

FCC RADIO TEST REPORT

FCC ID	: A4RGG3HH
Equipment	: Wireless Device
Model Name	: GG3HH
Applicant	: Google LLC 1600 Amphitheatre Parkway, Mountain View, California, 94043 USA
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Jan. 29, 2024 and testing was performed from Feb. 22, 2024 to Mar. 26, 2024. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Page Number: 1 of 27Issue Date: Jun. 26, 2024Report Version: 03

Table of Contents

His	tory o	f this test report	.3
Sur	nmary	of Test Result	.4
1	Gene	ral Description	.5
	1.1	Product Feature of Equipment Under Test	.5
	1.2	Modification of EUT	.5
	1.3	Testing Location	.6
	1.4	Applicable Standards	.6
2	Test	Configuration of Equipment Under Test	.7
	2.1	Carrier Frequency Channel	.7
	2.2	Test Mode	.8
	2.3	Connection Diagram of Test System	.9
	2.4	Support Unit used in test configuration and system1	0
	2.5	EUT Operation Test Setup1	0
	2.6	Measurement Results Explanation Example1	0
3	Test	Result1	1
	3.1	Number of Channel Measurement1	1
	3.2	Hopping Channel Separation Measurement1	2
	3.3	Dwell Time Measurement1	3
	3.4	20dB and 99% Bandwidth Measurement1	4
	3.5	Output Power Measurement1	5
	3.6	Conducted Band Edges Measurement1	6
	3.7	Conducted Spurious Emission Measurement1	7
	3.8	Radiated Band Edges and Spurious Emission Measurement1	8
	3.9	AC Conducted Emission Measurement	22
	3.10	Antenna Requirements	24
4	List o	of Measuring Equipment2	25
5	Meas	urement Uncertainty2	27
Арр	pendix	A. Conducted Test Results	
Арр	oendix	B. AC Conducted Emission Test Result	
Арр	pendix	C. Radiated Spurious Emission	
Арр	oendix	D. Radiated Spurious Emission Plots	

Appendix E. Duty Cycle Plots

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR412915J	01	Initial issue of report	Apr. 22, 2024
FR412915J	02	Revise Appendix A and Connection Diagram of Test System This report is an updated version, replacing the report issued on Apr. 22, 2024.	May 02, 2024
FR412915J	03	Revise typo This report is an updated version, replacing the report issued on May 02, 2024.	Jun. 26, 2024

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1) 15.247(b)(4)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	6.55 dB under the limit at 30.27 MHz
3.9	15.207	AC Conducted Emission	Pass	16.87 dB under the limit at 0.15 MHz
3.10	15.203	Antenna Requirement	Pass	-

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: William Chen Report Producer: Ming Chen

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature

General Specs

Bluetooth, BLE, BLE (CH2-76), Wi-Fi 2.4GHz 802.11b/g/n/ax, Wi-Fi 5GHz 802.11a/n/ac/ax, NFC, UWB, and GPS.

Antenna Type

WLAN: PIFA Antenna

EUT Information List				
S/N	Performed Test Item			
1JE650106990505412022D5	RF Conducted Measurement			
41151JEAVW000T	Radiated Spurious Emission			
41311JEAVW005E Conducted Emission				
Antenna information				

Antenna information				
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	-6.1		

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. TH05-HY, CO07-HY, 03CH11-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

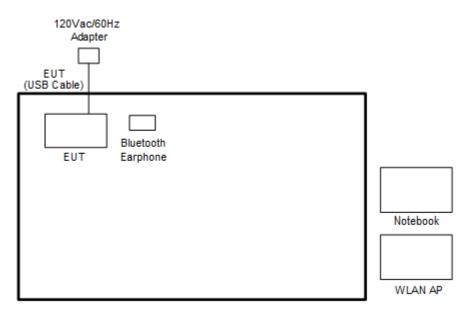
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	2	2404	32	2434	59	2461
	3	2405	33	2435	60	2462
	4	2406	34	2436	61	2463
	5	2407	35	2437	62	2464
	6	2408	36	2438	63	2465
	7	2409	37	2439	64	2466
	8	2410	38	2440	65	2467
	9	2411	39	2441	66	2468
	10	2412	40	2442	67	2469
	11	2413	41	2443	68	2470
	12	2414	42	2444	69	2471
	13	2415	43	2445	70	2472
	14	2416	44	2446	71	2473
2404-2478 MHz	15	2417	45	2447	72	2474
	16	2418	46	2448	73	2475
	17	2419	47	2449	74	2476
	18	2420	48	2450	75	2477
	19	2421	49	2451	76	2478
	20	2422	50	2452	-	-
	21	2423	51	2453	-	-
	22	2424	52	2454	-	-
	26	2428	53	2455	-	-
	27	2429	54	2456	-	-
	28	2430	55	2457	-	-
	29	2431	56	2458	-	-
	30	2432	57	2459	-	-
	31	2433	58	2460	-	-

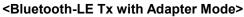
: 03

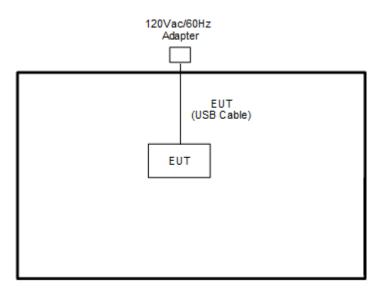
2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report, and the worst mode of radiated spurious emissions is X plane with Adapter and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.

The following summary table is showing all test modes to demonstrate in compliance with the standard.


	Summary table of Test Cases						
Test Item	Data Rate / Modulation						
	Bluetooth LE 1Mbps ASK	Bluetooth LE 2Mbps ASK					
Conducted	Mode 1: CH02_2404 MHz	Mode 4: CH02_2404 MHz					
Test Cases	Mode 2: CH38_2440 MHz	Mode 5: CH38_2440 MHz					
	Mode 3: CH76_2478 MHz	Mode 6: CH76_2478 MHz					
	Bluetooth LE ASK						
	Mode 1: CH02_2404 MHz_1Mbps						
Radiated	Mode 2: CH38_2440 MHz_1Mbps						
	Mode 3: CH76_2478 MHz_1Mbps						
Test Cases	Mode 3: CH76_2	2478 MHz_1Mbps					
Test Cases	—	2478 MHz_1Mbps 2404 MHz_2Mbps					
Test Cases	 Mode 4: CH02_2	_ ·					




	Summary table of Test Cases					
Test Item		Data Rate / Modulation				
AC Conducted		Mode 1 :WLAN (2.4GHz) Link + Bluetooth Link + USB Cable (Charging from				
Emiss	sion	Adapter)				
Remark:	Remark: For Radiated Test Cases, the worst mode data rate 1Mbps was reported only since the highest RF output power in the preliminary tests. The conducted spurious emissions and conducted band edge measurement for other data rates were not worse than 1Mbps, and no other significantly frequencies found in conducted spurious emission.					

2.3 Connection Diagram of Test System

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony	SBH20	PY7-RD0010	N/A	N/A
2.	WLAN AP	ASUS	RT-AC52	MSQ-RTAC4A00	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	AC Adapter	Chicony	G9BR1	N/A	N/A	N/A
5.	AC Adapter	Aohai	G9BR1	N/A	N/A	N/A

2.4 Support Unit used in test configuration and system

2.5 EUT Operation Test Setup

The RF test items, utility "Cmd Version 1.0.39" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

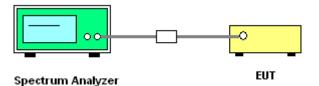
 $Offset(dB) = RF \ cable \ loss(dB) + attenuator \ factor(dB).$ = 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = the frequency band of operation; RBW = 300 kHz; VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

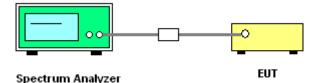
3.1.4 Test Setup

3.1.5 Test Result of Number of Hopping Frequency

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

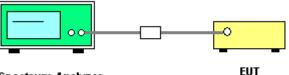
3.2.4 Test Setup

3.2.5 Test Result of Hopping Channel Separation

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.3.4 Test Setup

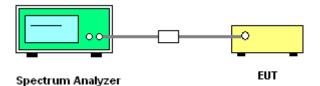
Spectrum Analyzer

3.3.5 Test Result of Dwell Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only


3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

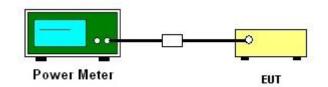
3.4.6 Test Result of 99% Occupied Bandwidth

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the same level in dB comparing to gain minus 6 dBi.


3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. The average power is compensated with duty factor.
- 6. Record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

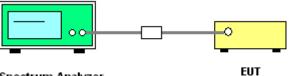
Please refer to Appendix A.

3.5.6 Test Result of Average Output Power (Reporting Only)

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.6.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

Spectrum Analyzer

3.6.5 Test Result of Conducted Band Edges

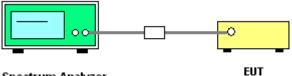
Please refer to Appendix A.

3.6.6 Test Result of Conducted Hopping Mode Band Edges

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurious must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

Spectrum Analyzer

3.7.5 Test Result of Conducted Spurious Emission

3.8 Radiated Band Edges and Spurious Emission Measurement

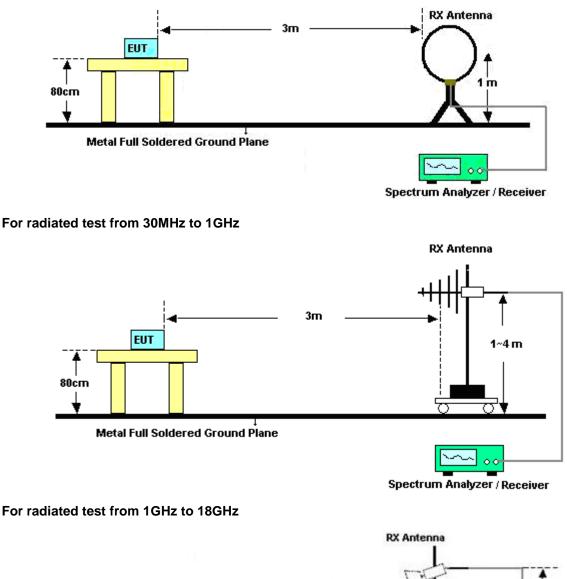
3.8.1 Limit of Radiated Band Edges and Spurious Emission

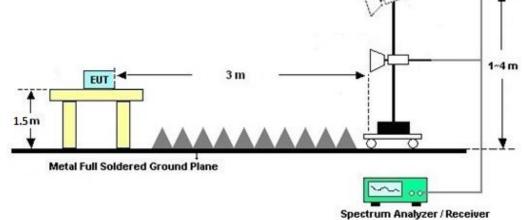
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Frequency Field Strength	
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

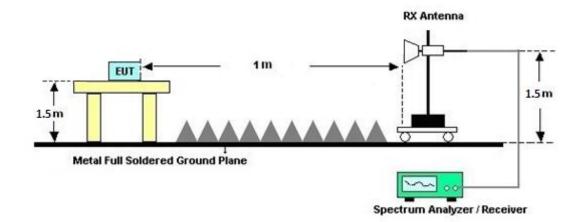
3.8.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.8.3 Test Procedures


- 1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW \geq 10Hz; Sweep = auto; Detector function = peak; Trace = max hold for average
- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

3.8.4 Test Setup



For radiated test above 18GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.8.7 Duty Cycle

Please refer to Appendix E.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.9 AC Conducted Emission Measurement

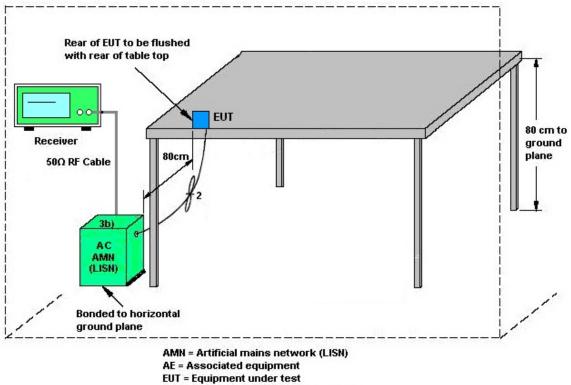
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of opication (MHz)	Conducted limit (dBµV)					
Frequency of emission (MHz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.9.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

ISN = Impedance stabilization network

3.9.5 Test Result of AC Conducted Emission

3.10 Antenna Requirements

3.10.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

List of Measuring Equipment 4

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Bilog Antenna	TESEQ	CBL 6111D & N- 6-06	35414 & AT- N0602	30MHz~1GHz	Oct. 07, 2023	Feb. 22, 2024~ Mar. 26, 2024	Oct. 06, 2024	Radiation (03CH11-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 12, 2023	Feb. 22, 2024~ Mar. 26, 2024	Sep. 11, 2024	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBECK	BBHA 9120 D	9120D-01620	1GHz~18GHz	Aug. 17, 2023	Feb. 22, 2024~ Mar. 26, 2024	Aug. 16, 2024	Radiation (03CH11-HY)
SHF-EHF Horn Antenna	SCHWARZBECK	BBHA 9170	1223	18GHz~40GHz	Jul. 10, 2023	Feb. 22, 2024~ Mar. 26, 2024	Jul. 09, 2024	Radiation (03CH11-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Dec. 08, 2023	Feb. 22, 2024~ Mar. 26, 2024	Dec. 07, 2024	Radiation (03CH11-HY)
Preamplifier	E-INSTRUMENT TECH LTD.	ERA-10M-7000- MR	EC1900245	10MHz-7GHz	Jan. 09, 2024	Feb. 22, 2024~ Mar. 26, 2024	Jan. 08, 2025	Radiation (03CH11-HY)
Preamplifier	Jet-Power	JPA0118-55- 303	171000180005 5007	1GHz~18GHz	Jun. 14, 2023	Feb. 22, 2024~ Mar. 26, 2024	Jun. 13, 2024	Radiation (03CH11-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 27, 2023	Feb. 22, 2024~ Mar. 26, 2024	Jun. 26, 2024	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200486	10Hz~44GHz	Oct. 05, 2023	Feb. 22, 2024~ Mar. 26, 2024	Oct. 04, 2024	Radiation (03CH11-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Feb. 22, 2024~ Mar. 26, 2024	N/A	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Feb. 22, 2024~ Mar. 26, 2024	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Feb. 22, 2024~ Mar. 26, 2024	N/A	Radiation (03CH11-HY)
Software	Audix	E3 6.2009-8-24	RK-001053	N/A	N/A	Feb. 22, 2024~ Mar. 26, 2024	N/A	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY1595/2	30MHz~40GHz	Mar. 07, 2023	Feb. 22, 2024~ Mar. 05, 2024	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY1595/2	30MHz~40GHz	Mar. 06, 2024	Mar. 06, 2024~ Mar. 05, 2024	Mar. 05, 2025	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz~40GHz	Mar. 07, 2023	Feb. 22, 2024~ Mar. 05, 2024	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz~40GHz	Mar. 06, 2024	Mar. 06, 2024~ Mar. 05, 2024	Mar. 05, 2025	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9K~30M	Mar. 07, 2023	Feb. 22, 2024~ Mar. 05, 2024	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9K~30M	Mar. 06, 2024	Mar. 06, 2024~ Mar. 05, 2024	Mar. 05, 2025	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	30M~40G	Mar. 07, 2023	Feb. 22, 2024~ Mar. 05, 2024	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	30M~40G	Mar. 06, 2024	Mar. 06, 2024~ Mar. 05, 2024	Mar. 05, 2025	Radiation (03CH11-HY)
Filter	Wainwright	WLK4-1000- 1530-8000- 40SS	SN11	1.53G Low Pass	Sep. 11, 2023	Feb. 22, 2024~ Mar. 26, 2024	Sep. 10, 2024	Radiation (03CH11-HY)
Filter	Wainwright	WHKX12-2700- 3000-18000- 60SS	SN3	3GHz High Pass Filter	Sep. 11, 2023	Feb. 22, 2024~ Mar. 26, 2024	Sep. 10, 2024	Radiation (03CH11-HY)

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Mar. 15, 2024	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Mar. 15, 2024	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Oct. 20, 2023	Mar. 15, 2024	Oct. 19, 2024	Conduction (CO07-HY)
Two-Line V- Network	TESEQ	NNB 51	45051	N/A	Mar. 10, 2024	Mar. 15, 2024	Mar. 09, 2025	Conduction (CO07-HY)
Four-Line V- Network	TESEQ	NNB 52	36122	N/A	Mar. 07, 2024	Mar. 15, 2024	Mar. 06, 2025	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Sep. 20, 2023	Mar. 15, 2024	Sep. 19, 2024	Conduction (CO07-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 07, 2023	Feb. 23, 2024~ Feb. 24, 2024	Nov. 06, 2024	Conducted (TH05-HY)
Power Meter	Anritsu	ML2495A	1036004	N/A	Jul. 27, 2023	Feb. 23, 2024~ Feb. 24, 2024	Jul. 26, 2024	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1027253	300MHz~40GHz	Jul. 27, 2023	Feb. 23, 2024~ Feb. 24, 2024	Jul. 26, 2024	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 23, 2023	Feb. 23, 2024~ Feb. 24, 2024	Aug. 22, 2024	Conducted (TH05-HY)

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.44 dB
of 95% (U = 2Uc(y))	3.44 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	6.10 dB
of 95% (U = 2Uc(y))	6. IV UB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4.30 dB
of 95% (U = 2Uc(y))	4.30 UB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.30 dB
of 95% (U = 2Uc(y))	4.30 UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.30 dB
of 95% (U = 2Uc(y))	5.30 UB

Report Number : FR412915J

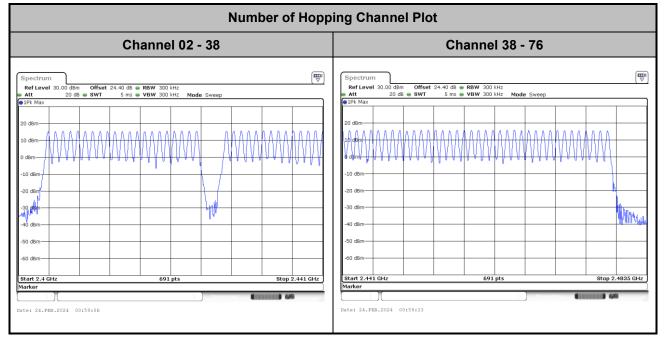
Appendix A. Test Result of Conducted Test Items

Test Engineer:	Hank Hsu/Willy Chang	Temperature:	21~25	°C
Test Date:	2024/2/23~2/24	Relative Humidity:	51~54	%

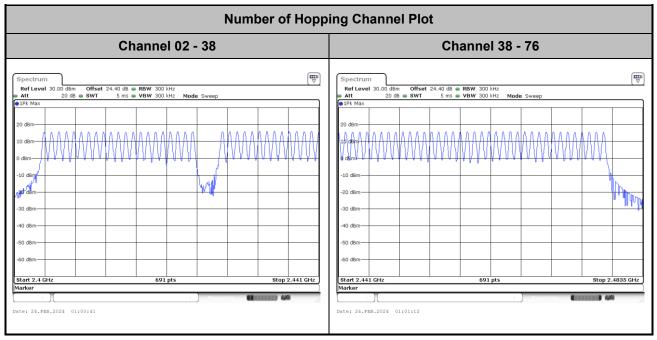
<u>TEST RESULTS DATA</u> 20dB and 99% Occupied Bandwidth and Hopping Channel Separation									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)	Hopping Channel Separation Measurement (MHz)	Hopping Channel Separation Measurement Limit (MHz)	Pass/Fail
	1Mbps	1	2	2404	0.076	0.226	1.003	0.0508	Pass
ASK	1Mbps	1	38	2440	0.077	0.228	1.003	0.0512	Pass
	1Mbps	1	76	2478	0.077	0.224	1.012	0.0510	Pass
	2Mbps	1	2	2404	0.077	0.242	0.990	0.0510	Pass
ASK	2Mbps	1	38	2440	0.077	0.248	1.007	0.0512	Pass
	2Mbps	1	76	2478	0.076	0.252	1.007	0.0508	Pass

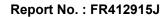
<u>TEST RESULTS DATA</u> Dwell Time									
Mod.	Hopping Channel Number Rate	Hops Over Occupancy Time (hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail			
ASK	72	1354	0.045	0.060	0.4	Pass			

<u>TEST RESULTS DATA</u> Peak Power Table									
Mod.	CH.	NTX	Peak Power (dBm)	Power Limit (dBm)	Test Result				
ASK	02	1	16.89	20.97	Pass				
	38	1	17.41	20.97	Pass				
1Mbps	76	1	16.81	20.97	Pass				
ASK	02	1	17.15	20.97	Pass				
	38	1	17.33	20.97	Pass				
2Mbps	76	1	17.06	20.97	Pass				


				Aver	<u>RESULTS DATA</u> age Power Table eporting Only)
Mod.	CH.	NTX	Average Power (dBm)	Duty Factor (dB)	
ASK	02	1	15.28	8.21	
	38	1	15.69	8.21	
1Mbps	76	1	15.37	8.21	
ASK	02	1	15.45	8.24	
	38	1	15.70	8.24	
2Mbps	76	1	15.60	8.24	

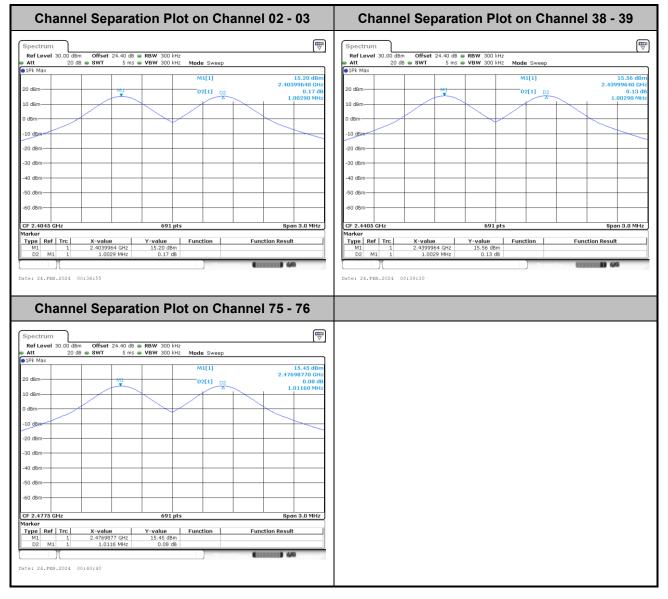
umber of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
72	20	> 15	Pass
ur	(Channel)	(Channel) (Channel)	(Channel) (Channel) (Channel)


Number of Hopping Frequency


<1Mbps>

Number of Hopping Frequency

<2Mbps>



Hopping Channel Separation

<1Mbps>

<2Mbps>

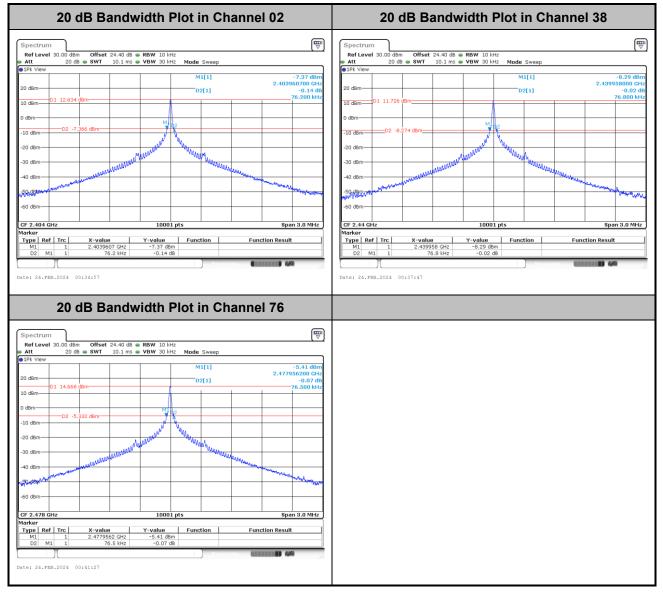
Channel S	eparation Plot on Cha	annel 02 - 03	Channel Separation Plot on Channel 38 - 39			
Att 20 dB SW	set 24.40 dB ⊕ RBW 300 kHz T 5 ms ⊕ VBW 300 kHz Mode Sweep	Ţ		Offset 24.40 dB ● RBW 3 ● SWT 5 ms ● VBW 3		(((()) ()) () ()) ()) ()) ()) ()) ()) ()) ()) ())))
••••••••••••••••••••••••••••••••••••	M1[1] D2[1] D2 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 02 0	15.35 (Bm) 2.4040040 GHz 999.50 Htz 999.50 Htz 999.50 Htz 999.50 Htz 999.50 Htz 999.50 Htz 999.50 Htz 999.50 Htz 999.50 Htz		M1 Y X-value Y-value 2.4399964 GHz 15.7	M1[1] D2[1] D2 T T D2[1] D2 D2 D2	15.72 dBm 2.43999640 GHz 0.07 dB 1.00720 HHz 0.07 dB 1.00720 HHz 5 pan 3.0 MHz Function Result
CF 2.4045 GHz larker Type Ref Trc X-v.	alue Y-value Function 040094 GHz 15.35 dBm 989.9 kHz 989.9 kHz 0.18 dB 989.9 kHz 0.18 dB		CF 2.4405 GHz Marker Type Ref Trc	X-value Y-value 2.4399964 GHz 15.7 1.0072 MHz 0.	e Function	
Spectrum Ref Level 30.00 dBm Offs	eparation Plot on Cha	annel 75 - 76				
Att 20 dB SW 1Pk Max 20 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm 10 dBm	T S ms • VBW 300 kHz Mode Sweep M1[1] D2[1] D2 Δ	15.60 dBm 2.47699200 GHz 0.00 dB 1.00720 MHz				
20 dBm						
M1 1 2.4	691 pts alue Y-value Function 76992 GHz 15.60 dBm .0072 MHz -0.00 dB	Spon 3.0 MHz Function Result				
ate: 24.FEB.2024 00:53:17	Measuri					

Dwell Time

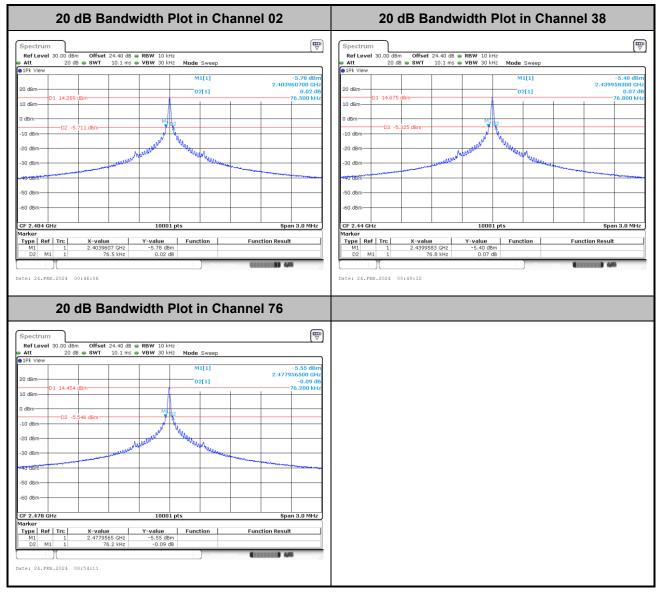
Total number of hops observed	On-time hops count
Spectrum Image: Construction of the text of the read of the text of the read of text of te	
	Point: 1354
50 dBm	

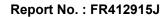
Remark:

- Dwell Time(sec) = Hops Over Occupancy Time (hops) x Package Transfer Time (sec)
- 2. The Hops over occupancy time is the total number of hops observed in sweep point 30,000. This shows that 1ms per on-time contains 1 hop. The total hops is finally counted via computer analysis.
- 3. Package transfer time(sec) = Total hops / observation sweep time

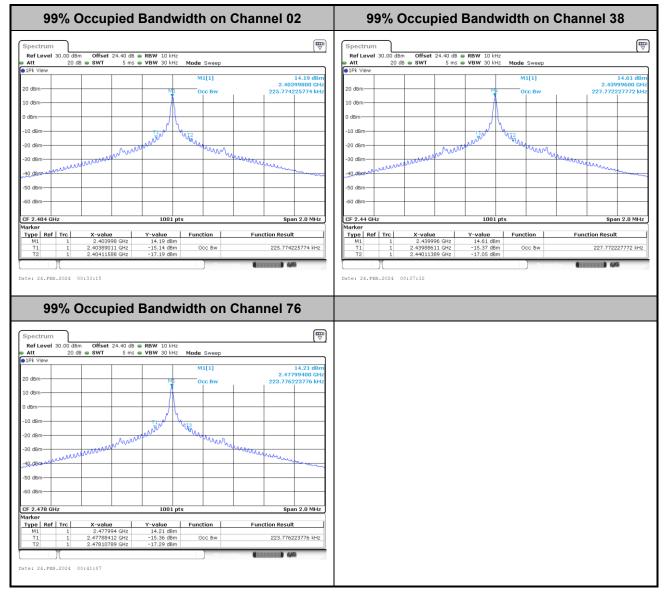

Calculation example:

Package transfer time(sec) = 1354 / 30000 = 0.045 (msec) Dwell Time(sec) = 1354 * 0.000045 = 0.06 (sec)

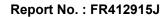

20dB Bandwidth


<1Mbps>

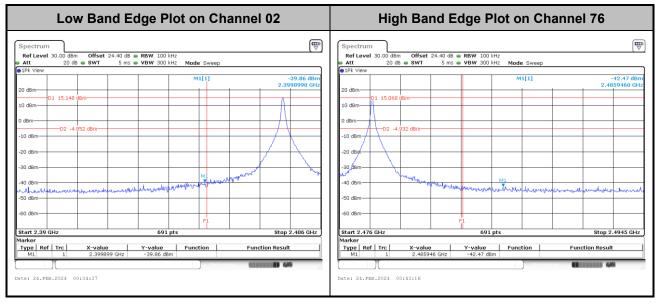
<2Mbps>

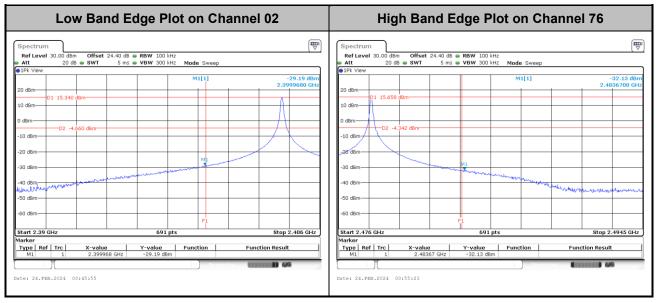


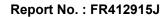
99% Occupied Bandwidth


<1Mbps>

<2Mbps>

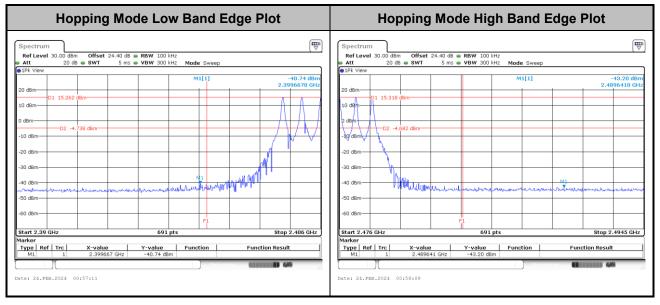

99% Occupied Bandwidth on Channel 02	99% Occupied Bandwidth on Channel 38
Spectrum Image: Constraint of the second secon	Spectrum Image: Constraint of the second seco
20 dBm M1[1] 2.40399800 GHz 20 dBm 0cc Bw 241.758241758 KHz 10 dBm 0dm 0cc Bw -10 dBm 0dm 0dm -20 dBm 0dm 0	20 dBm M1[1] 1.4.72 dBm 20 dBm 0 cc Bw 247.752247752 kHz 10 dBm 0 dBm 0 0 dBm 0 0 0 dBm 0 0 10 dBm 0 0 -10 dBm - - -20 dBm - - -30 dBm - - -30 dBm - - -30 dBm - - -40 dBm - - -50 dBm - - -60 dBm - - -11 2.4030F312 CH 100 pts Span 2.0 MHz Marker - - - Tpe Ref Trc X-value - 1.7.39 dbm Cc. Bw 247.752247752 kHz Date: 24.FEB.2024 00:49:17 - - - -
99% Occupied Bandwidth on Channel 76 Spectrum Image: Colspan="2">Image: Colspan="2">Image: Colspan="2" Image: Colspan="2">Image: Colspan="2" Image: Colspa=""2" Image: Colspan="2" Image: Colspan="2" Image: Colsp	
M1[1] 1.5.57 dBm 20 dBm Occ Bw 251.740251749 kHz 10 dBm Occ Bw 251.740251749 kHz 0 dBm Occ Bw 251.740251749 kHz	
-10 dBm	
G0 dBm CF 2.478 GHz 1001 pts Span 2.0 MHz Warker Type [Ref] Trc X-value Function Function Result M1 1 2.477994 GHz 15.57 dBm Function Function Result	
T1 1 2.47786913 GHz -14.26 dBm Occ Bw 251.748251749 kHz T2 1 2.47911988 GHz -14.12 dBm Occ Bw 251.748251749 kHz T2 1 2.47911988 GHz -14.12 dBm Occ Bw 251.748251749 kHz T2 1 2.47811988 GHz -14.12 dBm Occ Bw 251.748251749 kHz T4 .14.12 dBm .14.12 dBm .14.12 dBm .14.12 dBm .14.12 dBm Acce 24.FEB.2024 00153:39 .14.12 dBm .14.12 dBm .14.12 dBm .14.12 dBm	

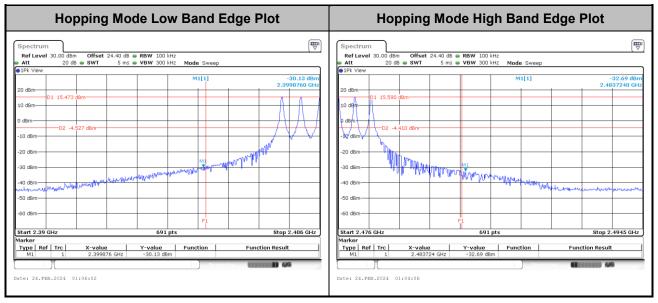



Band Edges

<1Mbps>

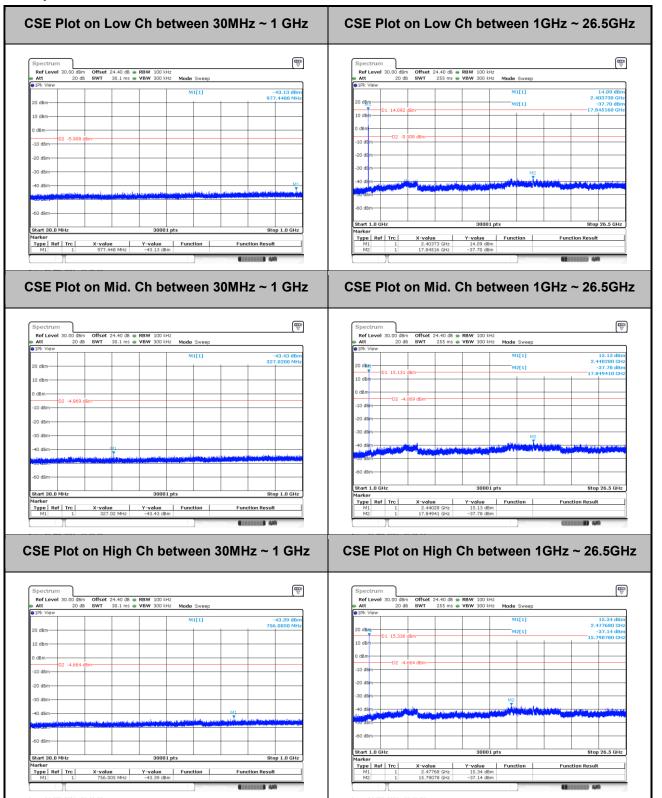
<2Mbps>

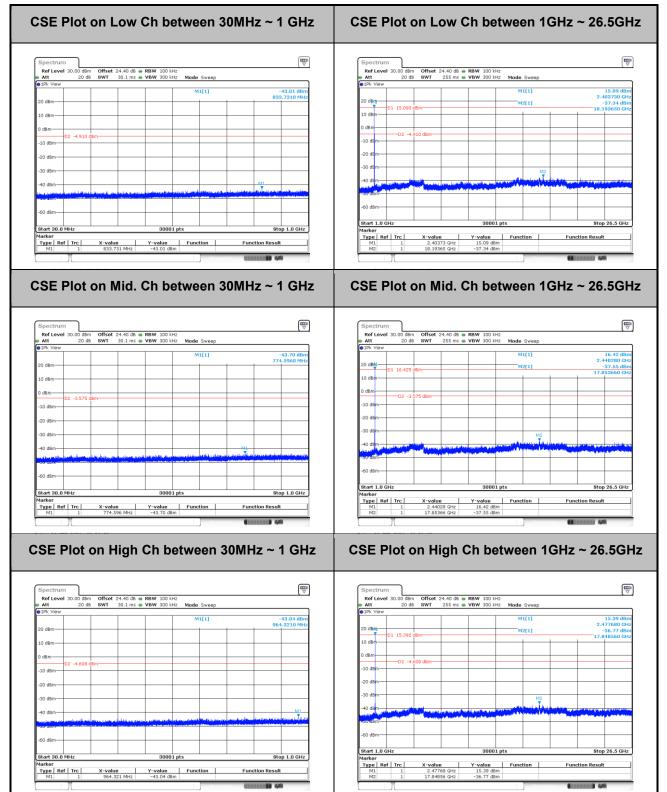




Hopping Mode Band Edges

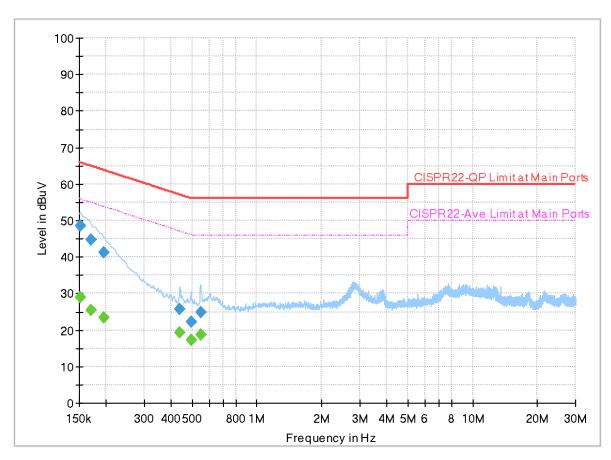
<1Mbps>


<2Mbps>


Conducted Spurious Emission

<1Mbps>

<2Mbps>

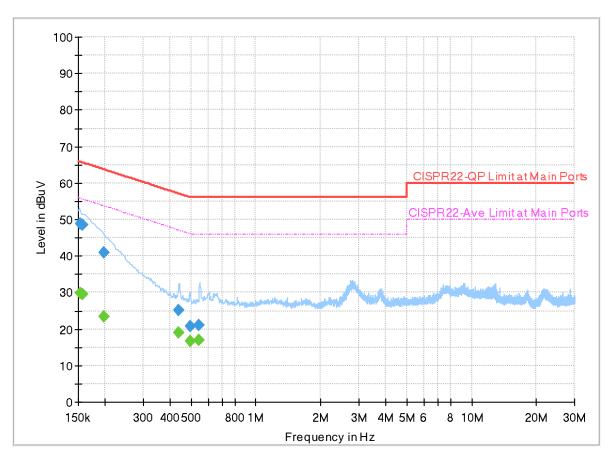


Appendix B. AC Conducted Emission Test Results

Toot Engineer	Louis Chung	Temperature :	20.5~21.7°C
Test Engineer :		Relative Humidity :	41.2~46.4%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 412915 Mode 1 120Vac/60Hz Line


Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.151080		29.02	55.94	26.92	L1	OFF	19.9
0.151080	48.51		65.94	17.43	L1	OFF	19.9
0.170250		25.35	54.95	29.60	L1	OFF	19.9
0.170250	44.79		64.95	20.16	L1	OFF	19.9
0.194370		23.43	53.85	30.42	L1	OFF	19.9
0.194370	41.34		63.85	22.51	L1	OFF	19.9
0.439440		19.19	47.07	27.88	L1	OFF	19.9
0.439440	25.73		57.07	31.34	L1	OFF	19.9
0.495330		17.38	46.08	28.70	L1	OFF	19.9
0.495330	22.27		56.08	33.81	L1	OFF	19.9
0.552570		18.59	46.00	27.41	L1	OFF	19.9
0.552570	24.93		56.00	31.07	L1	OFF	19.9

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 412915 Mode 1 120Vac/60Hz Neutral

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.152903		29.85	55.84	25.99	Ν	OFF	19.9
0.152903	48.97		65.84	16.87	Ν	OFF	19.9
0.156750		29.44	55.63	26.19	Ν	OFF	19.9
0.156750	48.42		65.63	17.21	Ν	OFF	19.9
0.197160		23.49	53.73	30.24	Ν	OFF	19.9
0.197160	40.92		63.73	22.81	Ν	OFF	19.9
0.438000		19.10	47.10	28.00	Ν	OFF	19.9
0.438000	25.00		57.10	32.10	Ν	OFF	19.9
0.499020		16.53	46.02	29.49	Ν	OFF	19.9
0.499020	20.62		56.02	35.40	Ν	OFF	19.9
0.543750		17.08	46.00	28.92	Ν	OFF	19.9
0.543750	20.97		56.00	35.03	Ν	OFF	19.9

Appendix C. Radiated Spurious Emission

Test Engineer :	Fu Chen, Sam Chou and Troye Hsieh	Temperature :	18.9~22.1°C
rest Engineer .		Relative Humidity :	43.7~67.1%

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2384.655	51.07	-22.93	74	41.71	27.45	16.71	34.8	200	312	Р	Н
		2383.29	45.25	-8.75	54	35.91	27.43	16.71	34.8	200	312	А	Н
	*	2404	105.93	-	-	96.5	27.5	16.73	34.8	200	312	Р	Н
	*	2404	105.03	-	-	95.6	27.5	16.73	34.8	200	312	А	Н
BLE													Н
CH 02 2404MHz		2351.055	50.9	-23.1	74	41.71	27.3	16.68	34.79	300	88	Р	V
240411172		2352.63	44.85	-9.15	54	35.66	27.3	16.68	34.79	300	88	А	V
	*	2404	110.4	-	-	100.97	27.5	16.73	34.8	300	88	Р	V
	*	2404	109.37	-	-	99.94	27.5	16.73	34.8	300	88	А	V
													V
		2310.48	50.65	-23.35	74	41.49	27.3	16.65	34.79	300	221	Р	Н
		2325.68	44.86	-9.14	54	35.75	27.24	16.66	34.79	300	221	А	Н
	*	2440	104.15	-	-	94.57	27.6	16.78	34.8	300	221	Р	Н
	*	2440	103.29	-	-	93.71	27.6	16.78	34.8	300	221	А	Н
		2484.8	50.82	-23.18	74	41.08	27.7	16.84	34.8	300	221	Р	Н
BLE		2499.68	44.8	-9.2	54	35.04	27.7	16.86	34.8	300	221	А	Н
CH 38 2440MHz		2385.2	50.52	-23.48	74	41.16	27.45	16.71	34.8	300	86	Р	V
2440101112		2389.36	44.87	-9.13	54	35.47	27.49	16.71	34.8	300	86	А	V
	*	2440	108.81	-	-	99.23	27.6	16.78	34.8	300	86	Р	V
	*	2440	107.48	-	-	97.9	27.6	16.78	34.8	300	86	А	V
		2498.24	51.26	-22.74	74	41.5	27.7	16.86	34.8	300	86	Р	V
		2494.88	45.26	-8.74	54	35.5	27.7	16.86	34.8	300	86	А	V

	*	2478	105.02	-	-	95.31	27.68	16.83	34.8	250	211	Р	Н
	*	2478	104.13	-	-	94.42	27.68	16.83	34.8	250	211	А	Н
		2483.56	51.4	-22.6	74	41.66	27.7	16.84	34.8	250	211	Ρ	Н
		2491.16	45.12	-8.88	54	35.37	27.7	16.85	34.8	250	211	А	Н
BLE													Н
CH 76													Н
2478MHz	*	2478	109.52	-	-	99.81	27.68	16.83	34.8	350	84	Р	V
24700012	*	2478	108.62	-	-	98.91	27.68	16.83	34.8	350	84	А	V
		2485.4	51.61	-22.39	74	41.87	27.7	16.84	34.8	350	84	Ρ	V
		2483.68	45.33	-8.67	54	35.59	27.7	16.84	34.8	350	84	А	V
													V
													V
Remark		o other spurious results are PA		Peak and	Average lir	nit line.							

2.4GHz 2400~2483.5MHz

	r		1	r	BLE (Harm	ionic @ 3i	n)		-	-	-	F	-
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4808	39.97	-34.03	74	53.51	32.45	11.81	57.8	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 02		4808	40.5	-33.5	74	54.04	32.45	11.81	57.8	-	-	Р	V
2404MHz													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
												1	v

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	4140
		(MHz) 4880	(dBµV/m) 40.91	(dB) -33.09	(dBµV/m) 74	(dBµV) 54.22	(dB/m) 32.7	(dB) 11.81	(dB) 57.82	(cm)	(deg)	P P	(H/V) H
			44.12	-29.88	74			14.77				P	
		7320	44.12	-29.00	74	50.98	36.82	14.77	58.45	-	-	P	н
													н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 38													Н
2440MHz		4880	41.63	-32.37	74	54.94	32.7	11.81	57.82	-	-	Р	V
2		7320	45.26	-28.74	74	52.12	36.82	14.77	58.45	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		(H/V)
		4956	41.84	-32.16	74	54.86	33.02	11.81	57.85	-	-	Р	Н
		7434	43.31	-30.69	74	50.49	36.33	14.9	58.41	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE CH 76													Н
2478MHz		4956	41.48	-32.52	74	54.5	33.02	11.81	57.85	-	-	Р	V
24701112		7434	44.64	-29.36	74	51.82	36.33	14.9	58.41	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.										
Remark	2. Al	l results are PA	SS against F	Peak and	Average lim	it line.							
	3. Th	e emission pos	ition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
	flo	or only.											

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2367.96	50.87	-23.13	74	41.66	27.3	16.7	34.79	150	329	Р	Н
		2355.045	45.07	-8.93	54	35.87	27.3	16.69	34.79	150	329	А	Н
	*	2404	105.39	-	-	95.96	27.5	16.73	34.8	150	329	Р	н
	*	2404	104.53	-	-	95.1	27.5	16.73	34.8	150	329	А	Н
BLE													Н
CH 02													Н
2404MHz		2370.27	50.91	-23.09	74	41.7	27.3	16.7	34.79	300	88	Р	V
		2389.17	45.61	-8.39	54	36.21	27.49	16.71	34.8	300	88	А	V
	*	2404	109.35	-	-	99.92	27.5	16.73	34.8	300	88	Р	V
	*	2404	108.38	-	-	98.95	27.5	16.73	34.8	300	88	А	V
													V
													V
		2312.72	50.58	-23.42	74	41.42	27.3	16.65	34.79	100	316	Р	Н
		2388.4	44.61	-9.39	54	35.22	27.48	16.71	34.8	100	316	А	Н
	*	2440	105	-	-	95.42	27.6	16.78	34.8	100	316	Р	Н
	*	2440	102.72	-	-	93.14	27.6	16.78	34.8	100	316	А	Н
		2491.68	51.13	-22.87	74	41.38	27.7	16.85	34.8	100	316	Р	Н
BLE		2498.88	45.05	-8.95	54	35.29	27.7	16.86	34.8	100	316	А	Н
CH 38 2440MHz		2388.24	50.93	-23.07	74	41.54	27.48	16.71	34.8	300	86	Ρ	V
2440101712		2383.28	45.33	-8.67	54	35.99	27.43	16.71	34.8	300	86	А	V
	*	2440	110.65	-	-	101.07	27.6	16.78	34.8	300	86	Р	V
	*	2440	108.32	-	-	98.74	27.6	16.78	34.8	300	86	А	V
		2499.2	50.99	-23.01	74	41.23	27.7	16.86	34.8	300	86	Р	V
		2496.72	45.24	-8.76	54	35.48	27.7	16.86	34.8	300	86	А	V

	*	2478	106.49	-	-	96.78	27.68	16.83	34.8	250	334	Р	Н
	*	2478	105.56	-	-	95.85	27.68	16.83	34.8	250	334	А	н
		2499.76	51	-23	74	41.24	27.7	16.86	34.8	250	334	Р	Н
		2483.76	45.04	-8.96	54	35.3	27.7	16.84	34.8	250	334	А	Н
													Н
BLE													Н
CH 76 2478MHz	*	2478	108.93	-	-	99.22	27.68	16.83	34.8	300	86	Р	V
	*	2478	108	-	-	98.29	27.68	16.83	34.8	300	86	А	V
		2488.84	51.35	-22.65	74	41.6	27.7	16.85	34.8	300	86	Ρ	V
		2493.36	45.32	-8.68	54	35.56	27.7	16.86	34.8	300	86	А	V
													V
													V
Remark		o other spurious results are PA		Peak and <i>i</i>	Average lii	mit line.							

2.4GHz 2400~2483.5MHz

		-			BLE (Harm	ionic @ 3i	m)	-	F			-	
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		-	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4808	41.39	-32.61	74	54.93	32.45	11.81	57.8	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 02		4808	41.51	-32.49	74	55.05	32.45	11.81	57.8	-	-	Р	V
2404MHz													V
													V
													V
													V
													V
													V
													V
													V
													v
													V
													V
													v

BLE (Harmonic @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		4880	40.65	-33.35	74	53.96	32.7	11.81	57.82	-	-	P	H
		7320	44.49	-29.51	74	51.35	36.82	14.77	58.45	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 38													Н
2440MHz		4880	41.19	-32.81	74	54.5	32.7	11.81	57.82	-	-	Р	V
		7320	44.97	-29.03	74	51.83	36.82	14.77	58.45	-	-	Р	V
													V
													V
													V
													V
													V
													V V
													v v
													v v
													V
													v

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4956	42.32	-31.68	74	55.34	33.02	11.81	57.85	-	-	Р	Н
		7434	42.89	-31.11	74	50.07	36.33	14.9	58.41	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 76													Н
2478MHz		4956	42.41	-31.59	74	55.43	33.02	11.81	57.85	-	-	Р	V
		7434	43.79	-30.21	74	50.97	36.33	14.9	58.41	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
		o other spurious											
Remark		results are PA											
		e emission pos	sition marked	as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	nst limit	line or	noise
	flo	or only.											

Emission above 18GHz

2.4GHz BLE (SHF)

BT	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		24503	38.92	-35.08	74	36.25	39.1	17.07	53.5	-	-	Ρ	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE		24958	38.88	-35.12	74	35.22	39.27	17.71	53.32	-	-	Р	V
SHF													V
													V
													V
													V
													V
													V
													V
													V
													V
													v
													v
	1. N	o other spuriou	s found										v
		l results are PA		mit line									
Remark		ne emission pos			eans no sus	pected em	ission found	d with suf	ficient mar	ain adai	inst limit	line or	noise
		or only.								J 494			

Emission below 1GHz

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Poak	Pol
		Trequency		Margin	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	1 01.
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	(H/V
		30.27	33.45	-6.55	40	41.33	23.91	0.67	32.46	-	-	Ρ	Н
		184.17	25.98	-17.52	43.5	41.62	14.63	1.78	32.05	-	-	Р	Н
		212.52	25.94	-17.56	43.5	41.54	14.76	1.95	32.31	-	-	Р	Н
		944	32.72	-13.28	46	29.08	30.18	4.52	31.06	-	-	Ρ	Н
		958.7	33.99	-12.01	46	29.37	30.95	4.56	30.89	-	-	Р	Н
		983.2	34.45	-19.55	54	29.7	30.73	4.61	30.59	-	-	Р	Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE													Н
LF		30	32.62	-7.38	40	40.41	24	0.67	32.46	-	-	Р	V
		43.5	33.45	-6.55	40	47.44	17.62	0.68	32.29	-	-	Р	V
		186.87	26.56	-16.94	43.5	42.25	14.62	1.79	32.1	-	-	Р	V
		945.4	33.5	-12.5	46	29.76	30.27	4.52	31.05	-	-	Р	V
		955.9	33.51	-12.49	46	28.98	30.91	4.55	30.93	-	-	Ρ	V
		970.6	34.73	-19.27	54	29.78	31.12	4.58	30.75	-	-	Р	V
													V
													V
													V
													V
													V
													V
Remark		o other spurious results are PA		mit line.									
Neilidi N	3. Th	e emission pos	sition marked	l as "-" m	eans no sus	pected err	nission foun	d and em	ission leve	el has a	t least 60	dB ma	rgin
	ag	ainst limit or er	nission is no	ise floor	only.								

2.4GHz BLE (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is Margin line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	A	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin (dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

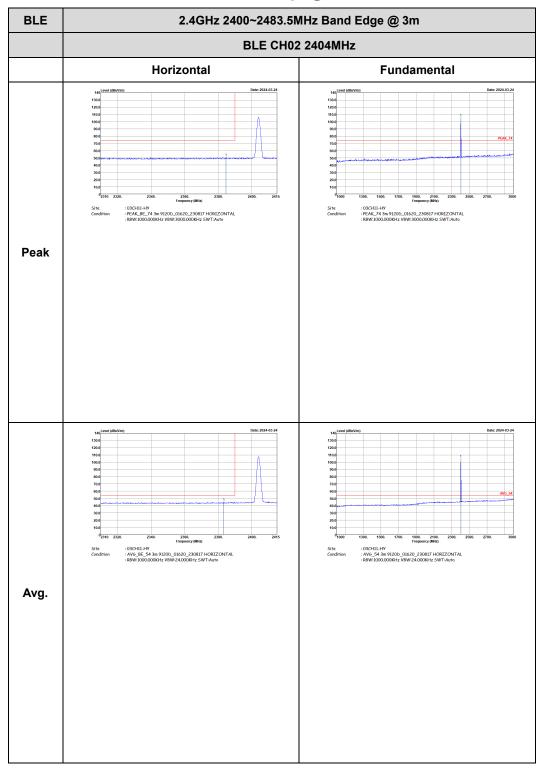
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

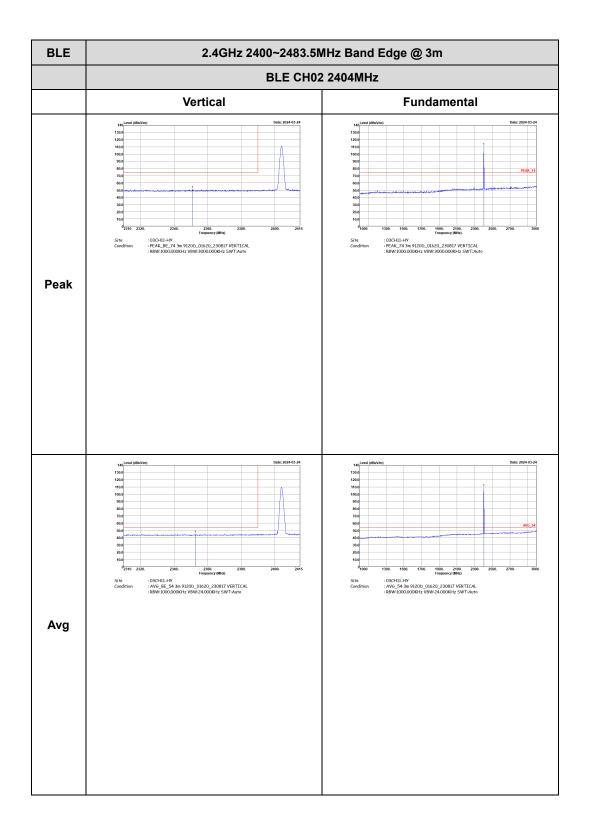
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Radiated Spurious Emission Plots

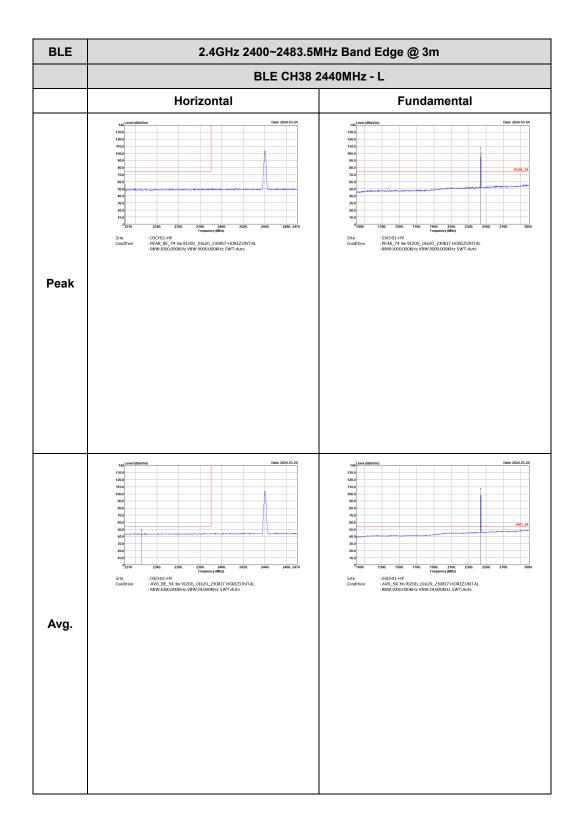
Test Engineer :	Fu Chen, Sam Chou and Troye Hsieh	Temperature :	18.9~22.1°C
rest Engineer .		Relative Humidity :	43.7~67.1%

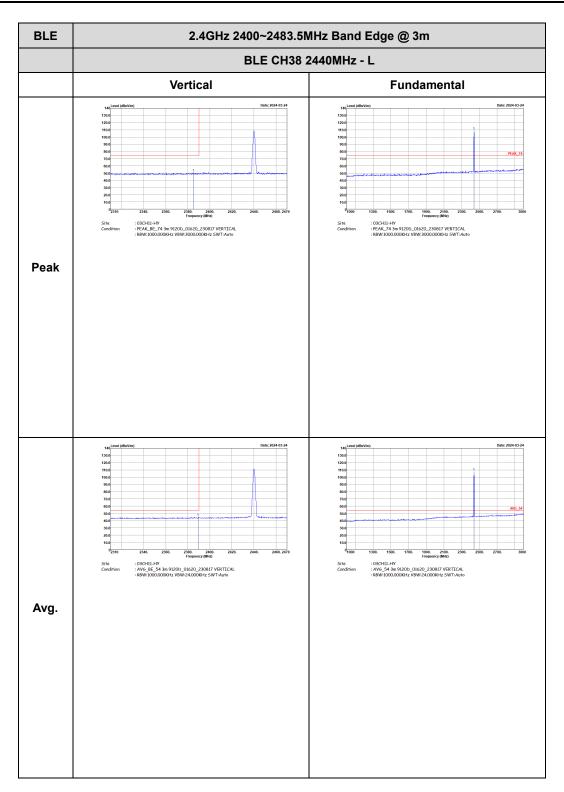
Note symbol


-L	Low channel location
-R	High channel location

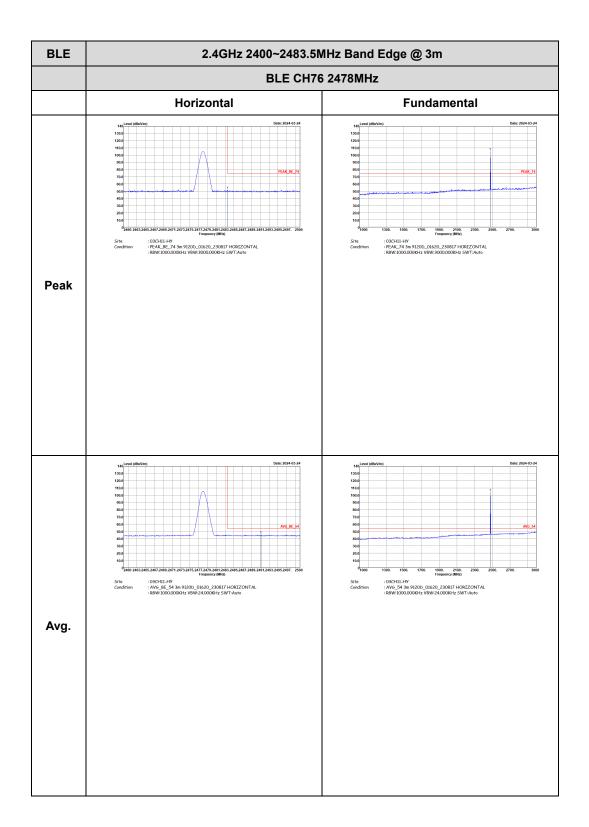

<1Mbps>

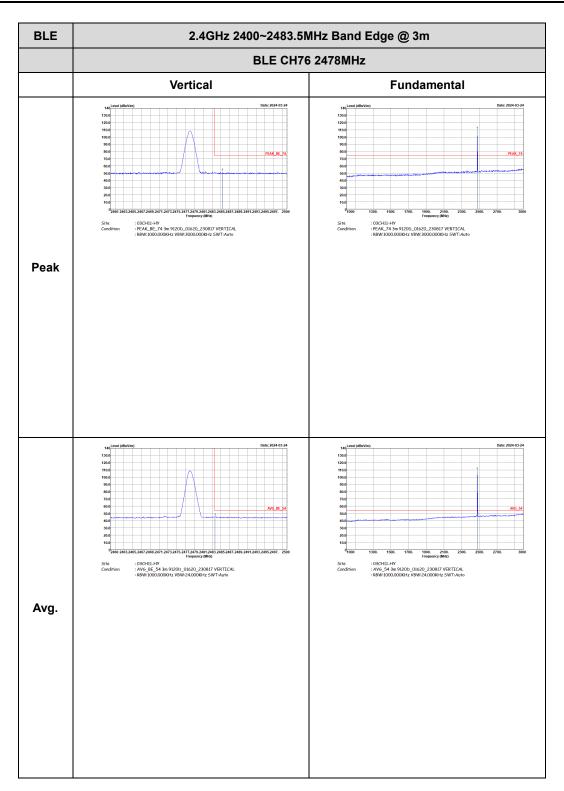
2.4GHz 2400~2483.5MHz


BLE (Band Edge @ 3m)

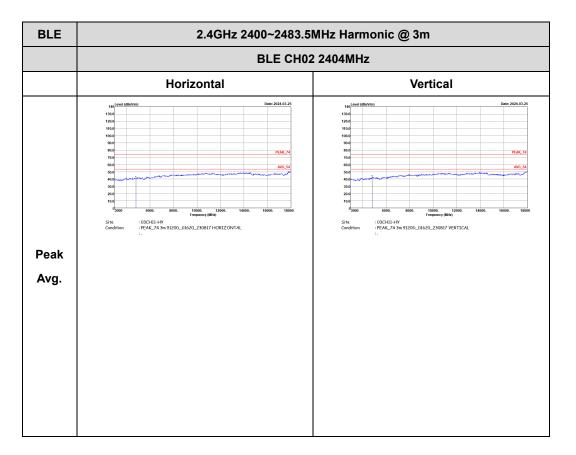


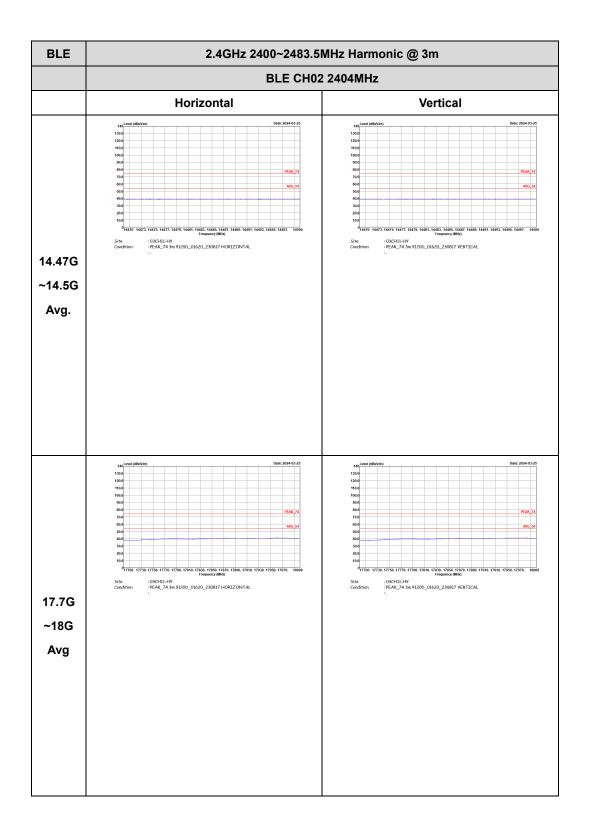
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m						
	BLE CH38 244	40MHz - R					
	Horizontal	Fundamental					
Peak	production of the second secon	Left blank					
Avg.	Image: Contract of the second seco	Left blank					



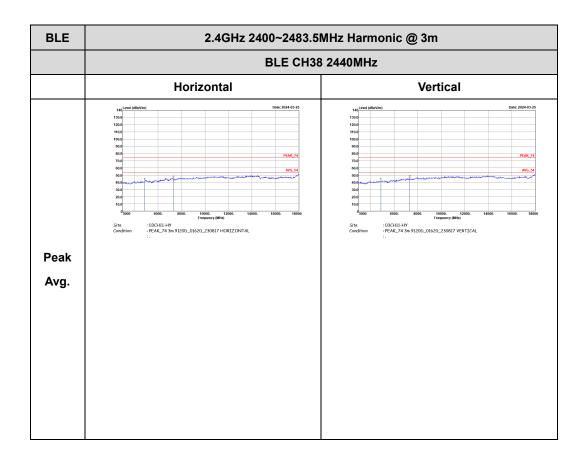


BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m						
	BLE CH38 2	2440MHz - R					
	Vertical	Fundamental					
Peak	Herrichten Bergehalt und sind sind sind sind sind sind sind si	Left blank					
Avg.	Image: constraint of the second se	Left blank					

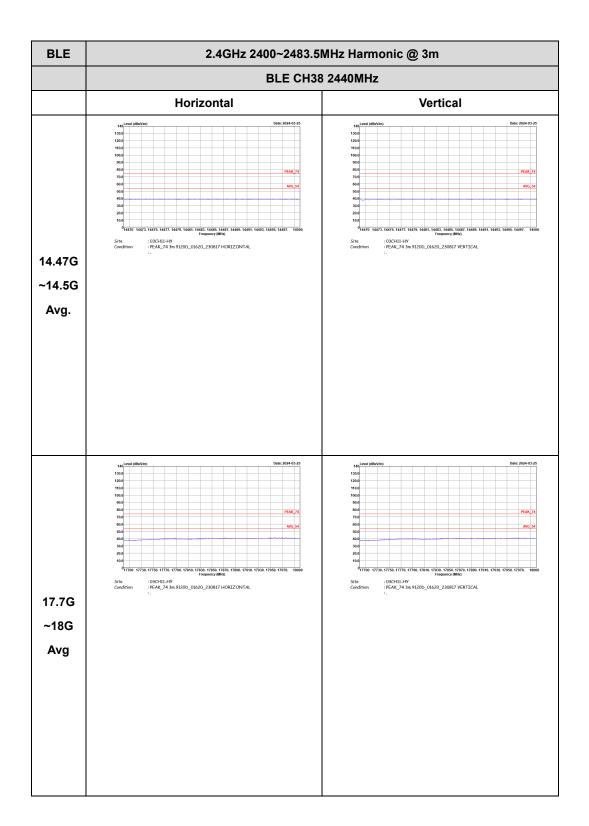


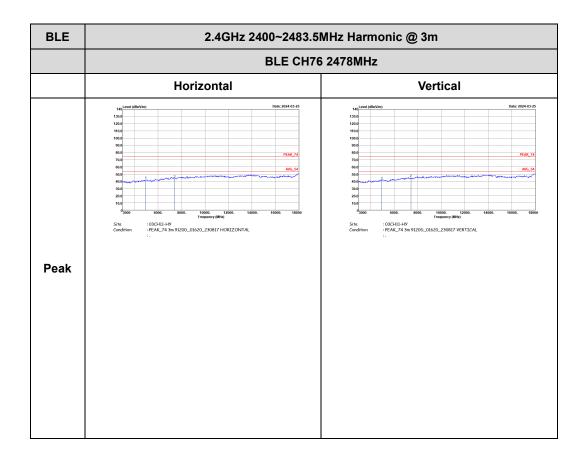


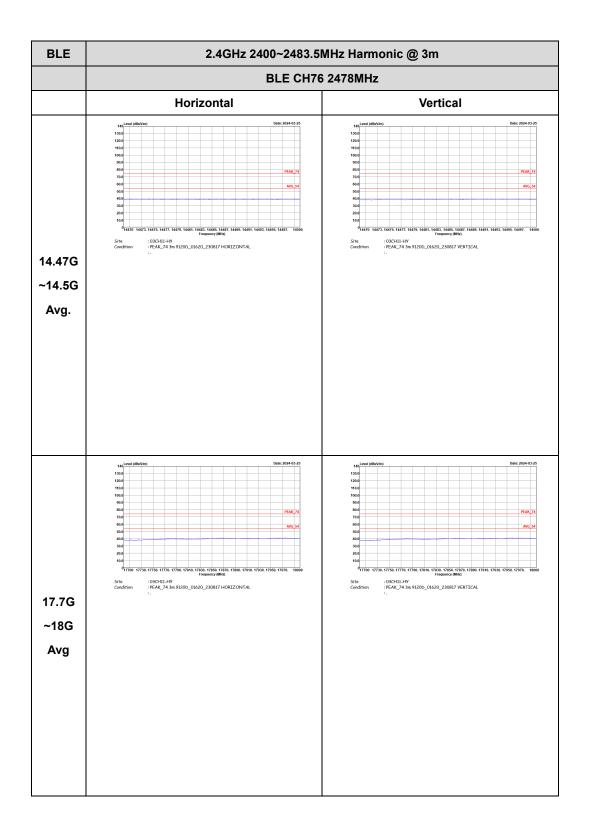
2.4GHz 2400~2483.5MHz

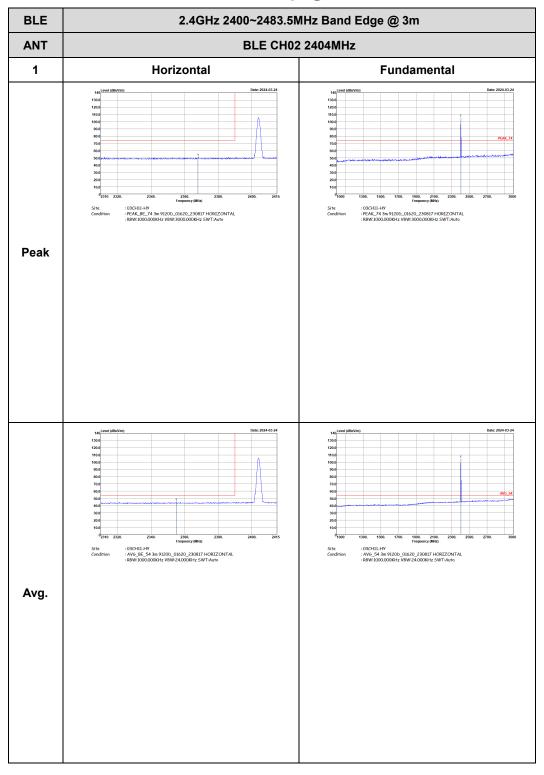


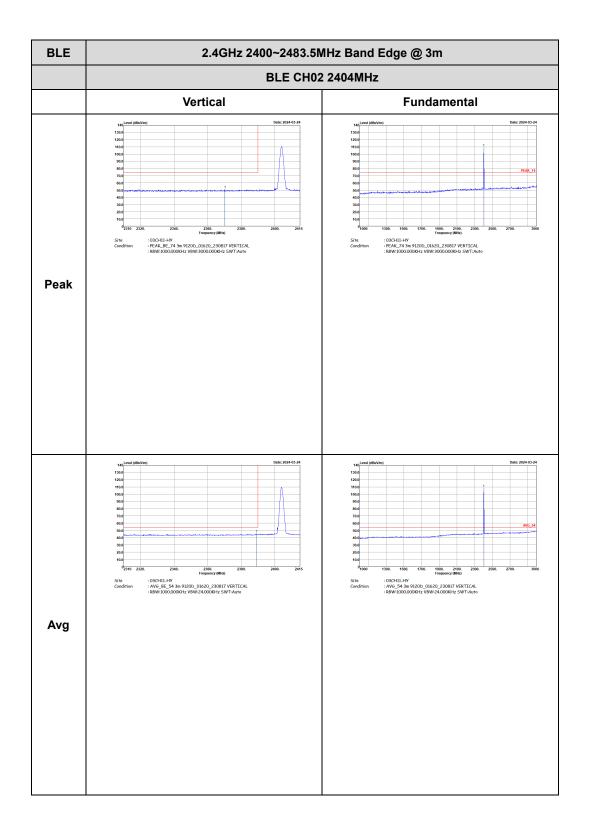
BLE (Harmonic @ 3m)



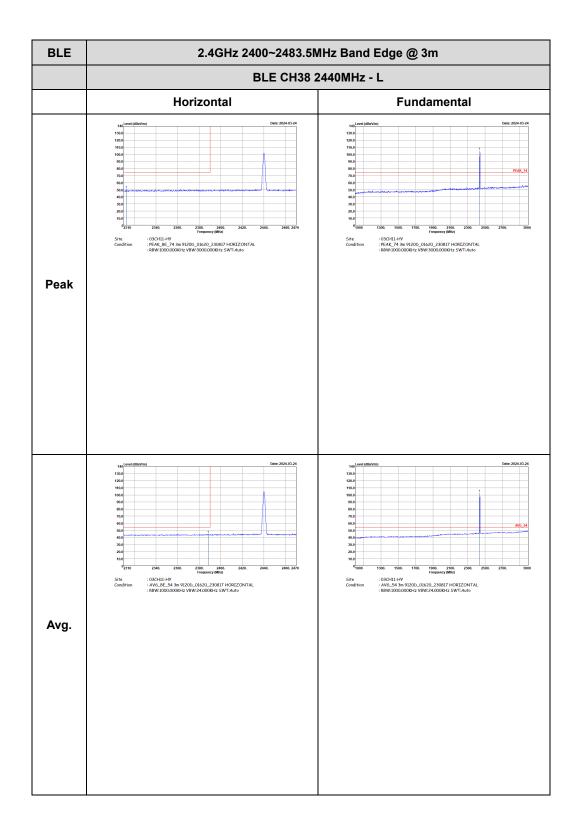


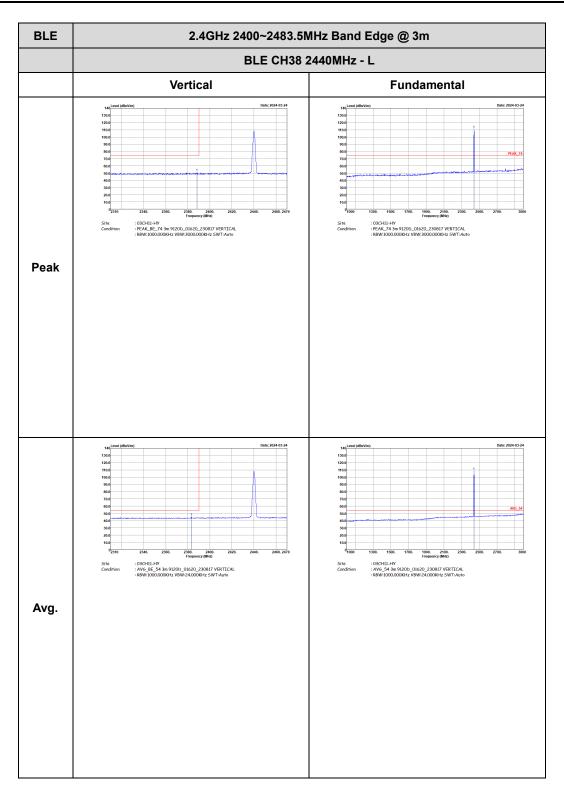




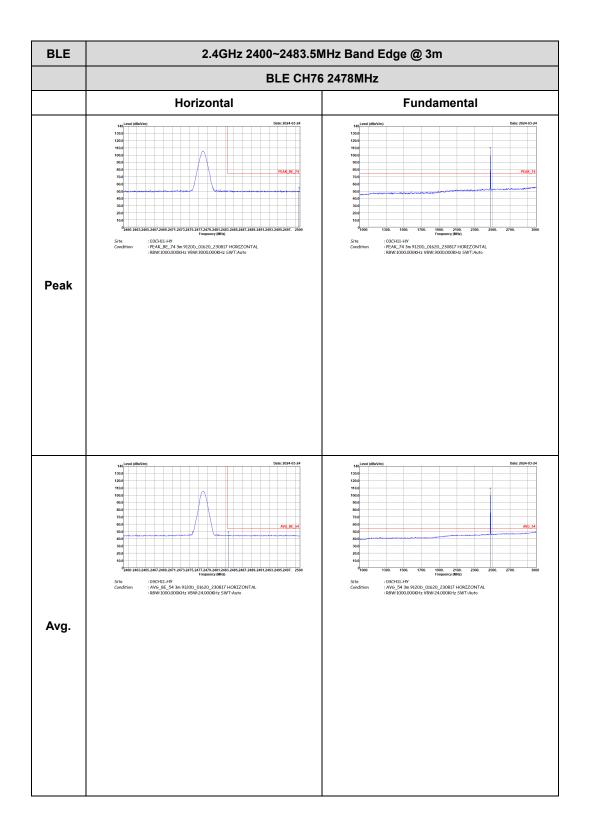

<2Mbps>

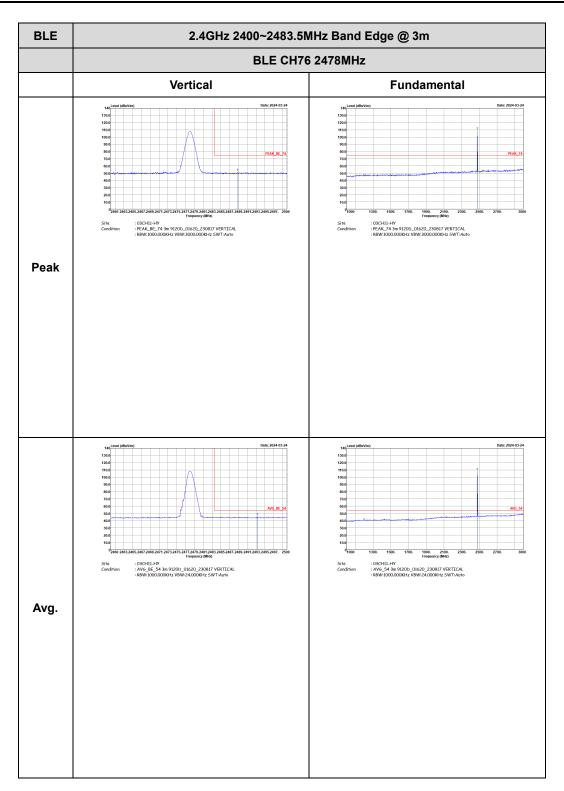
2.4GHz 2400~2483.5MHz


BLE (Band Edge @ 3m)

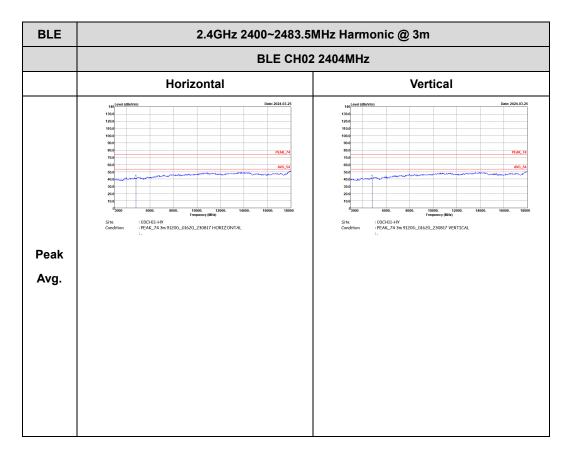


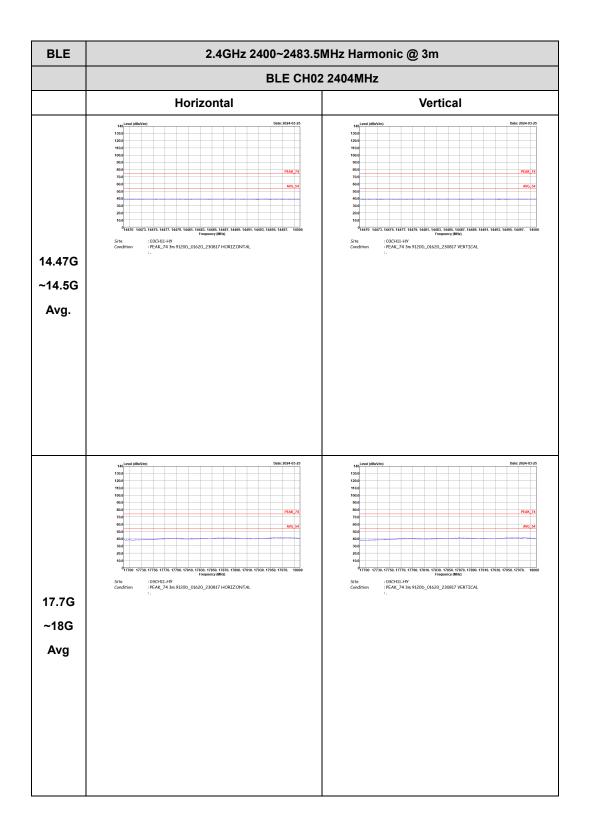
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH38 2440MHz - R					
	Horizontal	Fundamental				
Peak	Hereinstein Det 2000 de la construcción de	Left blank				
Avg.	Image: With the second seco	Left blank				



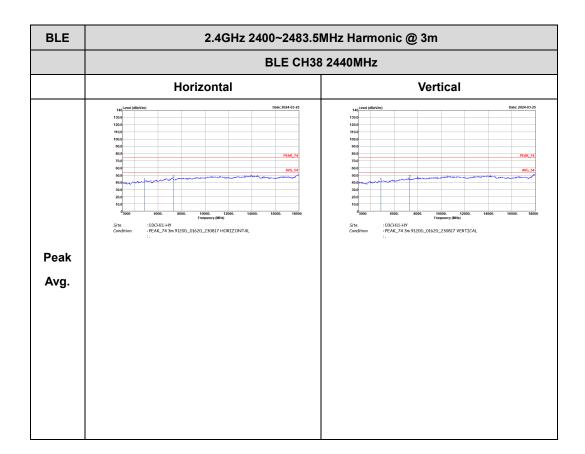


BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m				
	BLE CH38 2440MHz - R				
	Vertical	Fundamental			
Peak	Transmission of the state of	Left blank			
Avg.	Image: contract of the second seco	Left blank			

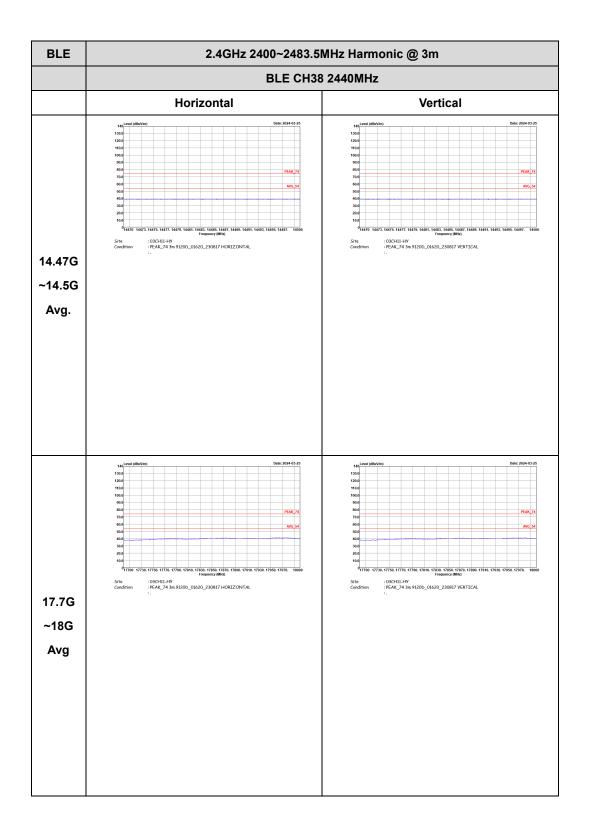


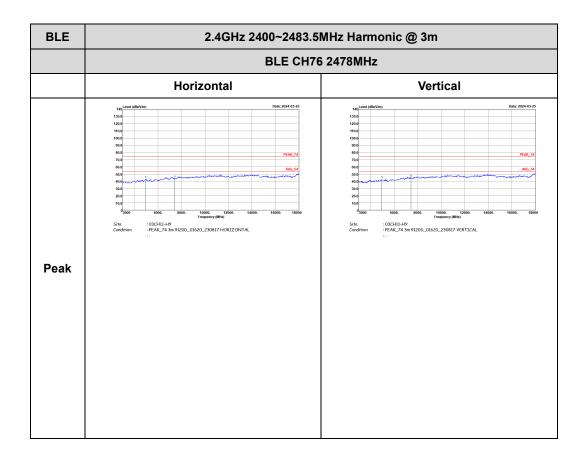


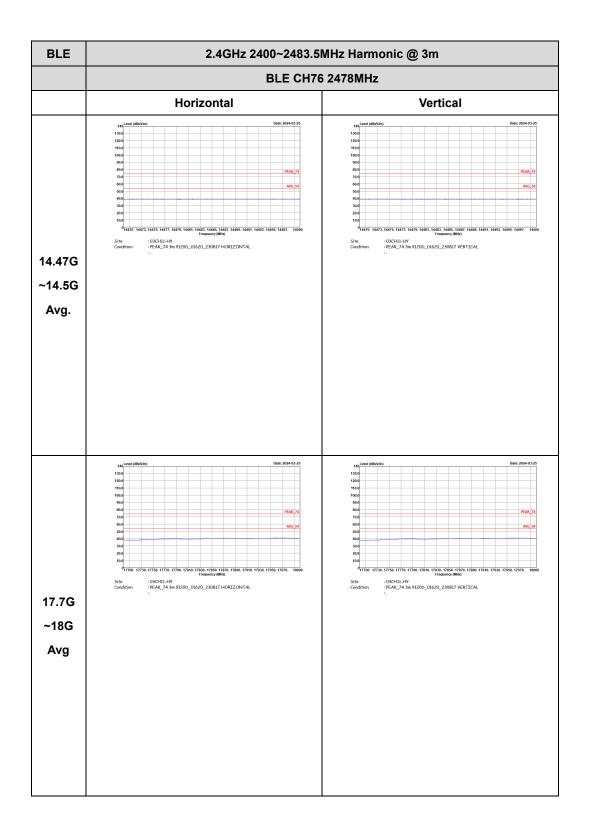
2.4GHz 2400~2483.5MHz

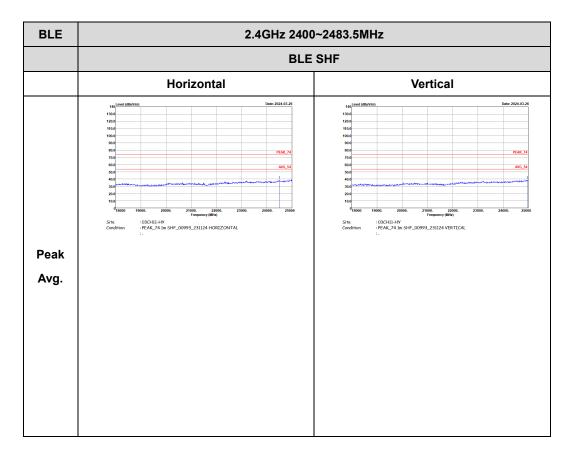


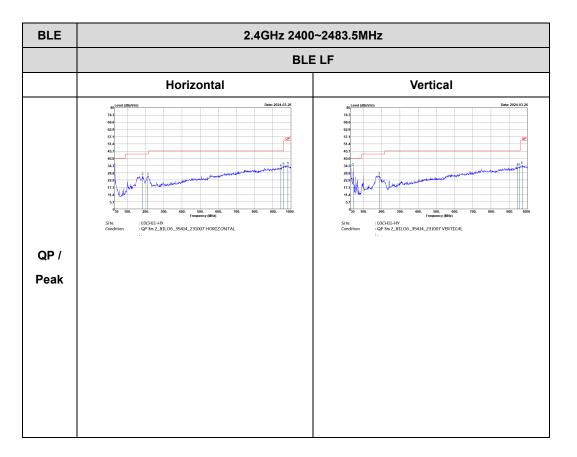
BLE (Harmonic @ 3m)





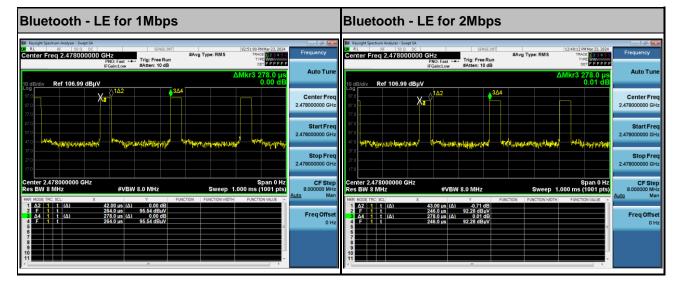





Emission above 18GHz

2.4GHz BLE (SHF @ 1m)

Emission below 1GHz



2.4GHz BLE (LF)

Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth - LE ASK for 1Mbps	15.11	42	23.810	24kHz
Bluetooth - LE ASK for 2Mbps	15.47	43	23.256	24kHz

—THE END——