

Report No. : FR412509I

FCC RADIO TEST REPORT

FCC ID	:	A4RGBDU9
Equipment	:	Wireless Device
Model Name	:	GBDU9
Applicant	:	Google LLC
		1600 Amphitheatre Parkway,
		Mountain View, California, 94043 USA
Standard	:	47 CFR FCC Part 15.519

The product was received on Feb. 21, 2024, and testing was performed from Mar. 06, 2024 to Apr. 15, 2024. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. Wensan Laboratory No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Table of Contents

Histo	ry of this test report	3
Sumr	mary of Test Result	4
1	General Description	5
1.1	Product Feature of Equipment Under Test	5
1.2	Modification of EUT	5
1.3	Type of EUT	6
1.4	Testing Applied Standards	6
1.5	Testing Location Information	7
1.6	Measurement Uncertainty	7
2	Test Configuration of EUT	8
2.1	Test Mode	8
2.2	The Worst Case Measurement Configuration	9
2.3	Test Setup Diagram	10
2.4	Support Unit used in test configuration and system	10
3	Transmitter Test Result	11
3.1	AC Power-line Conducted Emissions	11
3.2	UWB bandwidth	12
3.3	Technical requirements for hand held UWB systems	19
3.4	Peak Power Measurement	22
3.5	Radiated Emissions	29
4	Test Equipment and Calibration Data	60

Appendix A. Conducted Emissions Test Results

Appendix B. Setup Photographs

History	of this	test	report
----------------	---------	------	--------

Report No.	Version	Description	Issue Date
FR412509I	01	Initial issue of report	Apr. 22, 2024
FR412509I	02	Revise Test Result of UWB Bandwidth This report is an updated version, replacing the report issued on Apr. 22, 2024.	Apr. 24, 2024

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
1.1	15.203	Antenna Requirement	PASS	15.203
3.1	15.207	AC Power-line Conducted Emissions	PASS	15.207
3.2	15.503	UWB Bandwidth	PASS	≥ 500MHz
3.3	15.519(a)(1)	Technical requirements for Hand Held UWB systems	PASS	15.519(a)(1)
3.4	15.519(e)	Peak Power Measurement	PASS	≤ 0 dBm/50MHz
3.5	15.519(c) /15.519(d)	Radiated Emissions	PASS	UWB Emissions: 15.519(c) GPS Emissions: 15.519(d) Digital Emissions: 15.209

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Yun Huang Report Producer: Clio Lo

General Description 1

1.1 Product Feature of Equipment Under Test

Product Feature			
General Specs VCDMA/LTE, Bluetooth, BLE, BLE (CH2-76), Wi-Fi 2.4GHz 802.11b/g/n/ax, Wi-Fi 5GHz 202.11a/n/ac/ax, NFC, UWB and GPS.			
Antenna Type UWB: PIFA Antenna			

Antenna information			
6489.6 MHz	Peak Gain (dBi)	-0.2	
7987.2 MHz	Peak Gain (dBi)	0.4	

Remark: The above EUT's information was declared by manufacturer. Please refer to Disclaimer in report summary.

EUT Information List			
S/N Performed Test Item			
41291JEAVL008P	Equivalent Isotropic Radiated Power		
41291JEAVL006P	Radiated Spurious Emission		
41311JEAVW004U	Conducted Emission		

1.2 Modification of EUT

No modifications are made to the EUT during all test items.

1.3 Type of EUT

	Operational Condition			
EUT	Power Type	AC mains: AC voltage 120 V		
		Type of EUT		
	Stand-alone			
	Combined (EUT where the radio part is fully integrated within another device)			
	Combined Equipment - Brand Name / Model No.:			
	Plug-in radio (EUT intended for a variety of host systems)			
	Host System - Brand Name / Model No.:			
	Other:			

1.4 Testing Applied Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR FCC Part 15
- ANSI C63.10-2013
- FCC KDB 414788 D01 Radiated Test Site v01r01

Remark: The TAF code is not including all the FCC KDB listed without accreditation.

1.5 Testing Location Information

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton	Site No.	
Test Sile NO.	CO07-HY	03CH20-HY	

Note: The test site complies with ANSI C63.4 2014 requirement. FCC designation No.: TW3786

Test Condition	Test Site No. Test Engineer		Test Environment	Test Date
Conduction	CO07-HY	Louis Chung	23.1~25.7 °C 42.2~53.3 %	Apr. 15, 2024
Radiated	Radiated 03CH20-HY		18.2~19.6 °C 65.3~69.4 %	Mar. 06, 2024~ Apr. 11, 2024

1.6 Measurement Uncertainty

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)

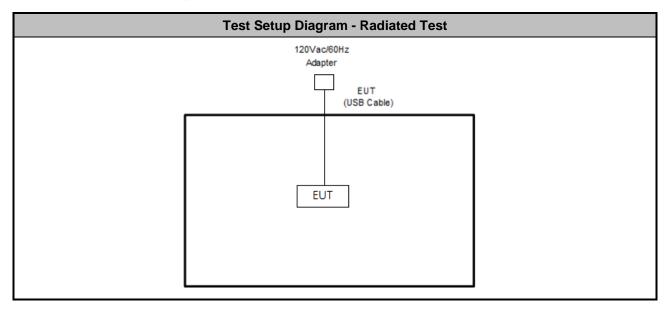
Test Items	Uncertainty	Remark
AC Conduction (150kHz ~ 30MHz)	3.44 dB	Confidence levels of 95%
Radiated Emission (30MHz ~ 1000MHz)	6.4 dB	Confidence levels of 95%
Radiated Emission (1GHz ~ 6GHz)	4.5 dB	Confidence levels of 95%
Radiated Emission (6GHz ~ 18GHz)	4.6 dB	Confidence levels of 95%
Radiated Emission (18GHz ~ 40GHz)	5.4 dB	Confidence levels of 95%

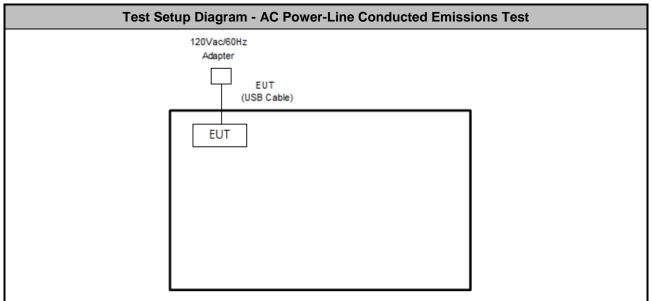
2 Test Configuration of EUT

2.1 Test Mode

		Test Con	figuration		
Config	Channel	Modulation	UWB Frame	HPRF Set #	Payload Length (bytes)
Mode 1	5	BPRF9	0	0	127
Mode 2	5	BPRF10	0	0	127
Mode 3	5	BPRF9	1	1	127
Mode 4	5	BPRF10	1	1	127
Mode 5	5	BPRF9	3	1	0
Mode 6	5	BPRF10	3	1	0
Mode 7	5	HPRF27	0	0	127
Mode 8	5	HPRF27	1	2	127
Mode 9	5	HPRF27	3	2	0
Mode 10	9	BPRF9	0	0	127
Mode 11	9	BPRF10	0	0	127
Mode 12	9	BPRF9	1	1	127
Mode 13	9	BPRF10	1	1	127
Mode 14	9	BPRF9	3	1	0
Mode 15	9	BPRF10	3	1	0
Mode 16	9	HPRF27	0	0	127
Mode 17	9	HPRF27	1	2	127
Mode 18	9	HPRF27	3	2	0

2.2 The Worst Case Measurement Configuration


Т	he Worst Case Mode for Following Conformance Tests
Tests Item	AC power-line conducted emissions
Condition	AC power-line conducted measurement for line and neutral Test Voltage: 120Vac / 60Hz
Operating Mode	СТХ
1	Adapter Mode
	15.207 which states, "Measurements to demonstrate compliance with the equired for devices employ Battery for operation and which do not operate from the


AC power lines or contain provisions for operation while connected to the AC power lines".

The Wor	st Case Mode for Follo	wing Conformance Test	S
Tests Item	UWB Bandwidth, Peak	Power Measurement, Rad	diated Emissions
Test Condition	Radiated measurement	t	
Operating Mode	СТХ		
1	Adapter Mode		
Mode 1 configuration was tested	and found to be the wor	st case and measured du	ring the test.
Operating Mode > 1GHz	СТХ		
	X Plane	Y Plane	Z Plane
Orthogonal Planes of EUT			
CH05		V	
CH09	V		
Remark: The measured emissio adjusting the orientation of the E landscape), and adjusting the me procedures and find as worst pla	UT and EUT antenna in teasurement antenna orie	three orthogonal axis (X: f entation, following C63.10	ilat, Y: portrait, Z:

2.3 Test Setup Diagram

2.4 Support Unit used in test configuration and system

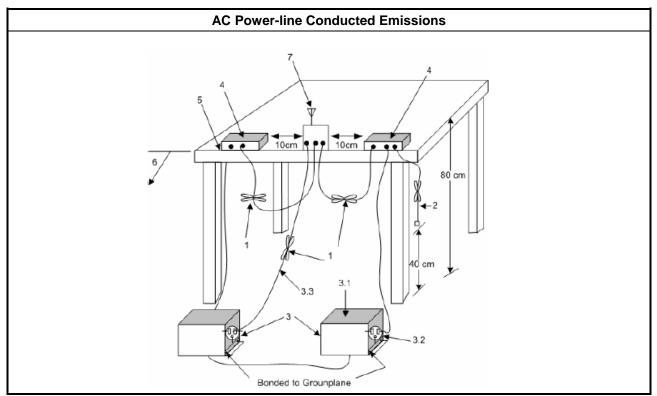
ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Adapter	Chicony	G9BR1	N/A	N/A	N/A
2.	Adapter	Aohai	G9BR1	N/A	N/A	N/A

3 Transmitter Test Result

3.1 AC Power-line Conducted Emissions

3.1.1 AC Power-line Conducted Emissions Limit

AC Powe	er-line Conducted Emissions L	imit
Frequency Emission (MHz)	Quasi-Peak	Average
0.15-0.5	66 - 56 *	56 - 46 *
0.5-5	56	46
5-30	60	50
Note 1: * Decreases with the logarithm of	of the frequency.	


3.1.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.1.3 Test Procedures

Test Method
Refer as ANSI C63.10-2013, clause 6.2 for AC power-line conducted emissions.

3.1.4 Test Setup

3.1.5 Test Result

Please refer to Appendix A.

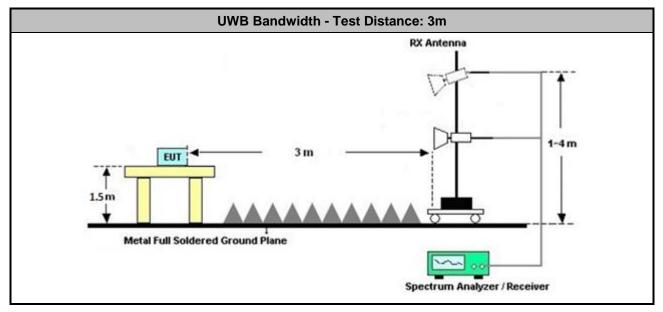
TEL : 886-3-327-0868	Page Number	: 11 of 60
FAX : 886-3-327-0855	Issue Date	: Apr. 24, 2024
Report Template No.: BU5-FR15F Version 1.0	Report Version	: 02

3.2 UWB bandwidth

3.2.1 UWB bandwidth Limit

UWB bandwidth Limit

UWB bandwidth \geq 500 MHz or Fractional bandwidth \geq 0.2; Fractional bandwidth $= 2(f_H - f_L)/(f_H + f_L)$

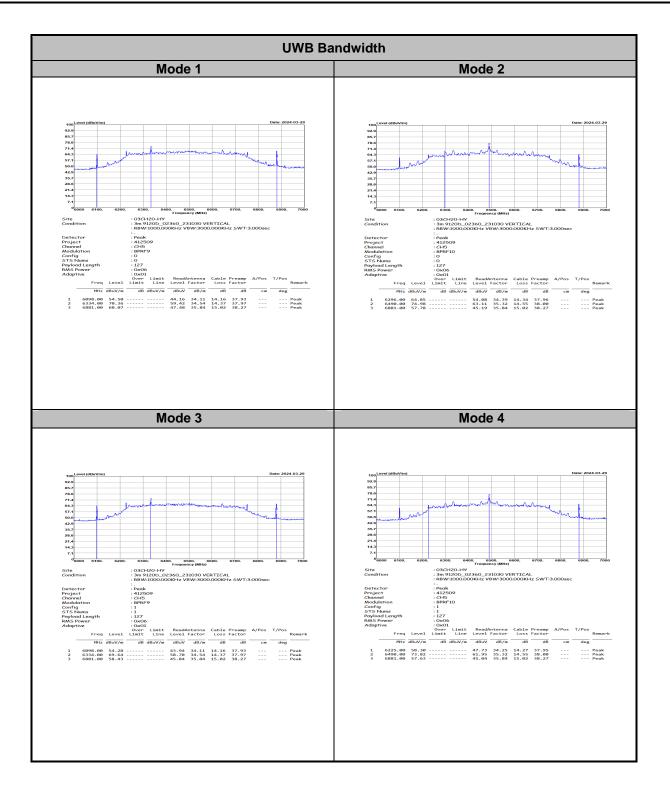

3.2.2 Measuring Instruments

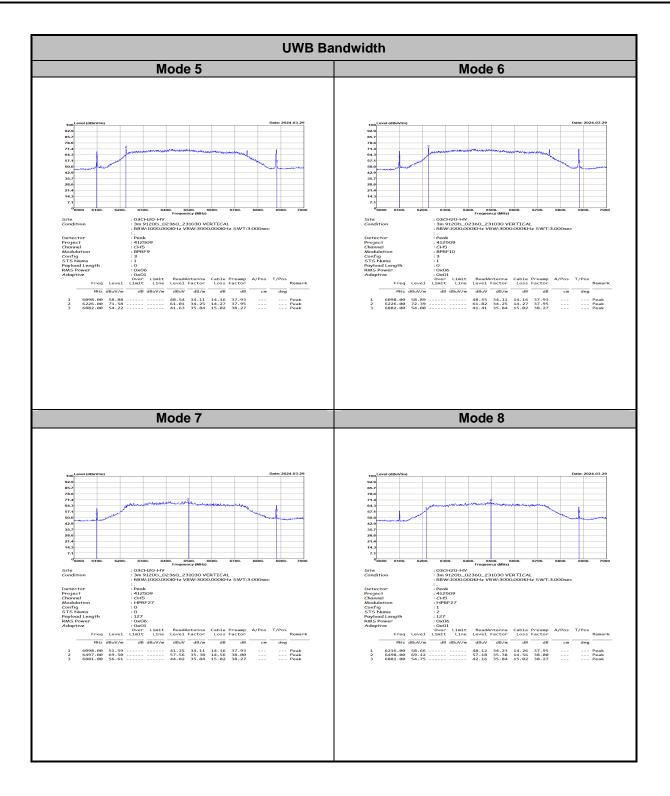
Refer a test equipment and calibration data table in this test report.

3.2.3 Test Procedures

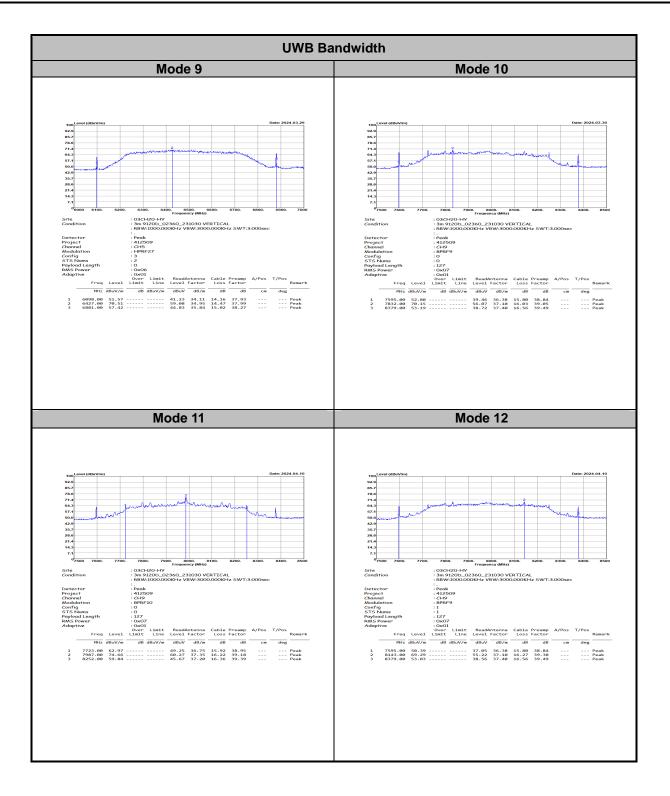
		Test Method
	For	the UWB bandwidth shall be measured using one of the options below:
Ī		Refer as ANSI C63.10, clause 6.9.2 and clause 10.1 for UWB bandwidth testing.

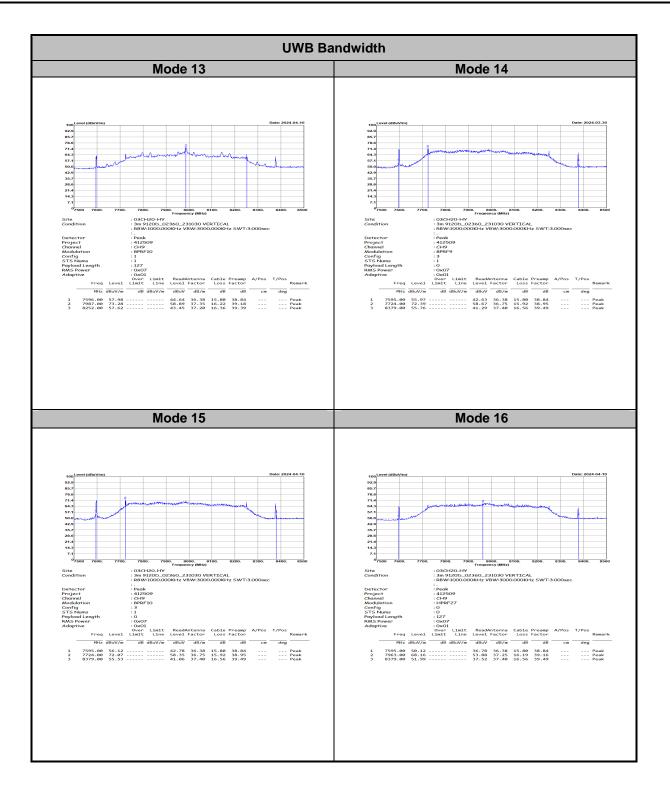
3.2.4 Test Setup

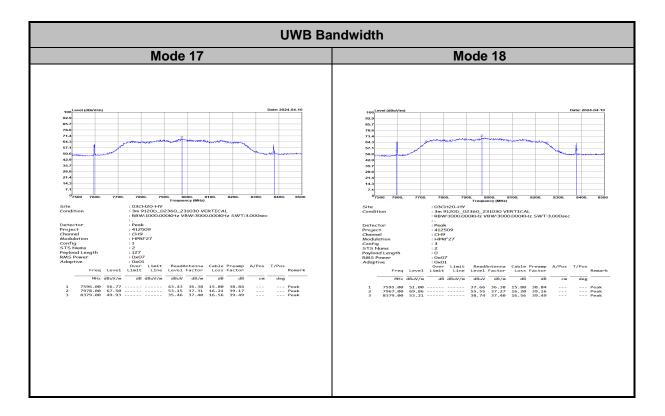



3.2.5 Test Result of UWB Bandwidth

Test mode	F _L (MHz)	F _H (MHz)	UWB Bandwidth (MHz)	Bandwidth limit (MHz)	Result	Pol [H/V]
1	6098	6881	783	≥ 500	Pass	V
2	6296	6881	585	≥ 500	Pass	V
3	6098	6881	783	≥ 500	Pass	V
4	6225	6881	656	≥ 500	Pass	V
5	6098	6882	784	≥ 500	Pass	V
6	6098	6882	784	≥ 500	Pass	V
7	6098	6881	783	≥ 500	Pass	V
8	6216	6881	665	≥ 500	Pass	V
9	6098	6881	783	≥ 500	Pass	V
10	7595	8379	784	≥ 500	Pass	V
11	7723	8252	529	≥ 500	Pass	V
12	7595	8379	784	≥ 500	Pass	V
13	7596	8252	656	≥ 500	Pass	V
14	7595	8379	784	≥ 500	Pass	V
15	7595	8379	784	≥ 500	Pass	V
16	7595	8379	784	≥ 500	Pass	V
17	7596	8379	783	≥ 500	Pass	V
18	7595	8379	784	≥ 500	Pass	V







3.3 Technical requirements for hand held UWB systems

3.3.1 **Technical Requirements for transmission Limit**

FCC 15.519(a) (1) A UWB device operating under the provisions of this section shall transmit only when it is sending information to an associated receiver. The UWB intentional radiator shall cease transmission within 10 seconds unless it receives an acknowledgement from the associated receiver that its transmission is being received. An acknowledgment of reception must continue to be received by the UWB intentional radiator at least every 10 seconds or the UWB device must cease transmitting.

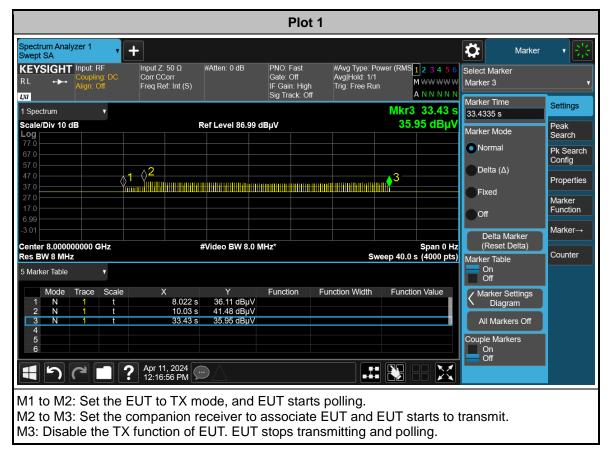
3.3.2 **Measuring Instruments**

Refer a test equipment and calibration data table in this test report.

3.3.3 **Test Procedure**

Follow the test step as below:

- Turn on both EUT and companion receiver. 1
- Set the EUT to TX mode, and EUT starts polling. 2.
- Set the companion receiver to associate EUT and EUT starts to transmit. 3.
- Disable the RX function of the companion receiver to disassociate the EUT. 4.
- Check if EUT stop transmitting once step 4 is made. 5.


3.3.4 Test Setup

Spectrum Analyzer

3.3.5 Test Result

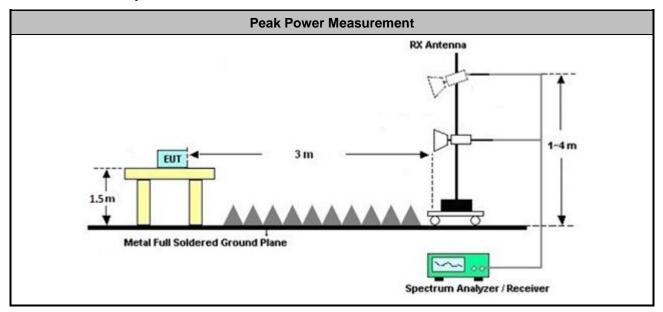
		Plot 2				
Spectrum Analyzer 1					Marker	۲
KEYSIGHT Input: RF Input Z: 50 Ω R L → Coupling: DC Corr CCorr Align: Off Freq Ref: Int (S) Freq Ref: Int (S)	#Atten: 0 dB	PNO: Fast Gate: Off IF Gain: High Sig Track: Off	#Avg Type: Power (RM Avg Hold: 1/1 Trig: Free Run	//S <mark>1</mark> 23456 M₩₩₩₩₩₩ A N N N N N	Select Marker Marker 1	
1 Spectrum V	l	I	ΔMkr1	200.0 ms	Marker ∆ Time 199.982 ms	Settings
Scale/Div 10 dB Log	Ref Level 86.99 dB	βμV		-0.08 dB	Marker Mode	Peak Search
67.0					Normal	Pk Search Config
57.0 47.0 37.0		● 1∆2			ODelta (Δ)	Properties
37.0					Fixed	Marker
17.0					Off	Function
-3.01					Delta Marker	Marker→
Center 8.000000000 GHz Res BW 8 MHz	#Video BW 8.0 M⊦	lz*	Sweep 500	Span 0 Hz ms (4000 pts)		Counter
5 Marker Table					On Off	
2 F 1 t 76.85 m 3 4 5 6 6	s (Δ)-0.07821 dB	Function Fur	Inction Width Fun	ction Value	All Markers Off Couple Markers On Off	
M1 to M2: Set the EUT to TX r M2 to M3: Set the companion M3: RX function of the compa	mode, and E receiver to a nion receiver	ssociate E	olling. UT and EUT	starts to		receiver
and stops transmitting, bu	it continues p	oolling.				
Plot 3				Plot	4	
Spectrum →	block b	4 5 6	••••••••••••••••••••••••••••••••••••	Mein 0.48 Phot Fait Photo Fait Claim Figh So Take 08 Flavel 85.69 dBpV Vietna 64.97 Fait Notes 08 8.0 Metric Vietna 64.97 Fait Vietna 64.9	Span 0 Hr Span 0 Hr Swep 40.0 s (400 pt) Function Welth Function Value Autor) · · · · · · · · · · · · · · · · · · ·
Plot 3 is zoom in plot of M2 to Plot 4 is zoom in plot after M3						

3.4 Peak Power Measurement

3.4.1 Peak Power Measurement Limit

Peak Power Measurement Limit

 $\mathbf{P}_{eirp} = 0 \text{ dBm}/50 \text{MHz}$

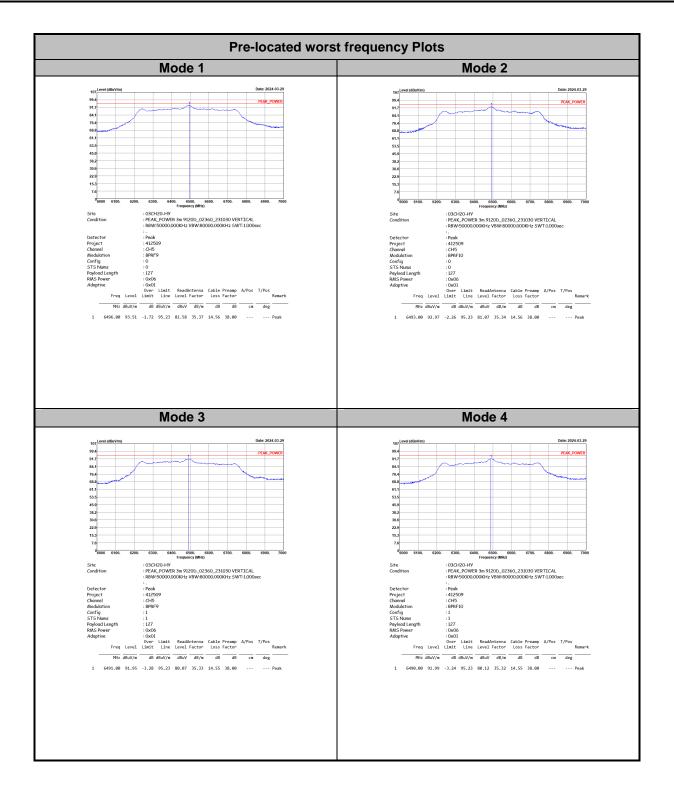

3.4.2 Measuring Instruments

Refer a test equipment and calibration data table in this test report.

3.4.3 Test Procedures

Test Method
Peak Power Measurement
Refer as ANSI C63.10, clause 10.3.1 for radiated measurement procedure testing.
Refer as ANSI C63.10, clause 10.3.2 for measurement distance is 3m.
Refer as ANSI C63.10, clause 10.3.5 for peak detector procedure testing.
Refer as ANSI C63.10, clause 10.3.6 for bandwidth conversion of peak power.
 Frequency of max peak power is pre-located: The span bandwidth is continuously reduced to find the worst frequency. Once the worst frequency is found, the setting of spectrum analyzer is set as below: Central frequency: Worst frequency point Span: Zero span RBW: 50MHz VBW: 80MHz Detector: Peak detector Trace: Max hold

3.4.4 Test Setup

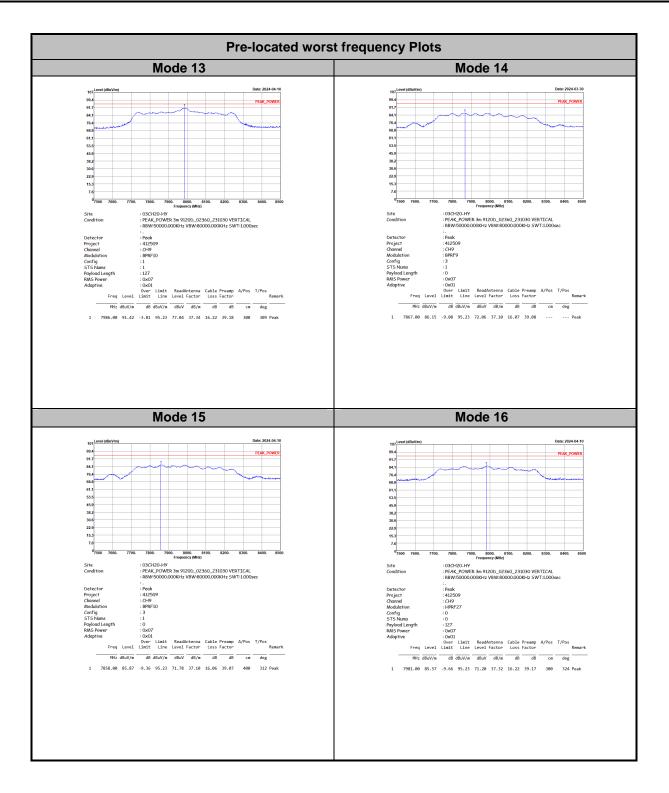


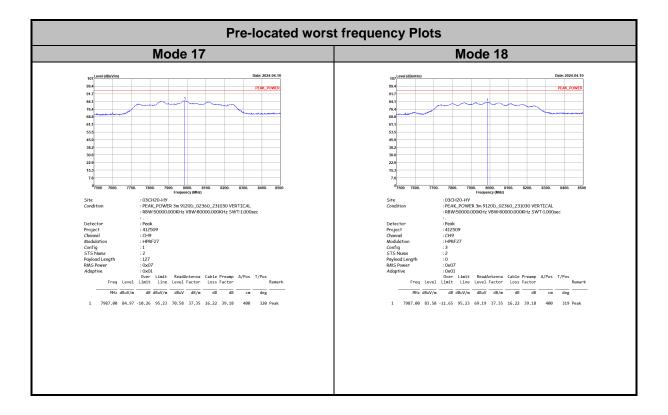
3.4.5 Test Result of Peak Power Measurement

Peak Measurement Result							
Test Mode	Freq. (MHz)	E-Field (dBuV/m)	ERIP _{50MHz} (dBm)	ERIP _{50MHz} Limit (dBm)	Margin (dB)	Result	Pol [H/V]
1	6496	93.51	-1.72	0	-1.72	Pass	V
2	6493	92.97	-2.26	0	-2.26	Pass	V
3	6491	91.95	-3.28	0	-3.28	Pass	V
4	6490	91.99	-3.24	0	-3.24	Pass	V
5	6427	86.91	-8.32	0	-8.32	Pass	V
6	6491	87.54	-7.69	0	-7.69	Pass	V
7	6491	86.35	-8.88	0	-8.88	Pass	V
8	6491	85.61	-9.62	0	-9.62	Pass	V
9	6489	84.08	-11.15	0	-11.15	Pass	V
10	7990	93.11	-2.12	0	-2.12	Pass	V
11	7987	92.95	-2.28	0	-2.28	Pass	V
12	7989	92.91	-2.32	0	-2.32	Pass	V
13	7986	91.42	-3.81	0	-3.81	Pass	V
14	7867	86.15	-9.08	0	-9.08	Pass	V
15	7858	85.87	-9.36	0	-9.36	Pass	V
16	7981	85.57	-9.66	0	-9.66	Pass	V
17	7987	84.97	-10.26	0	-10.26	Pass	V
18	7987	83.58	-11.65	0	-11.65	Pass	V
Note 1: EIRF	P [dBm] = E-Fie	ld [dBuV/m] - 9	5.23;		•		

Note 2: Measurement worst emissions of receive antenna polarization.







3.5 Radiated Emissions

3.5.1 Radiated Emissions Limit

Radiated Emissions below 960MHz and Emissions from Digital Circuitry Limit					
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)		
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300		
0.490~1.705	24000/F(kHz)	33.8 - 23	30		
1.705~30.0	30	29	30		
30~88	100	40	3		
88~216	150	43.5	3		
216~960	200	46	3		
Above 960	500	54	3		

Note 1: Test distance for frequencies at or above 30 MHz, measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements).

Note 2: Test distance for frequencies at below 30 MHz, measurements may be performed at a distance closer than the EUT limit distance; however, an attempt should be made to avoid making measurements in the near field. When performing measurements below 30 MHz at a closer distance than the limit distance, the results shall be extrapolated to the specified distance by either making measurements at a minimum of two or more distances on at least one radial to determine the proper extrapolation factor or by using the square of an inverse linear distance extrapolation factor (40 dB/decade). The test report shall specify the extrapolation method used to determine compliance of the EUT.

Radiated Emissions above 960MHz Limit			
Frequency Range (MHz)	EIRP (dBm), RBW = 1MHz		
960-1610	-75.3		
1610-1990	-63.3		
1990-3100	-61.3		
3100-10600	-41.3		
Above 10600	-61.3		

Note: Distance extrapolation factor = 20 log (test distance [X m]/specific distance [3 m]) (dB)

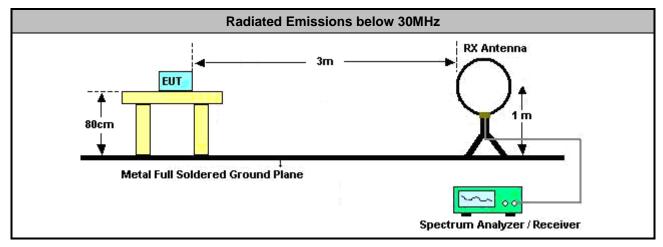
Radiated Emissions in GPS Bands Limit			
EIRP (dBm), RBW ≥ 1kHz			
-85.3			
-85.3			

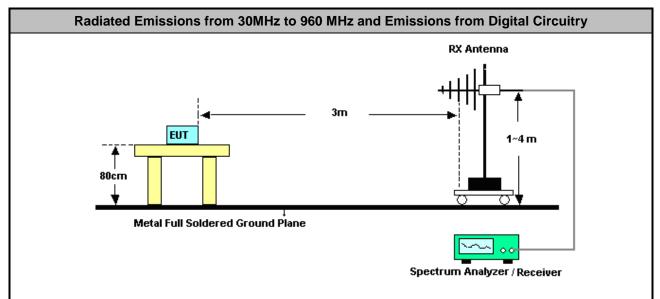
Note E (dBuv/m) = EIRP (dBm) + 95.23, example, E(dBuV/m) = -85.3 + 95.23 = 9.93dBuV/m

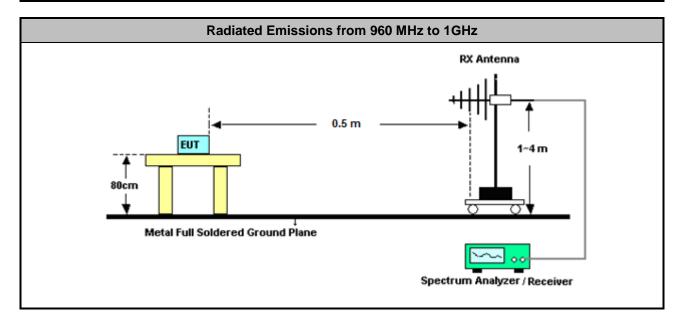
3.5.2 Measuring Instruments

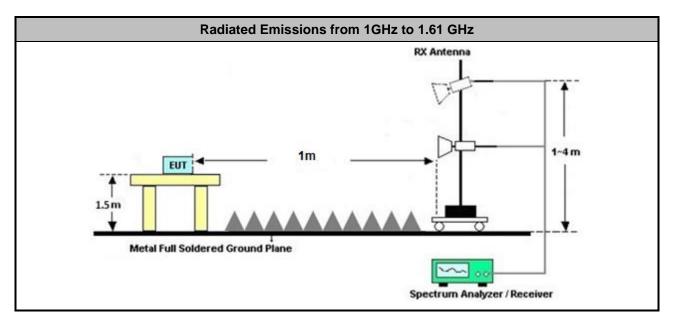
Refer a test equipment and calibration data table in this test report.

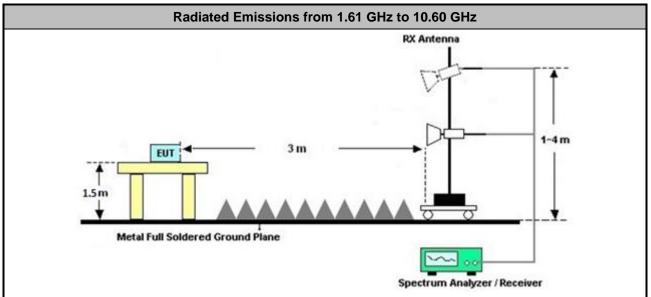
3.5.3 Test Procedures

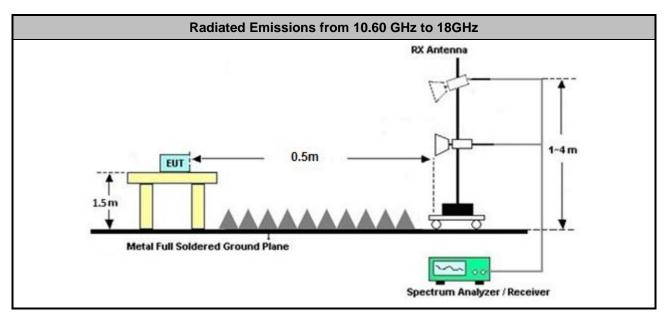

	Test Method for Radiated Emissions above 960MHz
Ra	diated Emissions above 960MHz
	Refer as ANSI C63.10, clause 10.3.1 for radiated measurement procedure testing.
	Refer as ANSI C63.10, clause 10.3.2 for measurement distance is 3m. In some cases, it may be necessary to measure the radiated UWB emissions at a closer distance to obtain enough signa and margin to overcome the measurement system noise floor. Distance extrapolation factor = 20 log (test distance [X m]/specific distance [3 m]) (dB)
	Refer as ANSI C63.10, clause 10.3.4 for rms detector procedure testing.
	Refer as ANSI C63.10, clause 10.3.7 for evaluating AVG-PSD (RBW=1MHz).
	Refer as ANSI C63.10, clause 10.3.10 for evaluating AVG-PSD in GPS Band (RBW≥1kHz).
Fo	r radiated measurement.
	Refer as ANSI C63.10, clause 10.3.8 following eirp can be used radiated test configuration.
	Refer as ANSI C63.10, clause 10.3.9 following eirp can be directly determined using the fiel strength.
_	
Т	Test Method for Radiated Emissions below 960MHz and Emissions from Digital Circuitry
per equ ext dis	easurements may be performed at a distance other than the limit distance provided they are number of the near field and the emissions to be measured can be detected by the measurement upment. When performing measurements at a distance other than that specified, the results shall be trapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear tance for field-strength measurements, inverse of linear distance-squared for power-densi easurements) for above 30MHz-960MHz; 40dB/decade for frequency below 30MHz.
Fo	r the transmitter unwanted emissions shall be measured using following options below:
	Refer as ANSI C63.10, clause 4.1.4 Detector functions and selection of bandwidth
	Refer as ANSI C63.10, clause 4.1.4.2.4 average value of pulsed emissions. Adjusted by a "du cycle correction factor", derived from 20log (dwell time/100 ms). Average emission = pea emission + 20 log (duty cycle).
	Refer as ANSI C63.10, clause 4.1.4.2.2 measurement procedure peak limit.
Fo	r radiated measurement.
	Refer as ANSI C63.10, clause 6.4 for radiated emissions below 30 MHz and test distance is 3m.
	Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3r
	Refer as ANSI C63.10, clause 6.5 for radiated emissions 30 MHz to 1 GHz and test distance is 3r Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1 GHz and test distance is 3m.

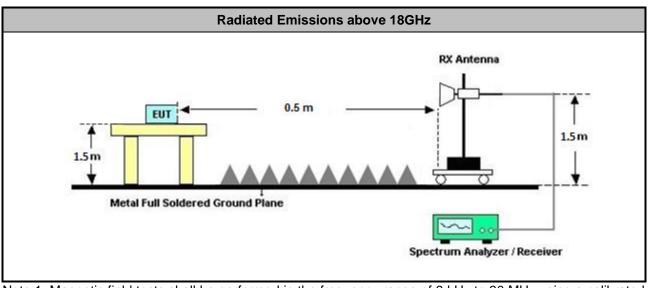

If the noise floor can't meet the limit, the test distance will be shorten and described in the report.


Any unwanted emissions level shall not exceed the fundamental emission level.




3.5.4 Test Setup



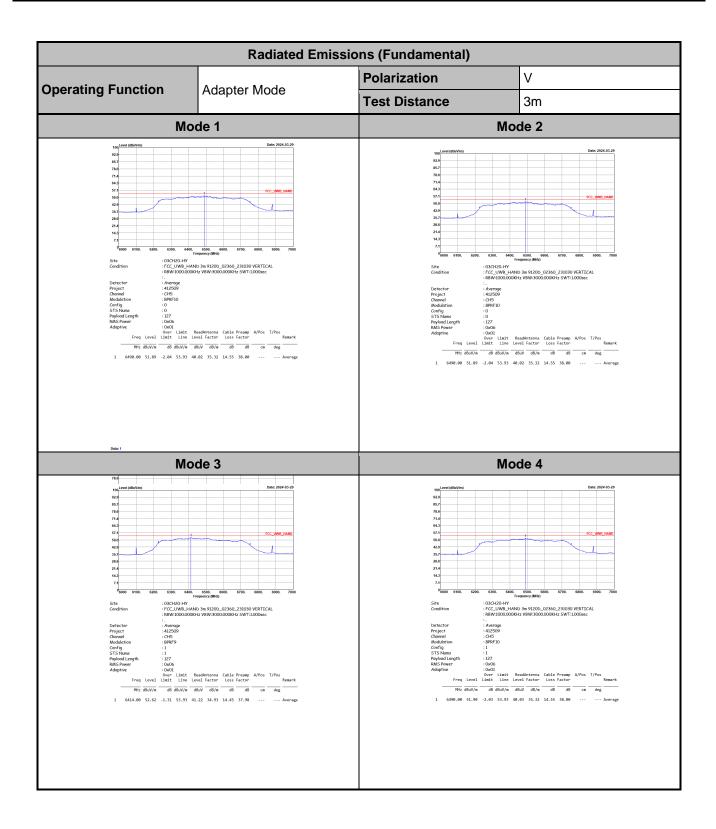


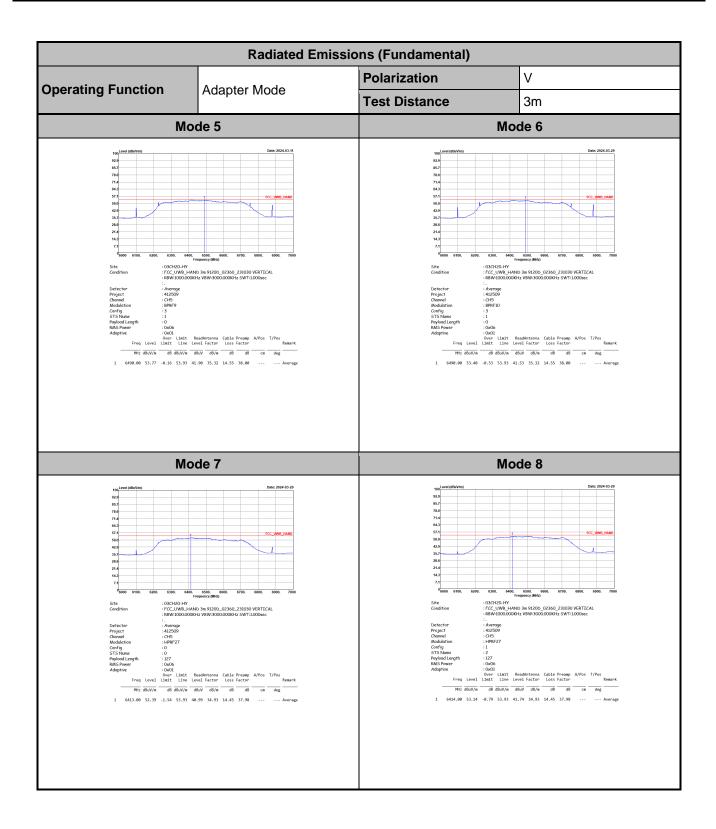
TEL : 886-3-327-0868	Page Number	: 32 of 60
FAX : 886-3-327-0855	Issue Date	: Apr. 24, 2024
Report Template No.: BU5-FR15F Version 1.0	Report Version	: 02

Note 1: Magnetic field tests shall be performed in the frequency range of 9 kHz to 30 MHz using a calibrated loop antenna. Electric field tests shall be performed in the frequency range of 30 MHz to 1000 MHz using a calibrated bi-log antenna and the frequency range of 1 GHz to 40 GHz using a calibrated horn antenna. Note 2: If test distance other than 3m is used, the used test distance will be recorded in test result.

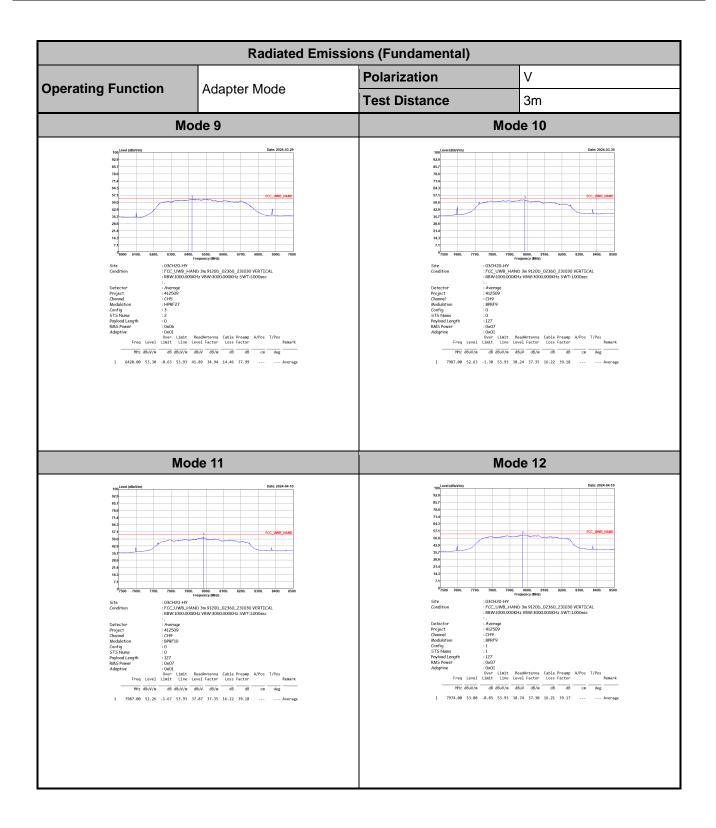
3.5.5 Radiated Emissions (Below 30MHz)

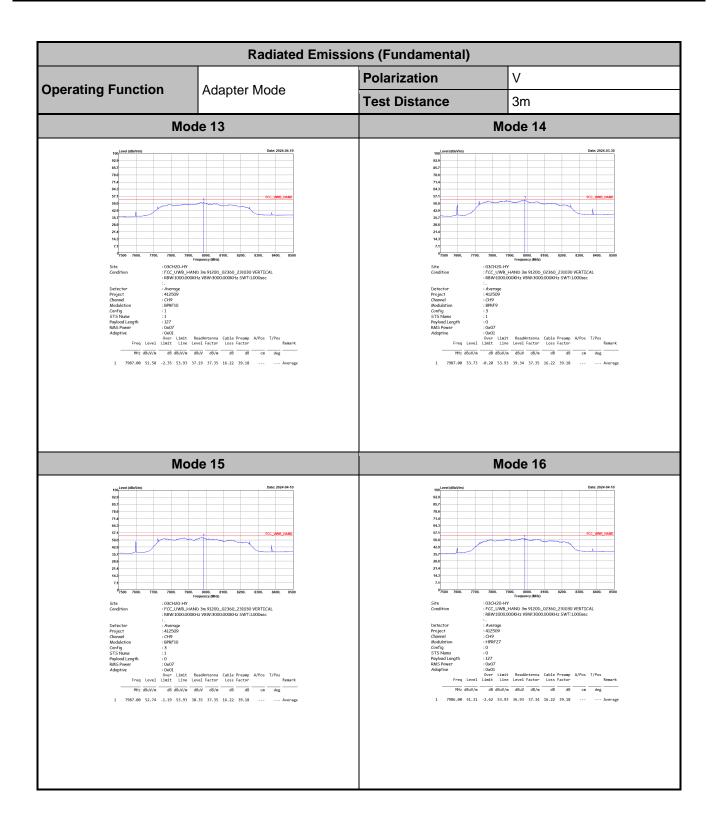
All amplitude of spurious emissions that are attenuated by more than 20 dB below the permissible value has no need to be reported.

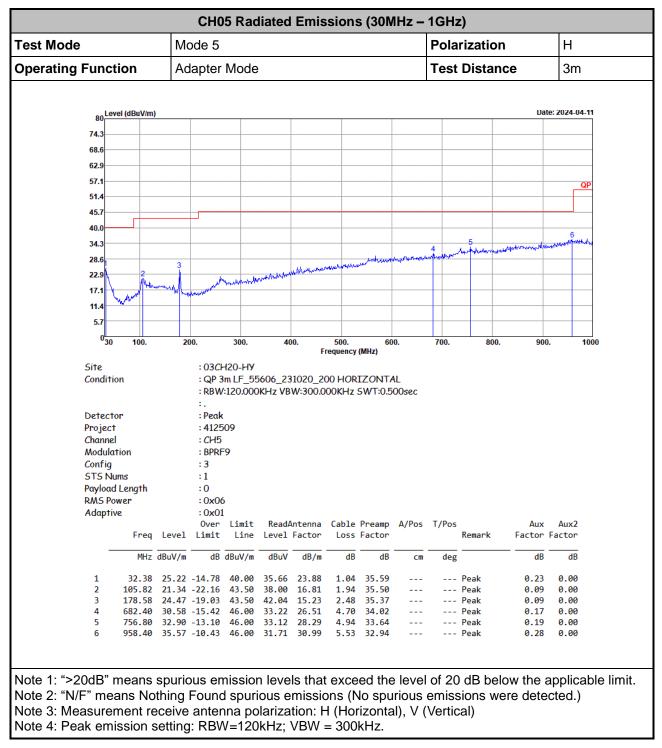

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

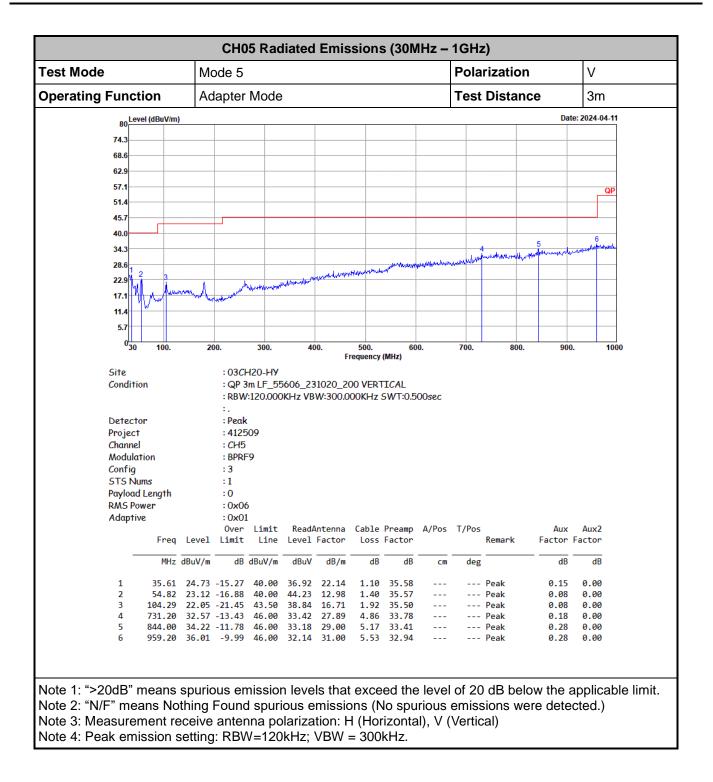

3.5.6 Average Power Spectral Density

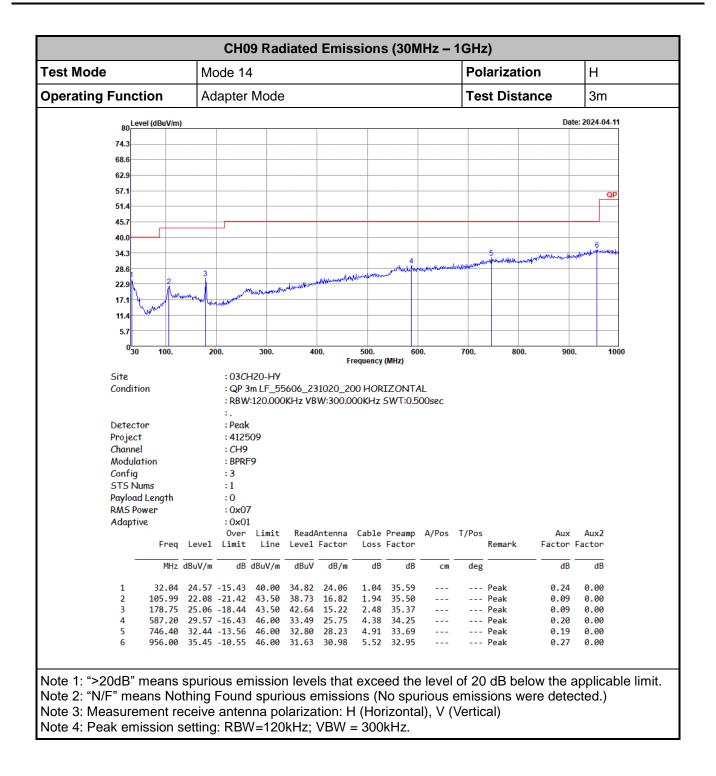
Test	Frequency	Emission Level	Emission Limit	Emission Limit	Margin	Result	Pol
mode	(MHz)	(dBuV/m)	(dBm/MHz)	(dBuV/m)	(dB)	Result	[H/V]
1	6490	51.89	-41.3	53.93	-2.04	Pass	V
2	6490	51.89	-41.3	53.93	-2.04	Pass	V
3	6414	52.62	-41.3	53.93	-1.31	Pass	V
4	6490	51.90	-41.3	53.93	-2.03	Pass	V
5	6490	53.77	-41.3	53.93	-0.16	Pass	V
6	6490	53.40	-41.3	53.93	-0.53	Pass	V
7	6413	52.39	-41.3	53.93	-1.54	Pass	V
8	6414	53.14	-41.3	53.93	-0.79	Pass	V
9	6420	53.30	-41.3	53.93	-0.63	Pass	V
10	7987	52.63	-41.3	53.93	-1.30	Pass	V
11	7987	52.26	-41.3	53.93	-1.67	Pass	V
12	7974	53.08	-41.3	53.93	-0.85	Pass	V
13	7987	51.58	-41.3	53.93	-2.35	Pass	V
14	7987	53.73	-41.3	53.93	-0.20	Pass	V
15	7987	52.74	-41.3	53.93	-1.19	Pass	V
16	7986	51.31	-41.3	53.93	-2.26	Pass	V
17	7983	52.48	-41.3	53.93	-1.45	Pass	V
18	7987	53.10	-41.3	53.93	-0.83	Pass	V

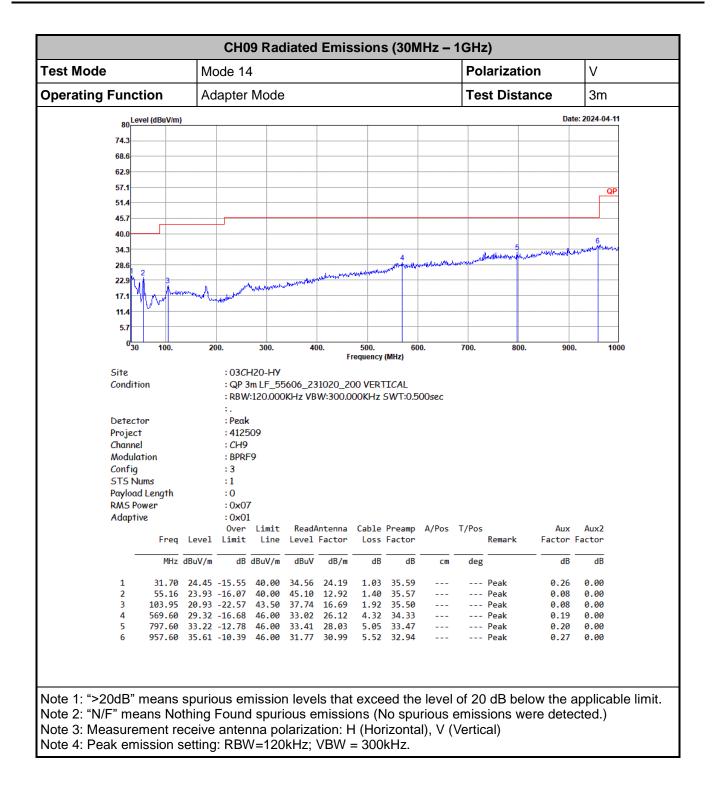









	Radiated Emis	sions (Fundamental)	
On anatin m Franctian		Polarization	V
Operating Function	Adapter Mode	Test Distance	3m
Mod	le 17	1	Mode 18
Site ::03G/402-H9 Site :03G/402-H9 Condition :FCC_UWB_HN :RelV-10000000 : :Policit :42269 Obared :GHP2 Modulation :HP8727 Config :1 STSTName :2 Polyload Largth :12 RMS Payload :0401 Adaptine :0401 Free Level Linits II: Line Line Free Level Linit Line Line Mtz dBu/m :0403			Георения (Mitz) 20-Н И/WB_HANID 3m 91200_02360_231030 VERTICAL И/WB_HANID 3m 91200_000000Hz 5WT:10000sec 99 27



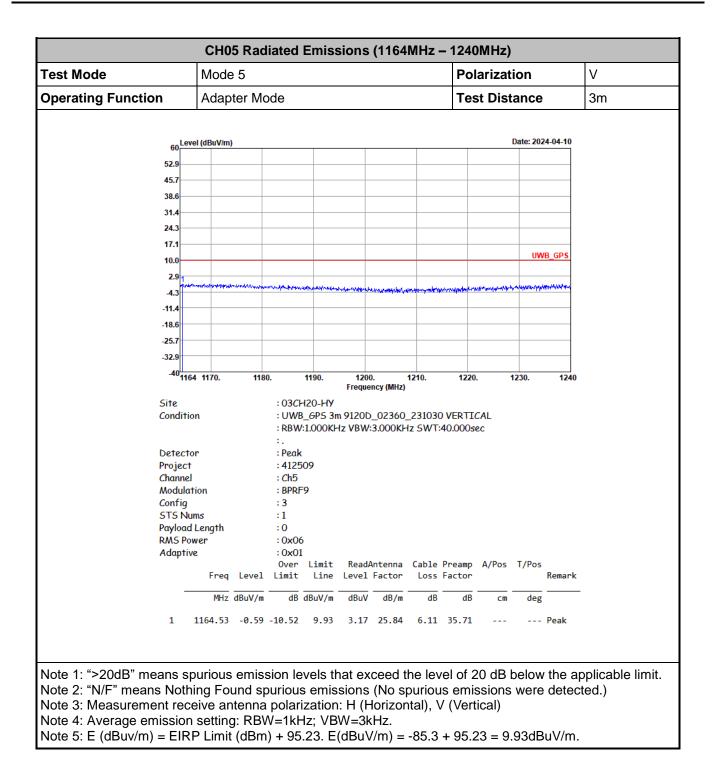
3.5.7 Radiated Emissions (30MHz – 1GHz)

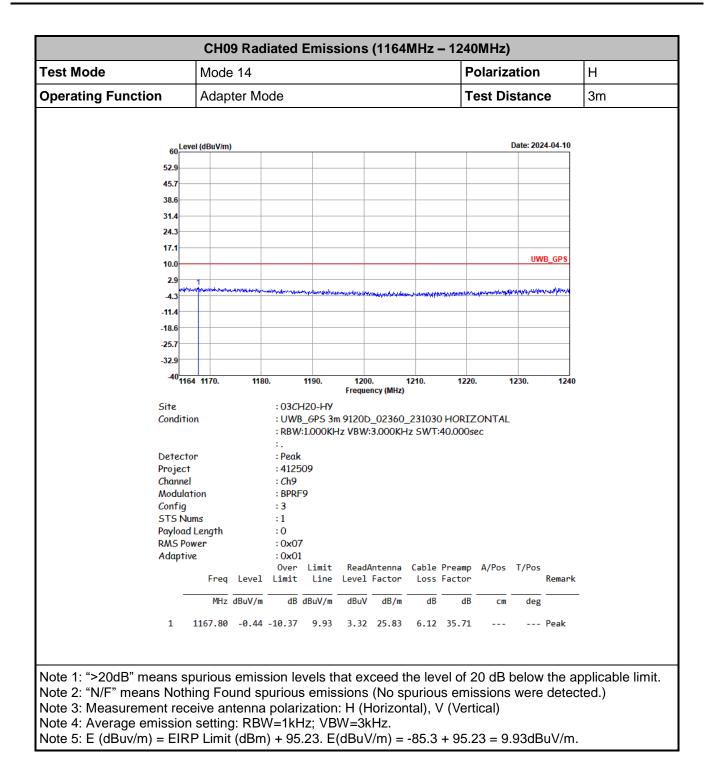
3.5.8 Radiated Emissions (960MHz – 18GHz)

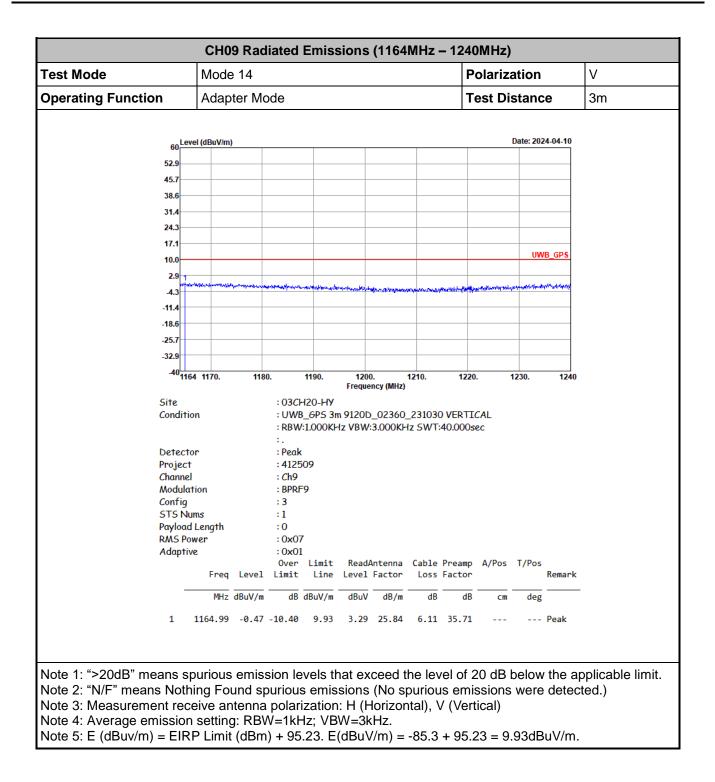
	CH05 Radiated Emissions (960MHz –	18GHz)	
Test Mode	Mode 5	Polarization	Н
Operating Function	Adapter Mode		
Test Distance	The test distance between the receiving ar 3m for 1.61 GHz ~ 10.60 GHz frequency r 0.5 m for other frequency ranges.		
Site Condition	Frequency (MHz) : 03CH20-HY : 602CH20HY : 602CH20HX : 80W:1000.000KHz VBW:3000.000KHz SWT:7.500sec : Average : 412509 : CH5 : BPRF9 : 3 : 1 Over Limit ReadAntenna Cable Preamp A/Pos T/P Freq Level Limit Line Level Factor Loss Factor MHz dBuV/m dBuV/m MHz dBuV/m dBuV/m dBuV/m A/Pos T/P Freq Level Limit Line Level Factor Loss Factor Over Limit ReadAntenna Cable Preamp A/Pos T/P MHz dBuV/m dBuV Mut dBuV/m dBuV MHz dBuV/m dBuV Mut dBuV/m dBuV GBUV State 11: 31: 31: 329: 329 42: 61: 21: 7: 85 36: 69 State 4: 11: 31: 32: 329: 34 4: 11: 7: 34: 96 <	$\frac{\text{Pos}}{\text{Remark}} = \frac{\text{Aux}}{\text{Factor}} = \frac{\text{Aux}}{\text{Factor}} = \frac{\text{Aux}}{\text{Factor}}$ $= \frac{\text{Average}}{\text{dB}} = \frac{0.29}{-15.56}$ $= \frac{\text{Average}}{\text{Average}} = \frac{0.00}{0.00} = \frac{0.00}{0.00}$ $= \frac{\text{Average}}{\text{Average}} = \frac{0.00}{0.00} = \frac{0.00}{0.00}$ of 20 dB below the appendix of 20 dB below the app	Preamp or) means

Test Mode	CH05 Radiated Emissions (960MH Mode 5	Polarization	V
		FUIdilization	V
Operating Function	Adapter Mode		
Test Distance	The test distance between the receiving 3m for 1.61 GHz ~ 10.60 GHz frequen 0.5 m for other frequency ranges.		
Let	vel (dBuVim)	Date: 2024-04-10	
60 55.7	5		
51.4			
42.9			
38.6 34.3		FCC_UWB_HAND	
30.0	3 martine and a second se		
25.7 21.4			
17.1 /¥ 12.9			
8.6			
4.3 0960	0 3000, 5000, 7000, 9000, 11000,	40000 47000 47000 4000	
Site	0 3000. 5000. 7000. 9000. 11000. Frequency (MHz) : 03CH2O-HY	13000. 15000. 17000.1800	-
Payload RMS Po Adaptiv —		Remark Factor Factor	
1	976.96 16.90 -3.03 19.93 28.65 30.78 5.59 32.85	Average 0.29 -15.56	
2	1159.21 18.69 -1.24 19.93 31.97 25.86 6.10 35.70 1959.22 27.70 -4.23 31.93 29.77 26.16 7.86 36.09	Average -9.54 0.00 Average 0.00 0.00	
4 5 6 1	3048.94 30.68 -3.25 33.93 27.09 29.80 9.93 36.14 6490.00 53.67 -0.26 53.93 41.80 35.32 14.55 38.00 17992.60 30.95 -2.98 33.93 25.06 42.46 24.57 45.58	Average 0.00 0.00	
0	51.55 -2.50 42.40 24.51 45.56	Average -13.30 0.00	
Note 1: ">20dB" means	spurious emission levels that exceed the le thing Found spurious emissions (No spurio	ous emissions were dete	
Note 2: "N/F" means Not Note 3: Measurement re Note 4: Average emission	ceive antenna polarization: H (Horizontal), on setting outside GPS Bands: RBW=1MH on setting in GPS bands: RBW=1kHz; VBV al signal.	z; VBW=3MHz.	
Note 2: "N/F" means Not Note 3: Measurement re Note 4: Average emissio Note 5: Average emissio Note 6: #5 is fundamenta Note 7: • Distance extrapolat	on setting outside GPS Bands: RBW=1MH on setting in GPS bands: RBW=1kHz; VBV	z; VBW=3MHz. V=3kHz. ecific distance [3 m]) (dE	

Test Mode	Mode 14	Polarization	Н
Operating Function	Adapter Mode		I
Test Distance	The test distance between the receive 3m for 1.61 GHz ~ 10.60 GHz freque 0.5 m for other frequency ranges.		
60[L	svel (dBuV/m)	Date: 2024-04-10	
55.7 51.4			
47.1			
42.9 38.6			
34.3 — 30.0 —		FCC_UWB_HAND	
25.7			
21.4 			
12.9 8.6			
4.3			
096	50 3000. 5000. 7000. 9000. 11000. Frequency (MHz)	13000. 15000. 17000.1800	D
RMS P Adapti		/Pos T/Pos Aux Aux2 Remark Factor Factor cm deg dB dB	
1		Average 0.29 -15.56	
2 3 4 5	1955.80 27.24 -4.69 31.93 29.35 26.13 7.85 36.09	Average -9.54 0.00 Average 0.00 0.00 Average 0.00 0.00 Average 0.00 0.00 Average 15 56 0.00	
6	על.ל4 מכ.42 /נ.42 /מ4.54 כד.ככ כ4.כ- 40.90 של.ל5	Average -15.50 0.00	
Note 2: "N/F" means No Note 3: Measurement re Note 4: Average emission Note 5: Average emission Note 6: #5 is fundament Note 7:	spurious emission levels that exceed the othing Found spurious emissions (No spu eccive antenna polarization: H (Horizonta on setting outside GPS Bands: RBW=1M on setting in GPS bands: RBW=1kHz; VE tal signal.	irious emissions were dete al), V (Vertical) 1Hz; VBW=3MHz. 3W=3kHz.	ected.)
			- Preamp

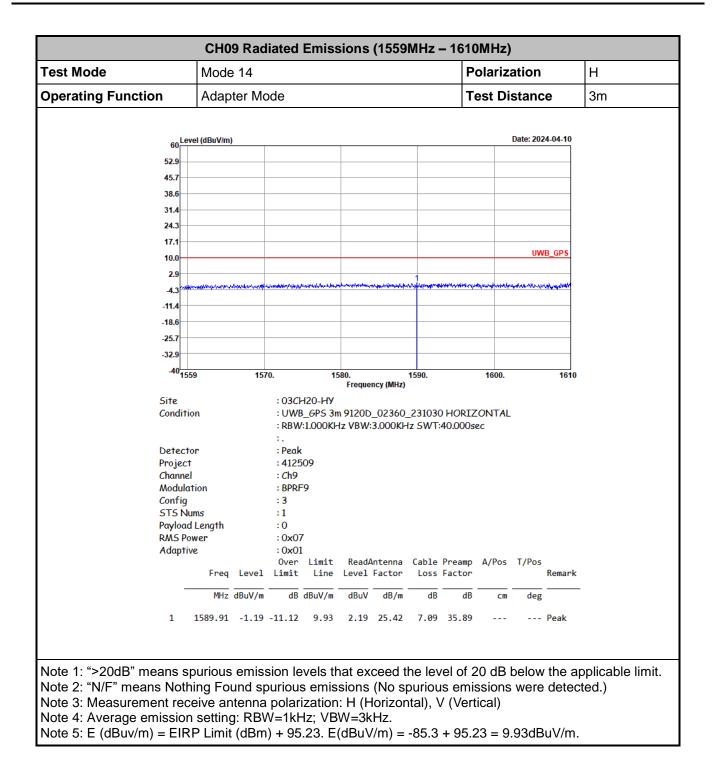


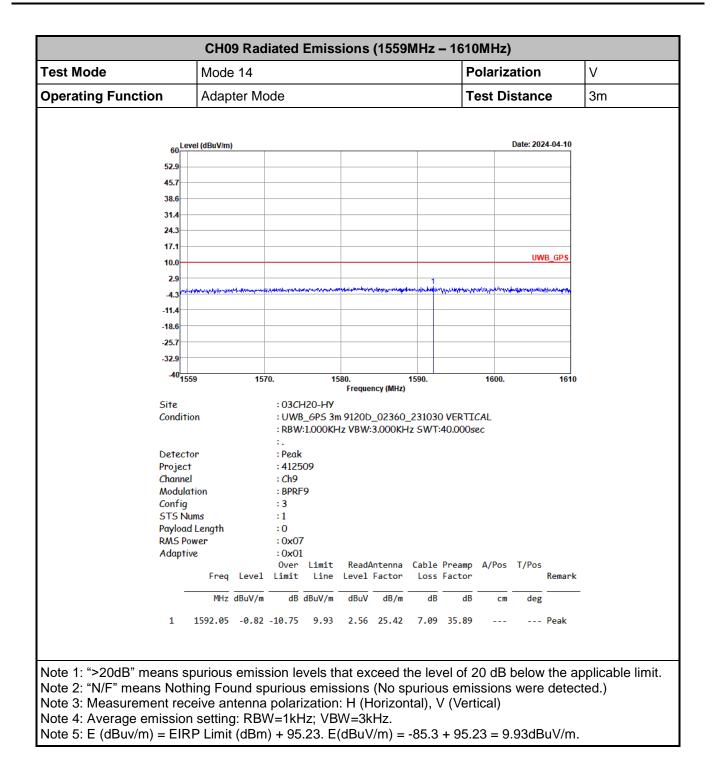

Toot Mode		adiated Emissio				1
Test Mode	Mode 14			Polarizatio	on	V
Operating Function	Adapter Mo	ode				
Test Distance	3m for 1.6	stance between t 1 GHz ~ 10.60 G ther frequency ra	Hz frequency			
60 55.7	evel (dBuV/m)			Da	nte: 2024-04-10	
51.4		.M				
47.1 42.9						
38.6				FC	C_UWB_HAND	
34.3 30.0	3 mm					
25.7 21.4	w ⁴					
17.1	Winz					
12.9 8.6						
4.3 0						
Site		000. 7000. 900 Frequ СН20-НУ	0. 11000. ency (MHz)	13000. 15000.	17000.18000	
RMS Adap 1 2 3	ive : 0x1 Freq Level Limit MHz dBuV/m d 981.92 16.95 -2.9 1157.99 18.22 -1.7 1952.76 27.31 -4.6	D1 r Limit ReadAntenna Ca t Line Level Factor L g dBuV/m dBuV dB/m 8 19.93 28.85 30.60 5 1 19.93 31.50 25.87 6 2 31.93 29.42 26.12 7	oss Factor dB dB cm .60 32.83 .09 35.70 .85 36.08	Remark Factor deg de Average 0.29 Average -9.54 Average 0.00	Factor dB -15.56 0.00 0.00	
4 5 6	7990.00 53.44 -0.4	6 33.93 26.69 29.79 9 9 53.93 39.03 37.36 16 0 33.93 24.74 42.46 24		Average 0.00 Average 0.00 Average -15.56	0.00	
Note 1: ">20dB" means Note 2: "N/F" means No Note 3: Measurement r Note 4: Average emiss Note 5: Average emiss Note 6: #5 is fundamen Note 7:	othing Found speceive antenna on setting outs on setting in G tal signal.	ourious emissions polarization: H (ide GPS Bands: PS bands: RBW=	s (No spuriou Horizontal), V RBW=1MHz; =1kHz; VBW=	s emissions we / (Vertical) VBW=3MHz. -3kHz.	ere dete	cted.)
 Distance extrapola Corrected Readin Factor (dB) + Aux 	g: Antenna Fac	ctor (dB/m) + Cab	le Loss (dB) ·	+ Read Level (dBuV) -	Preamp



		CHO	5 Rad	iated	Emis	sions	(1164	MHz -	- 1240)MHz)			
Test Mode		Mode	e 5						Pol	arizat	ion		Н
Operating Function	า	Adap	oter Mo	ode					Tes	st Dist	ance		3m
	60 Lev	el (dBuV/m)								Date: 202	4-04-10	
	52.9												
	45.7												
	38.6												
	31.4												
	24.3												
	17.1										uw	B_GPS	
	10.0												
	2.9		to my make	-	~~~~~	where the days	Market and a second	Mundered	man	www.	and a start and a start and a start a s	******	
	-4.3												
	-18.6												
	-25.7												
	-32.9												
	-40	4 1170.	118	n.	1190.	120	n.	1210.	1220		1230.	1240	
							ency (MHz)						
	Site				H2O-HY		02260	221020					
	Conditio	on				m 9120L	_02360	231030	HORIZ	UNTAL			
				• KD W	:1.000KF	Hz VBW	:3.000KH	– Hz SWT:4		ec			
				÷.		⊣z VBW	:3.000Kŀ			ec			
	Detecto			:. :Peak		⊣z VBW	:3.000KF			ec			
I	Detecto Project Channel			÷.		⊣z VBW	:3.000Kŀ			ec			
	Project Channel Modula			: . : Peak : 4125 : Ch5 : BPRF	09	Hz VBW	:3.000KF			ec			
	Project Channel Modula Config	tion		: . : Peak : 4125 : Ch5 : BPRF : 3	09	Hz VBW	:3.000KF			ec			
	Project Channel Modula Config STS Nu Payload	tion ms Length		: . : Peak : 4125 : Ch5 : BPRF	09	Hz VBW	:3.000KF			ec			
	Project Channel Modula Config STS Nu Payload RMS Po	tion ms Length wer		: . : Peak : 4125 : Ch5 : BPRF : 3 : 1 : 0 : 0x06	i09 59	Hz VBW	:3.000KF			ec			
	Project Channel Modula Config STS Nu Payload	tion ms Length wer		:. : Peak : 4125 : Ch5 : BPRF : 3 : 1 : 0 : 0x06 : 0x01	09 9 Limit	Read	Antenna		40.000 <i>s</i> 4		T/Pos		
	Project Channel Modula Config STS Nu Payload RMS Po	tion ms Length wer e	Level	:. : Peak : 4125 : Ch5 : BPRF : 3 : 1 : 0 : 0x06 : 0x01 0ver	09 9 Limit	Read		Hz SWT:≁ Cable	40.000 <i>s</i> 4		T/Pos	Remark	
	Project Channel Modula Config STS Nu Payload RMS Po	tion ms Length wer re Freq	Level dBuV/m	:. : Peak : 4125 : Ch5 : BPRF : 3 : 1 : 0 : 0x06 : 0x01 Over Limit	09 9 Limit	Read	Antenna Factor	Hz SWT:≁ Cable	40.000s		T/Pos deg	Remark	
	Project Channel Modula Config STS Nu Payload RMS Po Adaptiv	tion ms Length wer re Freq	dBuV/m	:. : Peak : 4125 : Ch5 : BPRF : 3 : 1 : 0 : 0x06 : 0x01 Over Limit dB	09 59 Limit Line dBuV/m	Read. Level dBuV	Antenna Factor 	Cable Loss 	40.000s Preamp Factor dB	A/Pos cm	deg	Remark Peak	

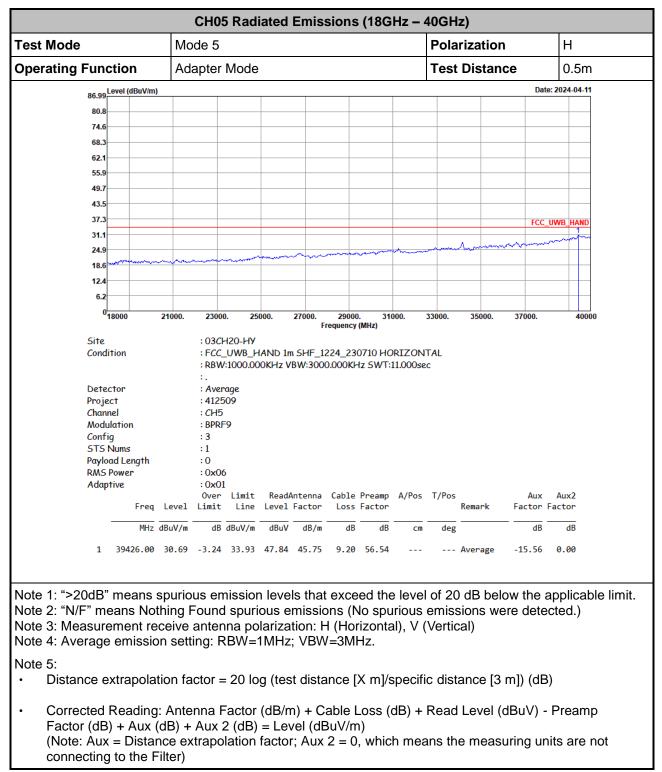
3.5.9 Radiated Emissions (1164MHz – 1240MHz)

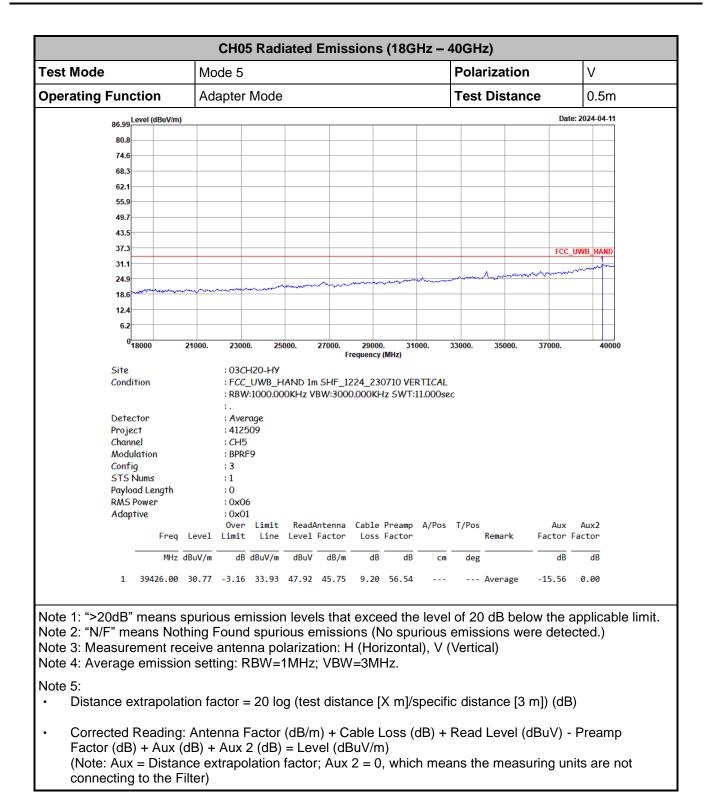


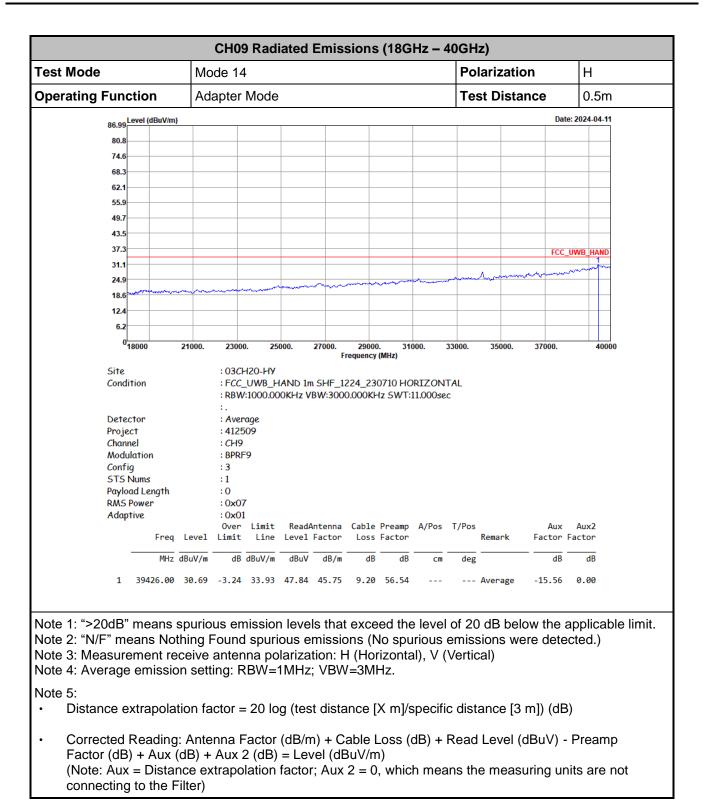


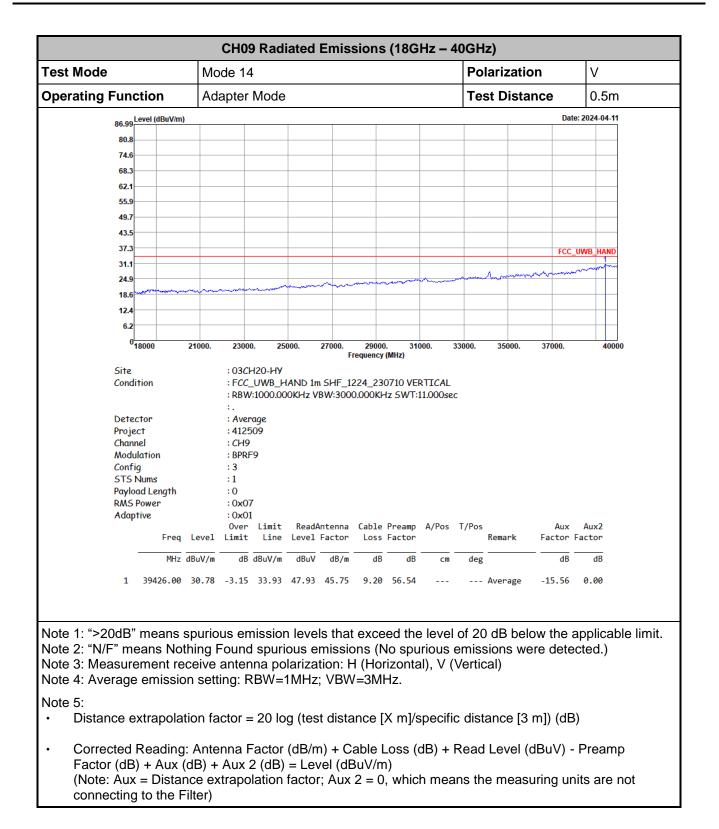
CH05 Radiated Emissions (1559MHz - 1610MHz) **Test Mode** Mode 5 Polarization Н **Operating Function** Adapter Mode **Test Distance** 3m 60 Level (dBuV/m) Date: 2024-04-10 52.9 45.7 38.6 31.4 24.3 17.1 UWB_GPS 10.0 2.9 -4.3 -11.4 -18.6 -25.7 -32.9 -40 1559 1570. 1610 1580. 1590. 1600. Frequency (MHz) Site :03CH20-HY : UWB_6P5 3m 9120D_02360_231030 HORIZONTAL Condition : RBW:1.000KHz VBW:3.000KHz SWT:40.000sec ٤. : Peak Detector Project : 412509 Channel : Ch5 : BPRF9 Modulation Config : 3 STS Nums :1 Payload Length :0 RMS Power : 0x06 Adaptive : 0x01 ReadAntenna Cable Preamp Over Limit A/Pos T/Pos Remark Freq Level Limit Line Level Factor Loss Factor MHz dBuV/m dB dBuV/m dBuV dB/m dB dB cm deg 1597.51 -0.66 -10.59 9.93 2.73 25.40 7.10 35.89 1 ------ Peak Note 1: ">20dB" means spurious emission levels that exceed the level of 20 dB below the applicable limit. Note 2: "N/F" means Nothing Found spurious emissions (No spurious emissions were detected.) Note 3: Measurement receive antenna polarization: H (Horizontal), V (Vertical) Note 4: Average emission setting: RBW=1kHz; VBW=3kHz. Note 5: E (dBuv/m) = EIRP Limit (dBm) + 95.23. E(dBuV/m) = -85.3 + 95.23 = 9.93dBuV/m.

3.5.10 Radiated Emissions (1559MHz – 1610MHz)

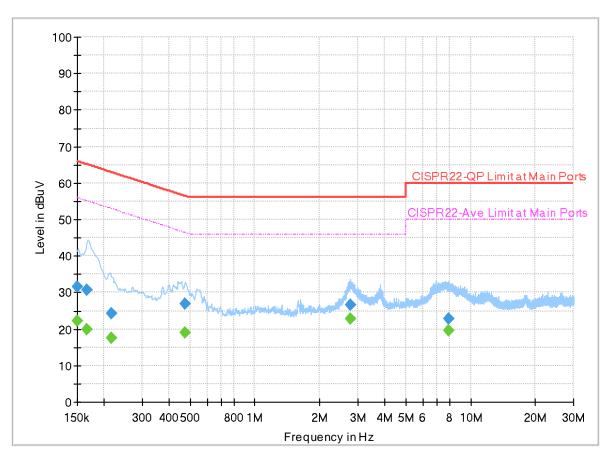

	Mode	95						Pol	arizat	ion		V
)	Adap	ter Mo	ode					Tes	st Dist	ance		3m
60Lev	el (dBuV/m)				-					Date: 202	24-04-10	
52.9												
45.7												
38.6												
31.4												
24.3												
17.1							_			1100		
10.0										000	0-0-3	
2.9	-	uninstatutu	man	and the second	manage	and a state	1 huppedate where		www.	laya yana kang kang kananan dan kang kang kang kang kang kang kang ka	41.12.41.41.41.41.41	
Project Channel Modulat Config STS Nu Payload	tion Ims I Length wer		:. : Peak : 4125 : Ch5 : BPRF : 3 : 1 : 0 : 0x00 : 0x00 0ver	509 59 5 1 Limit	Read	Antenna	Cable	Preamp		T/Pos		
	_		Limit	Line	Level	Factor	Loss	Factor			Remark	
_		Level								-		
_		dBuV/m		dBuV/m	dBuV	dB/m	dB	dB	cm	deg		
	52.9 45.7 38.6 31.4 24.3 17.1 10.0 2.9 4.3 -11.4 -18.6 -25.7 -32.9 -40 155 Site Condition Detector Project Channel Modulat Config STS Nu Payload RMS Poo	Adap 60 Level (dBuV/m) 52.9	60 Level (dBuV/m) 52.9	Adapter Mode 60 Level (dBuV/m) 52.9	Adapter Mode 60 Level (dBuV/m) 52.9	Adapter Mode 60 Level (dBuV/m) 52.9	Adapter Mode 60 Level (dBuV/m) 52.9	Adapter Mode 60 Level (dBuV/m) 52.9	Adapter Mode Test 60 Level (dBuV/m) 60 100 52.9 100	Adapter Mode Test Dist 60	Adapter Mode Test Distance 60 Level (dBuV/m) Date: 202 52.9	Adapter Mode Test Distance 0 Adapter Mode Date: 2024-04-10 529






3.5.11 Radiated Emissions (18GHz – 40GHz)

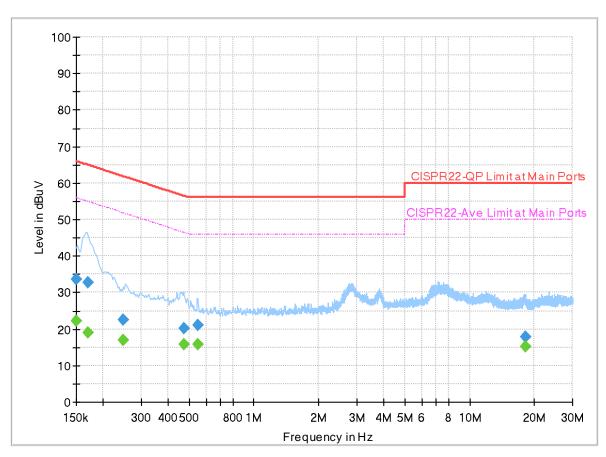
4 Test Equipment and Calibration Data


Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	Keysight	N9038A(MXE)	MY54130085	N/A	Oct. 06, 2023	Mar. 06, 2024 ~ Apr. 11, 2024	Oct. 05, 2024	Radiation (03CH20-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 12, 2023	Mar. 06, 2024 ~ Apr. 11, 2024	Sep. 11, 2024	Radiation (03CH20-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 27, 2023	Mar. 06, 2024 ~ Apr. 11, 2024	Jun. 26, 2024	Radiation (03CH20-HY)
Controller	ChainTek	EM1000	N/A	Control Turn table & Ant Mast	N/A	Mar. 06, 2024 ~ Apr. 11, 2024	N/A	Radiation (03CH20-HY)
Antenna Mast	ChainTek	MBS-520-1	N/A	1m~4m	N/A	Mar. 06, 2024 ~ Apr. 11, 2024	N/A	Radiation (03CH20-HY)
Turn Table	ChainTek	T-200-S-1	N/A	0~360 Degree	N/A	Mar. 06, 2024 ~ Apr. 11, 2024	N/A	Radiation (03CH20-HY)
Signal Analyzer	Keysight	N9010B	MY60240520	N/A	Dec. 12, 2023	Mar. 06, 2024 ~ Apr. 11, 2024	Dec. 11, 2024	Radiation (03CH20-HY)
Bilog Antenna	TESEQ	CBL 6111D&00802N1 D01N-06	55606 & 08	30MHz~1GHz	Oct. 20, 2023	Mar. 06, 2024 ~ Apr. 11, 2024	Oct. 19, 2024	Radiation (03CH20-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	02360	1GHz-18GHz	Oct. 30, 2023	Mar. 06, 2024 ~ Apr. 11, 2024	Oct. 29, 2024	Radiation (03CH20-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	1224	18GHz-40GHz	Jul. 10, 2023	Mar. 06, 2024 ~ Apr. 11, 2024	Jul. 09, 2024	Radiation (03CH20-HY)
Preamplifier	COM-POWER	PAM-103	18020201	1MHz-1000MHz	Jan. 01, 2024	Mar. 06, 2024 ~ Apr. 11, 2024	Dec. 31, 2024	Radiation (03CH20-HY)
Amplifier	EMCI	EMC118A45SE	980792	N/A	Nov. 13, 2023	Mar. 06, 2024 ~ Apr. 11, 2024	Nov. 12, 2024	Radiation (03CH20-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	519229/2,8040 15/2,804027/2	N/A	Jan. 17, 2024	Mar. 06, 2024 ~ Apr. 11, 2024	Jan. 16, 2025	Radiation (03CH20-HY)
Software	Audix	N/A	RK-002156	N/A	N/A	Mar. 06, 2024 ~ Apr. 11, 2024	N/A	Radiation (03CH20-HY)
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Apr. 15, 2024	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Apr. 15, 2024	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Oct. 20, 2023	Apr. 15, 2024	Oct. 19, 2024	Conduction (CO07-HY)
Two-Line V-Network	TESEQ	NNB 51	45051	N/A	Mar. 10, 2024	Apr. 15, 2024	Mar. 09, 2025	Conduction (CO07-HY)
Four-Line V-Network	TESEQ	NNB 52	36122	N/A	Mar. 07, 2024	Apr. 15, 2024	Mar. 06, 2025	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Sep. 20, 2023	Apr. 15, 2024	Sep. 19, 2024	Conduction (CO07-HY)

Appendix A. AC Conducted Emission Test Results

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 412509 Mode 1 120Vac/60Hz Line


Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.150000		22.15	56.00	33.85	L1	OFF	19.9
0.150000	31.68		66.00	34.32	L1	OFF	19.9
0.165750		19.97	55.17	35.20	L1	OFF	19.9
0.165750	30.76		65.17	34.41	L1	OFF	19.9
0.215250		17.68	53.00	35.32	L1	OFF	19.9
0.215250	24.31		63.00	38.69	L1	OFF	19.9
0.472290		19.07	46.47	27.40	L1	OFF	19.9
0.472290	26.77		56.47	29.70	L1	OFF	19.9
2.763600		22.91	46.00	23.09	L1	OFF	20.0
2.763600	26.73		56.00	29.27	L1	OFF	20.0
7.944180		19.48	50.00	30.52	L1	OFF	20.0
7.944180	22.77		60.00	37.23	L1	OFF	20.0

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 412509 Mode 1 120Vac/60Hz Neutral

FullSpectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.150045		22.17	56.00	33.83	Ν	OFF	19.9
0.150045	33.58		66.00	32.42	Ν	OFF	19.9
0.170250		19.11	54.95	35.84	Ν	OFF	19.9
0.170250	32.79		64.95	32.16	Ν	OFF	19.9
0.249000		16.87	51.79	34.92	Ν	OFF	19.9
0.249000	22.64		61.79	39.15	Ν	OFF	19.9
0.476250		15.92	46.40	30.48	Ν	OFF	19.9
0.476250	20.26		56.40	36.14	Ν	OFF	19.9
0.548160		15.66	46.00	30.34	Ν	OFF	19.9
0.548160	21.15		56.00	34.85	Ν	OFF	19.9
18.136860		15.34	50.00	34.66	Ν	OFF	20.2
18.136860	17.90		60.00	42.10	Ν	OFF	20.2