-601_Dec22) | Dec-23 | | ID# | Check Date (in house) | Scheduled Check | | SN: GB39512475 | | In house check: Oct-24 | | SN: US37292783 | | In house check: Oct-24 | | SN: MY41093315 | | In house check: Oct-24 | | SN: 100972 | | In house check: Oct-24 | | SN: US41080477 | 31-Mar-14 (in house check Oct-22) | In house check: Oct-24 | | Name | Function | Signature | | Paulo Pina | Laboratory Technician | JENG 1 | | No. 10 April
| | 1. | | Niels Kuster | Quality Manager | | | | SN: 103244
SN: 103245
SN: BH9394 (20k)
SN: 310982 / 06327
SN: 3503
SN: 601
ID #
SN: GB39512475
SN: US37292783
SN: MY41093315
SN: 100972
SN: US41080477
Name | SN: 103244 04-Apr-22 (No. 217-03524) SN: 103245 04-Apr-22 (No. 217-03525) SN: BH9394 (20k) 04-Apr-22 (No. 217-03527) SN: 310982 / 06327 04-Apr-22 (No. 217-03528) SN: 3503 08-Mar-22 (No. EX3-3503_Mar22) SN: 601 19-Dec-22 (No. DAE4-601_Dec22) ID # Check Date (in house) SN: GB39512475 30-Oct-14 (in house check Oct-22) SN: US37292783 07-Oct-15 (in house check Oct-22) SN: MY41093315 07-Oct-15 (in house check Oct-22) SN: 100972 15-Jun-15 (in house check Oct-22) SN: US41080477 31-Mar-14 (in house check Oct-22) Name Function Paulo Pina Laboratory Technician | Certificate No: D5GHzV2-1128_Feb23 Page 1 of 9 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1128_Feb23 Page 2 of 9 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | No. | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5200 MHz ± 1 MHz
5800 MHz ± 1 MHz | | ### Head TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 36.0 | 4.66 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.1 ± 6 % | 4.60 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | A-1- | | ### SAR result with Head TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.66 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 76.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.19 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.9 W/kg ± 19.5 % (k=2) | ### Head TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.3 | 5.27 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.6 ± 6 % | 5.21 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.86 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.22 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.2 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1128_Feb23 Page 3 of 9 ### Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 48.7 Ω - 7.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 21.9 dB | ### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | 49.4 Ω - 3.9 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 28.0 dB | | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.208 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| | | | ### DASY5 Validation Report for Head TSL Date: 22.02.2023 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1128 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5800 MHz Medium parameters used: f = 5200 MHz; $\sigma = 4.6$ S/m; $\epsilon_r = 36.1$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5800 MHz; $\sigma = 5.21$ S/m; $\epsilon_r = 35.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.8, 5.8, 5.8) @ 5200 MHz, ConvF(5.01, 5.01, 5.01) @ 5800 MHz; Calibrated: 08.03.2022 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 19.12.2022 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.52 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 26.8 W/kg SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.19 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 69.7% Maximum value of SAR (measured) = 18.0 W/kg ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.57 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 31.0 W/kg SAR(1 g) = 7.86 W/kg; SAR(10 g) = 2.22 W/kg Smallest distance from peaks to all points 3 dB below = 7.4 mm Ratio of SAR at M2 to SAR at M1 = 65.5% Maximum value of SAR (measured) = 19.6 W/kg Certificate No: D5GHzV2-1128_Feb23 Page 5 of 9 0 dB = 19.6 W/kg = 12.92 dBW/kg ### Impedance Measurement Plot for Head TSL ## Appendix: Transfer Calibration at Four Validation Locations on SAM Head1 ## Evaluation Conditions (f=5200 MHz) | Phantom | SAM Head Phantom | For usage with cSAR3DV2-R/L | |---------|------------------|-----------------------------| |---------|------------------|-----------------------------| ### SAR result with SAM Head (Top) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 81.1 W/kg ± 20.3 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | ### SAR result with SAM Head (Mouth) | SAR averaged over 1 cm ³ (1 g) of Head TSL |
Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 84.9 W/kg ± 20.3 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | ### SAR result with SAM Head (Neck) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 81.0 W/kg ± 20.3 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | andition | | | OAK averaged over 10 cm. (10 g) of nead 15L | condition | | ### SAR result with SAM Head (Ear) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 51.6 W/kg ± 20.3 % (k=2) | | | | | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | Certificate No: D5GHzV2-1128_Feb23 ¹ Additional assessments outside the current scope of SCS 0108 ### Appendix: Transfer Calibration at Four Validation Locations on SAM Head² ## Evaluation Conditions (f=5800 MHz) | Phantom | SAM Head Phantom | For usage with cSAR3DV2-R/L | |---------|------------------|-----------------------------| |---------|------------------|-----------------------------| ### SAR result with SAM Head (Top) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 81.8 W/kg ± 20.3 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | ### SAR result with SAM Head (Mouth) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 88.4 W/kg ± 20.3 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | ### SAR result with SAM Head (Neck) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 78.9 W/kg ± 20.3 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | ### SAR result with SAM Head (Ear) | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|--------------------------| | SAR for nominal Head TSL parameters | normalized to 1W | 56.2 W/kg ± 20.3 % (k=2) | | | | | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | Certificate No: D5GHzV2-1128_Feb23 $^{^{2}}$ Additional assessments outside the current scope of SCS 0108 $\,$ #### D5000V2, serial no. 1128 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | D 5000 V2 – serial no. 1128 | | | | | | | |---|------------------|-----------|----------------------|-------------|---------------------------|-------------| | | 5200MHZ | | | | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 02.22.2023
(Cal. Report) | -21.9 | | 48.7 | | -7.9 | | | 02.21.2024
(extended) | -21.9 | 0 | 48.9 | 0.2 | -7.3 | 0.6 | | | | | 580 | 0MHZ | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | 02.22.2023
(Cal. Report) | -28.0 | | 49.4 | | -3.9 | | | 02.21.2024
(extended) | -23.8 | -15 | 53.0 | 3.6 | -4.5 | -0.6 | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. TEL: 886-3-327-3456 FAX: 886-3-328-4978 # <Dipole Verification Data> - D5000 V2, serial no. 1128 (Data of Measurement : 02.21.2024) 5000MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton **Taoyuan City** Certificate No. D6.5GHzV2-1003 Mar24 ### CALIBRATION CERTIFICATE Object D6.5GHzV2 - SN:1003 Calibration procedure(s) QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: March 15, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate: All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------------|--------------------|-----------------------------------|------------------------| | Power sensor R&S NRP33T | SN: 100967 | 03-Apr-23 (No. 217-03806) | Apr-24 | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Mismatch combination | SN: 84224 / 360D | 03-Apr-23 (No. 217-03812) | Apr-24 | | Reference Probe EX3DV4 | SN: 7405 | 12-Jun-23 (No. EX3-7405_Jun23) | Jun-24 | | DAE4 | SN: 908 | 23-Feb-24 (No. DAE4-908_Feb24) | Feb-25 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator Anapico APSIN20G | SN: 827 | 18-Dec-18 (in house check Jan-24) | In house check: Jan-25 | | Power sensor NRP-Z23 | SN: 100169 | 10-Jan-19 (in house check Jan-24) | In house check: Jan-25 | | Power sensor NRP-18T | SN: 100950 | 28-Sep-22 (in house check Jan-24) | In house check: Jan-25 | | Network Analyzer Keysight E5063A | SN:MY54504221 | 31-Oct-19 (in house check Oct-22) | In house check: Oct-25 | | | Name | Function | Signature | | Calibrated by: | Aldonia Georgiadou | Laboratory Technician | AL. | | | | | Viz I | | Approved by: | Sven Kühri | Technical Manager | 91 | Issued: March 18, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020. #### Additional Documentation: b) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. - The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY6 | V16.2 | |------------------------------|------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 5 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 3.4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 6500 MHz ± 1 MHz | | Head TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| |
Nominal Head TSL parameters | 22.0 °C | 34.5 | 6.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.9 ± 6 % | 6.27 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 1 | H | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|-------------------------| | SAR measured | 100 mW input power | 29.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 293 W/kg ± 24.7 % (k=2) | | SAR averaged over 8 cm3 (8 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.54 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 65.6 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm3 (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 5.36 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 53.8 W/kg ± 24.4 % (k=2) | Certificate No: D6.5GHzV2-1003_Mar24 ### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 55.2 Ω - 0.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 26.0 dB | | #### APD (Absorbed Power Density) | APD averaged over 1 cm ² | Condition | | |-------------------------------------|--------------------|--------------------------------------| | APD measured | 100 mW input power | 292 W/m ² | | APD measured | normalized to 1W | 2920 W/m ² ± 29.2 % (k=2) | | APD averaged over 4 cm ² | condition | | |-------------------------------------|--------------------|--------------------------------------| | APD measured | 100 mW input power | 131 W/m ² | | APD measured | normalized to 1W | 1310 W/m ² ± 28.9 % (k=2) | ^{*}The reported APD values have been derived using the psSAR1g and psSAR8g. #### General Antenna Parameters and Design After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| Certificate No: D6.5GHzV2-1003_Mar24 ### DASY6 Validation Report for Head TSL Measurement Report for D6.5GHz-1003, UID 0 -, Channel 6500 (6500.0MHz) | Device under | Test F | Properties | |--------------|--------|------------| |--------------|--------|------------| | Device dilaci, reservoper | | | | |---------------------------|--------------------|----------|----------| | Name, Manufacturer | Dimensions [mm] | IMEI | DUT Type | | D6 5GHz | 16.0 x 6.0 x 300.0 | SN: 1003 | Sec | **Exposure Conditions** | Phantom
Section, TSL | Position, Test
Distance
[mm] | Band | Group,
UID | Frequency
[MHz] | Conversion
Factor | TSL Cond.
[S/m] | TSL
Permittivity | |-------------------------|------------------------------------|------|---------------|--------------------|----------------------|--------------------|---------------------| | Flat, HSL | 5.00 | Band | CW, | 6500 | 5.50 | 6.27 | 34.9 | Hardware Setup | Phantom | TSL | Probe, Calibration Date | DAE, Calibration Date | |------------------------|-----------------|-----------------------------|------------------------| | MFP V8.0 Center - 1182 | HBBL600-10000V6 | EX3DV4 - SN7405, 2023-06-12 | DAE4 Sn908, 2024-02-23 | | Scan Setup | | Measurement Results | | |---------------------|--------------------|---------------------|-------------------| | SHALOK ART | Zoom Scan | | Zoom Scan | | Grid Extents [mm] | 22.0 x 22.0 x 22.0 | Date | 2024-03-15, 11:27 | | Grid Steps [mm] | 3.4 x 3.4 x 1,4 | psSAR1g [W/Kg] | 29.2 | | Sensor Surface [mm] | 1.4 | psSAR8g [W/Kg] | 6.54 | | Graded Grid | Yes | psSAR10g [W/Kg] | 5.36 | | Grading Ratio | 1.4 | Power Drift [dB] | 0.03 | | MAIA | N/A | Power Scaling | Disabled | | Surface Detection | VMS + 6p | Scaling Factor [dB] | | | Scan Method | Measured | TSL Correction | No correction | | | | M2/M1 [%] | 49.5 | | | | Dist 3dB Peak [mm] | 4.8 | | | | | | ### Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Taoyuan City Certificate No. D6.5GHzV2-1083 Oct23 ### CALIBRATION CERTIFICATE Object D6.5GHzV2 - SN:1083 Calibration procedure(s) QA CAL-22.v7 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: October 20, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|--------------------------------|-----------------------| | Power sensor R&S NRP33T | SN: 100967 | 03-Apr-23 (No. 217-03806) | Apr-24 | | Reference 20 dB Attenuator | SN; BH9394 (20k) | 30-Mar-23 (No. 217-03809) | Mar-24 | | Mismatch combination | SN: 84224 / 360D | 03-Apr-23 (No. 217-03812) | Apr-24 | | Reference Probe EX3DV4 | SN: 7405 | 12-Jun-23 (No. EX3-7405_Jun23) | Jun-24 | | DAE4 | SN: 908 | 03-Jul-23 (No. DAE4-908 Jul23) | Jul-24 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | |----------------------------------|---------------|-----------------------------------|------------------------| | RF generator Anapico APSIN20G | SN: 827 | 18-Dec-18 (in house check Dec-21) | In house check: Dec-23 | | Power sensor NRP-Z23 | SN: 100169 | 10-Jan-19 (in house check Nov-22) | In house check: Nov-23 | | Power sensor NRP-18T | SN: 100950 | 28-Sep-22 (in house check Nov-22) | In house check: Nov-23 | | Network Analyzer Keysight E5063A | SN:MY54504221 | 31-Oct-19 (in house check Oct-22) | In house check: Oct-25 | Calibrated by: Name Function Aldonia Georgiadou Laboratory Technician Approved by: Sven Kühn Technical Manager Issued: October 23, 2023 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range Of 4 MHz To 10 GHz)", October 2020. #### Additional Documentation: b) DASY System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. - The absorbed power density (APD): The absorbed power density is evaluated according to Samaras T, Christ A, Kuster N, "Compliance assessment of the epithelial or absorbed power density above 6 GHz using SAR measurement systems", Bioelectromagnetics, 2021 (submitted). The additional evaluation uncertainty of 0.55 dB (rectangular distribution) is considered. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY6 | V16.2 | | |------------------------------|------------------------------|----------------------------------|--| | Extrapolation | Advanced Extrapolation | |
 | Phantom | Modular Flat Phantom | | | | Distance Dipole Center - TSL | 5 mm | with Spacer | | | Zoom Scan Resolution | dx, dy = 3.4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | | Frequency | 6500 MHz ± 1 MHz | | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 34.5 | 6.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 6.18 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | Green . | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | | |---|--------------------|-------------------------|--| | SAR measured | 100 mW input power | 29.2 W/kg | | | SAR for nominal Head TSL parameters | normalized to 1W | 292 W/kg ± 24.7 % (k=2) | | | SAR averaged over 8 cm3 (8 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 6.58 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 65.8 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 5.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 54.0 W/kg ± 24.4 % (k=2) | #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.5 Ω - 2.6 jΩ | | | |--------------------------------------|-----------------|--|--| | Return Loss | - 31.7 dB | | | #### APD (Absorbed Power Density) | APD averaged over 1 cm ² | Condition | | | |-------------------------------------|--------------------|--------------------------------------|--| | APD measured | 100 mW input power | 292 W/m ² | | | APD measured | normalized to 1W | 2920 W/m ² ± 29.2 % (k=2) | | | APD averaged over 4 cm ² | condition | | |-------------------------------------|--------------------|--------------------------------------| | APD measured | 100 mW input power | 132 W/m ² | | APD measured | normalized to 1W | 1320 W/m ² ± 28.9 % (k=2) | ^{*}The reported APD values have been derived using the psSAR1g and psSAR8g. #### General Antenna Parameters and Design After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | Manufactured by | SPEAG | |-----------------|-------| |-----------------|-------| Certificate No: D6.5GHzV2-1083_Oct23 ### **DASY6 Validation Report for Head TSL** Measurement Report for D6.5GHz-1083, UID 0 -, Channel 6500 (6500.0MHz) | Device under | Test P | roperties | |--------------|--------|-----------| |--------------|--------|-----------| | pearce miner rest riober | rica. | | | |--------------------------|--------------------|----------|----------| | Name, Manufacturer | Dimensions [mm] | IMEI | DUT Type | | D6.5GHz | 10.0 x 10.0 x 10.0 | SN: 1083 | | **Exposure Conditions** | Phantom
Section, TSL | Position, Test
Distance
[mm] | Band | Group,
UID | Frequency
[MHz] | Conversion
Factor | TSL Cond.
[S/m] | TSL
Permittivity | |-------------------------|------------------------------------|------|---------------|--------------------|----------------------|--------------------|---------------------| | Flat, HSL | 5.00 | Band | CW, | 6500 | 5.50 | 6.18 | 34.6 | Hardware Setup | Phantom | TSL | Probe, Calibration Date | DAE, Calibration Date | |------------------------|-----------------|-----------------------------|------------------------| | MFP V8.0 Center - 1182 | HBBL600-10000V6 | EX3DV4 - SN7405, 2023-06-12 | DAE4 Sn908, 2023-07-03 | | Scan Setup | | Measurement Results | | |--------------------------------|-----------------------------|---|-------------------| | A STATE THORE IS A PROPERTY OF | Zoom Scan | 100 m 3 m 3 m 3 m 3 m 3 m 3 m 3 m 3 m 3 m | Zoom Scan | | Grid Extents [mm] | 22.0 × 22.0 × 22.0 | Date | 2023-10-20, 11:03 | | Grid Steps [mm] | $3.4 \times 3.4 \times 1.4$ | psSAR1g [W/Kg] | 29.2 | | Sensor Surface [mm] | 1.4 | psSAR8g [W/Kg] | 6.58 | | Graded Grid | Yes | psSAR10g [W/Kg] | 5.40 | | Grading Ratio | 1.4 | Power Drift [dB] | -0.01 | | MAIA | N/A | Power Scaling | Disabled | | Surface Detection | VMS + 6p | Scaling Factor [dB] | | | Scan Method | Measured | TSL Correction | No correction | | | | M2/M1 [%] | 50.2 | | | | Dist 3dB Peak [mm] | 4.6 | ### Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 04 Zurich, Switzerland Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: CLA13-1022_Sep22 | Object | CLA13 - SN: 102 | 22 | | |---|--|--|--| | Calibration procedure(s) | QA CAL-15.v9
Calibration Proce | edure for SAR Validation Sources | s below 700 MHz | | Calibration date: | September 01, 2 | 022 | | | The measurements and the uncert | ainties with confidence p | onal standards, which realize the physical uni
robability are given on the following pages an
ry facility: environment temperature $(22 \pm 3)^{\circ}$ C | d are part of the certificate. | | Calibration Equipment used (M&TE | Ecritical for calibration) | | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 04-Apr-22 (No. 217-03527) | Apr-23 | | | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | | SN: 3877 | 31-Dec-21 (No. EX3-3877_Dec21) | Dec-22 | | Reference Probe EX3DV4 | SIV. 36// | " 그 | 97 (7) (7) (7) | | Reference Probe EX3DV4 | SN: 654 | 26-Jan-22 (No. DAE4-654_Jan22) | Jan-23 | | Reference Probe EX3DV4
DAE4 | | " 그 | | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B | SN: 654 | 26-Jan-22 (No. DAE4-654_Jan22) Check Date (in house) 06-Apr-16 (in house check Jun-22) | Jan-23 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A | SN: 654
ID #
SN: GB41293874
SN: MY41498087 | 26-Jan-22 (No. DAE4-654_Jan22) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) | Jan-23
Scheduled Check | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A | SN: 654
ID #
SN: GB41293874
SN: MY41498087
SN: 000110210 | 26-Jan-22 (No. DAE4-654_Jan22) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) | Jan-23 Scheduled Check In house check: Jun-24 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C | SN: 654
ID #
SN: GB41293874
SN: MY41498087
SN: 000110210
SN: US3642U01700 | 26-Jan-22 (No. DAE4-654_Jan22) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) | Jan-23 Scheduled Check In house check: Jun-24 In house check: Jun-24 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C | SN: 654
ID #
SN: GB41293874
SN: MY41498087
SN: 000110210
SN: US3642U01700 | 26-Jan-22 (No. DAE4-654_Jan22) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) | Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 | | Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C Network Analyzer Agilent E8358A | SN: 654
ID #
SN: GB41293874
SN: MY41498087
SN: 000110210
SN: US3642U01700 | 26-Jan-22 (No.
DAE4-654_Jan22) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) | Scheduled Check In house check: Jun-24 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A RF generator HP 8648C | SN: 654
ID #
SN: GB41293874
SN: MY41498087
SN: 000110210
SN: US3642U01700
SN: US41080477 | 26-Jan-22 (No. DAE4-654_Jan22) Check Date (in house) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 06-Apr-16 (in house check Jun-22) 04-Aug-99 (in house check Jun-22) 31-Mar-14 (in house check Oct-20) | Scheduled Check In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 In house check: Jun-24 | Certificate No: CLA13-1022_Sep22 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured N/A Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Additional Documentation: c) DASY System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |----------------------|------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | ELI4 Flat Phantom | Shell thickness: 2 ± 0.2 mm | | EUT Positioning | Touch Position | | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 13 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 55.0 | 0.75 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 54.7 ± 6 % | 0.74 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | × | ### SAR result with Head TSL | SAR averaged over 1 cm3 (1 g) of Head TSL | Condition | | |---|------------------|---------------------------| | SAR measured | 1 W input power | 0.555 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 0.560 W/kg ± 18.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|------------------|---------------------------| | SAR measured | 1 W input power | 0.346 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 0.349 W/kg ± 18.0 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) # Antenna Parameters with Head TSL | Impedance, transformed to feed point | 48.4 Ω + 5.0 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.5 dB | | ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------| ### **DASY5 Validation Report for Head TSL** Date: 01.09.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: CLA13; Type: CLA13; Serial: CLA13 - SN: 1022 Communication System: UID 0, CW (0); Frequency: 13 MHz Medium parameters used: f = 13 MHz; $\sigma = 0.74$ S/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) ### DASY Configuration: Probe: EX3DV4 - SN3877; ConvF(15.33, 15.33, 15.33) @ 13 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn654; Calibrated: 26.01.2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) CLA Calibration for HSL-LF Tissue/CLA-13, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 30.82 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 1.10 W/kg SAR(1 g) = 0.555 W/kg; SAR(10 g) = 0.346 W/kg Smallest distance from peaks to all points 3 dB below: Larger than measurement grid (> 14 mm) Ratio of SAR at M2 to SAR at M1 = 79.2% Maximum value of SAR (measured) = 0.812 W/kg 0 dB = 0.824 W/kg = -0.84 dBW/kg ### Impedance Measurement Plot for Head TSL ### CLA13, serial no. 1022 Extended Dipole Calibrations If dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. #### <Justification of the extended calibration> | CLA13 – serial no. 1022 | | | | | | | | |-------------------------|------------------|-----------|----------------------|-------------|---------------------------|-------------|--| | | | | 13 | MHZ | | | | | Date of Measurement | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) | | | 09.01.2022 | -25.518 | | 48.364 | | 4.9544 | | | | (Cal. Report) | -20.510 | | 40.304 | | 4.3044 | | | | 08.31.2023 | -24.882 | -2.49 | 50.308 | 1.944 | 5.7239 | 0.7695 | | | (extended) | -24.002 | -2.43 | 50.506 | 1.544 | 5.7238 | 0.7695 | | The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration. TEL: 886-3-327-3456 FAX: 886-3-328-4978 # <Dipole Verification Data> - CLA13, serial no. 1022 (Data of Measurement : 08.31.2023) 13 MHz - Head TEL: 886-3-327-3456 FAX: 886-3-328-4978 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton **Taoyuan City** Certificate No. 5G-Veri10-1020 Jan24 # CALIBRATION CERTIFICATE Object 5G Verification Source 10 GHz - SN: 1020 Calibration procedure(s) QA CAL-45.v4 Calibration procedure for sources in air above 6 GHz Calibration date: January 18, 2024 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate, All calibrations have been conducted in the closed laboratory facility; environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------------|------------|-----------------------------------|------------------------| | Reference Probe EUmmWV3 | SN: 9374 | 04-Dec-23 (No. EUmm-9374_Dec23) | Dec-24 | | DAE4 | SN: 1215 | 29-Jun-23 (No. DAE4-1215_Jun23) | Jun-24 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | BE penerator B&S SMF100A | SN: 100184 | 29-Nov-23 (in house check Nov-23) | In house check: Nov-24 | In house check: Nov-24 29-Nov-23 (in house check Nov-23) Power sensor R&S NRP18S-10 SN: 101258 In house check: Oct-25 31-Oct-19 (in house check Oct-22) Network Analyzer Keysight E5063A SN: MY54504221 Calibrated by: RF generator R&S SMF100A Name Function Signature Joanna Lleshaj Laboratory Technician Approved by: Sven Kühn Technical Manager Issued: January 19, 2024 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. # Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Glossary Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates CW Continuous wave #
Calibration is Performed According to the Following Standards Internal procedure QA CAL-45, Calibration procedure for sources in air above 6 GHz. IEC/IEEE 63195-1, "Assessment of power density of human exposure to radio frequency fields from wireless devices in close proximity to the head and body (frequency range of 6 GHz to 300 GHz)", May 2022 # Methods Applied and Interpretation of Parameters - Coordinate System: z-axis in the waveguide horn boresight, x-axis is in the direction of the E-field, y-axis normal to the others in the field scanning plane parallel to the horn flare and horn flange. - Measurement Conditions: (1) 10 GHz: The radiated power is the forward power to the horn antenna minus ohmic and mismatch loss. The forward power is measured prior and after the measurement with a power sensor. During the measurements, the horn is directly connected to the cable and the antenna ohmic and mismatch losses are determined by farfield measurements. (2) 30, 45, 60 and 90 GHz. The verification sources are switched on for at least 30 minutes. Absorbers are used around the probe cub and at the ceiling to minimize reflections. - Horn Positioning: The waveguide horn is mounted vertically on the flange of the waveguide source to allow vertical positioning of the EUmmW probe during the scan. The plane is parallel to the phantom surface. Probe distance is verified using mechanical gauges positioned on the flare of the horn. - E- field distribution: E field is measured in two x-y-plane (10mm, 10mm + λ/4) with a vectorial E-field probe. The E-field value stated as calibration value represents the E-fieldmaxima and the averaged (1cm² and 4cm²) power density values at 10mm in front of the horn. - Field polarization: Above the open horn, linear polarization of the field is expected. This is verified graphically in the field representation. ## **Calibrated Quantity** Local peak E-field (V/m) and average of peak spatial components of the poynting vector (W/m²) averaged over the surface area of 1 cm² and 4cm² at the nominal operational frequency of the verification source. Both square and circular averaging results are listed. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ### Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY8 Module mmWave | V3.2 | |--------------------------------|---------------------|------| | Phantom | 5G Phantom | | | Distance Horn Aperture - plane | 10 mm | | | Number of measured planes | 2 (10mm, 10mm + N4) | | | Frequency | 10 GHz ± 10 MHz | | ### Calibration Parameters, 10 GHz Circular Averaging | Distance Horn Aperture to Measured Plane | Prad'
(mW) | Max E-field
(V/m) | Uncertainty
(k = 2) | Avg Power Density Avg (psPDn+, psPDtot+, psPDmod+) (W/m²) | | Uncertainty
(k = 2) | |--|---------------|----------------------|------------------------|---|-------------------|------------------------| | | | | | 1 cm ² | 4 cm ² | | | 10 mm | 93.3 | 152 | 1.27 dB | 60.0 | 55.8 | 1.28 dB | | Distance Horn
Aperture to
Measured Plane | Prad¹
(mW) | Max E-field
(V/m) | Uncertainty
(k = 2) | psPDn+, psPDt | Density
ot+, psPDmod+
/m²) | Uncertainty
(k = 2) | |--|---------------|----------------------|------------------------|-------------------|----------------------------------|------------------------| | A 1 (1 (1 (1 (1 (1 (1 (1 (1 (1 | | | | 1 cm ² | 4 cm ² | | | 10 mm | 93.3 | 152 | 1.27 dB | 59.7, 60.0, 60.2 | 55.4, 56.0, 56.1 | 1.28 dB | **Square Averaging** | Distance Horn Aperture to Measured Plane | Prad¹
(mW) | Max E-field
(V/m) | Uncertainty
(k = 2) | Avg (psPDn+, psl | er Density
PDtot+, psPDmod+)
/m²) | Uncertainty
(k = 2) | |--|---------------|----------------------|------------------------|-------------------|---|------------------------| | | | | | 1 cm ² | 4 cm ² | | | 10 mm | 93.3 | 152 | 1.27 dB | 60.0 | 55.7 | 1.28 dB | | Distance Horn
Aperture to
Measured Plane | Prad¹
(mW) | Max E-field
(V/m) | Uncertainty
(k = 2) | psPDn+, psPDt | Density
ot+, psPDmod+
/m²) | Uncertainty
(k = 2) | |--|---------------|----------------------|------------------------|-------------------|----------------------------------|------------------------| | Modern Co. Maria | † | | | 1 cm ² | 4 cm ² | | | 10 mm | 93.3 | 152 | 1.27 dB | 59.7, 60.0, 60.2 | 55.3, 55.8, 56.0 | 1,28 dB | **Max Power Density** | Distance Horn
Aperture to
Measured Plane | Prad'
(mW) | Max E-field
(V/m) | Uncertainty
(k = 2) | Max Power Density
Sn, Stot, Stot
(W/m²) | Uncertainty
(k = 2) | |--|---------------|----------------------|------------------------|---|------------------------| | 10 mm | 93.3 | 152 | 1.27 dB | 61.3, 61.4, 61.6 | 1.28 dB | Certificate No: 5G-Veri10-1020_Jan24 Assessed ohmic and mismatch loss plus numerical offset: 0.30 dB # Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters** | Impedance, transformed to feed point | $51.9 \Omega + 3.2 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 28.6 dB | | ### Impedance Measurement Plot # Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz) ### **Device under Test Properties** Name, Manufacturer 5G Verification Source 10 GHz Dimensions [mm] 100.0 x 100.0 x 172.0 IMEI SN: 1020 **DUT Type** **Exposure Conditions** Phantom Section 5G - Position, Test Distance [mm] 10.0 mm Band Group, Frequency [MHz], Channel Number **Conversion Factor** Validation band cw 10000.0, 1.0 Hardware Setup Phantom mmWave Phantom - 1002 Medium Air Probe, Calibration Date EUmmWV3 - SN9374_F1-55GHz. 2023-12-04 DAE, Calibration Date DAE4 Sn1215, 2023-06-29 Scan Setup Sensor Surface (mm) MAIA 5G Scan 10.0 MAIA not used Measurement Results | Committee of the control cont | 5G Scan | |--|--------------------| | Date | 2024-01-18, 10:45 | | Avg. Area (cm²) | 1,00 | | Avg. Type | Circular Averaging | | psPDn+ [W/m²] | 59.7 | | psPDtot+ [W/m²] | 60.0 | | psPDmod+ [W/m²] | 60.2 | | Max(Sn) [W/m ²] | 61.3 | | Max(Stot) [W/m²] | 61.4 | | Max(Stot) [W/m ²] | 61.6 | | E _{max} [V/m] | 152 | | Power Drift [dB] | -0.01 | | | | # Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz) **Device under Test Properties** Name, Manufacturer 5G Verification Source 10 GHz Dimensions [mm] 100.0 x 100.0 x 172.0 IMEI SN: 1020 **DUT Type** **Exposure Conditions** Phantom Section Position, Test Distance [mm] Band Group, Frequency (MHz), Channel Number Conversion Factor 5G- 10.0 mm Validation band CW 10000.0, 10000 1.0 Hardware Setup Phantom mmWave Phantom - 1002 Medium Air Probe, Calibration Date EUmmWV3 - SN9374_F1-55GHz, 2023-12-04 DAE, Calibration Date DAE4 Sn1215, 2023-06-29 Scan Setup Sensor Surface [mm] MAIA 5G Scan 10.0 MAIA not used Measurement Results 5G Scan 2024-01-18, 10:45 4.00 Avg. Area [cm²] Circular Averaging Avg. Type 55.4 psPDn+ [W/m1] 56.0 psPDtot+ [W/m²] 56.1 psPDmod+ [W/m²] 61.3 Max(Sn) [W/m²] 61.4 Max(Stot) [W/m2] 51.6 Max(|Stot|) [W/m2] 152 E [V/m] -0.01 Power Drift [dB] # Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz) **Device under Test Properties** **DUT Type** IMEL Dimensions [mm] Name, Manufacturer SN: 1020 100.0 x 100.0 x 172.0 SG Verification Source 10 GHz **Exposure Conditions** **Conversion
Factor** Frequency [MHz], Group, Position, Test Distance Band **Phantom Section** Channel Number 1.0 10000.0, Validation band CW 10.0 mm 5G -10000 Hardware Setup DAE, Calibration Date Probe, Calibration Date Medium Phantom DAE4 Sn1215, EUmmWV3 - SN9374_F1-55GHz, mmWave Phantom - 1002 Air 2023-06-29 2023-12-04 Scan Setup 5G Scan 5G Scan 2024-01-18, 10:45 10.0 Sensor Surface [mm] 1.00 Avg. Area [cm²] MAIA not used MAIA Square Averaging Avg. Type 59.7 psPDn+ [W/m²] 60.0 psPDtot+ [W/m2] 60.2 psPDmod+ [W/m⁷] 51.3 Max(Sn) [W/m²] 61.4 Max(Stot) [W/m²] 61.6 Max(|Stot|)[W/m2] Emas [V/m] Power Drift [d8] Measurement Results 152 -0.01 # Measurement Report for 5G Verification Source 10 GHz, UID 0 -, Channel 10000 (10000.0MHz) #### **Device under Test Properties** Name, Manufacturer 5G Verification Source 10 GHz Dimensions [mm] 100.0 x 100.0 x 172.0 IME SN: 1020 **DUT Type** **Exposure Conditions** **Phantom Section** Position, Test Distance [mm] Group, Frequency [MHz], Channel Number **Conversion Factor** 10.0 mm Validation band CW 10000.0. 10000 1.0 Hardware Setup Phantom 5G - mmWave Phantom - 1002 Medium Air Probe, Calibration Date EUmmWV3 - SN9374_F1-55GHz_ 2023-12-04 DAE, Calibration Date DAE4 Sn1215, 2023-06-29 Scan Setup Sensor Surface [mm] 5G Scan 10.0 MAIA not used Measurement Results Power Drift [dB] Date Avg. Area [cm2] Avg. Type psPDn+[W/m²] psPDtot+ [W/m²] psPDmod+[W/m2] Max(Sn) [W/m2] Max(Stot) [W/m2] Max(|Stot|) [W/m²] E..... [V/m] 2024-01-18, 10:45 4.00 Square Averaging 55.3 55.8 56.0 61.3 61.4 61.6 152 -0.01 5G Scan ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Taoyuan City Certificate No. EUmm-9461_Oct23 ### **CALIBRATION CERTIFICATE** Object EUmmWV4 - SN:9461 Calibration procedure(s) QA CAL-02.v9, QA CAL-25.v8, QA CAL-42.v3 Calibration procedure for E-field probes optimized for close near field evaluations in air Calibration date October 12, 2023 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3) ℃ and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |-------------------------|------------|-----------------------------------|-----------------------| | Power sensor NRP110T | SN: 101244 | 12-Apr-23 (No. 0001A300692178) | Apr-24 | | Spectrum analyzer FSV40 | SN: 101832 | 23-Jan-23 (No. 4030-315005314) | Jan-24 | | Ref. Probe EUmmWV3 | SN: 9374 | 22-May-23 (No. EUmm-9374 May23) | May-24 | | DAE4ip | SN: 1662 | 28-Sep-23 (No. DAE4ip-1662_Sep23) | Sep-24 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | |--------------------------|----------------|-----------------------------------|------------------------| | Generator APSIN26G | SN: 669 | 28-Mar-17 (in house check May-23) | In house check: May-24 | | Generator Agilent E8251A | SN: US41140111 | 28-Mar-17 (in house check May-23) | In house check: May-24 | Name Function Signature Calibrated by Leif Klysner Laboratory Technician del Tilgue Approved by Sven Kühri Technical Manager Issued: October 17, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kallbrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura S Swiss Callbration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary NORMx,y sensitivity in free space DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization θ of rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis Connector Angle Information used in DASY system to align probe sensor X to the robot coordinate system Sensor Angles sensor deviation from the probe axis, used to calculate the field orientation and polarization \vec{k} is the wave propagation direction #### Calibration is Performed According to the Following Standards: a) IEEE Std 1309-2005, "IEEE Standard for calibration of electromagnetic field sensors and probes, excluding antennas, from 9 kHz to 40 GHz", December 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y: Assessed for E-field polarization ∂ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). For frequencies > 6 GHz, the far field in front of waveguide horn antennas is measured for a set of frequencies in various waveguide bands up to 110 GHz. - DCPx,y: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media. - Note: As the field is measured with a diode detector sensor, it is warrantied that the probe response is linear (E2) below the documented lowest calibrated value. - . PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - The frequency sensor model parameters are determined prior to calibration based on a frequency sweep (sensor model involving resistors R, R_p, inductance L and capacitors C, C_p). - Ax,y; Bx,y; Cx,y; Dx,y; VRx,y: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - · Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). - Equivalent Sensor Angle: The two probe sensors are mounted in the same plane at different angles. The angles are assessed using the information gained by determining the NORMx (no uncertainty required). - Spherical isotropy (3D deviation from isotropy): in a locally homogeneous field realized using an open waveguide / horn setup. EUmmWV4 - SN:9461 October 12, 2023 ### Parameters of Probe: EUmmWV4 - SN:9461 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Unc (k = 2) | |-------------------------|----------|----------|-------------| | Norm $(\mu V/(V/m)^2)$ | 0.02180 | 0.02261 | ±10.1% | | DCP (mV) B | 104.0 | 103.0 | ±4.7% | | Equivalent Sensor Angle | -61.6 | 36.0 | | ### Calibration Results for Frequency Response (750 MHz - 110 GHz) | Frequency
GHz | Target
E-Field
V/m | Deviation Sensor X
dB | Deviation Sensor Y
dB | Unc (k = 2)
dB | | |------------------|--------------------------|--------------------------|--------------------------|-------------------|--| | 0.75 | 77.2 | -0.17 | -0.05 | ±0.43 | | | 1.8 | 140.4 | -0.02 | 0.01 | ±0.43 | | | 2.0 | 133.0 | 0.13 | 0.17 | ±0.43 | | | 2.2 | 124.8 | -0.05 | -0.05 | ±0.43 | | | 2.5 | 123.0 | 0.08 | 0.09 | ±0.43 | | | 3.5 | 256.2 | -0.16 | -0.24 | ±0.43 | | | 3.7 | 249.8 | -0.01 | -0.12 | ±0.43 | | | 6.6 | 74.7 | 0.04 | -0.22 | ±0.98 | | | 8.0 | 67.2 | 0.01 | -0.10 | ±0.98 | | | 10.0 | 66.2 | -0.03 | 0.02 | ±0.98 | | | 15.0 | 51.2 | 0.13 | 0.20 | ±0.98 | | | 26.6 | 112.6 | 0.21 | 0.20 | ±0.98 | | | 30.0 | 121.9 | 0.02 | 0.01 | ±0.98 | | | 35.0 | 121.3 | -0.18 | -0.17 | ±0.98 | | | 40.0 | 102.3 | -0.31 | -0.28 | ±0.98 | | | 50.0 | 61.5 | 0.05 | -0.03 | ±0.98 | | | 55.0 | 75.9 | 0.01 | 0.01 | ±0.98 | | | 60:0 | 80.5 | -0.01 | 0.02 | ±0.98 | | | 65.0 | 77.1 | 0.13 | 0.10 | ±0.98 | | | 70.0 | 74.3 | 0.18 | 0.07 | ±0.98 | | | 75.0 | 74.8 | 0.03 | -0.04 | ±0.98 | | | 75.0 | 96.6 | 0.05 | -0.03 | ±0.98 | | | 80.0 | 95.4 | -0.13 | -0.09 | ±0.98 | | | 85.0 | 58.0 | -0.09 | -0.09 | ±0.98 | | | 90.0 | 84.0 | -0.01 | 0.01 | ±0.98 | | | 92.0 | 83.9 | 0.03 | 0.01 | ±0.98 | | | 95.0 | 76.2 | 0.04 | -0.01 | ±0.98 | | | 97.0 | 69.1 | 0.05 | →0.00 | ±0.98 | | | 100.0 | 66.9 | 0.12 | 0.09 | ±0.98 | | | 105.0 | 67.2 | -0.11 | -0.13 | ±0.98 | | | 110.0 | 78.1 | -0.02 | 0.03 | ±0.98 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Linearization parameter uncertainty for maximum specified field strength. EUmmWV4 - SN:9461 ### Parameters of Probe: EUmmWV4 - SN:9461 ### Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dB√μV | С | dB | WR
mV | Max
dev. | Max
Unc ^E
k = 2 | |-------|---|----|---------|------------|-------|-------------|----------
--|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 135.5 | ±3.5% | ±4.7% | | | | Y | 0.00 | 0.00 | 1.00 | | 69.1 | 121/26/21/6 | 200000Jii 1010 | | 10352 | Pulse Waveform (200Hz, 10%) | X | 1.34 | 60.00 | 13.16 | 10.00 | 6.0 | ±1.1% | ±9.6% | | | | Y | 1.00 | 60.00 | 15.27 | aniecco.co. | 6.0 | J | F 05-46-05054 | | 10353 | Pulse Waveform (200Hz, 20%) | X | 0.90 | 60.00 | 12.10 | 6.99 | 12.0 | ±0.8% | ±9.6% | | | | Y | 0.71 | 60.00 | 14.27 | 200000000 | 12.0 | | S-Selling VIII | | 10354 | Pulse Waveform (200Hz, 40%) | X | 0.53 | 60.00 | 10.91 | 3.98 | 23.0 | ±1.0% | ±9.6% | | | | Y | 0.47 | 60.00 | 12.98 | 23642350 | 23.0 | | | | 10355 | Pulse Waveform (200Hz, 60%) | X | 0.33 | 60.00 | 10.19 | | 27.0 | The State of S | ±9.6% | | | | Y. | 0.41 | 60.00 | 11.58 | | 27.0 | | | | 10387 | QPSK Waveform, 1 MHz | X | 0.84 | 60.00 | 10.89 | 1.00 | 22.0 | ±1.8% | ±9.6% | | | = 1-0-11-11-12-11-11-11-11-11-11-11-11-11-11- | Y | 1.05 | 60.00 | 10.89 | 2004000 | 22.0 | | 1400000 | | 10388 | QPSK Waveform, 10 MHz | X | 1.20 | 60.00 | 11.52 | 0.00 | 22.0 | ±0.9% | ±9.6% | | | | Y | 1.45 | 60.00 | 11.43 | . 0222 | 22.0 | TOGAL CONT. | The Memory of the | | 10396 | 64-QAM Waveform, 100 kHz | X | 1.70 | 60.00 | 13.53 | 3.01 | 17.0 | ±0.7% | ±9.6% | | | | Y | 1.76 | 60.00 | 13.87 | 5 ASSERTING | 17.0 | | | | 10399 | 64-QAM Waveform, 40 MHz | X | 2.06 | 60.00 | 12.13 | 0.00 | 19.0 | ±1.2% | ±9.6% | | | | Y | 2.24 | 60.00 | 12.15 | | 19.0 | | . 150000/42 | | 10414 | WLAN CCDF, 64-QAM, 40 MHz | X | 3.04 | 60.00 | 12.59 | 0.00 | 12.0 | ±0.9% | ±9.6% | | | | Y | 3.28 | 60.00 | 12.57 | 12 (S)O | 12.0 | ALCOHOLD. | Charles and the | Note: For details on UID parameters see Appendix E Uncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EUmmWV4 - SN:9461 October 12, 2023 ### Parameters of Probe: EUmmWV4 - SN:9461 ### Calibration Results for Linearity Response | Frequency
GHz | Target E-Field
V/m | Deviation Sensor X
dB | Deviation Sensor Y
dB | Unc (k = 2)
dB | | |------------------|-----------------------|--------------------------|--------------------------|-------------------|--| | 0.9 | 50.0 | -0.01 | 0.05 | ±0.2 | | | 0.9 | 100.0 | -0.03 | 0.03 | ±0.2 | | | 0.9 | 500.0 | 0.00 | -0.01 | ±0.2 | | | 0.9 | 1000.0 | 0.03 | 0.02 | ±0.2 | | | 0.9 | 1500.0 | 0.02 | 0.02 | ±0.2 | | | 0.9 | 2100.0 | 0.01 | 0.01 | ±0.2 | | ### Sensor Frequency Model Parameters (750 MHz - 55 GHz) | | Sensor X | Sensor Y | |--------------------|----------|----------| | R (Ω) | 43.15 | 47.08 | | R _p (Ω) | 64.85 | 69.88 | | L (nH) | 0.04422 | 0.04397 | | C (pF) | 0.3578 | 0.4317 | | Cp (pF) | 0.1264 | 0.1247 | ### Sensor Frequency Model Parameters (55 GHz - 110 GHz) | | Sensor X | Sensor Y | |--------------------|----------|----------| | R (Ω) | 32.93 | 31.85 | | R _p (Ω) | 151.45 | 137.42 | | L (nH) | 0.07099 | 0.06502 | | C (pF) | 0.0637 | 0.0740 | | Cp (pF) | 0.0731 | 0.0766 | #### Sensor Model Parameters | | C1
fF | C2
fF | ν-1 | T1
msV ⁻² | T2
msV ⁻¹ | T3
ms | T4
V-2 | T5
V ⁻¹ | Т6 | |---|----------|----------|-------|-------------------------|-------------------------|----------|-----------|-----------------------|------| | X | 23.8 | 173.11 | 33.71 | 2.66 | 1.88 | 4.99 | 0.00 | 0.58 | 1.01 | | У | 23.5 | 170.20 | 33.52 | 0.92 | 1.40 | 5.02 | 0.00 | 0.73 | 1.01 | ### Other Probe Parameters | Sensor Arrangement | Rectangular | |---|-------------| | Connector Angle | 68.0° | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 320 mm | | Probe Body Diameter | 8 mm | | Tip Length | 23 mm | | Tip Diameter | 8.0 mm | | Probe Tip to Sensor X Calibration Point | 1.5 mm | | Probe Tip to Sensor Y Calibration Point | 1.5 mm | Certificate No: EUmm-9461_Oct23 ### Deviation from Isotropy in Air 30GHz: 3D isotropy, E-field parallel to probe axis 60GHz: 3D isotropy, E-field parallel to probe axis Probe isotropy for E_{tot} : probe rotated $\psi=0^\circ$ to 360° , tilted from field propagation direction \vec{k} Parallel to the field propagation ($\psi=0^\circ-90^\circ$) at 30 GHz: deviation within ± 0.32 dB Parallel to the field propagation ($\psi=0^\circ-90^\circ$) at 60 GHz: deviation within ± 0.44 dB EUmmWV4 - SN:9461 October 12, 2023 # **Appendix: Modulation Calibration Parameters** | UID | Rev | Communication System Name | Group | PAR (dB) | Uno ^E k = | |------------------|-----|--|--------------------------------|----------|----------------------| | 0 | | CW | cw | 0.00 | ±4.7 | | 10010 | CAB | SAR Validation (Square, 100 ms, 10 ms) | Test | 10.00 | ±9.6 | | 0011 | CAC | UMTS-FDD (WCDMA) | WCDMA | 2.91 | ±9.6 | | 10012 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps) | WLAN | 1.87 | ±9.6 | | 0013 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS-OFOM, 6 Mbps) | WLAN | 9.46 | ±9.6 | | 0.021 | DAC | GSM-FDD (TDMA, GMSK) | GSM | 9.39 | ±9.6 | | 0023 | DAC | GPRS-FDD (TDMA, GMSK, TN 0) | GSM | 9.57 | ±9.6 | | 0024 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1) | GSM | 6.56 | ±9.6 | | 0025 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0) | GSM | 12.62 | ±9.6 | | 10026 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1) | GSM | 9.55 | ±9.6 | | 0027 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2) | GSM | 4.80 | ±9.6 | | 10028 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-1-2-3) | GSM | 3.55 | ±9.6 | | 10029 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2) | GSM | 7.78 | ±9.6 | | 10030 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH1) | Bluetooth | 5.30 | ±9.6 | | 10031 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH3) | Bluetooth | 1,87 | ±9.6 | | 10032 | CAA | IEEE 802.15.1 Bluetooth (GFSK, DH5) | Biuetooth | 1.16 | ±9.6 | | 10033 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH1) | Bluetooth | 7.74 | ±9.6 | | 10034 | CAA | IEEE 802.15.1 Bluetooth
(Pl/4-DQPSK, DH3) | Bluetooth | 4.53 | ±9.6 | | 10035 | CAA | IEEE 802.15.1 Bluetooth (PI/4-DQPSK, DH5) | Bluetooth | 3.83 | ±9.6 | | 10036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH1) | Bluetooth | 8.01 | ±9.6 | | 10036 | CAA | IEEE 802.15.1 Bluetooth (8-DPSK, DH3) | Bluetooth | 4.77 | ±9.6 | | the transport of | CAA | | Bluetooth | 4.10 | ±9.6 | | 8000 | | IEEE 802.15.1 Bluetooth (8-DPSK, DH5) | THE PERSON NAMED IN COLUMN TWO | 4.10 | - | | 0039 | CAB | CDMA2000 (1xRTT, RC1) | CDMA2000 | | ±9.6 | | 10042 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, Pt/4-DQPSK, Halfrate) | AMPS | 7.78 | ±9.6 | | 10044 | CAA | IS-91/EIA/TIA-553 FDD (FDMA, FM) | AMPS | 0.00 | ±9.6 | | 0.048 | CAA | DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24) | DECT | 13.80 | ±9.6 | | 0049 | CAA | DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12) | DECT | 10.79 | ±9.6 | | 10056 | CAA | UMTS-TDD (TD-SCDMA, 1.28 Mcps) | TD-SCDMA | 11.01 | ±9.6 | | 0058 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3) | GSM | 6.52 | ±9.6 | | 0059 | CAB | IEEE 802,11b WiFi 2.4 GHz (DSSS, 2 Mbps) | WLAN | 2.12 | ±9.6 | | 0060 | CAB | IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps) | WLAN | 2.83 | ±9.6 | | 10061 | CAB | IEEE 802.11b WIFI 2.4 GHz (DSSS, 11 Mbps) | WLAN | 3.60 | ±9.6 | | 10062 | CAD | IEEE 802.11a/h WIFI 5 GHz (OFDM, 6 Mbps) | WLAN | 8.68 | ±9.6 | | 10063 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps) | WLAN | 8.63 | ±9.6 | | 10064 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps) | WLAN | 9.09 | ±9.6 | | 10065 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps) | WLAN | 9.00 | ±9.6 | | 10066 | CAD | IEEE 802.11a/h WiFl 5 GHz (OFDM, 24 Mbps) | WLAN | 9.38 | ±9.6 | | 10067 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps) | WLAN | 10.12 | ±9.6 | | 10068 | CAD | IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps) | WLAN | 10.24 | ±9.6 | | 10069 | CAD | IEEE 802,11a/h WiFi 5 GHz (OFDM, 54 Mbps) | WLAN | 10.56 | ±9.6 | | 10071 | CAB | IEEE 802.11g WiFi 2,4 GHz (DSSS/OFDM, 9 Mbps) | WLAN | 9.83 | ±9.6 | | 10072 | CAB | IEEE 802.11g WiFl 2.4 GHz (DSSS/OFDM, 12 Mbps) | WLAN | 9.62 | ±9.6 | | 10073 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 18 Mbps) | WLAN | 9.94 | ±9.6 | | 10074 | CAB | IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps) | WLAN | 10.30 | ±9.6 | | 10075 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 36 Mbps) | WLAN | 10.77 | ±9.6 | | 10076 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 48 Mbps) | WLAN | 10.94 | ±9.6 | | 10076 | CAB | IEEE 802.11g WIFI 2.4 GHz (DSSS/OFDM, 48 Miops) | WLAN | 11.00 | ±9.6 | | - | - | CDMA2000 (1xRTT, RC3) | CDMA2000 | 3.97 | ±9.6 | | 10081 | CAB | IS-54 / IS-136 FDD (TDMA/FDM, PI/4-DQPSK, Fullrate) | AMPS | 4.77 | ±9.6 | | 10082 | CAB | A STATE OF THE PARTY PAR | GSM | - | ±9.6 | | 10090 | DAC | GPRS-FDD (TDMA, GMSK, TN 0-4) | | 6.56 | ±9.6 | | 10097 | CAC | UMTS-FDD (HSDPA) | WCDMA | 3.98 | 1 | | 10098 | CAC | UMTS-FDD (HSUPA, Suotest 2) | WCDMA | 3.98 | ±9.6 | | 10099 | DAC | EDGE-FDD (TDMA, 8PSK, TN 0-4) | GSM | 9.55 | ±9.6 | | 0100 | CAF | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-FDD | 5.67 | ±9.6 | | 0101 | CAF | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-FDO | 6.42 | ±9.6 | | 10102 | CAF | LTE-FDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-FDO | 6.60 | ±9.6 | | 10103 | CAH | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK) | LTE-TDD | 9.29 | ±9.6 | | 10104 | CAH | LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM) | LTE-TOD | 9.97 | ±9.6 | | 10105 | CAH | LTE-TOD (SC-FDMA, 100% RB, 20 MHz, 64-QAM) | LTE-TDD | 10.01 | ±9.6 | | 10108 | CAH | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-FDD | 5.80 | ±9.6 | | 10109 | CAH | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ±9.6 | | 10110 | CAH | LTE-FDD (SC-FDMA, 100% RB, 5MHz, QPSK) | LTE-FDD | 5.75 | ±9.6 | | 10111 | CAH | LTE-FDD (SC-FDMA, 100% RB, 5MHz, 16-QAM) | LTE-FDD | 6.44 | ±9.8 | Certificate No: EUmm-9461_Oct23 | UID | Rev | Communication System Name | Group | PAR (dB) | Unc ^E k = | |-------|-----|--|--|--------------|----------------------| | 10112 | CAH | LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-FOD | 6.59 | ±9.6 | | 10113 | CAH | LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM) | LTE-FOD | 6.62 | ±9.6 | | 10114 | CAD | IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK) | WLAN | 8.10 | ±9.6 | | 0115 | CAD | IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM) | WLAN | 8.46 | ±9.6 | | 10116 | CAD | IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM) | WLAN | 8.15 | ±9.6 | | 0117 | CAD | IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK) | WLAN | 8.07 | ±9.6 | | 0118 | CAD | IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM) | WLAN | 8.59 | ±9.6 | | 0119 | CAD | IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM) | WLAN | 8.13 | ±9.6 | | 0140 | CAF | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.49 | ±9.6 | | 0141 | CAF | LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-FOD | 6,53 | ±9.6 | | 0142 | CAF | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, OPSK) | LTE-FOD | 5.73 | ±9.6 | | 0143 | CAF | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM) | LTE-FOD | 6.35 | ±9.6 | | 0144 | CAF | LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM) | LTE-FDD | 6.65 | ±9.8 | | 0145 | CAG | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-FDD | 5.76 | ±9.6 | | 0146 | CAG | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 5.41 | ±9.6 | | 0147 | CAG | LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-FDD | 6.72 | ±9.6 | | 0149 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-FDD | 6.42 | ±9.6 | | 0150 | CAF | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-FDD | 6.60 | ±9.6 | | 0151 | CAH | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-TOD | 9.28 | ±9.6 | | 0152 | CAH | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM) | LTE-TDD | 9.92 | ±9.6 | | 0153 | CAH | LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM) | LTE-TOD | 10.05 | ±9.6 | | 0154 | CAH | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-FDD | 5.75 | ±9.6 | | 0155 | CAH | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-FDD | 6.43 | ±9.6 | | 0156 | CAH | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-FDD | 5.79 | ±9.6 | | 0157 | CAH | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-FDD | 6.49 | ±9.6 | | 0158 | CAH | LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-FDD | 6.62 | ±9.6 | | 0159 | CAH | LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-FDD | 6.56 | ±9.6 | | 0160 | CAF | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK) | LTE-FDD | 5.82 | ±9.6 | | 0161 | CAF | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM) | LTE-FDD | 6.43 | ±9.6 | | 0162 | CAF | LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM) | LTE-FDD | 6.58 | ±9.6 | | 0166 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4MHz, QPSK) | LTE-FDD | 5.46 | ±9.6 | | 0167 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.21 | ±9.6 | | 0168 | CAG | LTE-FDD (SC-FDMA, 50% RB, 1.4MHz, 64-QAM) | LTE-FDD | 6.79 | ±9.6 | | 0169 | CAF | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK) | LTE-FDD . | 5.73 | ±9.6 | | 0170 | CAF | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 | | 0171 | CAH | LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) | LTE-FDD | 6.49 | ±9.6 | | 0172 | CAH | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)
LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM) | LTE-TOD | 9.21 | ±9.6 | | 0174 | CAH | | LTE-TOD | 9.48 | ±9.6 | | 0175 | CAH | LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM) LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TOD | 10.25 | ±9.6 | | 0176 | CAH | LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-FOD | 5.72
6.52 | ±9.6 | | 0177 | CAJ | LTE-FDD (SC-FDMA, 1 RB, 5MHz, OPSK) | LTE-FOD | 5.73 | ±9.6 | | 0178 | CAH | LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 | | 0179 | CAH | LTE-FDD (SC-FDMA, 1 RB, 10MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 | | 0180 | CAH | LTE-FDD (SC-FDMA, 1 RB, 5MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 | | 0181 | CAF | LTE-FDD (SC-FDMA, 1 RB, 15MHz, QPSK) | - State Contract of the Contra | | | | 0182 | CAF | LTE-FDD (SC-FDMA, 1 RB, 15MHz, GFSK) | LTE-FDD | 5.72
6.52 | ±9.6 | | 0183 | AAE | LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 | | 0184 | CAF
| LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-FDD | 5.73 | | | 0185 | CAF | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM) | LTE-FDD | 6.51 | ±9.6 | | 0186 | AAF | LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-FDD | 6.50 | ±9.6 | | 0187 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-FDD | 5.73 | ±9.6 | | 0188 | CAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-FDD | 6.52 | ±9.6 | | 0189 | AAG | LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-FOD | 6.50 | ±9.6 | | 0193 | CAD | IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK) | WLAN | 8.09 | ±9.6 | | 0194 | CAD | IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM) | WLAN | 8.12 | ±9.6 | | 0195 | CAD | IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM) | WEAN | 8.21 | ±9.6 | | 0196 | CAD | IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK) | WLAN | 8.10 | ±9.6 | | 0197 | CAD | IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM) | WLAN | 8.13 | ±9.6 | | 0198 | CAD | IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM) | WLAN | 8.27 | ±9.6 | | 0219 | CAD | IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK) | WLAN | 8.03 | ±9.6 | | 0220 | CAD | IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM) | WLAN | 8.13 | ±9.6 | | 0221 | CAD | IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM) | WLAN | 8.27 | ±9.6 | | 0222 | CAD | IEEE 802.11n (HT Mixed, 15 Mbps, BPSK) | WLAN | 8.06 | ±9.6 | | 0223 | CAD | IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM) | WLAN | 8.48 | ±9.6 | | 0224 | CAD | IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM) | WLAN | 8.08 | ±9.6 | EUmmWV4 - SN:9461 October 12, 2023 | UID | Rev | Communication System Name | Group | PAR (dB) | Unc ^E k | |----------------------------------|-----------------|--|----------------------|----------|--------------------| | 10225 | CAC | UMTS-FDD (HSPA+) | WCDMA | 5.97 | ±9.6 | | 10226 | CAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.49 | ±9.6 | | 0227 | CAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM) | LTE-TOD | 10.26 | ±9.6 | | 0228 | CAC | LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK) | LTE-TDD | 9.22 | ±9.6 | | 0229 | CAE | LTE-TDD (SC-FDMA, 1 RB, 3MHz, 16-QAM) | LTE-TOD | 9.48 | ±9.6 | | 0230 | CAE | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM) | LTE-TOD | 10.25 | ±9.6 | | 0231 | CAE | LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK) | LTE-TOD | 9.19 | ±9.6 | | 0232 | CAH | LTE-TDD (SC-FDMA, 1 RB, 5MHz, 16-QAM) | LTE-TOD | 9.48 | ±9.6 | | 0233 | CAH | LTE-TDD (SC-FDMA, 1 RB, 5MHz, 64-QAM) | LTE-TOD | 10.25 | ±9.6 | | 0234 | CAH | LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK) | LTE-TDD | 9.21 | ±9.6 | | 0235 | CAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 0236 | CAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM) | LTE-TOD | 10.25 | ±9.6 | | 0237 | CAH | LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK) | LTE-TDD | 9.21 | ±9.6 | | 0238 | CAG | LTE-TDD (SC-FDMA, 1 RB, 15MHz, 16-QAM) | LTE-TDD | 9.48 | ±9.6 | | 0239 | CAG | LTE-TDD (SC-FDMA, 1 RB, 15MHz, 64-QAM) | LTE-TDD | 10.25 | ±9.6 | | 0240 | CAG | LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK) | LTE-TDD | 9.21 | ±9.6 | | 0241 | CAC | LTE-TDD (SC-FDMA, 50% RB, 1.4MHz, 16-QAM) | LTE-TDD | 9.82 | ±9.6 | | 0242 | CAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM) | LTE-TDD | 9.86 | ±9.6 | | 0243 | CAC | LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK) | LTE-TDD | 9,46 | ±9.6 | | 0244 | CAE | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-TOD | 10.06 | ±9.6 | | 0245 | CAE | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM) | LTE-TOD | 10.06 | ±9.6 | | 0246 | CAE | LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK) | LTE-TOD | 9.30 | ±9.6 | | 0247 | CAH | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM) | LTE-TOD | 9.91 | ±9.6 | | 0248 | CAH | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM) | LTE-TOD | 10.09 | ±9.6 | | 0249 | CAH | LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK) | LTE-TDD | 9.29 | ±9.6 | | 0250 | CAH | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM) | LTE-TOD | 9.81 | ±9.6 | | 0251 | CAH | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM) | LTE-TDD | 10.17 | ±9.8 | | 0252 | CAH | LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK) | LTE-TOD | 9.24 | ±9.6 | | 0253 | CAG | LTE-TDD (SC-FDMA, 50% RB, 15MHz, 16-QAM) | LTE-TOD | 9.90 | ±9.6 | | 0254 | CAG | LTE-TDD (SC-FDMA, 50% RB, 15MHz, 64-QAM) | LTE-TDD | 10.14 | ±9.6 | | 0255 | CAG | LTE-TDD (SC-FDMA, 50% RB, 15MHz, QPSK) | LTE-TOD | 9.20 | ±9.0 | | 0256 | CAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM) | LTE-TDD | 9.96 | ±9.6 | | 0257 | CAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM) | LTE-TOD | 10.08 | ±9.6 | | 10258 | CAC | LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK) | LTE-TDD | 9.34 | ±9.6 | | 0259 | CAE | LTE-TDD (SC-FDMA, 100% RB, 3MHz, 16-QAM) | LTE-TDD | 9.98 | ±9.6 | | 10260 | CAE | LTE-TDD (SC-FDMA, 100% RB, 3MHz, 64-QAM) | LTE-TOD | 9.97 | ±9,6 | | 0261 | CAE | LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK) | LTE-TOD | 9.24 | ±9.6 | | 0262 | CAH | LTE-TOD (SC-FDMA, 100% RB, 5MHz, 16-QAM) | LTE-TOD | 9.83 | ±9.6 | | 0263 | CAH | LTE-TDD (SC-FDMA, 100% RB, 5MHz, 64-QAM) | LTE-TDD | 10.16 | ±9.6 | | 0264 | CAH | LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK) | LTE-TOD | 9.23 | ±9.6 | | 0265 | CAH | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM) | LTE-TOD | 9.92 | ±9.6 | | 0266 | CAH | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM) | LTE-TOD | 10.07 | ±9.6 | | 0267 | CAH | LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK) | LTE-TOD | 9.30 | ±9.6 | | 0268 | CAG | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM) | LTE-TOD | 10.06 | ±9.6 | | 0269 | CAG | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM) | LTE-TOD | 10.13 | ±9.6 | | 0270 | CAG | LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK) | LTE-TDD | 9.58 | ±9,6 | | 0274 | CAC | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10) | WCDMA | | ±9.6 | | 0275 | CAC | UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4) | WCDMA | 3.96 | ±9.6 | | 0277 | CAA | PHS (QPSK) | PHS | 11,81 | ±9.0 | | 0278 | CAA | PHS (QPSK, BW 884 MHz, Rolloff 0.5) | PHS | 11,81 | ±9. | | 0279 | CAA | PHS (QPSK, BW 884 MHz, Rolloff 0.38) | | 12.18 | ±9.0 | | 0290 | AAB | CDMA2000, RC1, SO55, Full Rate | CDMA2000
CDMA2000 | 3.46 | ±9. | | 0291 | AAB | CDMA2000, RC3, SO55, Full Rate | CDMA2000 | 3.46 | ±9. | | 0292 | AAB | CDMA2000, RC3, SO32, Full Rate
CDMA2000, RC3, SO3, Full Rate | CDMA2000 | 3.50 | ±9. | | 0295 | AAB | CDMA2000, RC3, SC3, Pdil Rate CDMA2000, RC1, SO3, 1/8th Rate 25 fr. | CDMA2000 | 12.49 | ±9. | | 0295 | AAB | LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK) | LTE-FDD | 5.81 | ±9. | | 0297 | AAE | LTE-FDD (SC-FDMA, 50% RB, 20MHZ, QPSK) | LTE-FOD | 5.72 | ±9. | | 0299 | AAE | LTE-FDD (SC-FDMA, 50% RB, 3MHz, GPSK) LTE-FDD (SC-FDMA, 50% RB, 3MHz, 16-QAM) | LTE-FDD | 6.39 | ±9. | | 0300 | AAE | LTE-FDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM) | LTE-FDD | 6.60 | ±9. | | 0300 | AAA | IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC) | WiMAX | 12.03 | ±9. | | formal soft about the formal for | and the same of | | WIMAX | 12.57 | ±9. | | 0302 | AAA | IEEE 802.16e WIMAX (29:18, 5 ms, 10 MHz, QPSK, PUSC, 3 CTRL symbols) | WIMAX | 12.52 | ±9. | | 0303 | AAA | IEEE 802.16e WIMAX (31:15, 5 ms, 10 MHz, 64QAM, PUSC) | WIMAX | 11.86 | ±9. | | 10304 | AAA | IEEE 802.16e WIMAX (29:18, 5 ms. 10 MHz, 64QAM, PUSC) IEEE 802.16e WIMAX (31:15, 10 ms, 10 MHz, 64QAM, PUSC, 15 symbols) | WIMAX | 15.24 | ±9. | | 0305 | | | | 147.69 | 0.00 |