


1 S11 Log Mag 10.00dB/ Ref 0.000dB [F1] >1 2.3000000 GHz -28.612 dB 0.000 IFBW 70 kHz Stop 2.5 GHz Cor 1 Start 2.1 GHz ▶<mark>Tr1</mark> 511 Smith (R+j×) Scale 1.000U [F1 Del] >1 2.3000000 GHz 48.022 Ω -2.9858 Ω 23.176 pF 1 Start 2.1 GHz IFBW 70 kHz Stop 2.5 GHz Cor

<Dipole Verification Data> - D2300 V2, serial no. 1006 (Data of Measurement : 01.27.2020) 2300 MHz - Head



<Dipole Verification Data> - D2300 V2, serial no. 1006 (Data of Measurement : 01.26.2021) 2300MHz - Head





Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

**CALIBRATION CERTIFICATE** 

Sporton

Client

Fax: +86-10-62304633-2504 http://www.chinattl.cn

> **Certificate No:** Z18-60326

**CNAS L0570** 

#### Object D2450V2 - SN: 736 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 31, 2018 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** ID# Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Power Meter NRVD 102083 01-Nov-17 (CTTL, No.J17X08756) Oct-18 Power sensor NRV-Z5 100542 01-Nov-17 (CTTL, No.J17X08756) Oct-18 Reference Probe EX3DV4 SN 7464 12-Sep-17(SPEAG, No. EX3-7464 Sep17) Sep-18 DAE4 SN 1524 13-Sep-17(SPEAG,No.DAE4-1524 Sep17) Sep-18 Secondary Standards Cal Date(Calibrated by, Certificate No.) Scheduled Calibration ID# Signal Generator E4438C 23-Jan-18 (CTTL, No.J18X00560) MY49071430 Jan-19 NetworkAnalyzer E5071C MY46110673 24-Jan-18 (CTTL, No.J18X00561) Jan-19 Name Function Signature Calibrated by: Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 3, 2018 This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z18-60326





In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

## Glossary:

| TSL   | tissue simulating liquid       |
|-------|--------------------------------|
| ConvF | sensitivity in TSL / NORMx,y,z |
| N/A   | not applicable or not measured |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

## Additional Documentation:

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole • positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the • nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.



S e p 2 O CALIBRATION LABORATORY

In Collaboration with

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | 52.10.1.1476 |
|------------------------------|--------------------------|--------------|
| Extrapolation                | Advanced Extrapolation   |              |
| Phantom                      | Triple Flat Phantom 5.1C |              |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer  |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |              |
| Frequency                    | 2450 MHz ± 1 MHz         |              |

#### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.2         | 1.80 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 38.8 ± 6 %   | 1.80 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL   | Condition          |                           |
|------------------------------------------------|--------------------|---------------------------|
| SAR measured                                   | 250 mW input power | 13.2 mW / g               |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 52.7 mW /g ± 18.8 % (k=2) |
| SAR averaged over 10 $cm^3$ (10 g) of Head TSL | Condition          |                           |
| SAR measured                                   | 250 mW input power | 6.17 mW / g               |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 24.6 mW /g ± 18.7 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.7         | 1.95 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 52.3 ± 6 %   | 1.98 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 $cm^3$ (1 g) of Body TSL   | Condition          |                           |
|------------------------------------------------|--------------------|---------------------------|
| SAR measured                                   | 250 mW input power | 13.0 mW / g               |
| SAR for nominal Body TSL parameters            | normalized to 1W   | 51.5 mW /g ± 18.8 % (k=2) |
| SAR averaged over 10 $cm^3$ (10 g) of Body TSL | Condition          |                           |
| SAR measured                                   | 250 mW input power | 6.14 mW / g               |
| SAR for nominal Body TSL parameters            | normalized to 1W   | 24.4 mW /g ± 18.7 % (k=2) |



Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

#### Appendix (Additional assessments outside the scope of CNAS L0570)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 53.9Ω+ 2.56jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 26.9dB      |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 50.0Ω+ 4.22jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 27.5dB      |

#### General Antenna Parameters and Design

|  | Electrical Delay (one direction) | 1.022 ns |
|--|----------------------------------|----------|
|--|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

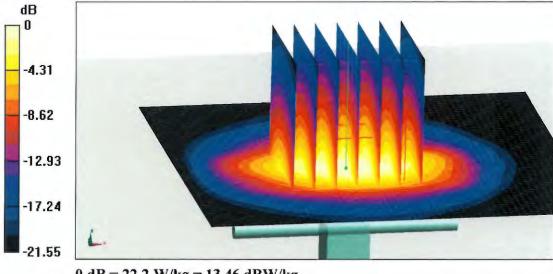
Fax: +86-10-62304633-2504 http://www.chinattl.cn

e

CALIBRATION LABORATORY

đ

In Collaboration with


D

**DASY5 Validation Report for Head TSL** Date: 08.31.2018 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 736 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz;  $\sigma = 1.802 \text{ S/m}$ ;  $\varepsilon_r = 38.84$ ;  $\rho = 1000 \text{ kg/m}3$ Phantom section: Right Section **DASY5** Configuration:

- Probe: EX3DV4 SN7464; ConvF(7.89, 7.89, 7.89) @ 2450 MHz; Calibrated: . 9/12/2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1524; Calibrated: 9/13/2017
- Phantom: MFP\_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 • (7439)

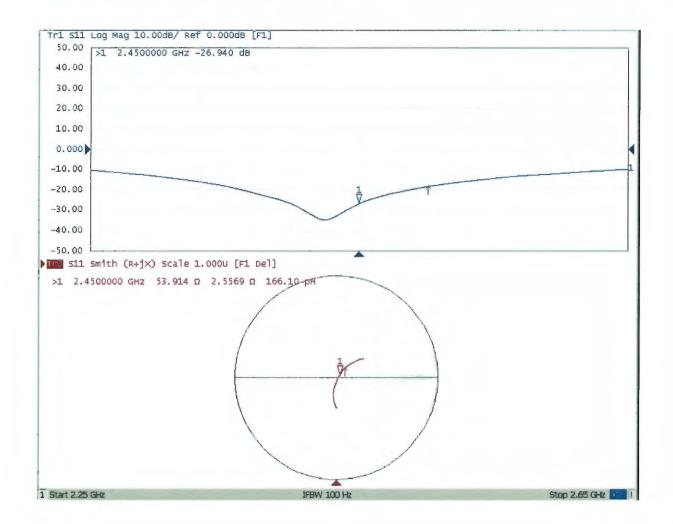
Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.2 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 27.6 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.17 W/kgMaximum value of SAR (measured) = 22.2 W/kg



0 dB = 22.2 W/kg = 13.46 dBW/kg

Certificate No: Z18-60326






Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

#### Impedance Measurement Plot for Head TSL





e D a CALIBRATION LABORATORY

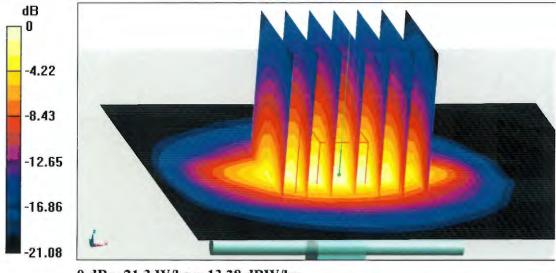
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

In Collaboration with

**DASY5 Validation Report for Body TSL** Date: 08.30.2018 Test Laboratory: CTTL, Beijing, China DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 736 Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz;  $\sigma = 1.982 \text{ S/m}$ ;  $\varepsilon_r = 52.34$ ;  $\rho = 1000 \text{ kg/m3}$ Phantom section: Center Section **DASY5** Configuration:

- Probe: EX3DV4 SN7464; ConvF(8.09, 8.09, 8.09) @ 2450 MHz; Calibrated: . 9/12/2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection) .
- Electronics: DAE4 Sn1524; Calibrated: 9/13/2017
- Phantom: MFP V5.1C; Type: QD 000 P51CA; Serial: 1062 .
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 . (7439)

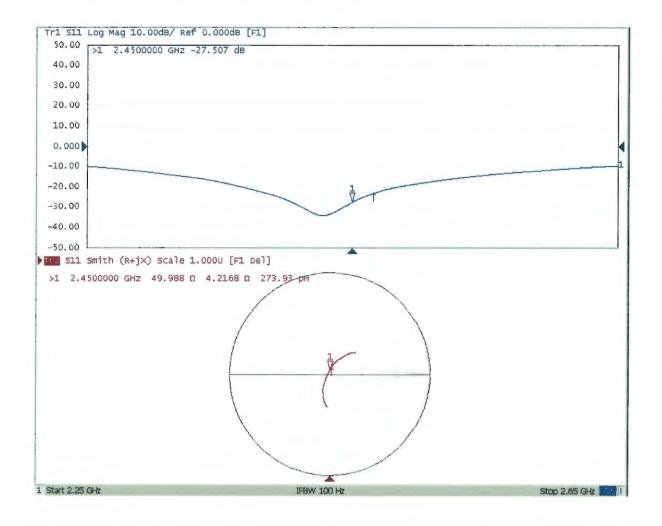

Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 98.71 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 26.0 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.14 W/kg

Maximum value of SAR (measured) = 21.3 W/kg




0 dB = 21.3 W/kg = 13.28 dBW/kg



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn

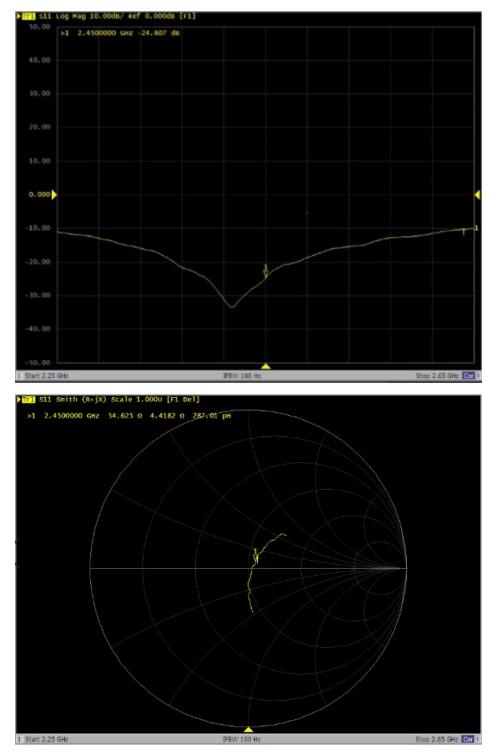
#### Impedance Measurement Plot for Body TSL





## D2450V2, serial no. 736 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


#### <Justification of the extended calibration>

| D <b>2450</b> V2 – serial no. <b>736</b> |                  |           |                      |             |                           |             |
|------------------------------------------|------------------|-----------|----------------------|-------------|---------------------------|-------------|
|                                          | 2450MHZ          |           |                      |             |                           |             |
| Date of Measurement                      | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) |
| 08.31.2018                               | -26.90           |           | 53.9                 |             | 2.56                      |             |
| 08.30.2019                               | -24.607          | -8.52     | 54.625               | -0.725      | 4.4182                    | -1.8582     |
| 08.29.2020                               | -27.199          | 1.11      | 52.736               | 1.164       | 2.0694                    | 0.4906      |

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.



<Dipole Verification Data> - D2450 V2, serial no. 736 (Data of Measurement : 8.30.2019) 2450 MHz - Head





S11 Log Mag 10.00dB/ Ref 0.000dB [F1] 1 -1 2.4500000 GHz -27.199 dB 0.000 1 Start 2.25 GHz IFBW 70 kHz Stop 2.65 GHz Cor 1 S11 Smith (R+jX) Scale 1.000U [F1 Del] >1 2.4500000 GHz 52.736 Ω 2.0694 Ω 134.43 рн

IFBW 70 kHz

Stop 2.65 GHz Cor

<Dipole Verification Data> - D2450 V2, serial no. 736 (Data of Measurement : 8.29.2020) 2450 MHz - Head

1 Start 2.25 GHz



Add: No.51 Xueyuan Road, Ha Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Client Sporton

Fax: +86-10-62304633-2504 http://www.chinattl.cn

Certificate No: Z18-60327

60327

**CNAS L0570** 

# CALIBRATION CERTIFICATE

Object

D2600V2 - SN: 1008

Calibration Procedure(s)

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

August 31, 2018

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID #        | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|-------------|------------------------------------------|-----------------------|
| Power Meter NRVD        | 102083      | 01-Nov-17 (CTTL, No.J17X08756)           | Oct-18                |
| Power sensor NRV-Z5     | 100542      | 01-Nov-17 (CTTL, No.J17X08756)           | Oct-18                |
| Reference Probe EX3DV4  | SN 7464     | 12-Sep-17(SPEAG,No.EX3-7464_Sep17)       | Sep-18                |
| DAE4                    | SN 1524     | 13-Sep-17(SPEAG,No.DAE4-1524_Sep17)      | Sep-18                |
| Secondary Standards     | ID #        | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
| Signal Generator E4438C | MY49071430  | 23-Jan-18 (CTTL, No.J18X00560)           | Jan-19                |
| Network Analyzer E5071C | MY46110673  | 24-Jan-18 (CTTL, No.J18X00561)           | Jan-19                |
|                         | Name        | Function                                 | Signature             |
| Calibrated by:          | Zhao Jing   | SAR Test Engineer                        | ANE -                 |
| Reviewed by:            | Lin Hao     | SAR Test Engineer                        | 和北                    |
| Approved by:            | Qi Dianyuan | SAR Project Leader                       | 1005                  |
|                         |             | Issued: Septer                           | mber 3, 2018          |
|                         |             |                                          |                       |





 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

### Glossary:

| TSL   | tissue simulating liquid       |
|-------|--------------------------------|
| ConvF | sensitivity in TSL / NORMx,y,z |
| N/A   | not applicable or not measured |

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

#### Additional Documentation:

e) DASY4/5 System Handbook

#### Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

CALIBRATION LABORATORY

e

a

0

In Collaboration with

D

S

#### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                   | 52.10.1.1476 |  |
|------------------------------|--------------------------|--------------|--|
| Extrapolation                | Advanced Extrapolation   |              |  |
| Phantom                      | Triple Flat Phantom 5.1C |              |  |
| Distance Dipole Center - TSL | 10 mm                    | with Spacer  |  |
| Zoom Scan Resolution         | dx, dy, dz = 5 mm        |              |  |
| Frequency                    | 2600 MHz ± 1 MHz         |              |  |

#### **Head TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 39.0         | 1.96 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 38.3 ± 6 %   | 1.98 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C         |              |                  |

#### SAR result with Head TSL

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL            | Condition          |                           |
|---------------------------------------------------------|--------------------|---------------------------|
| SAR measured                                            | 250 mW input power | 14.2 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 56.4 mW /g ± 18.8 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | Condition          |                           |
| SAR measured                                            | 250 mW input power | 6.36 mW / g               |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 25.3 mW /g ± 18.7 % (k=2) |

#### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 52.5         | 2.16 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 52.4 ± 6 %   | 2.15 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C         |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 $cm^3$ (1 g) of Body TSL   | Condition          |                           |
|------------------------------------------------|--------------------|---------------------------|
| SAR measured                                   | 250 mW input power | 13.8 mW / g               |
| SAR for nominal Body TSL parameters            | normalized to 1W   | 55.3 mW /g ± 18.8 % (k=2) |
| SAR averaged over 10 $cm^3$ (10 g) of Body TSL | Condition          |                           |
| SAR measured                                   | 250 mW input power | 6.18 mW/g                 |
| SAR for nominal Body TSL parameters            | normalized to 1W   | 24.7 mW /g ± 18.7 % (k=2) |



Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

#### Appendix(Additional assessments outside the scope of CNAS L0570)

#### Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 50.4Ω- 4.65jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 26.7dB      |

#### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 46.0Ω- 2.75jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 25.9dB      |

#### **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.016 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

#### Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|
|-----------------|-------|



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

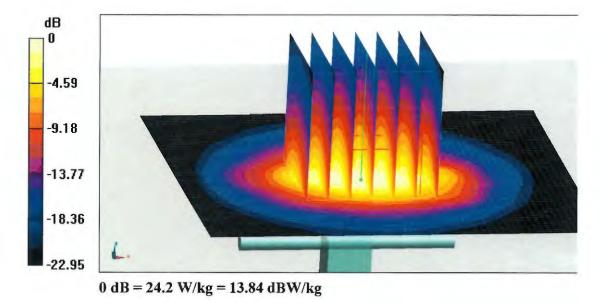
 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

In Collaboration with

D

e

CALIBRATION LABORATORY


а

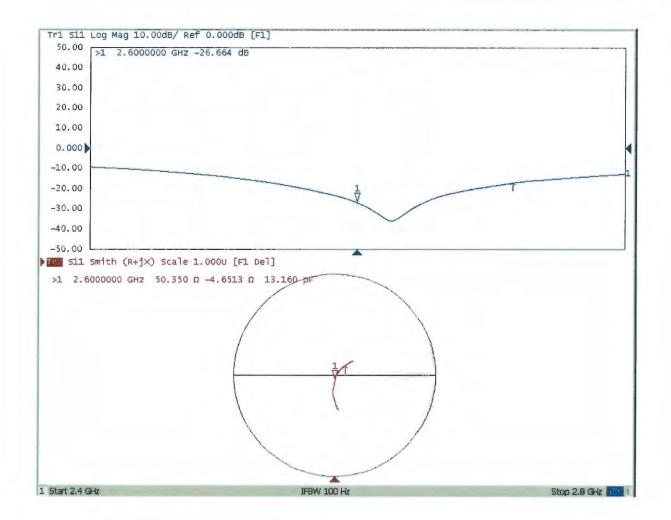
DASY5 Validation Report for Head TSLDate: 08.30.2018Test Laboratory: CTTL, Beijing, ChinaDUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1008Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1Medium parameters used: f = 2600 MHz;  $\sigma = 1.977$  S/m;  $\epsilon r = 38.28$ ;  $\rho = 1000$  kg/m3Phantom section: Center SectionDASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(7.76, 7.76, 7.76) @ 2600 MHz; Calibrated: 9/12/2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1524; Calibrated: 9/13/2017
- Phantom: MFP\_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

**Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.1 V/m; Power Drift = 0.01 dBPeak SAR (extrapolated) = 30.3 W/kgSAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.36 W/kgMaximum value of SAR (measured) = 24.2 W/kg








Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Fax: +86-10-62304633-2504 http://www.chinattl.cn

#### Impedance Measurement Plot for Head TSL





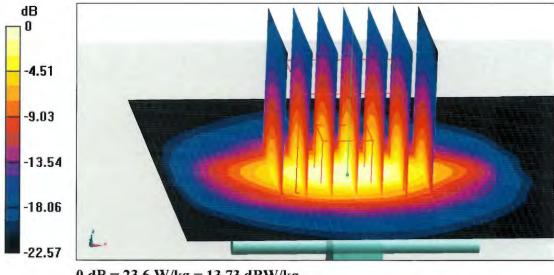
Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn

In Collaboration with

D

e

CALIBRATION LABORATORY


а

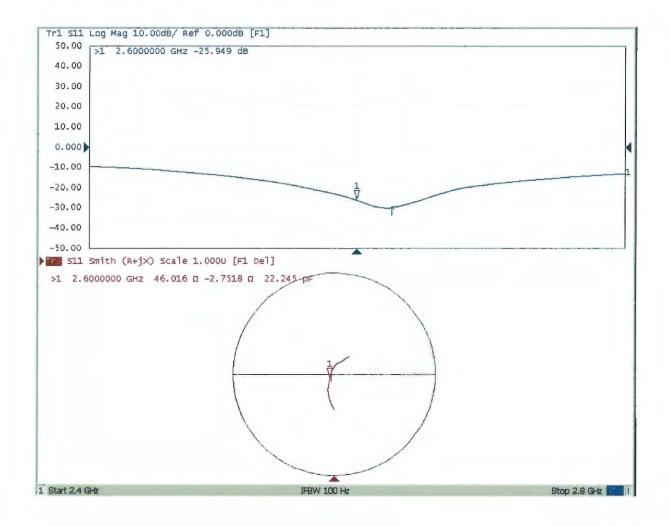
# DASY5 Validation Report for Body TSLDate: 08.30.2018Test Laboratory: CTTL, Beijing, ChinaDUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1008Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1Medium parameters used: f = 2600 MHz; $\sigma = 2.152$ S/m; $\epsilon r = 52.38$ ; $\rho = 1000$ kg/m3Phantom section: Right SectionDASY5 Configuration:

- Probe: EX3DV4 SN7464; ConvF(7.84, 7.84, 7.84) @ 2600 MHz; Calibrated: 9/12/2017
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1524; Calibrated: 9/13/2017
- Phantom: MFP\_V5.1C ; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

**Dipole Calibration**/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.71 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 29.3 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.18 W/kg Maximum value of SAR (measured) = 23.6 W/kg




0 dB = 23.6 W/kg = 13.73 dBW/kg



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

Fax: +86-10-62304633-2504 http://www.chinattl.cn

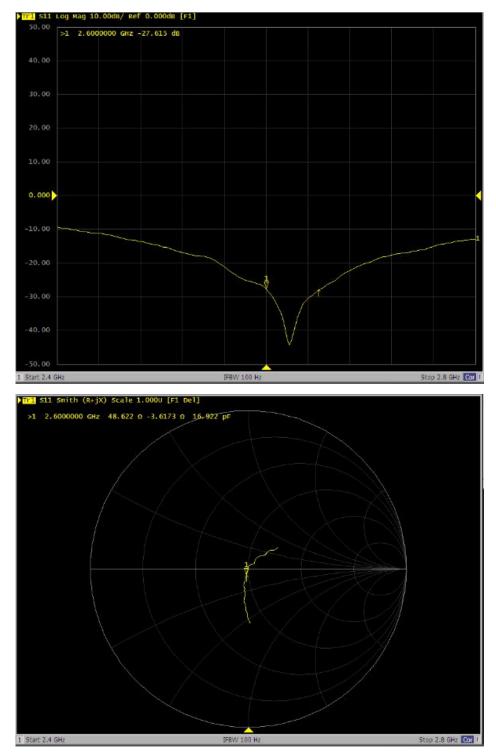
#### Impedance Measurement Plot for Body TSL





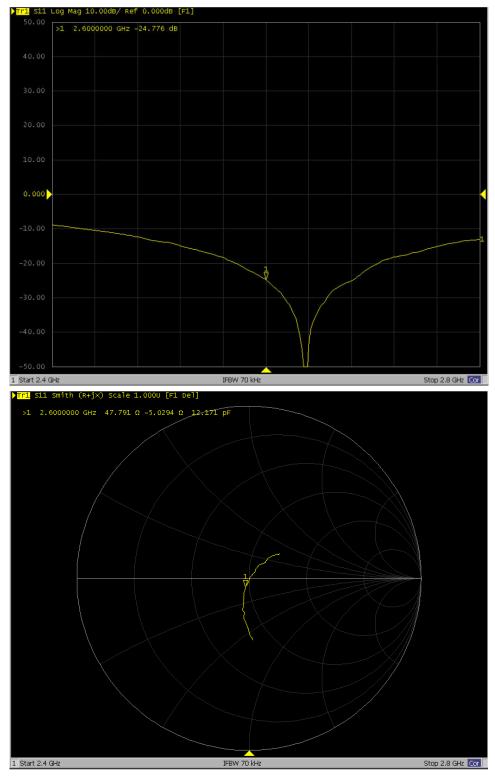
## D2600V2, serial no. 1008 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


#### <Justification of the extended calibration>

| D <b>2600</b> V2 – serial no. <b>1008</b> |                                                                                               |         |        |       |         |             |
|-------------------------------------------|-----------------------------------------------------------------------------------------------|---------|--------|-------|---------|-------------|
|                                           |                                                                                               | 2600MHZ |        |       |         |             |
| Date of Measurement                       | Return-Loss (dB) Delta (%) Real Impedance (ohm) Delta (ohm) Imaginary Impedance (ohm) Delta ( |         |        |       |         | Delta (ohm) |
| 08.31.2018                                | -26.7                                                                                         |         | 50.4   |       | -4.65   |             |
| 08.30.2019                                | -27.615                                                                                       | 3.43    | 48.622 | 1.778 | -3.6173 | -1.0327     |
| 08.29.2020                                | -24.776                                                                                       | -7.21   | 47.791 | 2.609 | -5.0294 | 0.3794      |

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.




<Dipole Verification Data> - D2600 V2, serial no. 1008 (Data of Measurement : 8.30.2019) 2600 MHz - Head





<Dipole Verification Data> - D2600 V2, serial no. 1008 (Data of Measurement : 8.29.2020) 2600 MHz - Head



#### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

C Servizio svizzero di taratura

S Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Client Sporton

Certificate No: D3500V2-1014\_Jan19

## CALIBRATION CERTIFICATE

Calibration procedure(s)

Object

D3500V2 - SN:1014

QA CAL-22.v4 Calibration Procedure for SAR Validation Sources between 3-6 GHz

Calibration date:

January 29, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards               | ID #               | Cal Date (Certificate No.)        | Scheduled Calibration    |
|---------------------------------|--------------------|-----------------------------------|--------------------------|
| Power meter NRP                 | SN: 104778         | 04-Apr-18 (No. 217-02672/02673)   | Apr-19                   |
| Power sensor NRP-Z91            | SN: 103244         | 04-Apr-18 (No. 217-02672)         | Apr-19                   |
| Power sensor NRP-Z91            | SN: 103245         | 04-Apr-18 (No. 217-02673)         | Apr-19                   |
| Reference 20 dB Attenuator      | SN: 5058 (20k)     | 04-Apr-18 (No. 217-02682)         | Apr-19                   |
| Type-N mismatch combination     | SN: 5047.2 / 06327 | 04-Apr-18 (No. 217-02683)         | Apr-19                   |
| Reference Probe EX3DV4          | SN: 3503           | 31-Dec-18 (No. EX3-3503_Dec18)    | Dec-19                   |
| DAE4                            | SN: 601            | 04-Oct-18 (No. DAE4-601_Oct18)    | Oct-19                   |
| Secondary Standards             | ID #               | Check Date (in house)             | Scheduled Check          |
| Power meter EPM-442A            | SN: GB37480704     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20   |
| Power sensor HP 8481A           | SN: US37292783     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20   |
| Power sensor HP 8481A           | SN: MY41092317     | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20   |
| RF generator R&S SMT-06         | SN: 100972         | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20   |
| Network Analyzer Agilent E8358A | SN: US41080477     | 31-Mar-14 (in house check Oct-18) | In house check: Oct-19   |
|                                 | Name               | Function                          | Signature                |
| Calibrated by:                  | Jeton Kastrati     | Laboratory Technician             | =Ve                      |
| Approved by:                    | Katja Pokovic      | Technical Manager                 | fille                    |
|                                 |                    | 6                                 | issued: January 29, 2019 |

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

## **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland





S

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura

Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Accreditation No.: SCS 0108

Glossary:TSLtissue simulating liquidConvFsensitivity in TSL / NORM x,y,zN/Anot applicable or not measured

## Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

## Additional Documentation:

e) DASY4/5 System Handbook

## Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
  point exactly below the center marking of the flat phantom section, with the arms oriented
  parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
  positioned under the liquid filled phantom. The impedance stated is transformed from the
  measurement at the SMA connector to the feed point. The Return Loss ensures low
  reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

## **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                      | V52.10.2                         |
|------------------------------|----------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation     |                                  |
| Phantom                      | Modular Flat Phantom       |                                  |
| Distance Dipole Center - TSL | 10 mm                      | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 3500 MHz ± 1 MHz           |                                  |

## Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 37.9         | 2.91 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 39.0 ± 6 %   | 2.89 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Head TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 6.74 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 67.9 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.54 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 25.6 W/kg ± 19.5 % (k=2) |

## **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C         | 51.3         | 3.31 mho/m       |
| Measured Body TSL parameters            | (22.0 ± 0.2) °C | 50.1 ± 6 %   | 3.28 mho/m ± 6 % |
| Body TSL temperature change during test | < 0.5 °C        |              |                  |

## SAR result with Body TSL

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 6.56 W/kg                |
| SAR for nominal Body TSL parameters                   | normalized to 1W   | 65.4 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.44 W/kg                |
| SAR for nominal Body TSL parameters                     | normalized to 1W   | 24.3 W/kg ± 19.5 % (k=2) |

## Appendix (Additional assessments outside the scope of SCS 0108)

## Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 55.4 Ω - 3.4 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 24.4 dB       |

### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 54.6 Ω - 0.3 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 27.1 dB       |

## **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.134 ns |
|----------------------------------|----------|
|                                  |          |

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

## Additional EUT Data

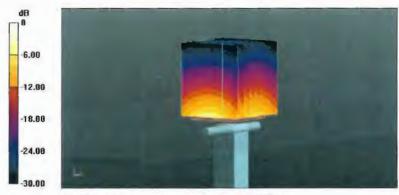
| Manus factoria al las s | SPEAG     |
|-------------------------|-----------|
| Manufactured by         | I SPEAG I |
| ······                  |           |

## **DASY5 Validation Report for Head TSL**

Date: 29.01.2019

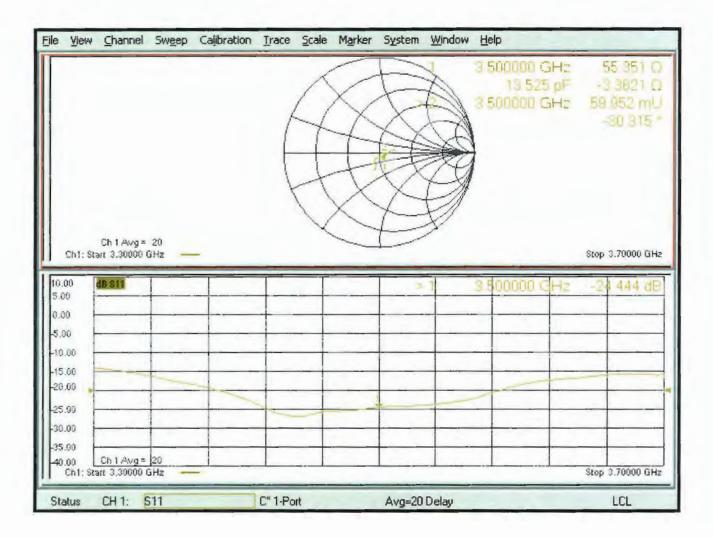
Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1014


Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz;  $\sigma = 2.89$  S/m;  $\epsilon_r = 39$ ;  $\rho = 1000$  kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.6, 7.6, 7.6) @ 3500 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


## Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm/Zoom Scan, dist=1.4mm

(8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 71.60 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 18.2 W/kg SAR(1 g) = 6.74 W/kg; SAR(10 g) = 2.54 W/kg Maximum value of SAR (measured) = 12.8 W/kg



0 dB = 12.8 W/kg = 11.07 dBW/kg

## Impedance Measurement Plot for Head TSL



## **DASY5 Validation Report for Body TSL**

Date: 29.01.2019

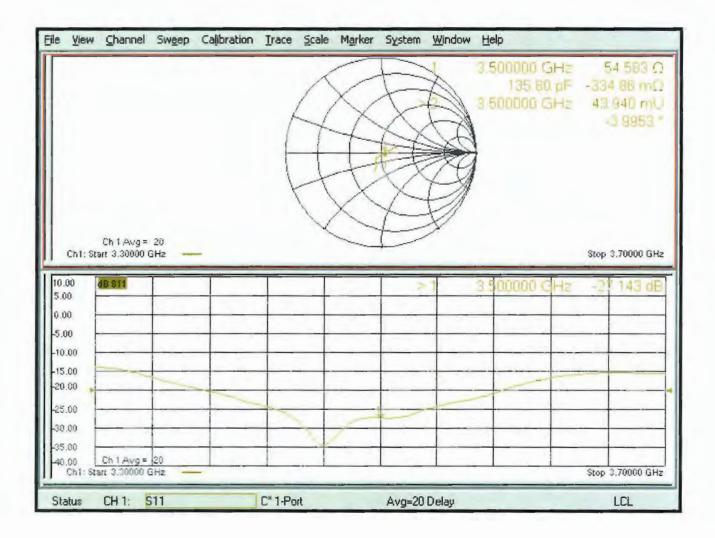
Test Laboratory: SPEAG, Zurich, Switzerland

## DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2 - SN:1014

Communication System: UID 0 - CW; Frequency: 3500 MHz Medium parameters used: f = 3500 MHz;  $\sigma$  = 3.28 S/m;  $\epsilon_r$  = 50.1;  $\rho$  = 1000 kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(7.21, 7.21, 7.21) @ 3500 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 04.10.2018
- Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002
- DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)


## Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm/Zoom Scan , dist=1.4mm

(8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.22 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 17.9 W/kg SAR(1 g) = 6.56 W/kg; SAR(10 g) = 2.44 W/kg Maximum value of SAR (measured) = 12.8 W/kg



0 dB = 12.8 W/kg = 11.07 dBW/kg

## Impedance Measurement Plot for Body TSL





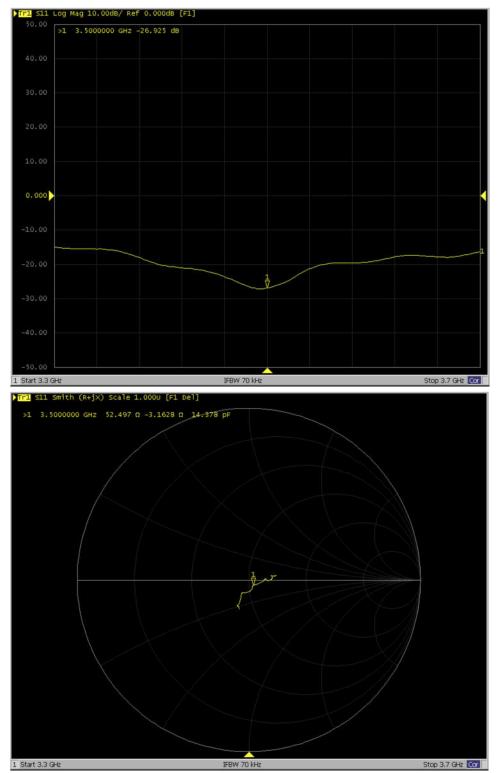
## D3500V2, serial no. 1014 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

#### <Justification of the extended calibration>

| D <b>3500</b> V2 – serial no. <b>1014</b> |                  |           |                      |             |                           |             |  |  |
|-------------------------------------------|------------------|-----------|----------------------|-------------|---------------------------|-------------|--|--|
|                                           | 3500MHZ          |           |                      |             |                           |             |  |  |
| Date of Measurement                       | Return-Loss (dB) | Delta (%) | Real Impedance (ohm) | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) |  |  |
| 01.29.2019<br>(Cal. Report)               | -24.444          |           | 55.351               |             | -3.3621                   |             |  |  |
| 01.28.2020<br>(extended)                  | -27.481          | 12.424    | 53.183               | 2.168       | -0.13305                  | -3.2291     |  |  |
| 01.27.2021<br>(extended)                  | -26.925          | -10.15    | 52.497               | 2.854       | -3.1628                   | -0.1993     |  |  |

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.




1 S11 Log Mag 10.00dB/ Ref 0.000dB [F1] >1 3.5000000 GHz -27.481 dB 0.000 Stop 3.7 GHz Cor IFBW 70 kHz 1 Start 3.3 GHz r1 S11 Smith (R+j×) Scale 1.000U [F1 Del] >1 3.5000000 GHz 53.183 Ω -133.05 mΩ 341.76 pF IFBW 70 kHz 1 Start 3.3 GHz Stop 3.7 GHz Cor

<Dipole Verification Data> - D3500 V2, serial no. 1014 (Data of Measurement : 01.28.2020) 3500 MHz - Head



<Dipole Verification Data> - D3500 V2, serial no. 1014 (Data of Measurement : 01.27.2021) 3500 MHz - Head







Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 E-mail: cttl@chinattl.com

http://www.chinattl.cn Sporton

**Certificate No:** Z19-60061

# CALIBRATION CERTIFICATE

Object

D3700V2 - SN: 1006

In Collaboration with

Calibration Procedure(s)

Client

FF-Z11-003-01 Calibration Procedures for dipole validation kits

Calibration date:

March 5, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

| Primary Standards       | ID#        | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
|-------------------------|------------|------------------------------------------|-----------------------|
| Power Meter NRP2        | 106277     | 20-Aug-18 (CTTL, No.J18X06862)           | Aug-19                |
| Power sensor NRP8S      | 104291     | 20-Aug-18 (CTTL, No.J18X06862)           | Aug-19                |
| Reference Probe EX3DV4  | SN 3617    | 31-Jan-19(SPEAG,No.EX3-3617_Jan19)       | Jan-20                |
| DAE4                    | SN 1331    | 06-Feb-19(SPEAG,No.DAE4-1331_Feb19)      | Feb-20                |
| Secondary Standards     | ID #       | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration |
| Signal Generator E4438C | MY49071430 | 23-Jan-19 (CTTL, No.J19X00336)           | Jan-20                |
| Network Analyzer E5071C | MY46110673 | 24-Jan-19 (CTTL, No.J19X00547)           | Jan-20                |
|                         | Name       | Function                                 | Signature             |
| Calibrated by:          | Zhao Jing  | SAR Test Engineer                        | · · · · ·             |

Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader

Issued: March 8, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.





# Glossary:

| TSL   | tissue simulating liquid       |
|-------|--------------------------------|
| ConvF | sensitivity in TSL / NORMx,y,z |
| N/A   | not applicable or not measured |

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016
- c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010
- d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz

# Additional Documentation:

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.



Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, ChinaTel: +86-10-62304633-2079Fax: +86-10-62304633-2504E-mail: cttl@chinattl.comhttp://www.chinattl.cn

### **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY52                     | 52.10.2.1495                     |
|------------------------------|----------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation     |                                  |
| Phantom                      | Triple Flat Phantom 5.1C   |                                  |
| Distance Dipole Center - TSL | 10 mm                      | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 3700 MHz ± 1 MHz           |                                  |

### Head TSL parameters

The following parameters and calculations were applied.

|                                         | Temperature              | Permittivity | Conductivity     |
|-----------------------------------------|--------------------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C                  | 37.7         | 3.12 mho/m       |
| Measured Head TSL parameters            | ( <b>22</b> .0 ± 0.2) °C | 36.6 ± 6 %   | 3.03 mho/m ± 6 % |
| Head TSL temperature change during test | <1.0 °C                  |              |                  |

# SAR result with Head TSL

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL   | Condition          |                          |
|------------------------------------------------|--------------------|--------------------------|
| SAR measured                                   | 100 mW input power | 6.73 W/kg                |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 67.3 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 $cm^3$ (10 g) of Head TSL | Condition          |                          |
| SAR measured                                   | 100 mW input power | 2.46 W/kg                |
| SAR for nominal Head TSL parameters            | normalized to 1W   | 24.5 W/kg ± 18.7 % (k=2) |

### **Body TSL parameters**

The following parameters and calculations were applied.

|                                         | Temperature              | Permittivity | Conductivity     |
|-----------------------------------------|--------------------------|--------------|------------------|
| Nominal Body TSL parameters             | 22.0 °C                  | 51.0         | 3.55 mho/m       |
| Measured Body TSL parameters            | ( <b>22</b> .0 ± 0.2) °C | 50.2 ± 6 %   | 3.45 mho/m ± 6 % |
| Body TSL temperature change during test | <1.0 °C                  |              |                  |

# SAR result with Body TSL

| SAR averaged over 1 $cm^3$ (1 g) of Body TSL   | Condition          |                          |
|------------------------------------------------|--------------------|--------------------------|
| SAR measured                                   | 100 mW input power | 6.35 W/kg                |
| SAR for nominal Body TSL parameters            | normalized to 1W   | 63.7 W/kg ± 18.8 % (k=2) |
| SAR averaged over 10 $cm^3$ (10 g) of Body TSL | Condition          |                          |
| SAR measured                                   | 100 mW input power | 2.32 W/kg                |
| SAR for nominal Body TSL parameters            | normalized to 1W   | 23.2 W/kg ± 18.7 % (k=2) |



 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China

 Tel: +86-10-62304633-2079
 Fax: +86-10-62304633-2504

 E-mail: cttl@chinattl.com
 http://www.chinattl.cn

# Appendix(Additional assessments outside the scope of CNAS L0570)

# Antenna Parameters with Head TSL

| Impedance, transformed to feed point | 52.4Ω- 7.98jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 21.8 dB     |

### Antenna Parameters with Body TSL

| Impedance, transformed to feed point | 51.9Ω- 5.56jΩ |
|--------------------------------------|---------------|
| Return Loss                          | - 24.8 dB     |

### General Antenna Parameters and Design

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

### Additional EUT Data

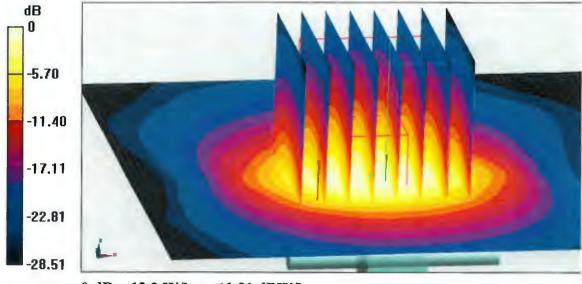
|  | Manufactured by | SPEAG |
|--|-----------------|-------|
|--|-----------------|-------|



In Collaboration with

S D C ALIBRATION LABORATORY

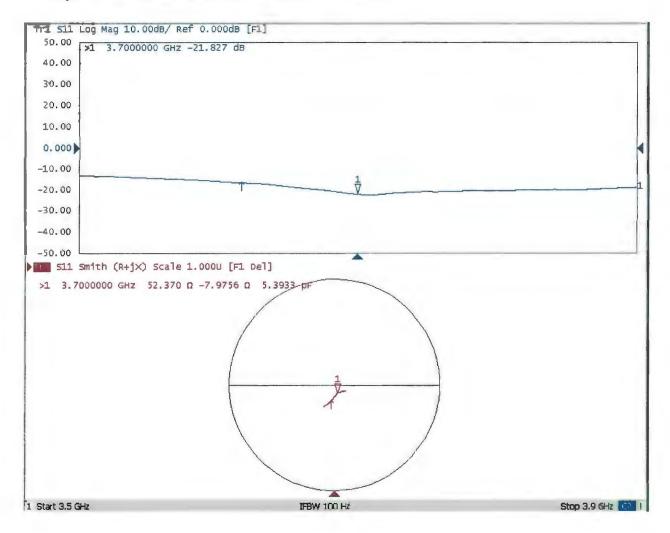
# DASY5 Validation Report for Head TSL


Date: 03.05.2019

Test Laboratory: CTTL, Beijing, China **DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN: 1006** Communication System: UID 0, CW; Frequency: 3700 MHz; Duty Cycle: 1:1 Medium parameters used: f = 3700 MHz;  $\sigma = 3.033$  S/m;  $\epsilon_r = 36.59$ ;  $\rho = 1000$  kg/m3 Phantom section: Right Section DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(6.89, 6.89, 6.89) @ 3700 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP\_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)

Dipole Calibration/ Pin=100mW, d=10mm /Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 56.90 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 20.3 W/kg SAR(1 g) = 6.73 W/kg; SAR(10 g) = 2.46 W/kg


Maximum value of SAR (measured) = 13.2 W/kg



0 dB = 13.2 W/kg = 11.21 dBW/kg



# Impedance Measurement Plot for Head TSL





S P C A C

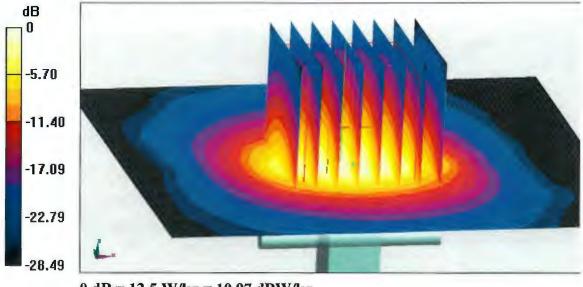
In Collaboration with

**DASY5 Validation Report for Body TSL** Test Laboratory: CTTL, Beijing, China

Date: 03.05.2018

Test Laboratory: CTTL, Beijing, China **DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN: 1006** Communication System: UID 0, CW; Frequency: 3700 MHz; Duty Cycle: 1:1 Medium parameters used: f = 3700 MHz;  $\sigma = 3.446$  S/m;  $\varepsilon_r = 50.18$ ;  $\rho = 1000$  kg/m3 Phantom section: Center Section DASY5 Configuration:

- Probe: EX3DV4 SN3617; ConvF(6.69, 6.69, 6.69) @ 3700 MHz; Calibrated: 1/31/2019
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn1331; Calibrated: 2/6/2019
- Phantom: MFP\_V5.1C; Type: QD 000 P51CA; Serial: 1062
- Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7450)


**Dipole Calibration**/ Pin=100mW, d=10mm /Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 59.37 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 18.3 W/kg

SAR(1 g) = 6.35 W/kg; SAR(10 g) = 2.32 W/kg

Maximum value of SAR (measured) = 12.5 W/kg





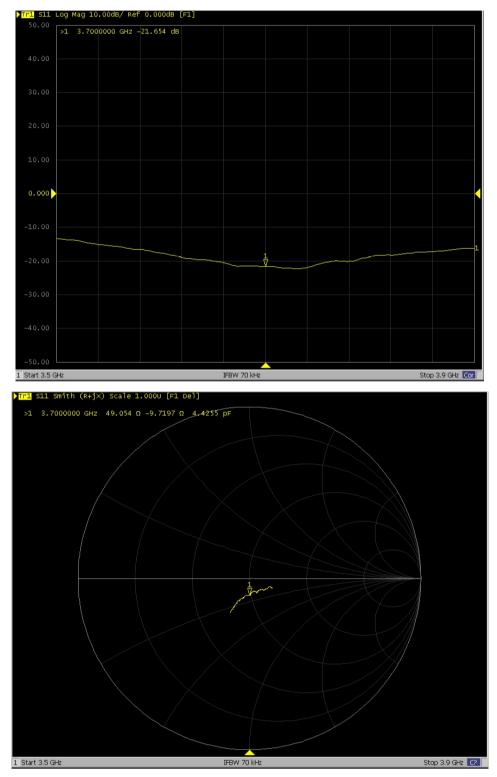
# Impedance Measurement Plot for Body TSL





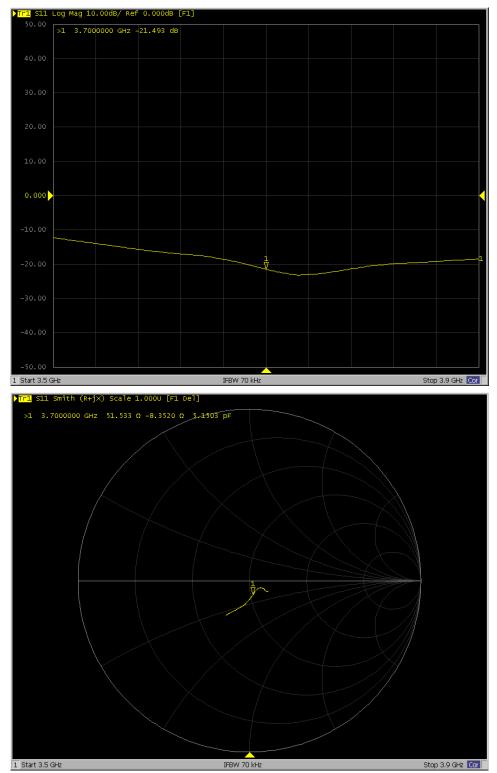
# D3700V2, serial no. 1006 Extended Dipole Calibrations

Referring to KDB 450824, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.


### <Justification of the extended calibration>

|                             |                  |           | D <b>3700</b> V2 – serial no. <b>1</b> 0 | 006         |                           |             |
|-----------------------------|------------------|-----------|------------------------------------------|-------------|---------------------------|-------------|
|                             |                  |           | 370                                      | 0MHZ        |                           |             |
| Date of Measurement         | Return-Loss (dB) | Delta (%) | Real Impedance (ohm)                     | Delta (ohm) | Imaginary Impedance (ohm) | Delta (ohm) |
| 03.05.2019<br>(Cal. Report) | -21.827          |           | 52.37                                    |             | -7.9756                   |             |
| 03.04.2020<br>(extended)    | -21.654          | -0.79     | 49.054                                   | 3.316       | -9.7197                   | 1.7441      |
| 03.03.2021<br>(extended)    | -21.493          | -1.53     | 51.533                                   | 0.837       | -8.352                    | 0.3764      |

The return loss is < -20dB, within 20% of prior calibration; the impedance is within 5 ohm of prior calibration. Therefore the verification result should support extended calibration.




<Dipole Verification Data> - D3700 V2, serial no. 1006 (Data of Measurement : 03.04.2020) 3700 MHz - Head





<Dipole Verification Data> - D3700 V2, serial no. 1006 (Data of Measurement : 03.03.2021) 3700 MHz - Head



### **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst S

- Service suisse d'étalonnage
- С Servizio svizzero di taratura
- S **Swiss Calibration Service**

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

#### Sporton Client

Certificate No: D3900V2-1017\_Apr19

# **ALIBRATION CERTIFICATE**

|                                                                                                                                                                             | D3900V2 - SN:10                                                                            | 017                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Calibration procedure(s)                                                                                                                                                    | QA CAL-22.v4<br>Calibration Proce                                                          | edure for SAR Validation Sources                                                                                                                                                                  | between 3-6 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Calibration date:                                                                                                                                                           | April 29, 2019                                                                             |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| The measurements and the uncerta                                                                                                                                            | ainties with confidence p<br>ed in the closed laborato                                     | ional standards, which realize the physical un<br>probability are given on the following pages an<br>ry facility: environment temperature ( $22 \pm 3$ )°(                                        | d are part of the certificate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Calibration Equipment used (M&TE<br>Primary Standards                                                                                                                       |                                                                                            | Cal Date (Certificate No.)                                                                                                                                                                        | Scheduled Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Power meter NRP                                                                                                                                                             | SN: 104778                                                                                 | 03-Apr-19 (No. 217-02892/02893)                                                                                                                                                                   | Apr-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Power sensor NRP-Z91                                                                                                                                                        | SN: 103244                                                                                 | 03-Apr-19 (No. 217-02892)                                                                                                                                                                         | Apr-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Power sensor NRP-Z91                                                                                                                                                        | SN: 103245                                                                                 | 03-Apr-19 (No. 217-02893)                                                                                                                                                                         | Apr-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Reference 20 dB Attenuator                                                                                                                                                  | SN: 5058 (20k)                                                                             | 04-Apr-19 (No. 217-02894)                                                                                                                                                                         | Apr-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Type-N mismatch combination                                                                                                                                                 | SN: 5047.2 / 06327                                                                         | 04-Apr-19 (No. 217-02895)                                                                                                                                                                         | Apr-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Reference Probe EX3DV4                                                                                                                                                      | SN: 3503                                                                                   | 25-Mar-19 (No. EX3-3503_Mar19)                                                                                                                                                                    | Mar-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DAE4                                                                                                                                                                        | SN: 601                                                                                    | 04-Oct-18 (No. DAE4-601_Oct18)                                                                                                                                                                    | Oct-19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DAL4                                                                                                                                                                        |                                                                                            |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                             | ID #                                                                                       | Check Date (in house)                                                                                                                                                                             | Scheduled Check                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Secondary Standards                                                                                                                                                         | ID #<br>SN: GB39512475                                                                     | Check Date (in house)<br>07-Oct-15 (in house check Feb-19)                                                                                                                                        | Scheduled Check<br>In house check: Oct-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Secondary Standards<br>Power meter E4419B                                                                                                                                   |                                                                                            |                                                                                                                                                                                                   | The second secon |
| Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A                                                                                                          | SN: GB39512475                                                                             | 07-Oct-15 (in house check Feb-19)                                                                                                                                                                 | In house check: Oct-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A                                                                                 | SN: GB39512475<br>SN: US37292783                                                           | 07-Oct-15 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)                                                                                                                            | In house check: Oct-20<br>In house check: Oct-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06                                                      | SN: GB39512475<br>SN: US37292783<br>SN: MY41092317                                         | 07-Oct-15 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)<br>07-Oct-15 (in house check Oct-18)                                                                                       | In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06                                                      | SN: GB39512475<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972                           | 07-Oct-15 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)<br>07-Oct-15 (in house check Oct-18)<br>15-Jun-15 (in house check Oct-18)                                                  | In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzer Agilent E8358A                   | SN: GB39512475<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: US41080477         | 07-Oct-15 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)<br>07-Oct-15 (in house check Oct-18)<br>15-Jun-15 (in house check Oct-18)<br>31-Mar-14 (in house check Oct-18)             | In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-19<br>Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Secondary Standards<br>Power meter E4419B<br>Power sensor HP 8481A<br>Power sensor HP 8481A<br>RF generator R&S SMT-06<br>Network Analyzer Agilent E8358A<br>Calibrated by: | SN: GB39512475<br>SN: US37292783<br>SN: MY41092317<br>SN: 100972<br>SN: US41080477<br>Name | 07-Oct-15 (in house check Feb-19)<br>07-Oct-15 (in house check Oct-18)<br>07-Oct-15 (in house check Oct-18)<br>15-Jun-15 (in house check Oct-18)<br>31-Mar-14 (in house check Oct-18)<br>Function | In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-20<br>In house check: Oct-19<br>Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

# **Calibration Laboratory of**

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland



Schweizerischer Kalibrierdienst

S Service suisse d'étalonnage

С Servizio svizzero di taratura

S **Swiss Calibration Service** 

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

### Glossary

| tissue simulating liquid        |
|---------------------------------|
| sensitivity in TSL / NORM x,y,z |
| not applicable or not measured  |
|                                 |

# Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)". March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

# **Additional Documentation:**

e) DASY4/5 System Handbook

# Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. • No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power. •
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Accreditation No.: SCS 0108

# **Measurement Conditions**

DASY system configuration, as far as not given on page 1.

| DASY Version                 | DASY5                                | V52.10.2                         |
|------------------------------|--------------------------------------|----------------------------------|
| Extrapolation                | Advanced Extrapolation               |                                  |
| Phantom                      | Modular Flat Phantom                 |                                  |
| Distance Dipole Center - TSL | 10 mm                                | with Spacer                      |
| Zoom Scan Resolution         | dx, dy = 4 mm, dz = 1.4 mm           | Graded Ratio = 1.4 (Z direction) |
| Frequency                    | 3900 MHz ± 1 MHz<br>4100 MHz ± 1 MHz |                                  |

# Head TSL parameters at 3900 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 37.5         | 3.32 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 36.9 ± 6 %   | 3.22 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

# SAR result with Head TSL at 3900 MHz

| SAR averaged over 1 $cm^3$ (1 g) of Head TSL            | Condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 6.94 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 69.5 W/kg ± 19.9 % (k=2) |
| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|                                                         |                    |                          |
| SAR measured                                            | 100 mW input power | 2.43 W/kg                |

# Head TSL parameters at 4100 MHz

The following parameters and calculations were applied.

|                                         | Temperature     | Permittivity | Conductivity     |
|-----------------------------------------|-----------------|--------------|------------------|
| Nominal Head TSL parameters             | 22.0 °C         | 37.2         | 3.53 mho/m       |
| Measured Head TSL parameters            | (22.0 ± 0.2) °C | 36.7 ± 6 %   | 3.40 mho/m ± 6 % |
| Head TSL temperature change during test | < 0.5 °C        |              |                  |

### SAR result with Head TSL at 4100 MHz

| SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition          |                          |
|-------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                          | 100 mW input power | 6.62 W/kg                |
| SAR for nominal Head TSL parameters                   | normalized to 1W   | 66.3 W/kg ± 19.9 % (k=2) |

| SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition          |                          |
|---------------------------------------------------------|--------------------|--------------------------|
| SAR measured                                            | 100 mW input power | 2.31 W/kg                |
| SAR for nominal Head TSL parameters                     | normalized to 1W   | 23.0 W/kg ± 19.5 % (k=2) |

# Appendix (Additional assessments outside the scope of SCS 0108)

# Antenna Parameters with Head TSL at 3900 MHz

| Impedance, transformed to feed point | 51.5 Ω - 7.9 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 22.0 dB       |

# Antenna Parameters with Head TSL at 4100 MHz

| Impedance, transformed to feed point | 60.6 Ω - 0.8 jΩ |
|--------------------------------------|-----------------|
| Return Loss                          | - 20.3 dB       |

# **General Antenna Parameters and Design**

| Electrical Delay (one direction) | 1.106 ns |
|----------------------------------|----------|
|----------------------------------|----------|

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

# Additional EUT Data

| Manufactured by | SPEAG |
|-----------------|-------|