

FCC RADIO TEST REPORT

FCC ID	:	A4RGB62Z
Equipment	:	Phone
Model Name	:	GB62Z
Applicant	:	Google LLC
		1600 Amphitheatre Parkway,
		Mountain View, California, 94043 USA
Standard	:	FCC Part 15 Subpart E §15.407

The product was received on Nov. 11, 2021 and testing was performed from Nov. 12, 2021 to Feb. 16, 2022. We, Sporton International Inc. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu Sporton International Inc. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.)

Table of Contents

His	story o	f this test report	3
Su	mmar	y of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	6
	1.3	Modification of EUT	7
	1.4	Testing Location	
	1.5	Applicable Standards	8
2	Test	Configuration of Equipment Under Test	9
	2.1	Carrier Frequency and Channel	9
	2.2	Test Mode	11
	2.3	Connection Diagram of Test System	14
	2.4	Support Unit used in test configuration and system	15
	2.5	EUT Operation Test Setup	
	2.6	Measurement Results Explanation Example	15
3	Test	Result	16
	3.1	26dB & 99% Occupied Bandwidth Measurement	
	3.2	Maximum conducted Output Power and Fundamental Maximum EIRP Measurement	
	3.3	Fundamental Power Spectral Density Measurement	
	3.4	In-Band Emissions (Channel Mask)	
	3.5	Contention Based Protocol	
	3.6	Unwanted Emissions Measurement	
	3.7	AC Conducted Emission Measurement	
	3.8	Antenna Requirements	
4	List o	of Measuring Equipment	112
5	Unce	rtainty of Evaluation	114
Ар	pendi	A. Conducted Test Results	
Ар	pendi	K B. AC Conducted Emission Test Result	
	•	c C. Radiated Spurious Emission	

Appendix D. Radiated Spurious Emission Plots

Appendix E. Duty Cycle Plots

History of this test report

Report No.	Version	Description	Issue Date
FR161608-03H	01	Initial issue of report	Jan. 25, 2022
FR161608-03H	02	 Revise Connection Diagram of Test System, List of Measuring Equipment Revise description for Antenna Requirements Revise description in section 3.3.3 Revise Test Summary of Contention Based Protocol Test Revise data in appendix A Revise List of Measuring Equipment 	Mar. 03, 2022
FR161608-03H	03	1. Add CBP test information	Mar. 07, 2022

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.403(i) 15.407(a)(10)	26dB Emission Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.407(a)(8)	Maximum Conducted Output Power	Reporting only	-
3.2	15.407(a)(8)	Fundamental Maximum EIRP	Pass	-
3.3	15.407(a)(8)	Fundamental Power Spectral Density	Pass	-
3.4	15.407(b)(6)	In-Band Emissions (Channel Mask)	Pass	-
3.5	15.407(d)(6)	Contention Based Protocol	Pass	
3.6	15.407(b)	Unwanted Emissions	Pass	3.31 dB under the limit at 19995.000 MHz
3.7	15.207	AC Conducted Emission	Pass	10.62 dB under the limit at 0.152 MHz
3.8	15.203 15.407(a)	Antenna Requirement	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: William Chen

Report Producer: Ruby Zou

1 General Description

1.1 Product Feature of Equipment Under Test

	Product Feature
Equipment	Phone
Model Name	GB62Z
FCC ID	A4RGB62Z
EUT supports Radios application	GSM/EGPRS/WCDMA/HSPA/LTE/5G NR/NFC/GNSS WLAN 11b/g/n HT20 WLAN 11a/n HT20/HT40 WLAN 11ac VHT20/VHT40/VHT80/VHT160 WLAN 11ax HE20/HE40/HE80/HE160 Bluetooth BR/EDR/LE

Remark: The above EUT's information was declared by manufacturer.

EU	T Information List
S/N	Performed Test Item
1A261FQGR00043	Conducted Measurement
1B011FQGR00008	Radiated Spurious Emission
1B011FQGR00006	Conducted Emission
1A261FQGR00046	Contention Based Protocol

1.2 Product Specification of Equipment Under Test

Pro	oduct Specification is subject to this standard
	5925 MHz ~ 6425 MHz
Tx/Rx Frequency Range	6425 MHz ~ 6525 MHz
TXXX Trequency Range	6525 MHz ~ 6875 MHz
	6875 MHz ~ 7125 MHz
	<5925 MHz ~ 6425 MHz>
	MIMO <ant. 4+3=""></ant.>
	802.11ax HE20: 10.76 dBm / 0.0119 W
	802.11ax HE40: 13.71 dBm / 0.0235 W
	802.11ax HE80: 16.47 dBm / 0.0444 W
	802.11ax HE160: 19.41 dBm / 0.0873 W
	<6425 MHz ~ 6525 MHz>
	MIMO <ant. 4+3=""></ant.>
	802.11ax HE20: 11.47 dBm / 0.0140 W 802.11ax HE40: 14.46 dBm / 0.0279 W
	802.11ax HE40. 14.46 dBiii / 0.0279 W 802.11ax HE80: 17.06 dBm / 0.0508 W
	802.11ax HE160: 19.71 dBm / 0.0935 W
Maximum Output Power	6525 MHz ~ 6875 MHz>
	MIMO <ant. 4+3=""></ant.>
	802.11ax HE20: 14.41 dBm / 0.0276 W
	802.11ax HE40: 16.46 dBm / 0.0443 W
	802.11ax HE80: 19.78 dBm / 0.0951 W
	802.11ax HE160: 21.91 dBm / 0.1552 W
	<6875 MHz ~ 7125 MHz>
	MIMO <ant. 4+3=""></ant.>
	802.11ax HE20: 15.07 dBm / 0.0321 W
	802.11ax HE40: 17.51 dBm / 0.0564 W
	802.11ax HE80: 20.05 dBm / 0.1012 W
	802.11ax HE160: 21.58 dBm / 0.1439 W
	MIMO <ant. 4=""></ant.>
	802.11ax HE20: 19.23 MHz
	802.11ax HE40: 37.86 MHz
	802.11ax HE80: 77.32 MHz
99% Occupied	802.11ax HE160: 157.52 MHz
Bandwidth	MIMO <ant. 3=""></ant.>
	802.11ax HE20: 19.18 MHz
	802.11ax HE40: 37.86 MHz
	802.11ax HE80: 77.20 MHz
	802.11ax HE160: 157.52 MHz
	<5925 MHz ~ 6425 MHz>
	<ant. 4="">: IFA Antenna</ant.>
	<ant. 3="">: IFA Antenna</ant.>
	<6425 MHz ~ 6525 MHz>
	<ant. 4="">: IFA Antenna</ant.>
Antenna Type	<ant. 3="">: IFA Antenna</ant.>
	<6525 MHz ~ 6875 MHz>
1	<ant. 4="">: IFA Antenna</ant.>
1	<ant. 3="">: IFA Antenna</ant.>
	<6875 MHz ~ 7125 MHz>
	<ant. 4="">: IFA Antenna</ant.>
	<ant. 3="">: IFA Antenna</ant.>

: Mar. 07, 2022

	Product Specification is	subject to this	standard	
Antenna Gain	<5925 MHz ~ 6425 MI <ant. 4="">: -2.9 dBi <ant. 3="">: -2.1 dBi <6425 MHz ~ 6525 MI <ant. 4="">: -3.6 dBi <ant. 3="">: -2.5 dBi <6525 MHz ~ 6875 MI <ant. 4="">: -5.6 dBi <ant. 3="">: -5.7 dBi <6875 MHz ~ 7125 MI <ant. 4="">: -6.2 dBi <ant. 3="">: -6.5 dBi</ant.></ant.></ant.></ant.></ant.></ant.></ant.></ant.>	Hz> Hz>		
Antenna Function Description	802.11ax MIMO	Ant. 4 V	Ant. 3 V	
Type of Modulation	802.11ax : OFDMA (B	PSK/QPSK/16Q	AM/64QAM/256C	AM/1024QAN

Remark:

 MIMO Ant. 4+3 Directional Gain is a calculated result from MIMO Ant. 4 and MIMO Ant. 3. The formula used in calculation is documented in section 3.8.
 Power of MIMO Ant. 4 + Ant. 3 is a calculated result from sum of the power MIMO Ant. 4 and MIMO Ant. 3.

2. The above EUT's information is declared by manufacturer. Please refer to Comments and Explanations in report summary.

1.3 Modification of EUT

No modifications made to the EUT during the testing.

1.4 Testing Location

Test Site	Sporton International Inc. EMC & Wireless Communications Laboratory
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978
Test Site No.	Sporton Site No.
1651 Sile 140.	CO05-HY, DF02-HY

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	Sporton International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sporton Site No.
Test Sile NO.	TH05-HY, 03CH16-HY (TAF Code: 3786)
Remark	The Conducted and Radiated Spurious Emissions test item subcontracted to Sporton International Inc. Wensan Laboratory.

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW3786

1.5 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- FCC KDB 987594 D02 U-NII 6 GHz EMC Measurement v01
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, , the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape) and accessory (Adapter or Earphone), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and find Y plane with Adapter as worst plane.
- b. AC power line Conducted Emission was tested under maximum output power.

BW 20M	Channel	1	5	9	13	17	21	25	29
	Freq. (MHz)	5955	5975	5995	6015	6035	6055	6075	6095
BW 40M	Channel	3	3	11		19		27	
	Freq. (MHz)	59	65	6005		6045		6085	
BW 80M	Channel		7	7			2	3	
	Freq. (MHz)		59	85			60	65	
BW 160M	Channel				1	5			
DVV TOUIVI	Freq. (MHz)				60	25			
	Channel	33	37	41	45	49	53	57	61
BW 20M		0445	6125	6155	6175	6195	6215	6235	6255
	Freq. (MHz)	6115	6135	0155	0170	0100			
BW 40M	Channel		5		.3		51	5	9
BW 40M		3		4		5			9 45
	Channel	3	5 25	4	.3	5	1 05		
BW 40M BW 80M	Channel Freq. (MHz)	3	5 25 3	4 61	.3	5	05 5	62	
	Channel Freq. (MHz) Channel	3	5 25 3	4 61 9	3 65	5	05 5	62 5	

2.1 Carrier Frequency and Channel

	Channel	65	69	73	77	81	85	89	93	
BW 20M	Freq. (MHz)	6275	6295	6315	6335	6355	6375	6395	6415	
	Channel	6		7		83		91		
BW 40M	Freq. (MHz)	62		63		63		6405		
	Channel	71				87				
BW 80M	Freq. (MHz)		63	05			63			
	Channel	79								
BW 160M	Freq. (MHz)	6345								
	,		101	(a F	(00			101	107	
BW 20M	Channel	97	101	105	109	113	117	121	125	
	Freq. (MHz)	6435	6455	6475	6495	6515	6535	6555	6575	
BW 40M	Channel	9)7		15		23	
	Freq. (MHz)	64			85	65			65	
BW 80M	Channel			03			11			
	Freq. (MHz)		64	65			65	45		
BW 160M	Channel				11	1				
	Freq. (MHz)				65	05				
BW 20M	Channel	129	133	137	141	145	149	153	157	
	Freq. (MHz)	6595	6615	6635	6655	6675	6695	6715	6735	
BW 40M	Channel	13	31	13	39	14	7	15	155	
	Freq. (MHz)	66	05	66	45	66	85	6725		
						51				
	Channel		13	35			15	51		
BW 80M	Channel Freq. (MHz)		13 66				15 67			
					14	13				
BW 80M BW 160M	Freq. (MHz)				14					
BW 160M	Freq. (MHz) Channel	161							189	
	Freq. (MHz) Channel Freq. (MHz)	161 6755	66	25	66	65	67	05	189 6895	
BW 160M BW 20M	Freq. (MHz) Channel Freq. (MHz) Channel	6755	66 165	25 169 6795	66 173	65 177 6835	67 181	05 185 6875		
BW 160M	Freq. (MHz) Channel Freq. (MHz) Channel Freq. (MHz)	6755	66 165 6775 53	25 169 6795 17	66 173 6815	65 177 6835 17	67 181 6855	05 185 6875 18	6895	
BW 160M BW 20M BW 40M	Freq. (MHz) Channel Freq. (MHz) Channel Freq. (MHz) Channel	6755 16	66 165 6775 53 65	25 169 6795 17	66 173 6815 71	65 177 6835 17	67 181 6855 79	05 185 6875 18 68	6895 37	
BW 160M BW 20M	Freq. (MHz) Channel Freq. (MHz) Channel Freq. (MHz) Channel Freq. (MHz)	6755 16	66 165 6775 65 16	25 169 6795 17 68	66 173 6815 71	65 177 6835 17	67 181 6855 79 45	05 185 6875 18 68 33	6895 37	
BW 160M BW 20M BW 40M	Freq. (MHz) Channel Freq. (MHz) Channel Freq. (MHz) Channel Freq. (MHz) Channel	6755 16	66 165 6775 65 16	25 169 6795 17 68 67	66 173 6815 71	65 177 6835 17 68	67 181 6855 79 45 18	05 185 6875 18 68 33	6895 37	

BW 20M	Channel	193	197	201	205	209	213	217	221
DVV 201VI	Freq. (MHz)	6915	6935	6955	6975	6995	7015	7035	7055
BW 40M	Channel	19	95	20)3	2′	11	2	19
	Freq. (MHz)	69	25	69	65	70	05	70	45
BW 80M	Channel		19	99			2′	15	
D VV OUIVI	Freq. (MHz)		69	45			70	25	
BW 160M	Channel				20)7			
DAA LOOIAI	Freq. (MHz)				69	85			
BW 20M	Channel		22	25			22	29	
	Freq. (MHz)		70	75			70	95	
BW 40M	Channel				22	27			
D V 40 W	Freq. (MHz)				70	85			

2.2 Test Mode

This device support 26/52/106/242/484/996-tone RU but does not support 2x996-tone RU on 160MHz channel.

The PSD of partial RU is reduced to be smaller than full RU according to TCB workshop interim guidance.

The final test modes consider the modulation and the worst data rates as shown in the table below.

MIMO Mode

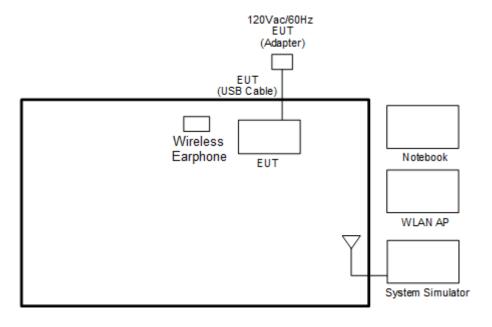
N	Iodulation	Data Rate		
802	2.11ax HE20	MCS0		
802	2.11ax HE40	MCS0		
802	2.11ax HE80	MCS0		
802	802.11ax HE160 MCS0			
	Test (Cases		
AC Conducted	Mode 1 : GSM850 Idle + W	LAN (6GHz) Link + Bluetooth Link + USB Cable 2		
Emission	(Charging from AC	Adapter 1)		
Remark: For Radia	ated Test Cases, the tests were	e performed with Adapter 1 and USB Cable 2.		

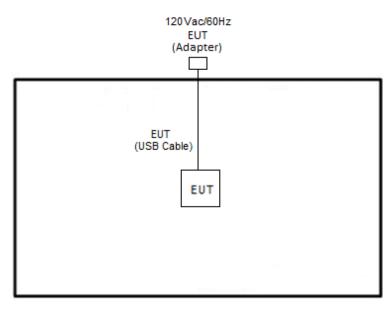
Based on ANSI C63.10 clause 5.6.2.2, b) spurious emissions,

Measure the mode with the highest output power and the mode with highest output power spectral density for each modulation family.

		5.6.2.2 (b)
		Spurious Emissions
UNII-5	20MHz	Covered by 160MHz
	40MHz	Covered by 160MHz
	80MHz	Covered by 160MHz
	160MHz	Test
UNII-6	20MHz	Covered by 160MHz
	40MHz	Covered by 160MHz
	80MHz	Covered by 160MHz
	160MHz	Test
UNII-7	20MHz	Covered by 160MHz
	40MHz	Covered by 160MHz
	80MHz	Covered by 160MHz
	160MHz	Test
UNII-8	20MHz	Covered by 160MHz
	40MHz	Covered by 160MHz
	80MHz	Covered by 160MHz
	160MHz	Test

		UNII-5	UNII-6	UNII-7	UNII-8
	Ch. #	(5925-6425 MHz)	(6425-6525 MHz)	(6525-6875 MHz)	(6875-7125 MHz)
		802.11ax HE20	802.11ax HE20	802.11ax HE20	802.11ax HE20
L	Low	001	-	-	-
М	Middle	-	-	-	-
н	High	-	-	-	229
Ś	Straddle	-	-	-	-
		UNII-5	UNII-6	UNII-7	UNII-8
	Ch. #	(5925-6425 MHz)	(6425-6525 MHz)	(6525-6875 MHz)	(6875-7125 MHz)
		802.11ax HE40	802.11ax HE40	802.11ax HE40	802.11ax HE40
L	Low	003	-	-	-
М	Middle	-	-	-	-
н	High	-	-	-	227
Ś	Straddle	-	-	-	-
		UNII-5	UNII-6	UNII-7	UNII-8
	Ch. #	UNII-5 (5925-6425 MHz)	UNII-6 (6425-6525 MHz)	UNII-7 (6525-6875 MHz)	UNII-8 (6875-7125 MHz)
	Ch. #				
L	Ch. # Low	(5925-6425 MHz)	(6425-6525 MHz)	(6525-6875 MHz)	(6875-7125 MHz)
L		(5925-6425 MHz) 802.11ax HE80	(6425-6525 MHz)	(6525-6875 MHz)	(6875-7125 MHz)
	Low	(5925-6425 MHz) 802.11ax HE80	(6425-6525 MHz)	(6525-6875 MHz)	(6875-7125 MHz)
M H	Low Middle	(5925-6425 MHz) 802.11ax HE80	(6425-6525 MHz)	(6525-6875 MHz)	(6875-7125 MHz) 802.11ax HE80 - -
M H	Low Middle High	(5925-6425 MHz) 802.11ax HE80	(6425-6525 MHz)	(6525-6875 MHz)	(6875-7125 MHz) 802.11ax HE80 - -
M H	Low Middle High	(5925-6425 MHz) 802.11ax HE80 007 - - -	(6425-6525 MHz) 802.11ax HE80 - - - - -	(6525-6875 MHz) 802.11ax HE80 - - - - -	(6875-7125 MHz) 802.11ax HE80 - - 215 -
M H	Low Middle High Straddle	(5925-6425 MHz) 802.11ax HE80 007 - - - - UNII-5	(6425-6525 MHz) 802.11ax HE80 - - - - - UNII-6	(6525-6875 MHz) 802.11ax HE80 - - - - - UNII-7	(6875-7125 MHz) 802.11ax HE80 - - 215 - UNII-8
M H	Low Middle High Straddle	(5925-6425 MHz) 802.11ax HE80 007 - - - - UNII-5 (5925-6425 MHz)	(6425-6525 MHz) 802.11ax HE80 - - - - - - UNII-6 (6425-6525 MHz)	(6525-6875 MHz) 802.11ax HE80 - - - - - - UNII-7 (6525-6875 MHz)	(6875-7125 MHz) 802.11ax HE80 - - 215 - UNII-8 (6875-7125 MHz)
M H	Low Middle High Straddle Ch. #	(5925-6425 MHz) 802.11ax HE80 007 - - - - UNII-5 (5925-6425 MHz) 802.11ax HE160	(6425-6525 MHz) 802.11ax HE80 - - - - - - UNII-6 (6425-6525 MHz)	(6525-6875 MHz) 802.11ax HE80 - - - - - - UNII-7 (6525-6875 MHz)	(6875-7125 MHz) 802.11ax HE80 - - 215 - UNII-8 (6875-7125 MHz)
H E	Low Middle High Straddle Ch. # Low	(5925-6425 MHz) 802.11ax HE80 007 - - - - UNII-5 (5925-6425 MHz) 802.11ax HE160 015	(6425-6525 MHz) 802.11ax HE80 - - - - - - UNII-6 (6425-6525 MHz)	(6525-6875 MHz) 802.11ax HE80 - - - - UNII-7 (6525-6875 MHz) 802.11ax HE160	(6875-7125 MHz) 802.11ax HE80 - 215 - UNII-8 (6875-7125 MHz) 802.11ax HE160


Remark: For radiation spurious emission, the modulation and the data rate picked for testing are determined by the Max. RF conducted power.



2.3 Connection Diagram of Test System

<AC Conducted Emission Mode>

<WLAN Tx Mode>

2.4	Support	Unit used	in test	configuration	and system
-----	---------	-----------	---------	---------------	------------

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	Wireless Earphone	Google	G1007/G1008	A4RG1007/ A4RG1008	N/A	N/A
3.	WLAN AP	NETGEAR64	RAXE500	N/A	N/A	Unshielded,1.8m
4.	Notebook	Dell	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "Command v10.0.17134.134" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 26dB & 99% Occupied Bandwidth Measurement

3.1.1 Limit of 26dB & 99% Occupied Bandwidth

<FCC 14-30 CFR 15.407>

(a)(10) The maximum transmitter channel bandwidth for U-NII devices in the 5.925-7.125 GHz band is 320 megahertz.

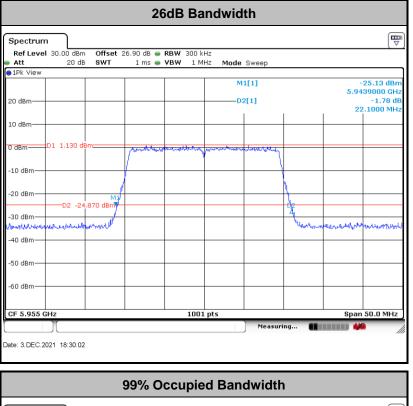

3.1.2 Measuring Instruments

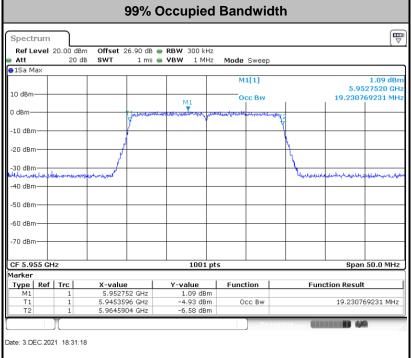
Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section C) Emission bandwidth
- 2. Set RBW = approximately 1% of the emission bandwidth (1MHz for all supported bandwidth).
- 3. Set the VBW > RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold
- Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 8. Measure and record the results in the test report.

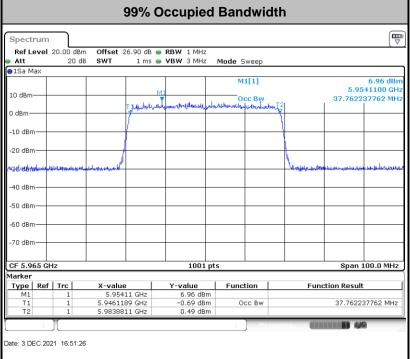
3.1.4 Test Setup


Spectrum Analyzer

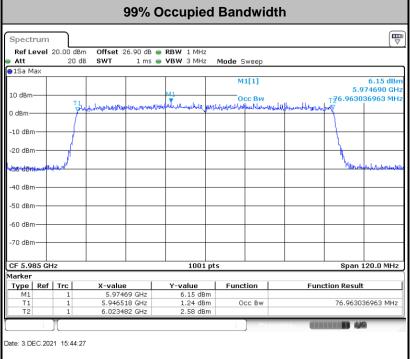

3.1.5 Test Result of 26dB & 99% Occupied Bandwidth

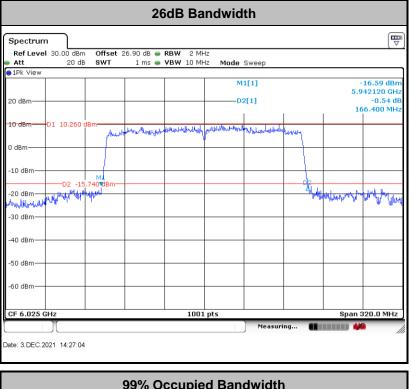
Please refer to Appendix A.

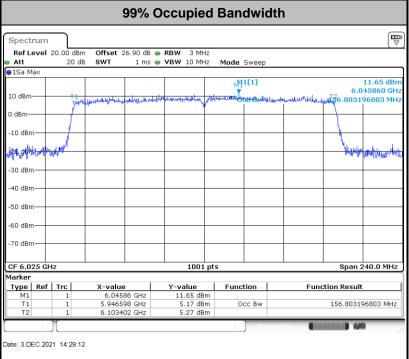
<802.11ax HE20 Mode>



<802.11ax HE40 Mode>


26dE	Bandwidth
Spectrum	
Ref Level 30.00 dBm Offset 26.90 dB 🖷 RBW	
Att 20 dB SWT 1 ms • VBW	1 MHz Mode Sweep
1Pk View	M1[1] -25.28 dBm
	5.9452000 GHz
20 dBm	D2[1] -0.35 dB
	39.6900 MHz
10 dBm	
0 dpm01 1.250 dBm	
0 dBm01 1.250 dBm	when you when you we will be a second of the second se
-10 dBm	
-20 dBm	
D2 -24.750 dBm	d2
-30 dBm	4
A Martin Martin Martin Martin	Country appleance address of the second
-40 dBm	
-50 dBm	
-60 dBm	
CF 5.965 GHz	1001 pts Span 90.0 MHz
T	Measuring
ate: 3.DEC.2021 16:49:58	


<802.11ax HE80 Mode>


26	dB Bandwidth		
Spectrum			
Ref Level 30.00 dBm Offset 26.90 dB R Att 20 dB SWT 1 ms V	BW 1 MHz BW 3 MHz Mode Sweep		
1Pk View	BW 5 Mill2 Mode 5 Weep		
	M1[1]	-21.4 5.94372	0 GHz
20 dBm	D2[1]	0. 82.56	96 dB 0 MHz
10 dBm			
0 dBm	-roger and a contraction and the	hettinganing	
-10 dBm			
-20 dBm D2 -18.870 dBm		4	
Loo Bern Males and Barnething		Marcarhelianannalische	han-orandomina
-40 dBm			
-50 dBm			
-60 dBm			
CF 5.985 GHz	1001 pts	Span 160.0	MHz
	Mea	asuring 🚺 🚺 🚧	/
Date: 3.DEC.2021 15:43:17			///.
99% 00	cupied Bandwig	lth	

<802.11ax HE160 Mode>

3.2 Maximum conducted Output Power and Fundamental Maximum EIRP Measurement

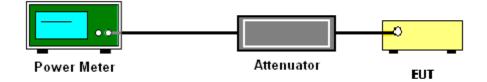
3.2.1 Limit of Fundamental Maximum EIRP

<FCC 14-30 CFR 15.407>

(a)(8) For client devices operating under the control of an indoor access point in the 5.925-7.125 GHz bands, the maximum e.i.r.p. over the frequency band of operation must not exceed 24 dBm.

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.2.3 Test Procedures

The testing follows Method PM-G of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM-G (Measurement using a gated RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit at its maximum power control level.
- 3. Measure the average power of the transmitter.
- 4. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.
- 5. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

3.2.4 Test Setup

3.2.5 Test Result of Fundamental Maximum EIRP

Please refer to Appendix A.

3.3 Fundamental Power Spectral Density Measurement

3.3.1 Limit of Fundamental Power Spectral Density

<FCC 14-30 CFR 15.407>

(a)(8) For client devices operating under the control of an indoor access point in the 5.925-7.125 GHz bands, the maximum power spectral density must not exceed -1 dBm e.i.r.p. in any 1-megahertz band.

3.3.2 Measuring Instruments

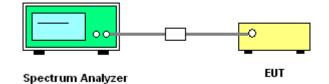
Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section F) Maximum power spectral density.

Method SA-2

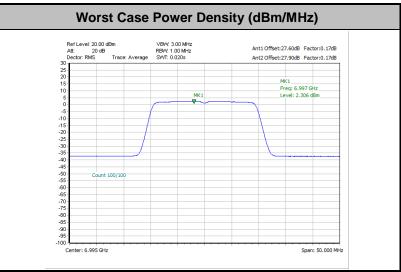
(trace averaging across on and off times of the EUT transmissions, followed by duty cycle correction).


- Measure the duty cycle.
- Set span to encompass the entire emission bandwidth (EBW) of the signal.
- Set RBW = 1 MHz.
- Set VBW ≥ 3 MHz.
- Number of points in sweep \geq 2 Span / RBW.
- Sweep time = auto.
- Detector = RMS
- Trace average at least 100 traces in power averaging mode.
- Add 10 log(1/x), where x is the duty cycle, to the measured power in order to compute the average power during the actual transmission times. For example, add 10 log(1/0.25) = 6 dB if the duty cycle is 25 percent.
- 1. The RF output of EUT was connected to the spectrum analyzer by a low loss cable.
- 2. Each plot has already offset with cable loss, and attenuator loss. Measure the PPSD and record it.
- 3. For MIMO mode, calculation method follows FCC KDB 662911 D01 Multiple Transmitter Output v02r01.

Method (a): Measure and sum the spectra across the outputs.

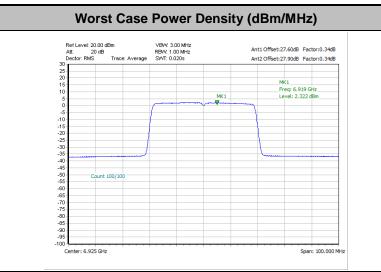
The total final Power Spectral Density is from a device with 2 transmitter outputs. The spectrum measurements of the individual outputs are all performed with the same span and number of points; the spectrum value in the first spectral bin of output 1 is summed with that in the first spectral bin of output 2 to obtain the value for the first frequency bin of the summed spectrum.

3.3.4 Test Setup



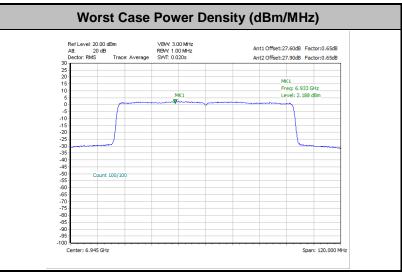
3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.



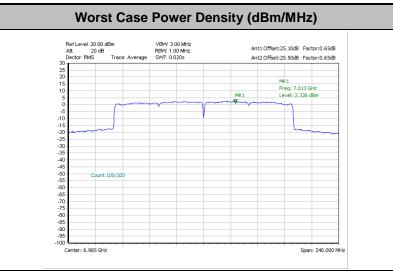
<802.11ax HE20 Mode>

Ref Level: 20.00 dBm Att: 20 dB Dector: RMS Tra	RBW	A 3.00 MHz 1.00 MHz : 0.020s	Offset:27.60dB Factor:0.17d		0 dB	VBW: 3.00 MHz RBW: 1.00 MHz SWT: 0.020s	Off	set:27.90dB Factor:0.17d
5			MK1	25				MK1
0 5		MK1	Freq: 6.993 GHz Level: 0.001 dBm	10 5 0			MK1	Freq: 6.997 GHz Level: -1.408 dBm
5				-5				
5				-15	/			
15 - 10 -				-25 -30	/			
0				-35				<u> </u>
5 0 Count 100/	100			-45 -50 -55	ount 100/100			
5				-60				
5				-70 -75 -				
5				-80				
10				-90				



<802.11ax HE40 Mode>

RefLevel: 20.00 dBm Att: 20 dB Dector:RMS Trace:Avera	VBW: 3.00 MHz RBW: 1.00 MHz ge SWT: 0.020s	Offset:27.6	0dB Factor:0.34dB	Ref Level: 20. Att. 20 Dector: RMS		VBW: 3.00 MHz RBW: 1.00 MHz SWT: 0.020s	Offset:27.90dB Factor:0.34db
5				25			
5		M	1K1	20			MK1
0			req: 6.930 GHz	10			Freq: 6.919 GHz
5		uK1L	evel: -0.000 dBm	5		MK1	Level: -1.424 dBm
5				-5			
0	/			-10		/	
5				-15			
ŏ.				-20			
5				-25			
0-				-30	/		
5	1			-35			
0	~	\		-40			
5				-45			
0 Count 100/100				-50 Co	unt 100/100		
5				-55			
0				-60			
5				-65			
5				-70-			
0				-75			
5				-85			
0				-051			
5				-90			
				-100			



<802.11ax HE80 Mode>

	VBW: 3.00 MHz RBW: 1.00 MHz ce: Average SWT: 0.020s	Offset:27.60dB Factor:0.65dB	Dector: RMS	00 dBm dB Trace: Average	VBW: 3.00 MHz RBW: 1.00 MHz SWT: 0.020s	Offset:27.90dB Factor:0.65d
5			25			
0		MK1	20			MK1
5		Freq: 6.932 GHz	15			Freq: 6.933 GHz
0	MK1	Level: -0.001 dBm	10			Level: -1.557 dBm
ń.			0		MK1	
5			5			
0			-10			
5			-15			
0			-20			
5			-25			
5			-30			Lange Lang
0			-40			
5			-45			
0 Count 100/1	00			unt 100/100		
5			-55	ant 100/100		
0			-60			
5			-65			
5			-70			
0			-75 -			
5			-85			
			-90			
0						

<802.11ax HE160 Mode>

RefLevel: 20.00 dBm Att: 20 dB Dector:RMS Trace:Average	VBW: 3.00 MHz RBW: 1.00 MHz SWT: 0.020s	Offset: 25. 10d	Factor:0.65dB	Ref Level: 20.0 Att: 20 Dector: RMS		VBW: 3.00 MHz RBW: 1.00 MHz SWT: 0.020s	Off	set:25.50dB Factor:0.65
				30 25				
		MK1		20				MK1
			: 7.007 GHz	15				Freq: 7.013 GHz
			l: -0.399 dBm	10 5			MK1	Level: -0.765 dBm
		A		0	~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~
	l l			-5-		· · ·		
				-10				
				-20				
-American Contraction of Contractio				-25	~ ·			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
				-30				
				-35				
				-40				
				-45				
Count 100/100				-50 Cou	int 100/100			
				-55				
				-65				
				-70				
				-75				
1				-80				
				-85				
				-90				
				-95				

3.4 In-Band Emissions (Channel Mask)

3.4.1 Limit of Unwanted Emissions

<FCC 14-30 CFR 15.407>

(a)(6) For transmitters operating within the 5.925-7.125 GHz bands: Power spectral density must be suppressed by 20 dB at 1 MHz outside of channel edge, by 28 dB at one channel bandwidth from the channel center, and by 40 dB at one- and one-half times the channel bandwidth away from channel center. At frequencies between one megahertz outside an unlicensed device's channel edge and one channel bandwidth from the center of the channel, the limits must be linearly interpolated between 20 dB and 28 dB suppression, and at frequencies between one and one- and one-half times an unlicensed device's channel bandwidth, the limits must be linearly interpolated between 28 dB and 40 dB suppression. Emissions removed from the channel center by more than one- and one-half times the channel bandwidth must be suppressed by at least 40 dB.

3.4.2 Measuring Instruments

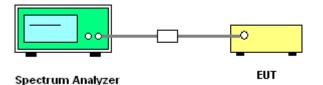
Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedures

The testing follows FCC KDB 987594 D02 U-NII 6GHz EMC Measurement v01.

Section J) In-Band Emissions.

- 1. Take nominal bandwidth as reference channel bandwidth provided that 26 dB emission bandwidth is always larger than nominal bandwidth
- 2. Measure the power spectral density (which will be used for emissions mask reference) using the following procedure:
 - a) Set the span to encompass the entire 26 dB EBW of the signal.


b) Set RBW = same RBW used for 26 dB EBW measurement (1MHz for all supported bandwidth).

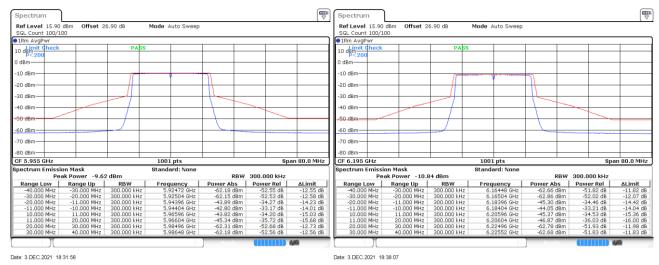
c) Set VBW ≥ 3 X RBW

d) Number of points in sweep \geq [2 X span / RBW].

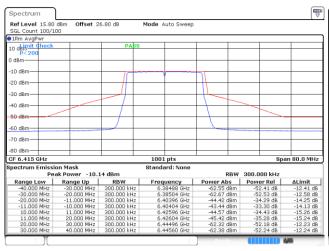
- e) Sweep time = auto.
- f) Detector = RMS (i.e., power averaging)
- g) Trace average at least 100 traces in power averaging (rms) mode.
- h) Use the peak search function on the instrument to find the peak of the spectrum.
- 3. Using the measuring equipment limit line function, develop the emissions mask based on the following requirements. The emissions power spectral density must be reduced below the peak power spectral density (in dB) as follows:
 - a. Suppressed by 20 dB at 1 MHz outside of the channel edge.
 - b. Suppressed by 28 dB at one channel bandwidth from the channel center.
 - c. Suppressed by 40 dB at one- and one-half times the channel bandwidth from the channel center.
- 4. Adjust the span to encompass the entire mask as necessary.
- 5. Clear trace.
- 6. Trace average at least 100 traces in power averaging (rms) mode.
- 7. Adjust the reference level as necessary so that the crest of the channel touches the top of the emission mask.

3.4.4 Test Setup

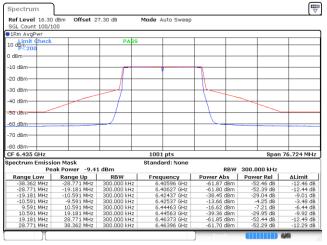
3.4.5 Test Result


MIMO <Ant. 4+3(4)>

EUT Mode :

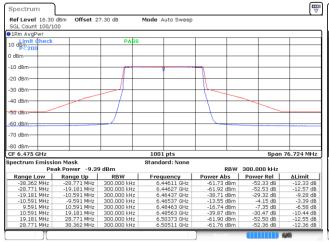

802.11ax HE20 Full RU

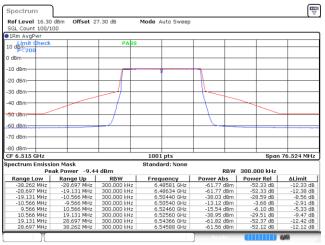
Plot on Channel 5955MHz


Plot on Channel 6195MHz

Plot on Channel 6415MHz

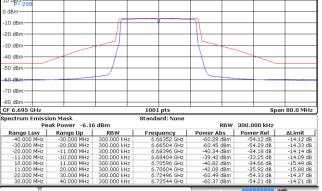
Plot on Channel 6435MHz




Date: 3.DEC.2021 18:44:53

Date: 15.JAN.2022 17:50:04

Plot on Channel 6475MHz


Plot on Channel 6515MHz

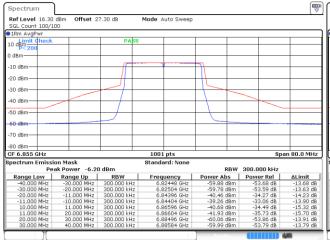
Date: 15.JAN.2022 17:52:56

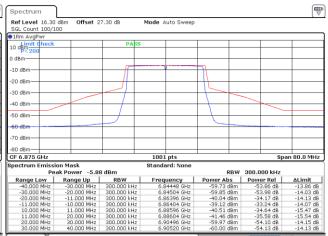
Plot on Channel 6535MHz

Spectrum Ref Level 16.30 Offset 27.30 dB Mode Auto Swee SGL Count 100/100 IRm AvgPwr 10 dimit check 200 PASS 0 dBm— -10 dBm 11 -20 dBm--30 dBm--40 dBm--50 dBm -60 dBm -70 dBm-80 dBm CF 6.535 GHz Span 80.0 MHz 1001 pts Peak Powe 300.000 kHz -6.10 dBm RBW RBW 300.000 kHz Range Low ALimit -14.63 dB -14.69 dB -14.39 dB -14.14 dB -15.38 dB -15.78 dB -14.51 dB -14.47 dB Range Up 2 -30.000 MH2 Frequency -60.73 dBm -54.63 dB -40.000 MHz -30.000 MHz -20.000 MHz -11.000 MHz 10.000 MHz 11.000 MHz 20.000 MHz 30.000 MHz -30.000 MHz -20.000 MHz -11.000 MHz -10.000 MHz 11.000 MHz 20.000 MHz 30.000 MHz 40.000 MHz 5.50400 GHz 5.50504 GHz 5.52396 GHz 5.52404 GHz 5.54596 GHz 5.54596 GHz 5.54604 GHz 5.56504 GHz -60.73 dBm -60.74 dBm -40.52 dBm -39.41 dBm -40.65 dBm -41.91 dBm -60.56 dBm -60.57 dBm -54.63 dB -54.64 dB -34.42 dB -33.31 dB -34.55 dB -35.81 dB -54.46 dB -54.47 dB

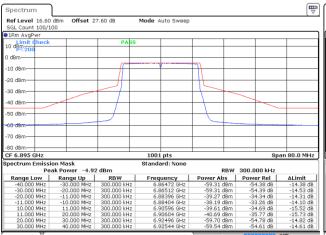
Date: 15 JAN 2022 17:55:42 Plot on Channel 6695MHz Spectrum Ref Level 16:20 dbm Offset 27:20 db Mode Auto Sweep SGL Count 100/100 Itm AvgPwr I0 dbm PASS 0 dbm PAS

Date: 3.DEC.2021 19:13:31

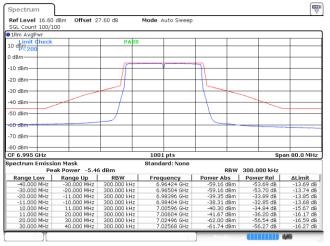

Date: 3.DEC.2021 19:18:18


TEL : 886-3-327-3456
FAX : 886-3-328-4978
Report Template No.: BU5-FR15EWLAC MA Version 2.4

Page Number: 31 of 114Issue Date: Mar. 07, 2022Report Version: 03


Plot on Channel 6855MHz

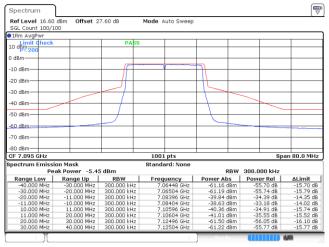
Date: 3.DEC.2021 19:23:49


Plot on Channel 6895MHz

Plot on Channel 6995MHz

Date: 3.DEC.2021 19:27:34

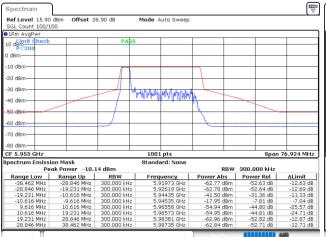
Plot on Channel 6875MHz

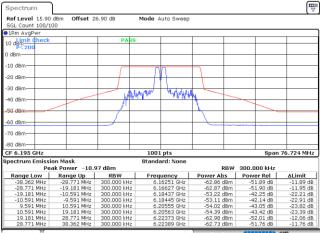


Date: 3.DEC.2021 19:32:45

Date: 3.DEC.2021 19:37:25

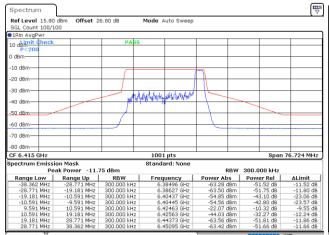
Plot on Channel 7095MHz


Date: 3.DEC.2021 19:42:24

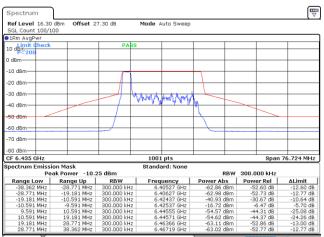

EUT Mode :

802.11ax HE20 26RU

Plot on Channel 5955MHz

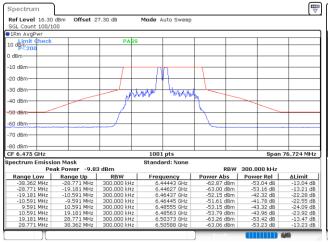

Plot on Channel 6195MHz

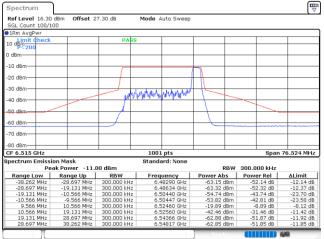
Date: 15.JAN.2022 10:57:27


Date: 15.JAN.2022 11:12:26

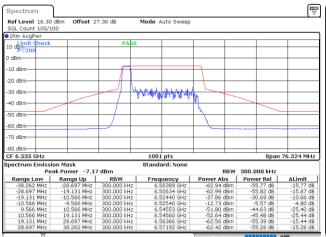
Plot on Channel 6415MHz

Date: 15.JAN.2022 11:22:21


Plot on Channel 6435MHz


Date: 15.JAN.2022 11:29:36

Plot on Channel 6475MHz



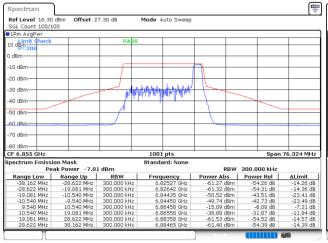
Plot on Channel 6515MHz

Date: 15.JAN.2022 11:38:51

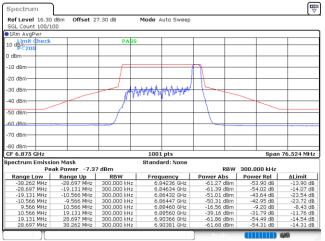
Plot on Channel 6535MHz

Spectrum Ref Level 16.20 Offset 27.20 dB Mode Auto Sweep Rm Avgi dB -10 dBr -20 dBm - Juliana Lader -30 dBm 40 dBm 50 dBm 60 dBr -70 dBm nah na. CF 6.695 1001 pts Span 76.524 MHz ĠHz pectrum Emission Mask -6.42 dBm 300.000 kH Peak RBW 300.000 300.000 300.000 300.000 300.000 300.000 300.000 300.000 Frequency -38,262 MH -28.697 MH Power Abs Power Rel -38.262 MHz -28.697 MHz -19.131 MHz -10.566 MHz 9.566 MHz 10.566 MHz 19.131 MHz 28.697 MHz -28.697 MHz -19.131 MHz -10.566 MHz -9.566 MHz 10.566 MHz 19.131 MHz 28.697 MHz 38.262 MHz 5.66167 GHz 5.66634 GHz 5.68440 GHz 5.68447 GHz 5.70553 GHz 5.70560 GHz 5.72366 GHz 5.72603 GHz -62.17 -62.27 -49.29 -48.02 -50.02 -50.72 -62.09 -61.91 -55.76 dB -55.86 dB -42.87 dB -41.60 dB -43.60 dB -44.30 dB -55.68 dB -55.68 dB kH2 kH2 kH2 kH2 kH2 kH2 -9 10 19 28 38 2 dBn dBn

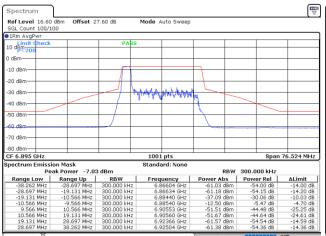
Date: 15.JAN.2022 12:54:49


Date: 15.JAN.2022 13:04:55

Date: 15.JAN.2022 12:43:04


Plot on Channel 6695MHz

Plot on Channel 6855MHz



Plot on Channel 6875MHz

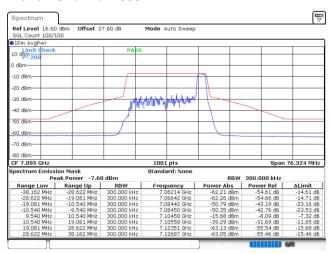
Date: 15.JAN.2022 13:14:07

Plot on Channel 6895MHz

Spectrum Ref Level 16.60 dBm Offset 27.60 dB Mode Auto Sweep lRm AvgP 10 d路型20 dB -10 dBr -20 dBm JAA.A 30 dBm ANN 40 dBm 50 dBri 60.dBr 70 dBm 80 dBm-1001 pts Span 76.124 MHz ĠHz pectrum Emission Mask Peak Powe -6.01 dBm 300.000 kH RBW 300.000 300.000 300.000 300.000 300.000 300.000 300.000 -38.062 MH Range Up -28,547 MH Frequency Power Abs Power Rel -28.547 -19.031 -10.515 5.96337 GHz 5.96649 GHz 5.98445 GHz 5.98452 GHz 7.00548 GHz 7.00555 GHz 7.02351 GHz 7.02564 GHz -55.02 dB -55.13 dB -41.37 dB -40.99 dB -43.08 dB -43.08 dB -55.97 dB -55.88 dB -61.03 dBm -61.14 dBm -47.39 dBm -47.00 dBm -49.09 dBm -49.55 dBm -19.031 -10.515 MHZ MHZ MHZ MHZ MHZ MHZ kHz kHz kHz kHz kHz kHz MH2 MH2 MH2 MH2 MH2 MH2 dB dB dB dB dB -9. 10. 19. -49 -61 .98 dBm .90 dBm

Date: 15.JAN.2022 13:35:24

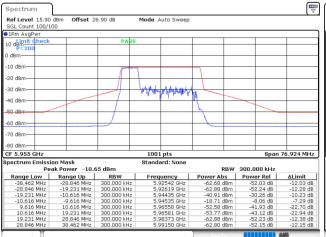
Date: 15.JAN.2022 13:48:21

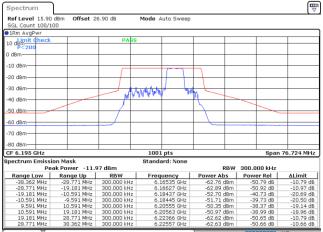

JL

Date: 15.JAN.2022 13:29:35

Plot on Channel 6995MHz

Plot on Channel 7095MHz


Date: 15.JAN.2022 14:05:18

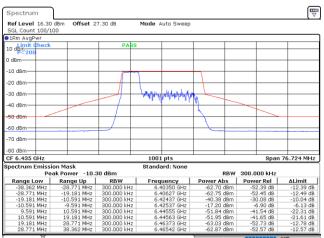

EUT Mode :

802.11ax HE20 52RU

Plot on Channel 5955MHz

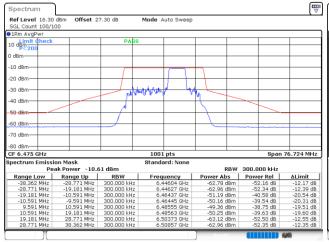

Plot on Channel 6195MHz

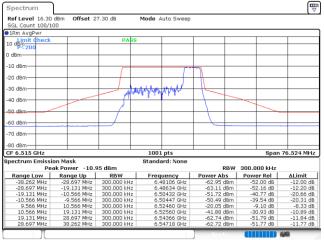
Date: 15.JAN.2022 11:02:24


Date: 15.JAN.2022 11:15:51

Plot on Channel 6415MHz

Date: 15.JAN.2022 11:24:31


Plot on Channel 6435MHz


Date: 15.JAN.2022 11:31:42

Plot on Channel 6475MHz

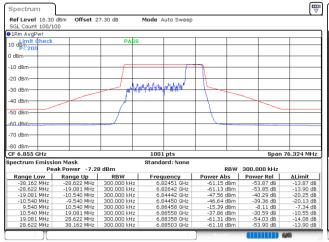
Plot on Channel 6515MHz

Date: 15.JAN.2022 11:44:39

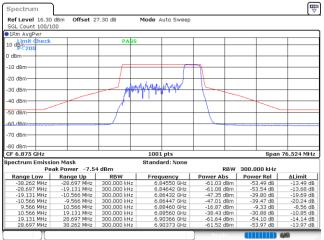
Plot on Channel 6535MHz

₽ Spectrum Offset 27.30 dB Mode Auto Sweep Ref Level 16.30 dBm SGL Cours 1Rm AvgF PASS a h r -10 dBm -20 dBm-Ward -30 dBm Andrey 40 dBm 5U dBm 60 dBm-70 dBm 80 dBm F 6.535 GHz Span 76.524 MHz 1001 pts pectrum Emission Mask Peak Powe -8.88 dBm 300.000 kH RBW RBW 300.000 300.000 300.000 300.000 300.000 300.000 300.000 300.000 -38,262 MH -28.697 MH Frequency Power Abs Power Rel mit 3.92 dB 4.12 dB 9.39 dB 5.03 dB 2.21 dB 2.49 dB 3.69 dB 3.50 dB -28.697 MHz -19.131 MHz -10.566 MHz -9.566 MHz 10.566 MHz 19.131 MHz 28.697 MHz 38.262 MHz 5.50588 GHz 5.50634 GHz 5.52440 GHz 5.52540 GHz 5.54553 GHz 5.54568 GHz 5.56366 GHz 5.56741 GHz -53.92 dB -54.07 dB -29.42 dB -5.80 dB -41.44 dB -42.60 dB -53.64 dB -53.50 dB 28.697 MHz 28.697 MHz 19.131 MHz 10.566 MHz 9.566 MHz 10.566 MHz -62.95 dBm -38.30 dBm -14.68 dBm kHz kHz kHz kHz kHz kHz kHz -9 10 19 28 38 0.31 dBm 0.31 dBm 0.48 dBm 0.52 dBm 0.38 dBm MHz MHz

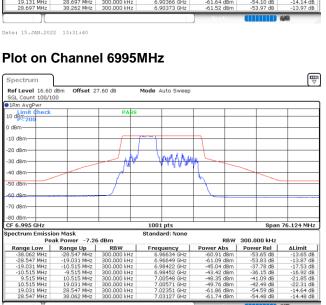
Plot on Channel 6695MHz Spectrum Ref Level 16.20 Offset 27.20 dB Mode Auto Sweep Rm Avgi dB -10 dBr -20 dBm المطبط والده -30 dBm 40 dBm 50 dBm-50 dBr -70 dBm nah na. CF 6.695 GHz 1001 pts Span 76.524 MHz pectrum Emission Mask Peak Powe -8.20 dBm 300.000 kH RBW 300.000 300.000 300.000 300.000 300.000 300.000 300.000 300.000 -38,262 MH Range Up -28.697 MH; Frequency Power Abs Power Rel -53.82 dB -54.05 dB -36.99 dB -36.35 dB -41.25 dB -42.29 dB -53.79 dB -53.67 dB -38.262 MHz -28.697 MHz -19.131 MHz -10.566 MHz 9.566 MHz 10.566 MHz 19.131 MHz 28.697 MHz -28.697 MHz -19.131 MHz -10.566 MHz -9.566 MHz 10.566 MHz 19.131 MHz 28.697 MHz 38.262 MHz 66527 GHz 66634 GHz 68440 GHz 68447 GHz 70553 GHz 70568 GHz 72358 GHz 73108 GHz -62.02 dBm -62.25 dBm -45.19 dBm -44.55 dBm -49.45 dBm -50.49 dBm -61.99 dBm -61.87 dBm kH2 kH2 kH2 kH2 kH2 kH2 -9 10 19 28 38


Date: 15.JAN.2022 12:59:17

Date: 15.JAN.2022 13:06:34


Date: 15.JAN.2022 12:48:08

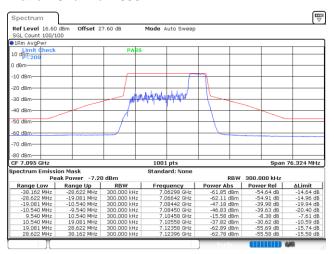
Plot on Channel 6855MHz


Plot on Channel 6875MHz

Date: 15.JAN.2022 13:17:54

Plot on Channel 6895MHz

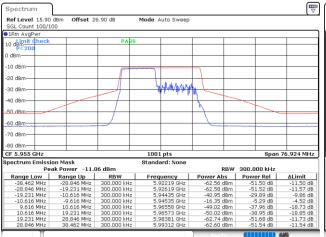
₽ Spectrum Ref Level 16.60 dBm Offset 27.60 dB Mode Auto Sweep SGL Count 1Rm AvgP PASS 10 d路型20 l dBr -10 dBm -20 dBm Whiliply -30 dBm aity (yily day 40 dBm -50 dBm-60.dBn 70 dBm 80 dBm F 6.895 GHz Span 76.524 MHz 1001 pts pectrum Emission Mask Peak Powe -7.46 dBm 300.000 kH RBW RBW 300.000 300.000 300.000 300.000 300.000 300.000 300.000 300.000 -38,262 MH -28.697 MH Frequency Power Abs Power Rel Limit -13.40 dB -13.51 dB -9.35 dB -4.87 dB -22.16 dB -21.84 dB -14.03 dB -13.73 dB -53.40 dB -53.46 dB -29.39 dB -5.64 dB -41.39 dB -41.87 dB -53.99 dB -53.73 dB -28.697 MHz -19.131 MHz -10.566 MHz -9.566 MHz 10.566 MHz 19.131 MHz 28.697 MHz 38.262 MHz 5.86473 GHz 5.86634 GHz 5.88440 GHz 5.88540 GHz 5.90553 GHz 5.90560 GHz 5.92366 GHz 5.92802 GHz 28.697 MHz 28.697 MHz 19.131 MHz 10.566 MHz 9.566 MHz 10.566 MHz kHz kHz kHz kHz kHz kHz kHz 10 19 28 38 -49 -61 MHz MHz .45 dBm .19 dBm

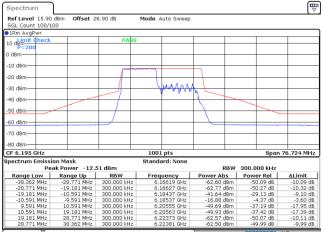


Date: 15.JAN.2022 13:39:56

Date: 15.JAN.2022 13:52:44

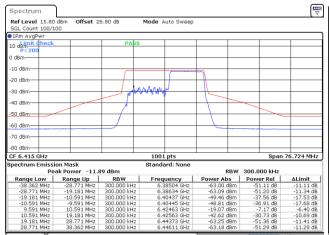
Plot on Channel 7095MHz


Date: 15.JAN.2022 14:08:30

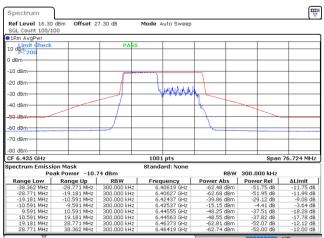

EUT Mode :

802.11ax HE20 106RU

Plot on Channel 5955MHz

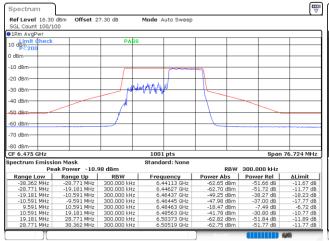

Plot on Channel 6195MHz

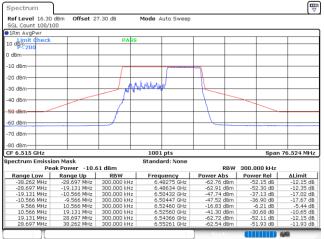
Date: 15.JAN.2022 11:03:38


Date: 15.JAN.2022 11:18:29

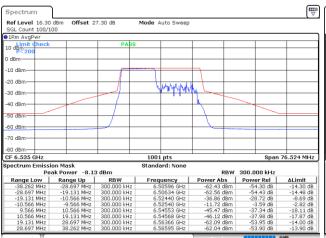
Plot on Channel 6415MHz

Date: 15.JAN.2022 11:26:24

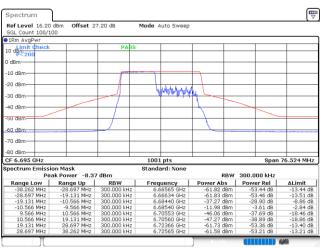

Plot on Channel 6435MHz


Date: 15.JAN.2022 11:34:04

Plot on Channel 6475MHz



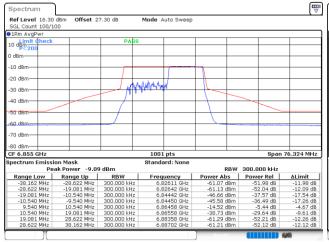
Plot on Channel 6515MHz


Date: 15.JAN.2022 11:47:41

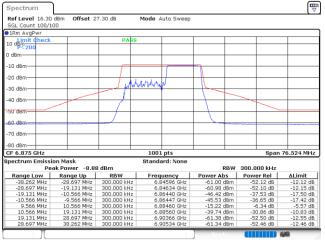
Plot on Channel 6535MHz

Plot on Channel 6695MHz

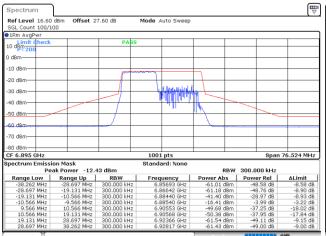
Date: 15.JAN.2022 12:51:09

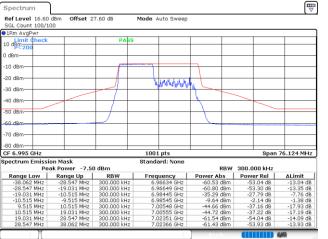


Date: 15.JAN.2022 13:01:02


Date: 15.JAN.2022 13:11:04

Plot on Channel 6855MHz

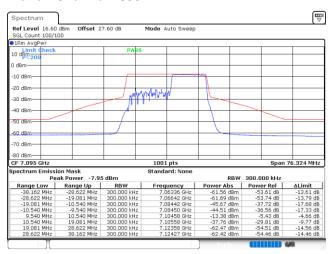



Plot on Channel 6875MHz

Date: 15.JAN.2022 13:20:52

Plot on Channel 6895MHz

Date: 15.JAN.2022 13:44:47

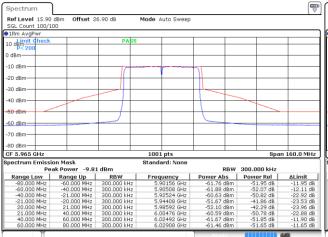

Date: 15.JAN.2022 13:54:58

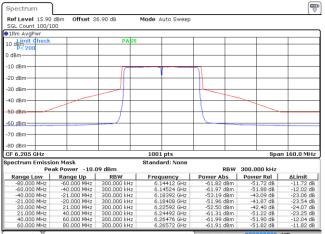
Date: 15.JAN.2022 13:32:35

Plot on Channel 6995MHz

Plot on Channel 7095MHz

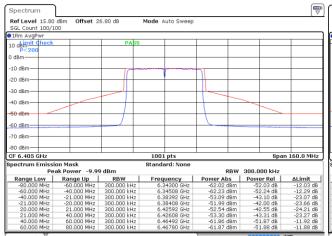
Date: 15.JAN.2022 14:10:37



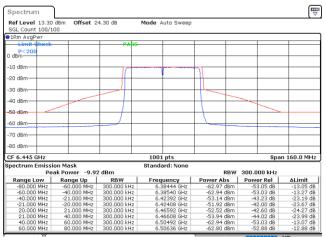

EUT Mode :

802.11ax HE40

Plot on Channel 5965MHz

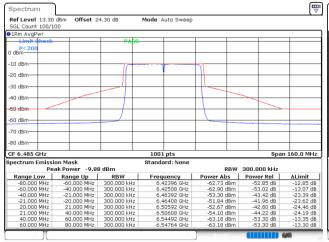

Plot on Channel 6205MHz

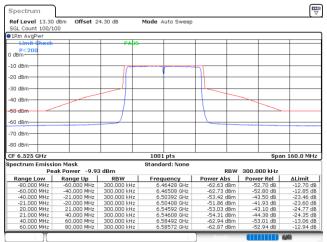
Date: 3.DEC.2021 16:51:57


Date: 3.DEC.2021 16:56:37

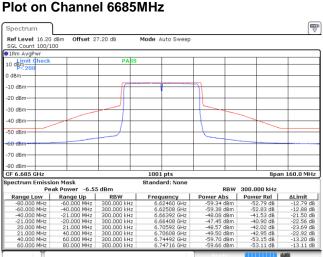
Plot on Channel 6405MHz

Date: 3.DEC.2021 17:03:57


Plot on Channel 6445MHz


Date: 16.FEB.2022 10:48:49

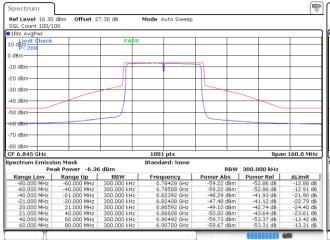
Plot on Channel 6485MHz


Plot on Channel 6525MHz

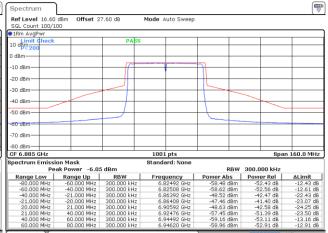
Date: 16.FEB.2022 10:51:39

Plot on Channel 6565MHz

The second secon Spectrum Spectrum Ref Level 16.30 Offset 27.30 dB Mode Auto Swee Ref Level 16.20 SGL Count 1Rm AvgP SGL 1Rm 10 dBm 200 PAS 0 dBmdBm--10 dBm -10 dBm -20 dBm--20 dBm--30 dBm-30 dBm -40 dBm-40 dBm--50 dBm -50 dBm 60 dBm i0 dBm -70 dBm-70 dBm en dem an dam CF 6.565 GHz Span 160.0 MHz CF 6.685 GHz 1001 pts ectrum Emission Mask Peak Powe -6.48 dBm RBW 300.000 kHz Frequency Limit -13.29 dB -13.46 dB -22.35 dB -22.89 dB -22.85 dB -22.85 dB -13.36 dB -13.23 dB -80.000 MH; -60.000 MH RBW 300.000 kHz -59,77 dBm -53,29 dB Range Low 300.000 kHz -80.000 MHz -60.000 MHz -40.000 MHz -21.000 MHz 20.000 MHz 21.000 MHz 40.000 MHz 60.000 MHz -60.000 MHz -40.000 MHz -21.000 MHz -20.000 MHz 21.000 MHz 40.000 MHz 60.000 MHz 80.000 MHz -59.77 dBm -59.89 dBm -48.86 dBm -47.71 dBm -48.64 dBm -49.37 dBm -59.79 dBm -59.72 dBm -53.29 dB -53.41 dB -42.38 dB -41.22 dB -42.15 dB -42.89 dB -53.31 dB -53.23 dB -80.000 MHz -60.000 MHz -40.000 MHz -21.000 MHz 20.000 MHz 21.000 MHz 40.000 MHz 60.000 MHz .50508 .54392 .54408 .58592 .58608 GHz GHz GHz GHz GHz GHz

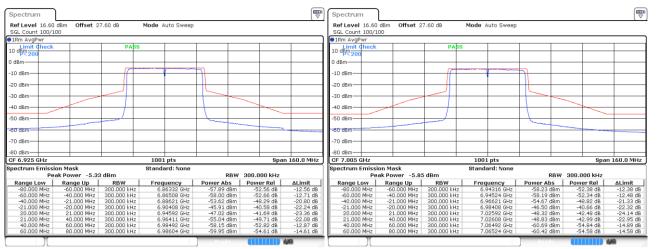

Date: 3.DEC.2021 17:33:53

Date: 3.DEC.2021 17:42:26


Date: 16.FEB.2022 10:52:38

Plot on Channel 6845MHz

Plot on Channel 6885MHz

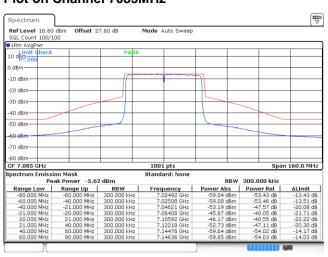


Date: 3.DEC.2021 17:47:46

Plot on Channel 6925MHz

Plot on Channel 7005MHz

Date: 3.DEC.2021 17:54:01



Date: 3.DEC.2021 18:00:16

Date: 3.DEC.2021 18:06:59

Plot on Channel 7085MHz

Date: 3.DEC.2021 18:13:55