

FCC RADIO TEST REPORT

FCC ID	: A4RGBDU9
Equipment	: Wireless Device
Model Name	: GBDU9
Applicant	: Google LLC 1600 Amphitheatre Parkway, Mountain View, California, 94043 USA
Standard	: FCC Part 15 Subpart C §15.247

The product was received on Feb. 06, 2024 and testing was performed from Feb. 22, 2024 to Mar. 28, 2024. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

TEL: 886-3-327-0868
FAX: 886-3-327-0855
Report Template No.: BU5-FR15CBT Version 2.4

Page Number: 1 of 27Issue Date: Jun. 26, 2024Report Version: 04

Table of Contents

His	tory o	f this test report	.3
Sur	nmary	of Test Result	.4
1	Gene	ral Description	.5
	1.1	Product Feature of Equipment Under Test	.5
	1.2	Modification of EUT	.5
	1.3	Testing Location	.6
	1.4	Applicable Standards	.6
2	Test	Configuration of Equipment Under Test	.7
	2.1	Carrier Frequency Channel	.7
	2.2	Test Mode	.8
	2.3	Connection Diagram of Test System	.9
	2.4	Support Unit used in test configuration and system1	0
	2.5	EUT Operation Test Setup1	0
	2.6	Measurement Results Explanation Example1	0
3	Test	Result1	1
	3.1	Number of Channel Measurement1	
	3.2	Hopping Channel Separation Measurement1	
	3.3	Dwell Time Measurement1	3
	3.4	20dB and 99% Bandwidth Measurement1	
	3.5	Output Power Measurement1	5
	3.6	Conducted Band Edges Measurement1	
	3.7	Conducted Spurious Emission Measurement1	
	3.8	Radiated Band Edges and Spurious Emission Measurement1	
	3.9	AC Conducted Emission Measurement	
	3.10	Antenna Requirements	<u>2</u> 4
4		of Measuring Equipment	
5	Meas	urement Uncertainty2	27
Арр	pendix	A. Conducted Test Results	
		B. AC Conducted Emission Test Result	
		C. Radiated Spurious Emission	
App	pendix	D. Radiated Spurious Emission Plots	

Appendix E. Duty Cycle Plots

Appendix F. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR412509J	01	Initial issue of report	Apr. 23, 2024
FR412509J	02	Revise Appendix A. This report is an updated version, replacing the report issued on Apr. 23, 2024	Apr. 29, 2024
FR412509J	03	Revise Appendix A. This report is an updated version, replacing the report issued on Apr. 29, 2024	May 02, 2024
FR412509J	04	Revise typo This report is an updated version, replacing the report issued on May 02, 2024.	Jun. 26, 2024

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(1)	Number of Channels	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	Pass	-
3.4	2.1049	99% Occupied Bandwidth	Reporting only	-
3.5	15.247(b)(1) 15.247(b)(4)	Peak Output Power	Pass	-
3.6	15.247(d)	Conducted Band Edges	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	6.69 dB under the limit at 43.23 MHz
3.9	15.207	AC Conducted Emission	Pass	17.83 dB under the limit at 0.15 MHz
3.10	15.203	Antenna Requirement Pass		-

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Yun Huang

Report Producer: Mila Chen

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature

General Specs

WCDMA/LTE, Bluetooth, BLE, BLE (CH2-76), Wi-Fi 2.4GHz 802.11b/g/n/ax, Wi-Fi 5GHz 802.11a/n/ac/ax, NFC, UWB and GPS.

Antenna Type

Bluetooth: PIFA Antenna

EUT Information List					
S/N Performed Test Item					
1JE65010697050541D0381C RF Conducted Measurement					
41171JEAVL0007	Radiated Spurious Emission				
41291JEAVL007H	Conducted Emission				
Antenna information					
2400 MHz ~ 2483.5 MHz Peak G	Gain (dBi) -6.1				

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory	
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855	
Test Site No.	Sporton Site No.	
	TH05-HY, CO07-HY, 03CH11-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

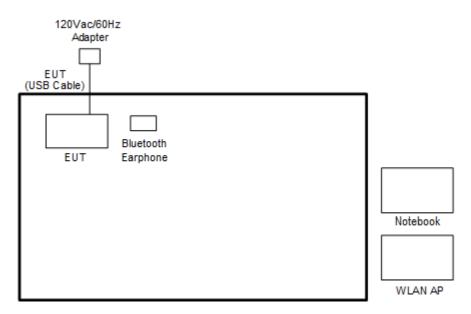
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

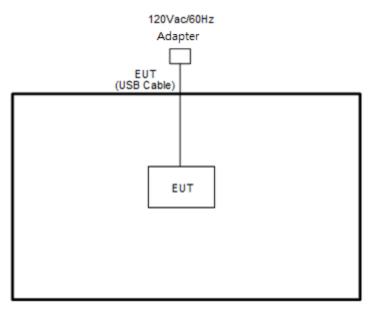
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	2	2404	32	2434	59	2461
	3	2405	33	2435	60	2462
	4	2406	34	2436	61	2463
	5	2407	35	2437	62	2464
	6	2408	36	2438	63	2465
	7	2409	37	2439	64	2466
	8	2410	38	2440	65	2467
	9	2411	39	2441	66	2468
	10	2412	40	2442	67	2469
	11	2413	41	2443	68	2470
	12	2414	42	2444	69	2471
	13	2415	43	2445	70	2472
	14	2416	44	2446	71	2473
2404-2478 MHz	15	2417	45	2447	72	2474
	16	2418	46	2448	73	2475
	17	2419	47	2449	74	2476
	18	2420	48	2450	75	2477
	19	2421	49	2451	76	2478
	20	2422	50	2452	-	-
	21	2423	51	2453	-	-
	22	2424	52	2454	-	-
	26	2428	53	2455	-	-
	27	2429	54	2456	-	-
	28	2430	55	2457	-	-
	29	2431	56	2458	-	-
	30	2432	57	2459	-	-
	31	2433	58	2460	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find X plane with Adapter as worst plane, and the worst mode of radiated spurious emissions is Bluetooth 2Mbps mode, and recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


Summary table of Test Cases							
Test Item	Data Rate / Modulation						
	Bluetooth LE 1Mbps ASK	Bluetooth LE 2Mbps ASK					
Conducted	Mode 1: CH02_2404 MHz	Mode 4: CH02_2404 MHz					
Test Cases	Mode 2: CH38_2440 MHz	Mode 5: CH38_2440 MHz					
	Mode 3: CH76_2478 MHz Mode 6: CH76_2478 MHz						
	Bluetoot	h LE ASK					
	Mode 1: CH02_2	2404 MHz_1Mbps					
Radiated	Mode 2: CH38_2	2440 MHz_1Mbps					
Test Cases	Mode 3: CH76_2478 MHz_1Mbps						
1031 04303	Mode 4: CH02_2404 MHz_2Mbps						
	Mode 5: CH38_2440 MHz_2Mbps						
	Mode 6: CH76_2478 MHz_2Mbps						
AC Conducted	Mode 1 :Bluetooth Link + WLAN (2.4GHz) Link + USB Cable (Charging from AC						
Emission	Adapter)						
	Remark: For Radiated Test Cases, the worst mode data rate 2Mbps was reported only since the						
-	highest RF output power in the preliminary tests. The conducted spurious emissions and						
	conducted band edge measurement for other data rates were not worse than 2Mbps, and						
no otne	no other significantly frequencies found in conducted spurious emission.						

The following summary table is showing all test modes to demonstrate in compliance with the standard.



2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

<Bluetooth-LE Tx Mode>

TEL: 886-3-327-0868	Page Number	: 9 of 27
FAX: 886-3-327-0855	Issue Date	: Jun. 26, 2024
Report Template No.: BU5-FR15CBT Version 2.4	Report Version	: 04

2.4 Support Unit used in test configuration and system
--

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Earphone	Sony	SBH20	PY7-RD0010	N/A	N/A
2.	WLAN AP	ASUS	RT-AC52	MSQ-RTAC4A00	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	AC Adapter	Chicony	G9BR1	N/A	N/A	N/A
5.	AC Adapter	Aohai	G9BR1	N/A	N/A	N/A

2.5 EUT Operation Test Setup

The RF test items, utility "Cmd Version 1.0.39" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

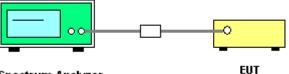
= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings: Span = the frequency band of operation;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. The number of hopping frequency used is defined as the number of total channel.
- 7. Record the measurement data derived from spectrum analyzer.

3.1.4 Test Setup

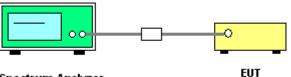
Spectrum Analyzer

3.1.5 Test Result of Number of Hopping Frequency

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.2.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- Use the following spectrum analyzer settings:
 Span = wide enough to capture the peaks of two adjacent channels;
 RBW = 300 kHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

3.2.4 Test Setup

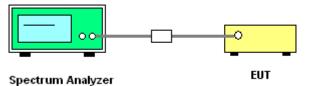
Spectrum Analyzer

3.2.5 Test Result of Hopping Channel Separation

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.4.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Enable the EUT hopping function.
- 5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW ≥ RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
- 6. Measure and record the results in the test report.

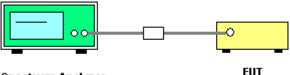
3.3.4 Test Setup

3.3.5 Test Result of Dwell Time

3.4 20dB and 99% Bandwidth Measurement

3.4.1 Limit of 20dB and 99% Bandwidth

Reporting only


3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 6.9.2 and 6.9.3.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Use the following spectrum analyzer settings for 20 dB Bandwidth measurement.
 Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel;
 RBW ≥ 1% of the 20 dB bandwidth; VBW ≥ RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- Use the following spectrum analyzer settings for 99 % Bandwidth measurement.
 Span = approximately 1.5 to 5 times the 99% bandwidth, centered on a hopping channel;
 RBW ≥ 1-5% of the 99% bandwidth; VBW ≥ 3 * RBW; Sweep = auto; Detector function = peak;
 Trace = max hold.
- 6. Measure and record the results in the test report.

3.4.4 Test Setup

Spectrum Analyzer

3.4.5 Test Result of 20dB Bandwidth

Please refer to Appendix A.

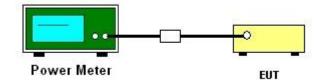
3.4.6 Test Result of 99% Occupied Bandwidth

3.5 Output Power Measurement

3.5.1 Limit of Output Power

The maximum peak conducted output power of the intentional radiator shall not exceed the following: For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. If directional gain of transmitting antennas is greater than 6 dBi, the power shall be reduced by the

same level in dB comparing to gain minus 6 dBi.


3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.5.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.5.
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power with cable loss and record the results in the test report.
- 5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

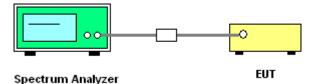
Please refer to Appendix A.

3.5.6 Test Result of Average Output Power (Reporting Only)

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.6.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The testing follows ANSI C63.10-2013 clause 7.8.6.
- 2. Set the maximum power setting and enable the EUT to transmit continuously.
- 3. Set RBW = 100 kHz, VBW = 300 kHz. Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
- 4. Enable hopping function of the EUT and then repeat step 2 and 3.
- 5. Measure and record the results in the test report.

3.6.4 Test Setup

3.6.5 Test Result of Conducted Band Edges

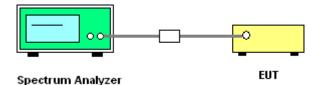
Please refer to Appendix A.

3.6.6 Test Result of Conducted Hopping Mode Band Edges

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.7.3 Test Procedure

- 1. The testing follows ANSI C63.10-2013 clause 7.8.8.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Set RBW = 100 kHz, VBW = 300 kHz, scan up through 10th harmonic. All harmonics / spurious must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.7.4 Test Setup

3.7.5 Test Result of Conducted Spurious Emission

3.8 Radiated Band Edges and Spurious Emission Measurement

3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics / spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

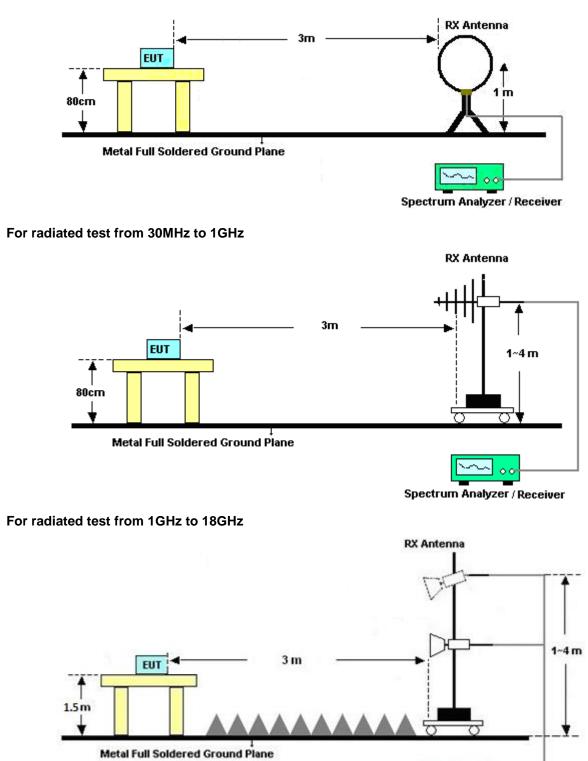
Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 - 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.8.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

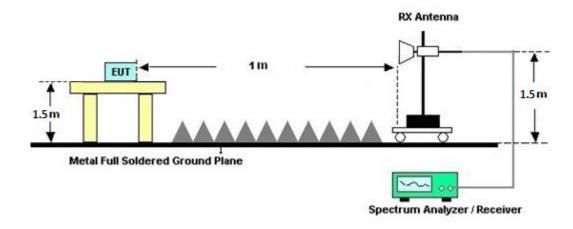
3.8.3 Test Procedures

- 1. The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 2. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 3. For each suspected emission, the EUT is arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz, RBW = 1 MHz for f>1 GHz ; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak


Average Emission Level = Peak Emission Level + 20*log (Duty cycle)

- 6. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 7. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 8. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

3.8.4 Test Setup


For radiated test below 30MHz

Spectrum Analyzer / Receiver

For radiated test above 18GHz

3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.8.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.8.7 Duty Cycle

Please refer to Appendix E.

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.9 AC Conducted Emission Measurement

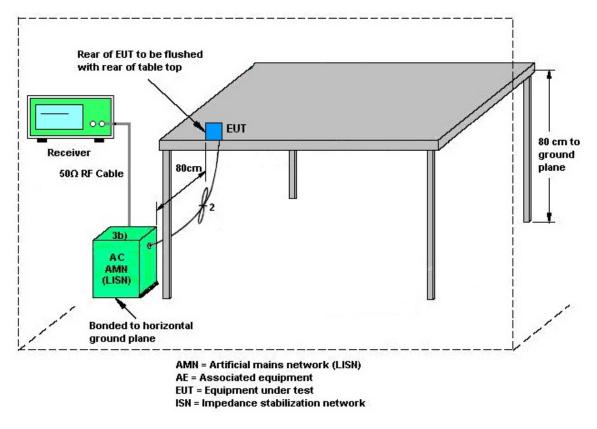
3.9.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)					
Frequency of emission (MHZ)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

3.9.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.9.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.9.4 Test Setup

3.9.5 Test Result of AC Conducted Emission

3.10 Antenna Requirements

3.10.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.10.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Brand Name Model No.		Serial No. Characteristics		Test Date	Due Date	Remark
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 07, 2023	Mar. 28, 2024	Nov. 06, 2024	Conducted (TH05-HY)
Power Meter	Anritsu	ML2495A	1036004	N/A	Jul. 27, 2023	Mar. 28, 2024	Jul. 26, 2024	Conducted (TH05-HY)
Power Sensor	Anritsu	MA2411B	1027253	300MHz~40GH z	Jul. 27, 2023	Mar. 28, 2024	Jul. 26, 2024	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 23, 2023	Mar. 28, 2024	Aug. 22, 2024	Conducted (TH05-HY)
Bilog Antenna	TESEQ	CBL 6111D & N-6-06	35414 & AT-N0602	30MHz~1GHz	Oct. 07, 2023	Feb. 22, 2024~ Mar. 26, 2024	Oct. 06, 2024	Radiation (03CH11-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 12, 2023	Feb. 22, 2024~ Mar. 26, 2024	Sep. 11, 2024	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-01620	1GHz~18GHz	Aug. 17, 2023	Feb. 22, 2024~ Mar. 26, 2024	Aug. 16, 2024	Radiation (03CH11-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	1223	18GHz~40GHz	Jul. 10, 2023	Feb. 22, 2024~ Mar. 26, 2024	Jul. 09, 2024	Radiation (03CH11-HY)
Amplifier	SONOMA	310N	310N 187312 9kHz~1GHz		Dec. 08, 2023	Feb. 22, 2024~ Mar. 26, 2024	Dec. 07, 2024	Radiation (03CH11-HY)
Preamplifier	E-INSTRUME NT TECH LTD.	ERA-10M-700 0-MR	EC1900245	10MHz-7GHz	Jan. 09, 2024	Feb. 22, 2024~ Mar. 26, 2024	Jan. 08, 2025	Radiation (03CH11-HY)
Preamplifier	Jet-Power	JPA0118-55-30 3	17100018000 55007	1GHz~18GHz	Jun. 14, 2023	Feb. 22, 2024~ Mar. 26, 2024	Jun. 13, 2024	Radiation (03CH11-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 27, 2023	Feb. 22, 2024~ Mar. 26, 2024	Jun. 26, 2024	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200486	10Hz~44GHz	Oct. 05, 2023	Feb. 22, 2024~ Mar. 26, 2024	Oct. 04, 2024	Radiation (03CH11-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Feb. 22, 2024~ Mar. 26, 2024	N/A	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Feb. 22, 2024~ Mar. 26, 2024	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Feb. 22, 2024~ Mar. 26, 2024	N/A	Radiation (03CH11-HY)
Software	Audix	E3 6.2009-8-24 RK-001053		N/A	N/A N/A		N/A	Radiation (03CH11-HY)
RF Cable	HUBER + SUCOFLEX		MY1595/2	30MHz~40GHz	Mar. 07, 2023	Feb. 22, 2024~ Mar. 05, 2024	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUCOELEX		30MHz~40GHz	Mar. 06, 2024	Mar. 06, 2024~ Mar. 26, 2024	Mar. 05, 2025	Radiation (03CH11-HY)	
RF Cable	HUBER + SUCOFLEX		30MHz~40GHz	Mar. 07, 2023	Feb. 22, 2024~ Mar. 05, 2024	Mar. 06, 2024	Radiation (03CH11-HY)	
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz~40GHz	Mar. 06, 2024	Mar. 06, 2024~ Mar. 26, 2024	Mar. 05, 2025	Radiation (03CH11-HY)

FCC RADIO TEST REPORT

Report No. : FR412509J

Instrument	Brand Name Model N		Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9K~30M	Mar. 07, 2023	Feb. 22, 2024~ Mar. 05, 2024	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9K~30M	Mar. 06, 2024	Mar. 06, 2024~ Mar. 26, 2024	Mar. 05, 2025	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	30M~40G	Mar. 07, 2023	Feb. 22, 2024~ Mar. 05, 2024	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	30M~40G	Mar. 06, 2024	Mar. 06, 2024~ Mar. 26, 2024	Mar. 05, 2025	Radiation (03CH11-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN11	1.53G Low Pass	Sep. 11, 2023	Feb. 22, 2024~ Mar. 26, 2024	Sep. 10, 2024	Radiation (03CH11-HY)
Filter	Wainwright	MHKX12-2700 -3000-18000-6 SN3 3GHz High 0SS Pass Filter Sep. 11, 2023		Sep. 11, 2023	Feb. 22, 2024~ Mar. 26, 2024	Sep. 10, 2024	Radiation (03CH11-HY)	
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Mar. 15, 2024	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Mar. 15, 2024	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Oct. 20, 2023	Mar. 15, 2024	Oct. 19, 2024	Conduction (CO07-HY)
Two-Line V-Network	TESEQ NNB 5'		45051	N/A	Mar. 10, 2024	Mar. 15, 2024	Mar. 09, 2025	Conduction (CO07-HY)
Four-Line V-Network	TESEQ	NNB 52	36122	N/A	Mar. 07, 2024	Mar. 15, 2024	Mar. 06, 2025	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Sep. 20, 2023	Mar. 15, 2024	Sep. 19, 2024	Conduction (CO07-HY)

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.44 dB
of 95% (U = 2Uc(y))	3.44 UB

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	C 1 dD
of 95% (U = 2Uc(y))	6.1 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	4.3 dB

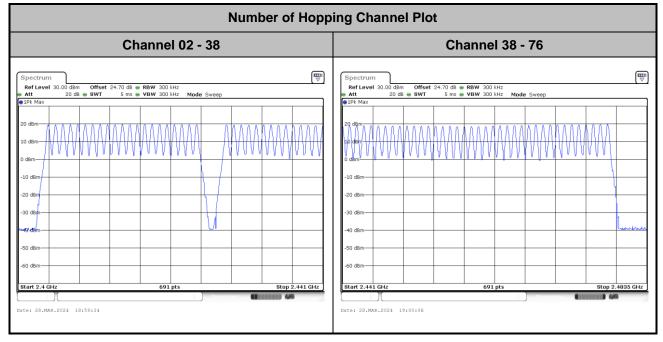
Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.3 dB		
of 95% (U = 2Uc(y))	4.3 dB		

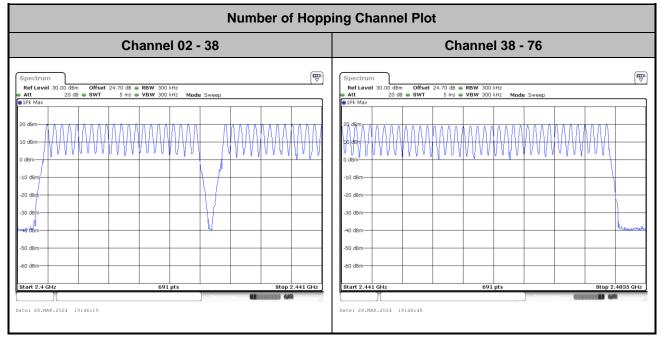
Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.3 dB
of 95% (U = 2Uc(y))	5.5 UB

Report Number : FR412509J

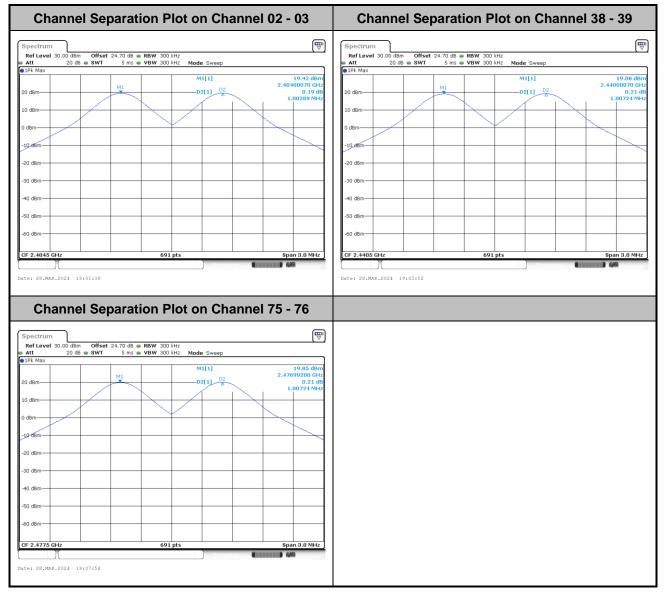

Appendix A. Test Result of Conducted Test Items

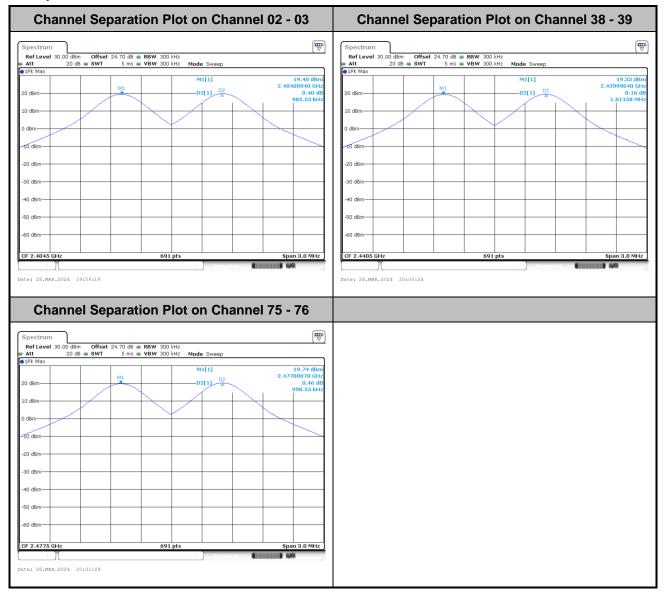
				Tempe				21~25	°C					
Test Da	est Date: 2024/3/28					Relativ	ve Humidity: 51-			51~54	%			
	TEST RES							<u>ו ד א</u> ו	ΔΤΔ					
	<u>TEST RESULTS DATA</u> 20dB and 99% Occupied Bandwidth and Hopping Channel Separation													
				_										
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	20db BW (MHz)	99% Bandwidth (MHz)		Se Mea	ng Channel baration surement MHz)	Hopping C Separa Measure Limit (M	tion ment	Pass/Fail		
	1Mbps	1	2	2404	0.155	0.36	51		.002	0.103	3	Pass		
ASK	1Mbps	1	38	2440	0.155	0.36			1.007	0.103		Pass		
	1Mbps	1	76	2478	0.153	0.36			1.007	0.102		Pass		
ASK	2Mbps 2Mbps	1	2 38	2404 2440	0.160	0.39).985 I.011	0.106		Pass Pass		
ASK	2Mbps	1	76	2440	0.150	0.38).998	0.104		Pass		
						•						+		
						<u>TEST I</u>			<u>ATA</u>					
						Ľ	Dwell 1	<u>Time</u>						
Мо	od.	Нор	oping Cl Numb		Hops Over Occupancy Time (hops)	y Transfer		owell Time sec)	Limits (sec)	Pass/Fail				
AS	SK		72		2051	0.068	C).14	0.4	Pass				
											_			
						TEST I	RESU	LTS D	ATA					
						Peal	k Pow	er Ta	ble					
Mod.	CH.	NTX	(ık Power dBm)	Power Lim	· · /	Test Resul	t						
ASK	02 38	1		19.44	20.9		Pass							
1Mbps	76	1		19.22 19.67	20.9		Pass Pass							
1.01/	02	1		19.50	20.9		Pass							
ASK 2Mbps	38	1		19.55	20.9		Pass							
Ziviops	76	1	1	19.96	20.9	97	Pass							
						TEST	DECII	ITCI	ATA					
						Avera								
							portin							
Mod.		NTX	(age Powe dBm)	(dE	3)								
ASK	02	1		19.15	8.0									
1Mbps	38 76	1		18.97 19.46	8.0 8.0									
	02	1		19.40	8.0									
ASK	38	1		19.21	8.0									
2Mbps	76	1	1	19.65	8.0	1								
						TEST	RESU	LTS E	ATA					
					Nu				requency					
									_					
Number of Hopping (Channel)Adaptive Frequency Hopping (Channel)Limits (Channel)		Pass/I												
	72			20)	> 15		Pas	S					



Number of Hopping Frequency

<1Mbps>


<2Mbps>


Hopping Channel Separation

<1Mbps>

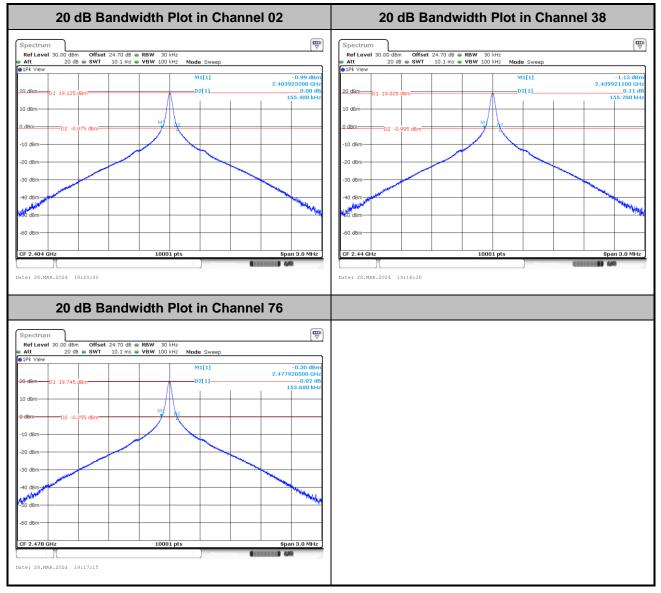
<2Mbps>

Dwell Time

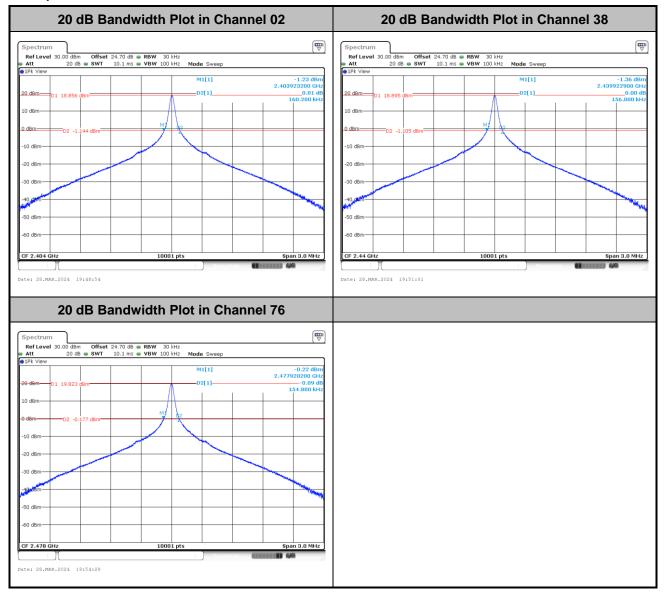
Total number of hops observed	On-time hops count
Spectrum Image: Constraint of the second secon	
	Point: 2051
-50 d8m	

Remark:

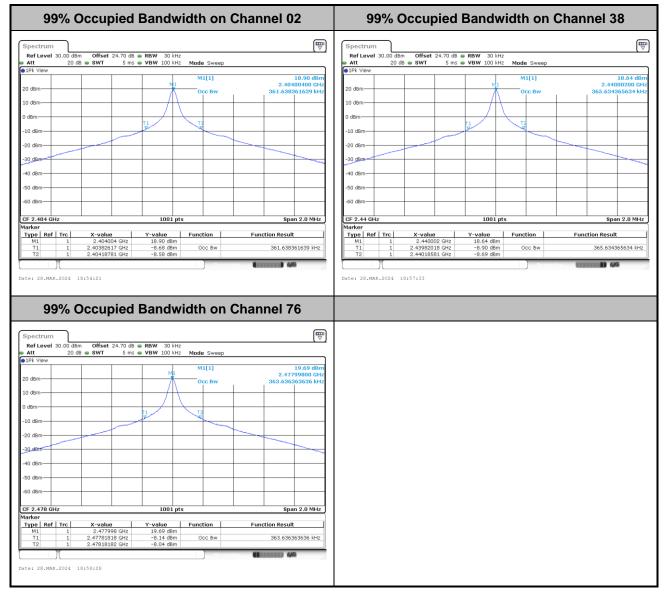
- Dwell Time(sec) = Hops Over Occupancy Time (hops) x Package Transfer Time (sec)
- 2. The Hops over occupancy time is the total number of hops observed in sweep point 30,000. This shows that 1ms per on-time contains 1 hop. The total hops is finally counted via computer analysis.
- 3. Package transfer time(sec) = Total hops / observation sweep time

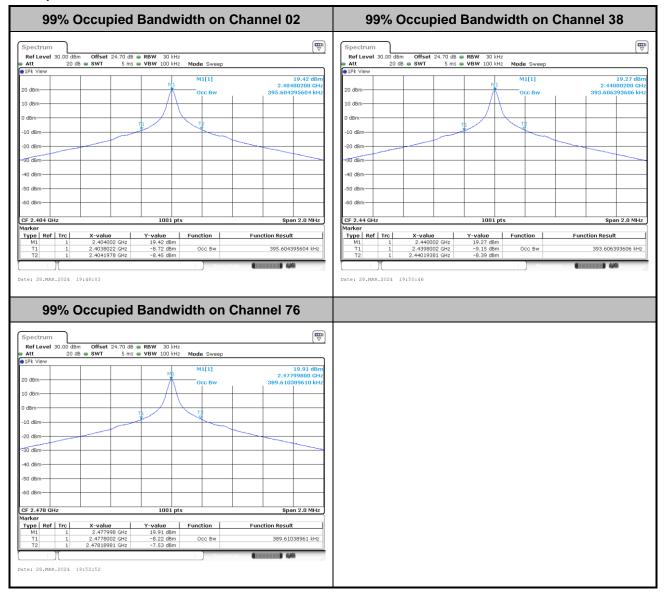

Calculation example:

Package transfer time(sec) = 2051 / 30000 = 0.068 (msec) Dwell Time(sec) = 2051 * 0.000068 = 0.14 (sec)

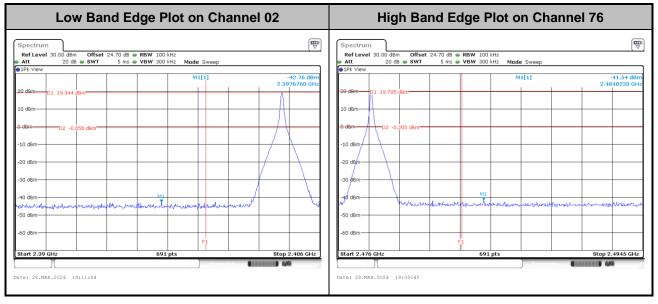

20dB Bandwidth

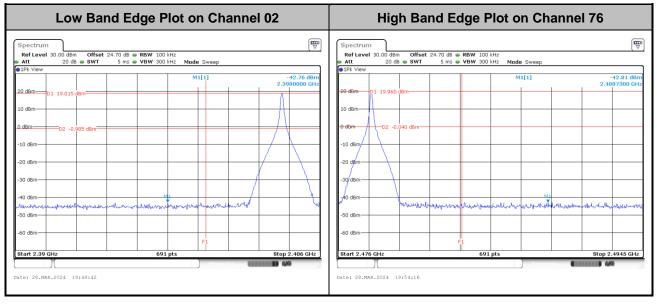
<1Mbps>


<2Mbps>


99% Occupied Bandwidth

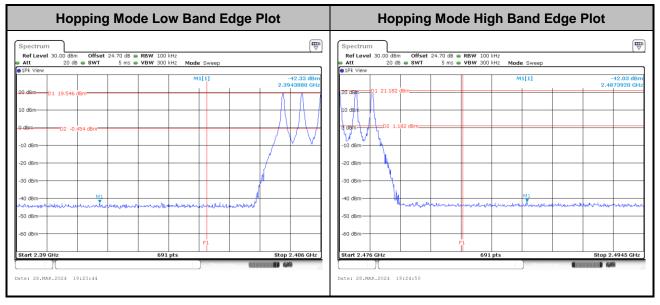
<1Mbps>


<2Mbps>



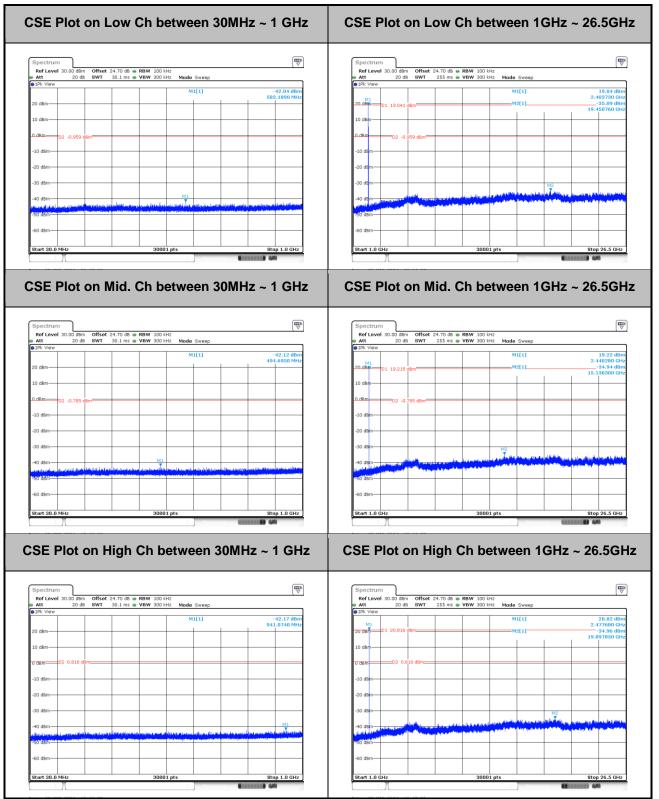
Band Edges

<1Mbps>

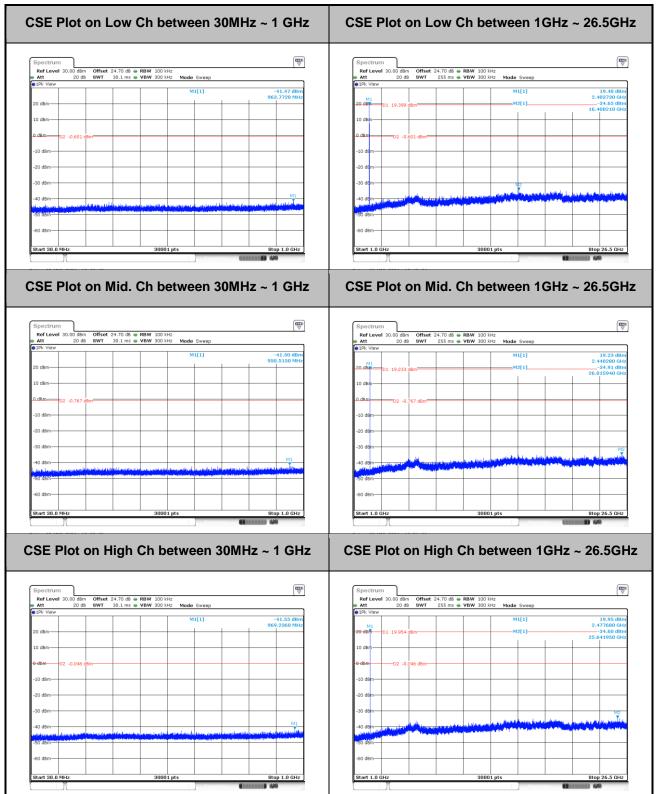

<2Mbps>

Hopping Mode Band Edges

<1Mbps>

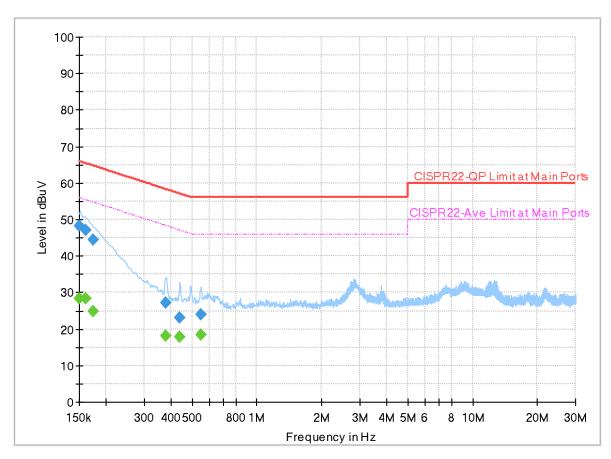

<2Mbps>

Hopping N	lode Low Band	Edge Plot	Hopping	Mode High Band	Edge Plot
Spectrum Ref Level 30.00 dbm Offset 24-77 4tt 20 db SWT 9 IPk View 20 dbm 10 dbm 10 dbm 02 -0.354 dbm 10 dbm -10 dbm -02 -0.354 dbm -030 dbm -30 dbm -04 dbm -04 dbm	dB @ RBW 100 kHz ms @ VBW 300 kHz Mode Sweer M1[1]	-42.55 dbm 2.3972820 GHz	Spectrum Ref Level 30.00 dBm Offset Att 20 dB SWT IPk View IPk View IPk View 20 dBm D1 20.057 dBm ID dBm ID dBm -02 0.057 dBm ID dBm -10 dBm -02 0.057 dBm ID dBm -30 dBm -40 dBm IV = 4.044	Mode High Band	+1.03 dBm 2.4868300 GHz
-50 dBm -60 dBm Start 2.39 GHz Date: 28.MAR.2024 19:44:07	691 pts	Stop 2.406 GHz	-50 dBm -60 dBm Start 2.476 GHz Date: 28.MAR.2024 19:45:21	F1 691 pts	Stop 2.4945 GHz


Conducted Spurious Emission

<1Mbps>

<2Mbps>

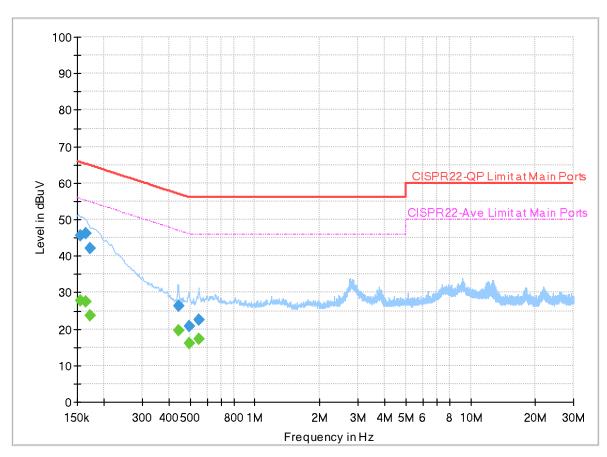


Appendix B. AC Conducted Emission Test Results

Test Engineer		Temperature :	20.5~21.7 ℃
Test Engineer :		Relative Humidity :	41.2~46.4%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 412509 Mode 1 120Vac/60Hz Line


FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.150000		28.46	56.00	27.54	L1	OFF	19.9
0.150000	48.17		66.00	17.83	L1	OFF	19.9
0.161250		28.32	55.40	27.08	L1	OFF	19.9
0.161250	47.06		65.40	18.34	L1	OFF	19.9
0.173040		24.74	54.81	30.07	L1	OFF	19.9
0.173040	44.53		64.81	20.28	L1	OFF	19.9
0.379500		18.09	48.29	30.20	L1	OFF	19.9
0.379500	27.26		58.29	31.03	L1	OFF	19.9
0.435930		17.89	47.14	29.25	L1	OFF	19.9
0.435930	23.13		57.14	34.01	L1	OFF	19.9
0.550140		18.37	46.00	27.63	L1	OFF	19.9
0.550140	23.97		56.00	32.03	L1	OFF	19.9

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 412509 Mode 1 120Vac/60Hz Neutral

FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.155805		27.83	55.69	27.86	N	OFF	19.9
0.155805	45.64		65.69	20.05	Ν	OFF	19.9
0.163500		27.50	55.28	27.78	Ν	OFF	19.9
0.163500	46.12		65.28	19.16	Ν	OFF	19.9
0.172590		23.78	54.84	31.06	Ν	OFF	19.9
0.172590	42.15		64.84	22.69	Ν	OFF	19.9
0.440610		19.52	47.05	27.53	Ν	OFF	19.9
0.440610	26.29		57.05	30.76	Ν	OFF	19.9
0.498750		16.10	46.02	29.92	Ν	OFF	19.9
0.498750	20.64		56.02	35.38	Ν	OFF	19.9
0.552570		17.23	46.00	28.77	Ν	OFF	19.9
0.552570	22.64		56.00	33.36	Ν	OFF	19.9

Appendix C. Radiated Spurious Emission

Test Engineer :	Fu Chen, Sam Chou, and Trove Hsieh	Temperature :	18.9~22.1°C
lest Engineer .		Relative Humidity :	43.7~67.1%

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2326.695	50.96	-23.04	74	41.85	27.23	16.67	34.79	150	157	Ρ	н
		2351.475	45.1	-8.9	54	35.91	27.3	16.68	34.79	150	157	А	н
	*	2404	102.96	-	-	93.53	27.5	16.73	34.8	150	157	Ρ	н
	*	2404	101.65	-	-	92.22	27.5	16.73	34.8	150	157	А	Н
BLE													н
CH 02 2404MHz		2313.15	51.03	-22.97	74	41.87	27.3	16.65	34.79	350	274	Ρ	V
240411112		2363.235	44.81	-9.19	54	35.61	27.3	16.69	34.79	350	274	А	V
	*	2404	108.08	-	-	98.65	27.5	16.73	34.8	350	274	Ρ	V
	*	2404	107.17	-	-	97.74	27.5	16.73	34.8	350	274	А	V
													V
		2382.16	50.89	-23.11	74	41.56	27.42	16.71	34.8	150	158	Ρ	Н
		2375.92	44.51	-9.49	54	35.25	27.36	16.7	34.8	150	158	А	н
	*	2440	102.83	-	-	93.25	27.6	16.78	34.8	150	158	Ρ	н
	*	2440	103.04	-	-	93.46	27.6	16.78	34.8	150	158	А	н
		2486.32	50.26	-23.74	74	40.51	27.7	16.85	34.8	150	158	Ρ	Н
BLE CH 38		2485.2	45.15	-8.85	54	35.41	27.7	16.84	34.8	150	158	А	н
2440MHz		2387.44	50.98	-23.02	74	41.6	27.47	16.71	34.8	250	255	Ρ	V
244011112		2380.24	44.39	-9.61	54	35.08	27.4	16.71	34.8	250	255	А	V
	*	2440	108.17	-	-	98.59	27.6	16.78	34.8	250	255	Ρ	V
	*	2440	106.99	-	-	97.41	27.6	16.78	34.8	250	255	А	V
		2498.4	51.35	-22.65	74	41.59	27.7	16.86	34.8	250	255	Ρ	V
		2490.08	44.34	-9.66	54	34.59	27.7	16.85	34.8	250	255	А	V

	*	2478	105.28	-	-	95.57	27.68	16.83	34.8	200	156	Р	Н
	*	2478	103.59	-	-	93.88	27.68	16.83	34.8	200	156	А	Н
		2488.12	51.34	-22.66	74	41.59	27.7	16.85	34.8	200	156	Р	н
		2488.2	45.1	-8.9	54	35.35	27.7	16.85	34.8	200	156	Α	Н
													Н
BLE CH 76													Н
2478MHz	*	2478	109.96	-	-	100.25	27.68	16.83	34.8	300	257	Р	V
24700112	*	2478	107.33	-	-	97.62	27.68	16.83	34.8	300	257	А	V
		2487.68	51.46	-22.54	74	41.71	27.7	16.85	34.8	300	257	Р	V
		2485.12	45.36	-8.64	54	35.62	27.7	16.84	34.8	300	257	А	V
													V
													V
Remark		o other spurious I results are PA		Peak and	Average lir	nit line.							

2.4GHz 2400~2483.5MHz

	<u>г</u>		r		SLE (Harm		0111)	-	ſ		-	ſ	
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
			(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4808	40.28	-33.72	74	53.82	32.45	11.81	57.8	-	-	Р	Н
													н
													н
													н
													н
													Н
													Н
													н
													Н
													Н
BLE													Н
CH 02													Н
2404MHz		4808	40.28	-33.72	74	53.82	32.45	11.81	57.8	-	-	Ρ	V
240410172													V
													V
													V
													V
													V
													v
													V
													V
													V
													V
													V

BLE (Harmonic @ 3m)

Report No. : FR412509J

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		/ X			Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4880	41.54	-32.46	74	54.85	32.7	11.81	57.82	-	-	Ρ	Н
		7320	44.69	-29.31	74	51.55	36.82	14.77	58.45	-	-	Р	Н
													Н
													Н
													Н
													Н
													н
													Н
													н
													н
													н
BLE												-	н
CH 38		4880	41.18	-32.82	74	54.49	32.7	11.81	57.82	-	-	Р	V
2440MHz		7320	44.59	-29.41	74	51.45	36.82	14.77	58.45	-	-	Ρ	V
													V
													V
													V
													V
													V
													V
													V
													V
													v
													v
													v

Report No. : FR412509J

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4956	41.54	-32.46	74	54.56	33.02	11.81	57.85	-	-	Р	Н
		7434	43.56	-30.44	74	50.74	36.33	14.9	58.41	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 76		4956	41.15	-32.85	74	54.17	33.02	11.81	57.85	-	-	Р	V
2478MHz		7434	43.43	-30.57	74	50.61	36.33	14.9	58.41	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found.	<u> </u>	1	<u> </u>	1	<u> </u>		<u> </u>	1	1	<u> </u>
_ .	2. All	results are PA	SS against F	Peak and	Average lim	it line.							
Remark	3. Th	e emission pos	sition marked	las "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin aga	inst limit	line or	noise
	flo	or only.											

<2Mbps>

2.4GHz 2400~2483.5MHz

BLE	Note	Frequency	Level	Margin		Read	Antenna	Path	Preamp	Ant		Peak	Pol.
		, .	· ·= · · · · ·	(.=)	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	(115.0)
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)		
		2329.95	51.86	-22.14	74	42.78	27.2	16.67	34.79	150	152	Р	Н
		2377.41	44.9	-9.1	54	35.63	27.37	16.7	34.8	150	152	Α	Н
	*	2404	105.53	-	-	96.1	27.5	16.73	34.8	150	152	Р	Н
	*	2404	105.52	-	-	96.09	27.5	16.73	34.8	150	152	А	Н
BLE													Н
CH 02													Н
2404MHz		2378.88	50.65	-23.35	74	41.36	27.39	16.7	34.8	350	273	Р	V
24041112		2310.84	44.4	-9.6	54	35.24	27.3	16.65	34.79	350	273	Α	V
	*	2404	109.12	-	-	99.69	27.5	16.73	34.8	350	273	Р	V
	*	2404	109.19	-	-	99.76	27.5	16.73	34.8	350	273	А	V
													V
													V
		2389.52	50.88	-23.12	74	41.47	27.5	16.71	34.8	100	148	Р	Н
		2366.96	44.39	-9.61	54	35.18	27.3	16.7	34.79	100	148	А	Н
	*	2440	104.25	-	-	94.67	27.6	16.78	34.8	100	148	Р	Н
	*	2440	104.38	-	-	94.8	27.6	16.78	34.8	100	148	А	Н
		2485.36	51.18	-22.82	74	41.44	27.7	16.84	34.8	100	148	Р	Н
BLE		2497.6	44.68	-9.32	54	34.92	27.7	16.86	34.8	100	148	А	Н
CH 38 2440MHz		2389.68	50.35	-23.65	74	40.94	27.5	16.71	34.8	350	272	Р	V
244010112		2364.56	44.57	-9.43	54	35.37	27.3	16.69	34.79	350	272	А	V
	*	2440	107.57	-	-	97.99	27.6	16.78	34.8	350	272	Р	V
	*	2440	106.34	-	-	96.76	27.6	16.78	34.8	350	272	Α	V
		2493.2	50.64	-23.36	74	40.88	27.7	16.86	34.8	350	272	Р	V
		2499.68	44.64	-9.36	54	34.88	27.7	16.86	34.8	350	272	А	V

BLE (Band Edge @ 3m)

	*	2478	103.11	-	-	93.4	27.68	16.83	34.8	190	16	Р	Н
	*	2478	103.19	-	-	93.48	27.68	16.83	34.8	190	16	А	Н
		2485.08	51.72	-22.28	74	41.98	27.7	16.84	34.8	190	16	Р	Н
		2483.96	45.48	-8.52	54	35.74	27.7	16.84	34.8	190	16	А	Н
DIE													Н
BLE CH 76													Н
2478MHz	*	2478	105.98	-	-	96.27	27.68	16.83	34.8	143	303	Р	V
24701112	*	2478	106.1	-	-	96.39	27.68	16.83	34.8	143	303	А	V
		2491.88	51.14	-22.86	74	41.39	27.7	16.85	34.8	143	303	Р	V
		2496.56	45.09	-8.91	54	35.33	27.7	16.86	34.8	143	303	Α	V
													V
													V
Remark		o other spurious			.								
	2. Al	I results are PA	SS against	Peak and	Average lir	nit line.							

2.4GHz 2400~2483.5MHz

	[-	SLE (Harm		•···· /	-	ſ	F.		ſ	F
BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
			(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4808	40.12	-33.88	74	53.66	32.45	11.81	57.8	-	-	Ρ	Н
													н
													Н
													Н
													Н
													Н
													н
													Н
													Н
													Н
BLE													Н
													Н
CH 02		4808	41.62	-32.38	74	55.16	32.45	11.81	57.8	-	-	Р	V
2404MHz													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

BLE (Harmonic @ 3m)

Report No. : FR412509J

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4880	41.33	-32.67	74	54.64	32.7	11.81	57.82	-	-	Р	Н
		7320	44.21	-29.79	74	51.07	36.82	14.77	58.45	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 38													Н
2440MHz		4880	40.41	-33.59	74	53.72	32.7	11.81	57.82	-	-	Р	V
		7320	44.87	-29.13	74	51.73	36.82	14.77	58.45	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V

Report No. : FR412509J

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4956	41.36	-32.64	74	54.38	33.02	11.81	57.85	-	-	Р	Н
		7434	43.64	-30.36	74	50.82	36.33	14.9	58.41	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
BLE													Н
CH 76													Н
2478MHz		4956	42.09	-31.91	74	55.11	33.02	11.81	57.85	-	-	Р	V
		7434	43.77	-30.23	74	50.95	36.33	14.9	58.41	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
		o other spurious				·· ··							
Remark		I results are PA					incian farma		liaiont		not limit	line	noinc
		e emission pos	silion marked	i as "-" m	eans no sus	pected em	ission tound	a with suff	licient mar	gin agai	inst limit	iine or	noise
	flo	or only.											

Emission above 18GHz

вт	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		24937	38.94	-35.06	74	35.32	39.27	17.68	53.33	-	-	Ρ	Н
													Н
													Н
													Н
													Н
													Н
													н
													Н
													Н
													Н
2.4GHz													Н
BLE													Н
SHF		24538	39.25	-34.75	74	36.51	39.1	17.12	53.48	-	-	Р	V
SHF													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
	1. No	o other spuriou	s found.										
Remark	2. Al	I results are PA	SS against li	mit line.									
	3. Tł	ne emission pos	sition marked	l as "-" m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flc	oor only.											

Emission	below	1GHz

BLE	Not	e Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		30.54	33.21	-6.79	40	41.17	23.83	0.66	32.45	-	-	Р	Н
		165.81	25.7	-17.8	43.5	40.34	15.77	1.71	32.12	-	-	Р	Н
		213.33	25.92	-17.58	43.5	41.53	14.75	1.95	32.31	-	-	Ρ	Н
		939.1	33.26	-12.74	46	29.93	29.94	4.5	31.11	-	-	Ρ	Н
		953.1	33.94	-12.06	46	29.59	30.76	4.55	30.96	-	-	Ρ	Н
		995.1	34.8	-19.2	54	30.35	30.27	4.63	30.45	-	-	Ρ	Н
2.4GHz													
BLE													
LF		30.81	32.69	-7.31	40	40.74	23.74	0.66	32.45	-	-	Р	V
		43.23	33.31	-6.69	40	47.16	17.77	0.68	32.3	-	-	Р	V
		182.28	26.55	-16.95	43.5	42.12	14.68	1.76	32.01	-	-	Р	V
		745.9	34.19	-11.81	46	33.87	27.97	3.89	31.54	-	-	Р	V
		888.7	37.07	-8.93	46	35.31	28.98	4.31	31.53	-	-	Р	V
		978.3	34.82	-19.18	54	29.9	30.98	4.59	30.65	-	-	Р	V
	1.	No other spuriou	s found.										
Remark	2.	All results are PA	SS against l	imit line.									
Remark	3.	The emission po	sition marked	l as "-" m	ieans no sus	pected en	nission foun	d and em	ission leve	el has at	least 60	dB mai	rgin
		against limit or e	mission is no	ise floor	only.								

2.4GHz BLE (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is Margin line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin (dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

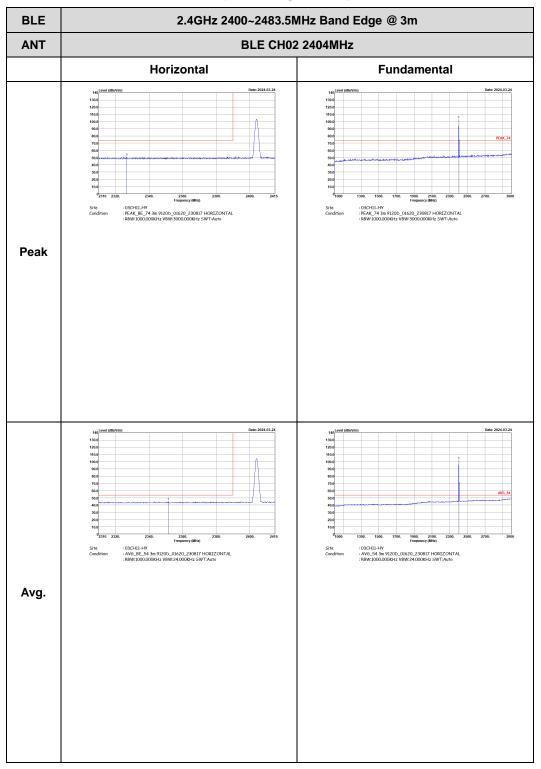
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Margin (dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

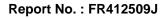
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix D. Radiated Spurious Emission Plots

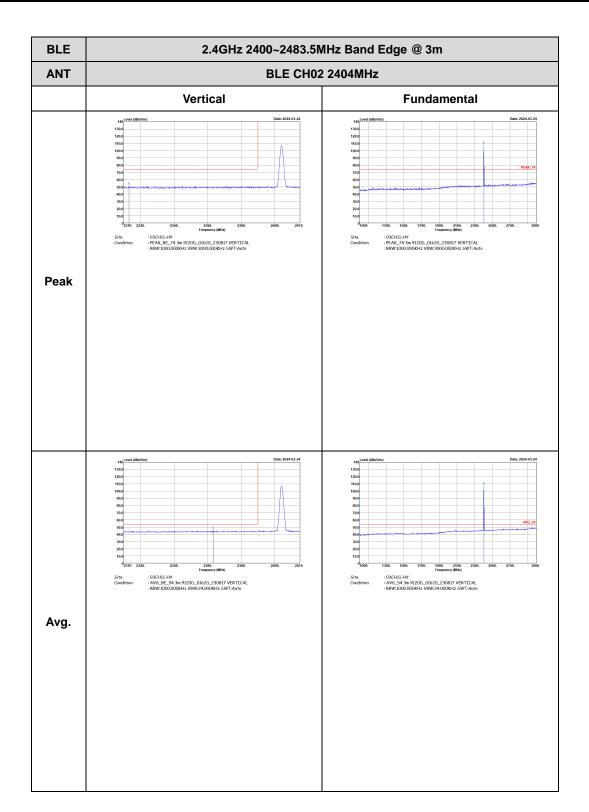
Toot Engineer	Fu Chen, Sam Chou, and Troye Hsieh	Temperature :	18.9~22.1°C
Test Engineer :		Relative Humidity :	43.7~67.1%

Note symbol

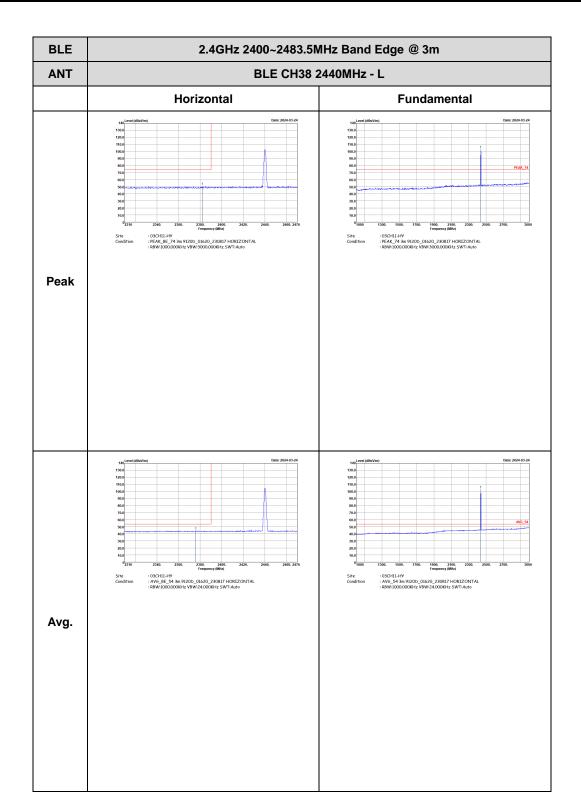

-L	Low channel location
-R	High channel location

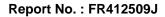


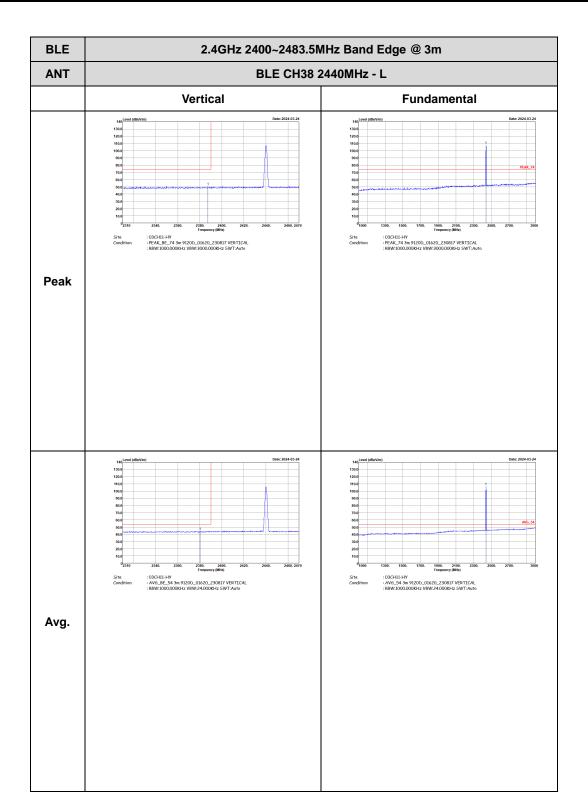
<1Mbps>

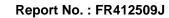

2.4GHz 2400~2483.5MHz

BLE (Band Edge @ 3m)

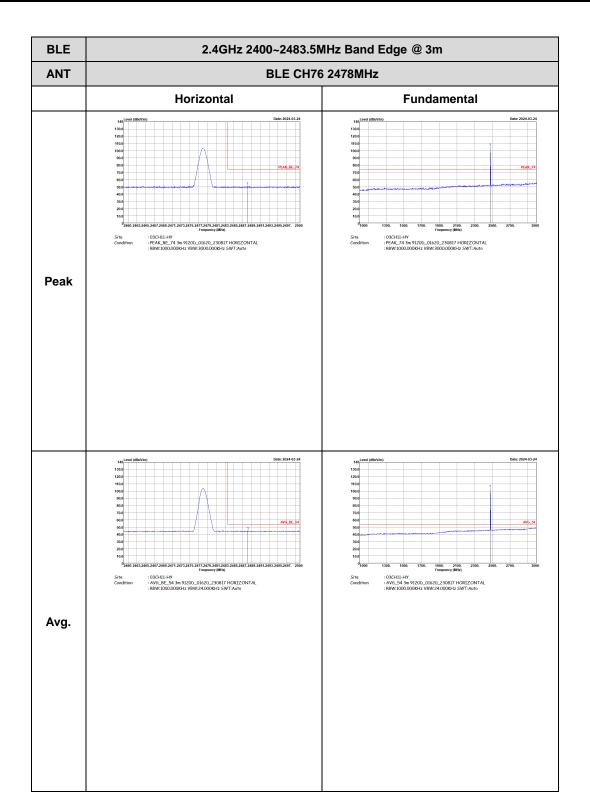


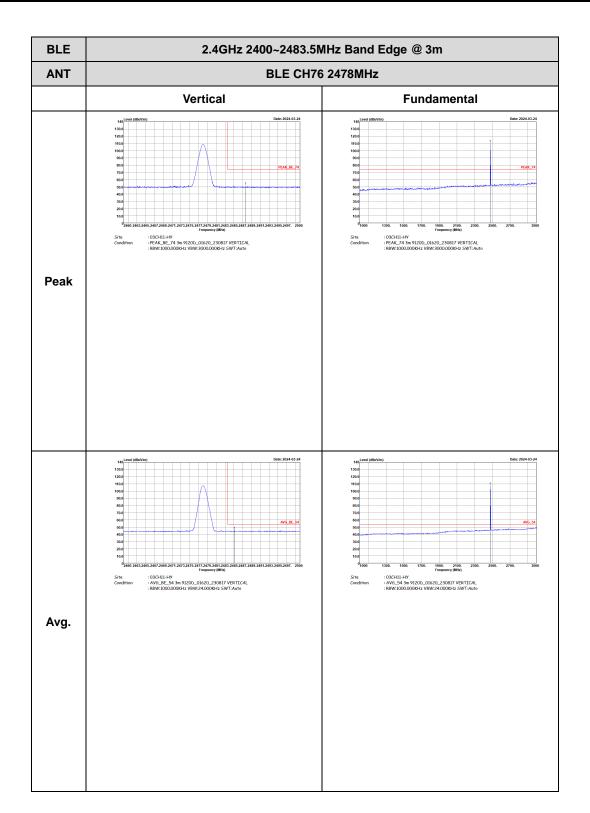




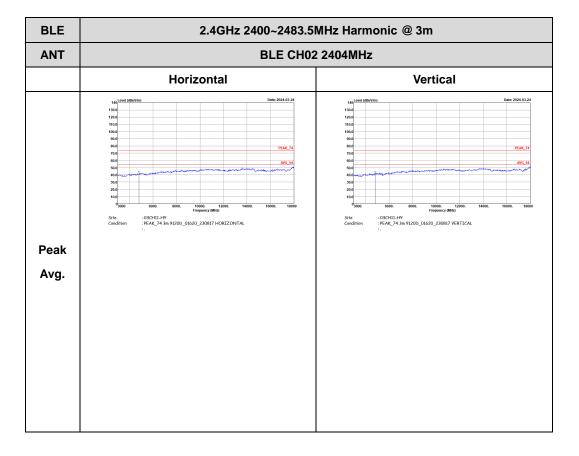


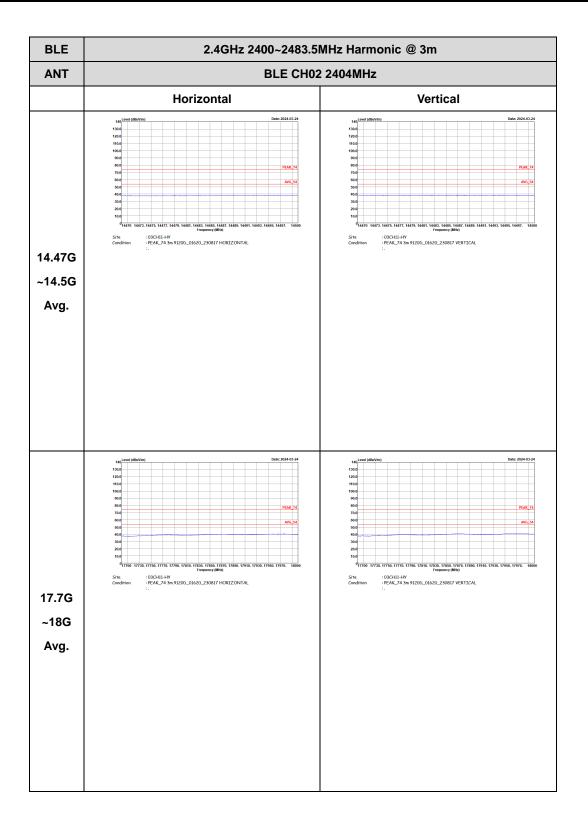
BLE	2.4GHz 2400~2483.5M	Hz Band Edge @ 3m
ANT	BLE CH38 24	440MHz - R
	Horizontal	Fundamental
Peak	Hered History Hered History <th>Left blank</th>	Left blank
Avg.	Entropy of the second	Left blank

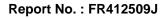




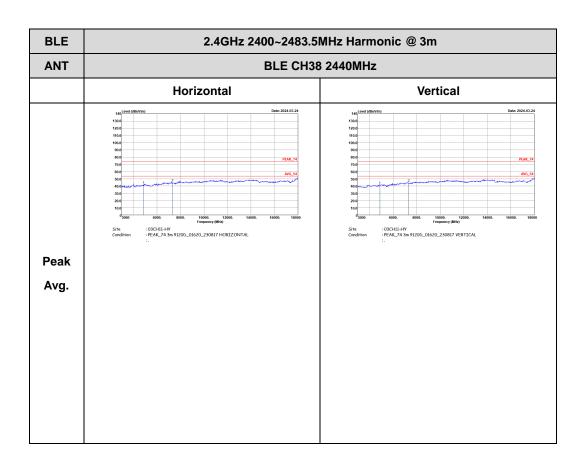
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m	
ANT	BLE CH38 2440MHz - R	
	Vertical	Fundamental
Peak	Herein and the second	Left blank
Avg.	How the second	Left blank

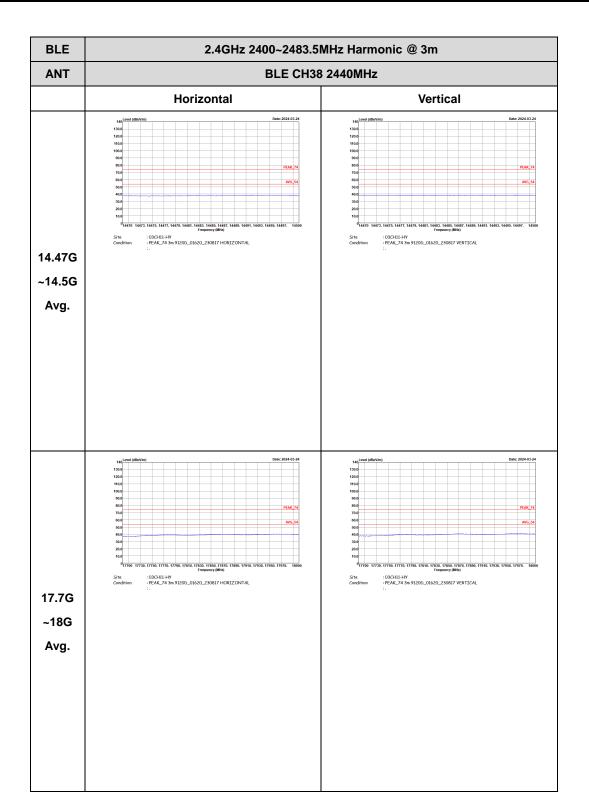


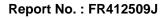


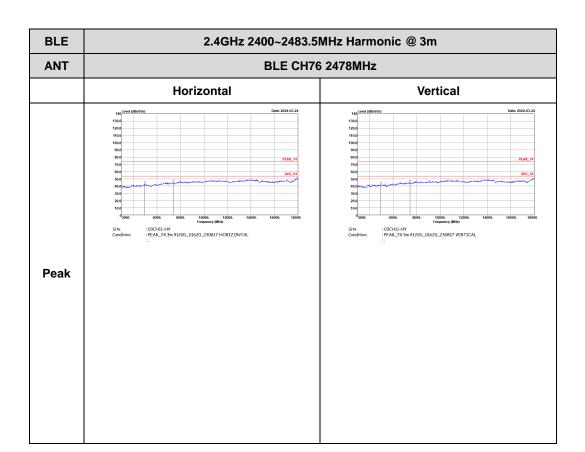

2.4GHz 2400~2483.5MHz

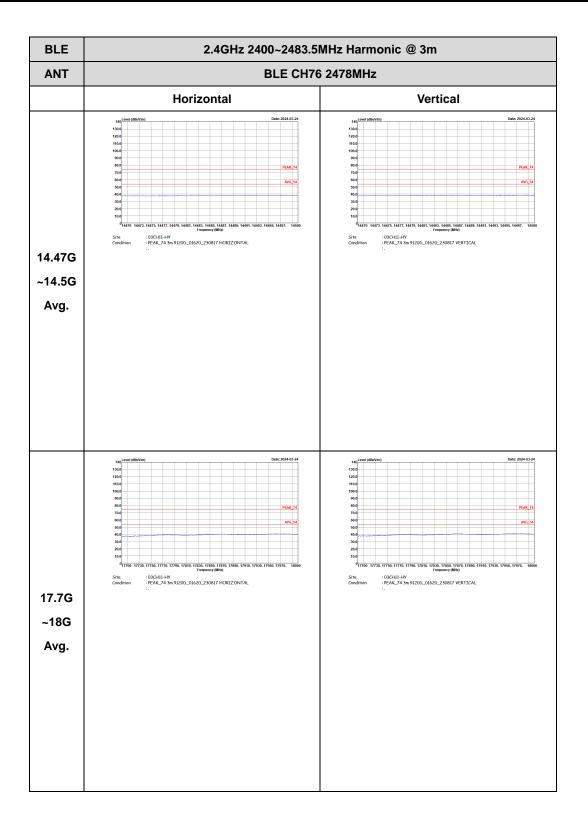
BLE (Harmonic @ 3m)

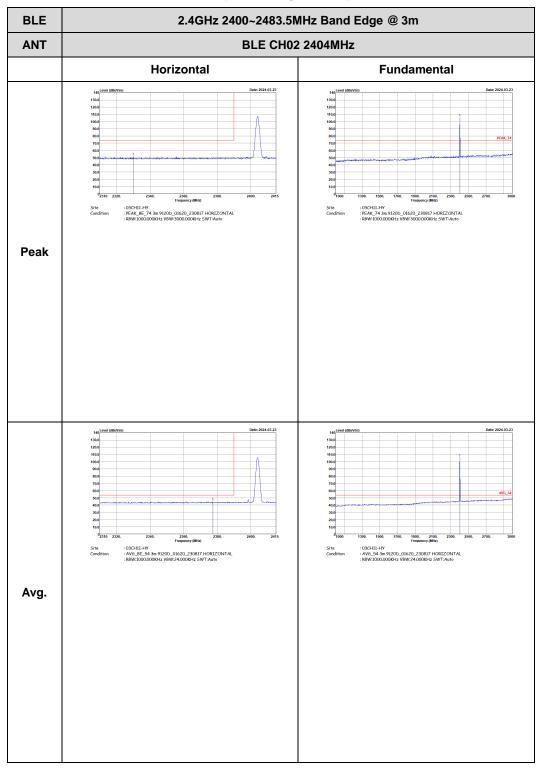


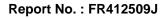




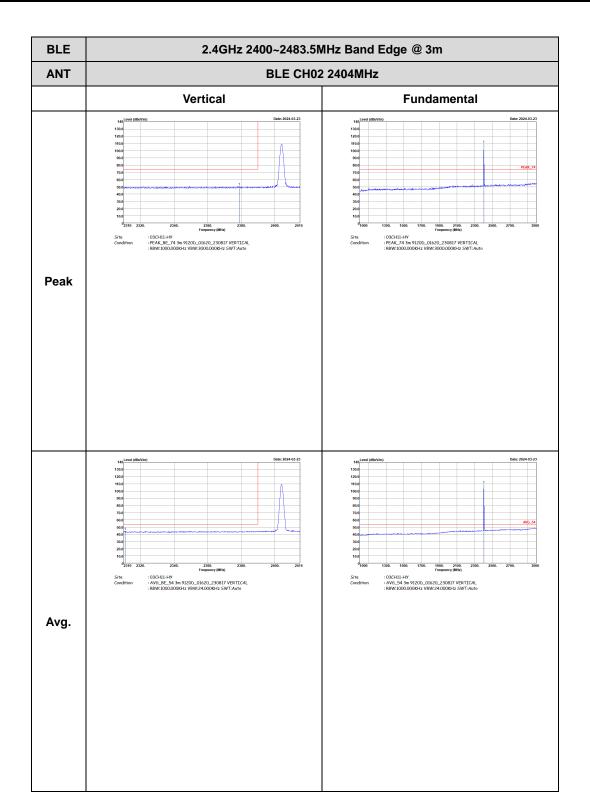




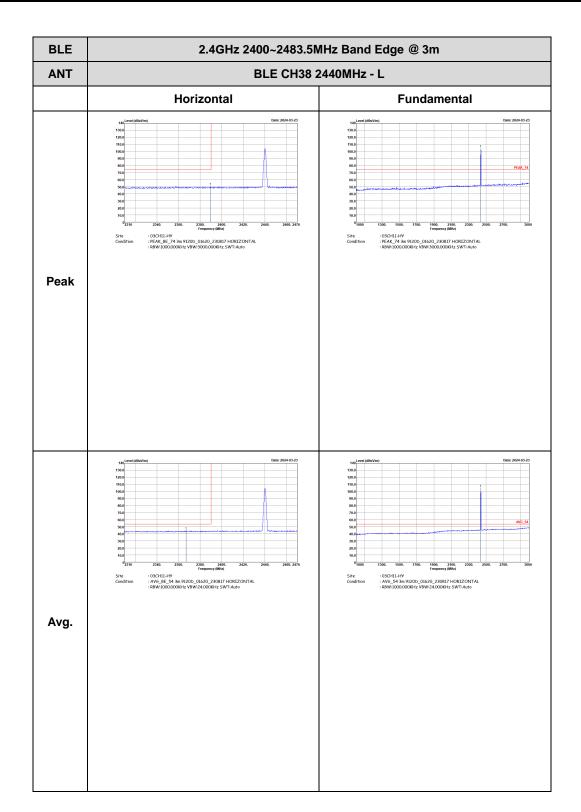




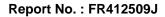
<2Mbps>

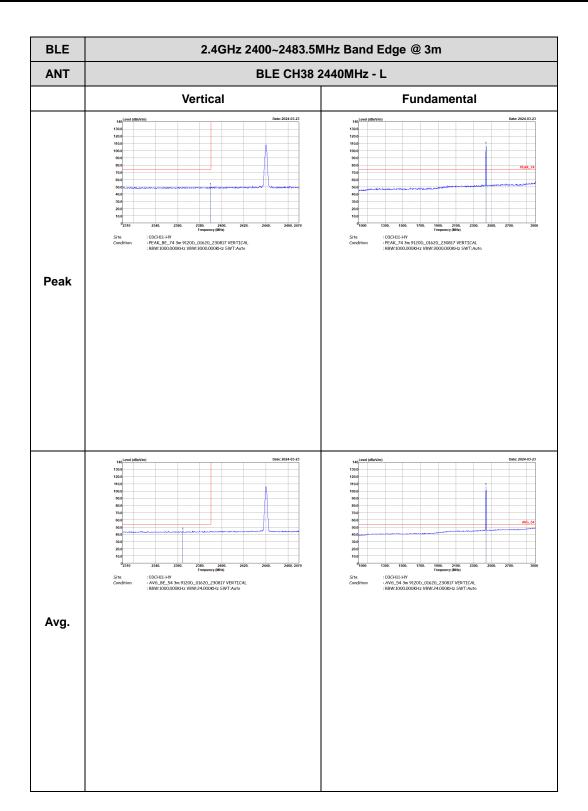

2.4GHz 2400~2483.5MHz

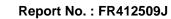
BLE (Band Edge @ 3m)



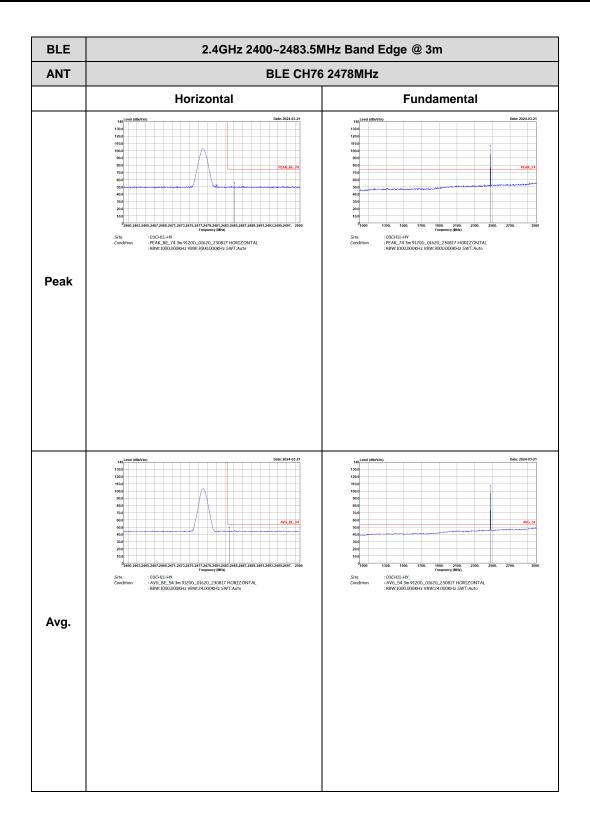


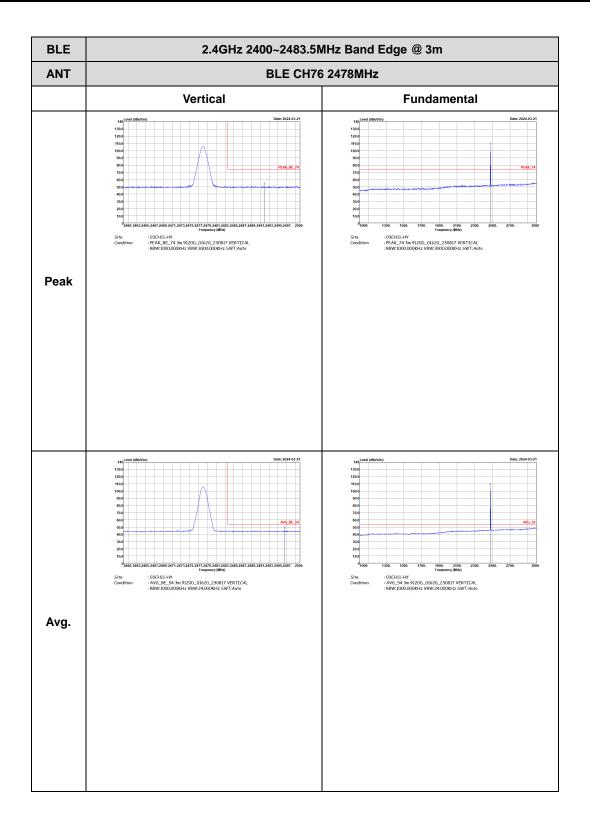




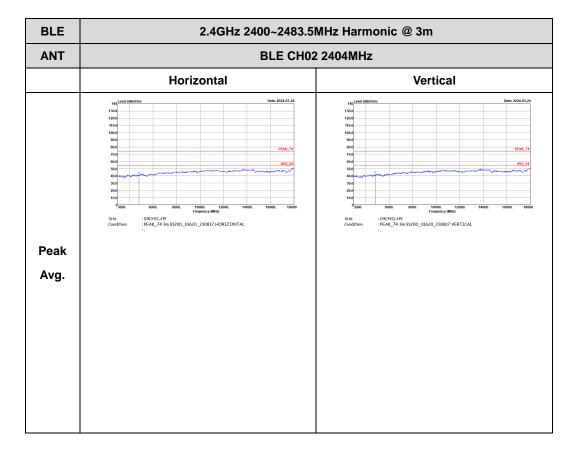


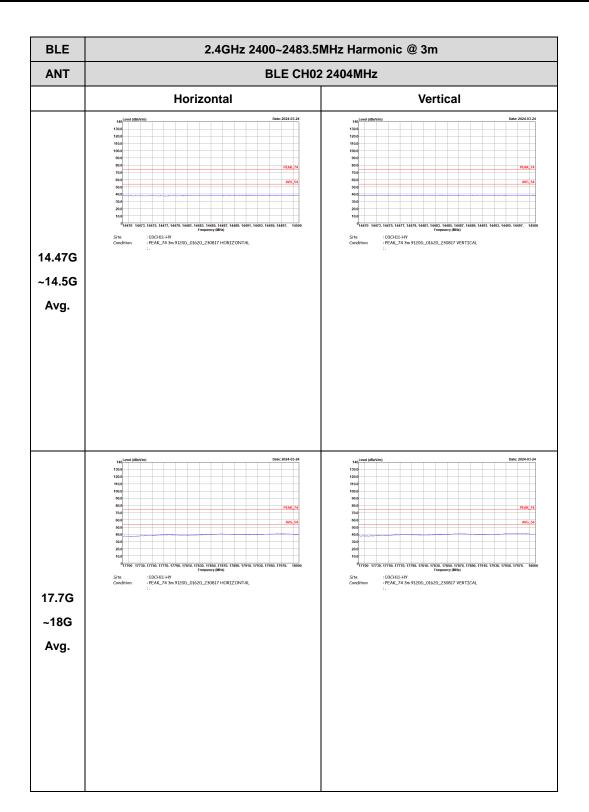
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
ANT	BLE CH38 2440MHz - R					
	Horizontal	Fundamental				
Peak	ending of the second	Left blank				
Avg.	ended	Left blank				

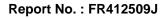




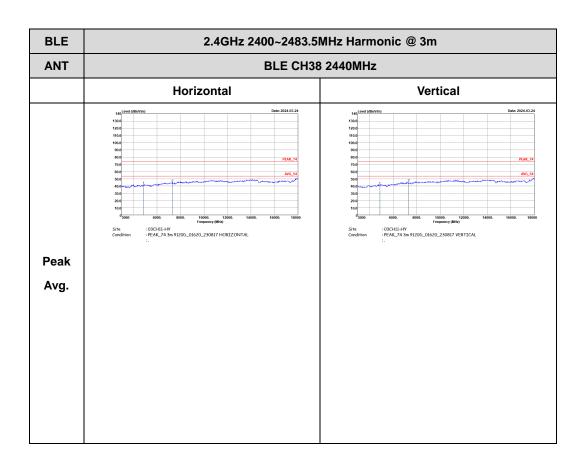
ANT	2.4GHz 2400~2483.5MHz Band Edge @ 3m BLE CH38 2440MHz - R				
	Vertical	Fundamental			
Peak	Here Dete: 2014.01-21 138	Left blank			
Avg.	<pre>upper upper u</pre>	Left blank			

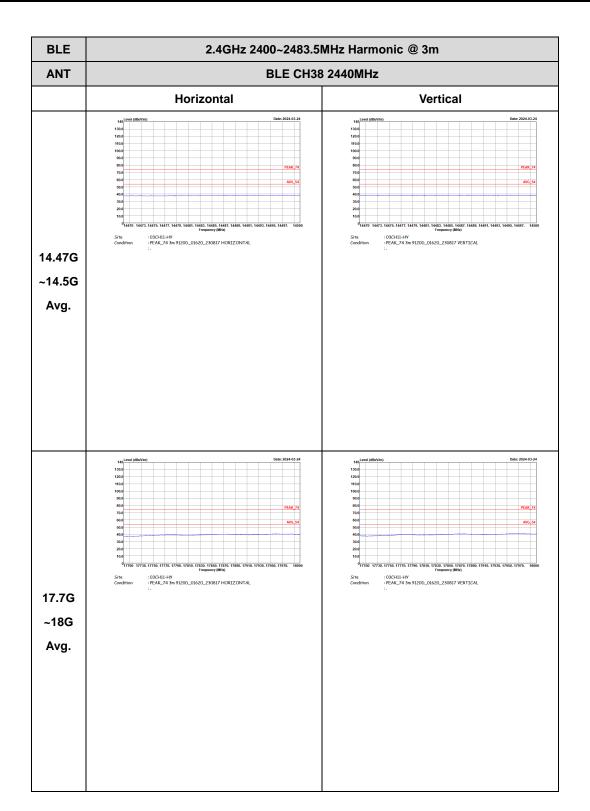


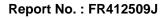


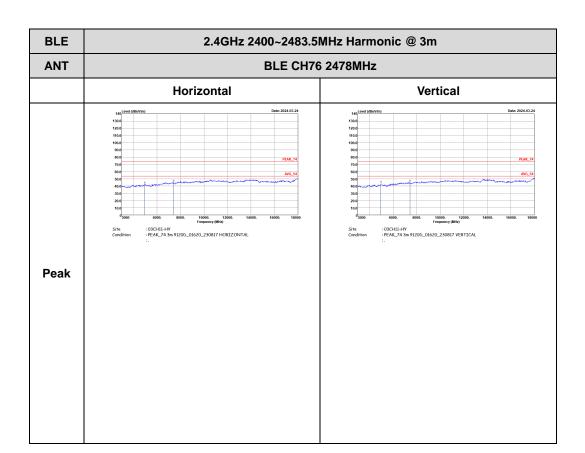

2.4GHz 2400~2483.5MHz

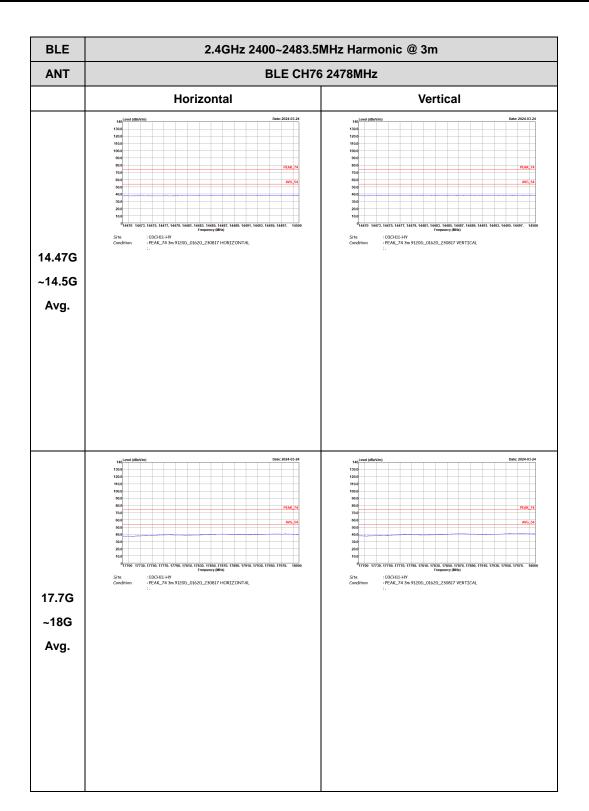
BLE (Harmonic @ 3m)

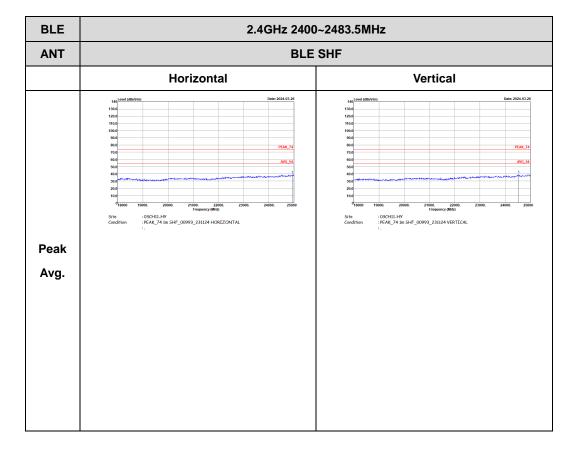


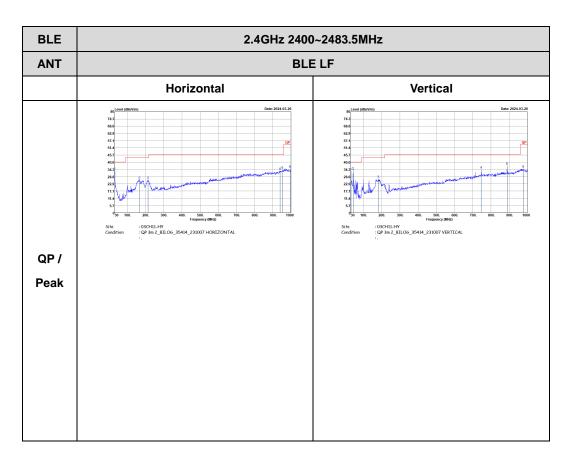




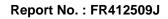




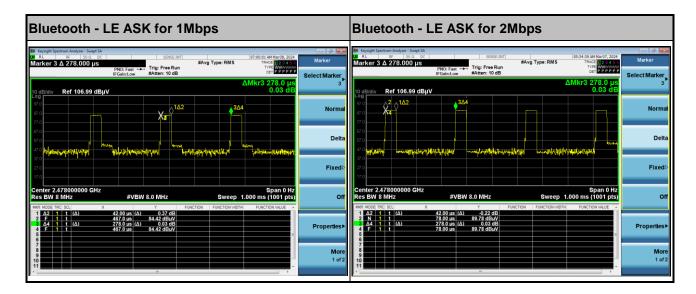



Emission above 18GHz

2.4GHz BLE (SHF @ 1m)



Emission below 1GHz


2.4GHz BLE (LF)

Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth - LE ASK for 1Mbps	15.11	42	23.810	24KHz
Bluetooth - LE ASK for 2Mbps	15.11	42	23.810	24KHz

—THE END——