

Report No. : FR8N0620-06B

FCC RADIO TEST REPORT

FCC ID	:	A4RG020PQ
Equipment	:	Phone
Model Name	:	G020P, G020Q
Applicant	:	Google LLC
		1600 Amphitheatre Parkway,
		Mountain View, California, 94043 USA
Standard	:	FCC Part 15 Subpart C §15.247

The product was received on Nov. 07, 2018 and testing was started from Jun. 19, 2019 and completed on Jun. 22, 2019. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Jones Tsai SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Page Number: 1 of 16Issued Date: Jul. 16, 2019Report Version: 02

Table of Contents

His	tory o	f this test report	3
Su	nmary	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	5
	1.3	Modification of EUT	5
	1.4	Testing Location	6
	1.5	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	8
	2.4	EUT Operation Test Setup	8
3	Test	Result	9
	3.1	Output Power Measurement	9
	3.2	Radiated Band Edges and Spurious Emission Measurement	10
	3.3	Antenna Requirements	14
4	List o	of Measuring Equipment	15
5	Unce	rtainty of Evaluation	16
Ap	oendix	x A. Conducted Test Results	
Ap	oendix	x B. Radiated Spurious Emission	
Ap	oendix	x C. Radiated Spurious Emission Plots	

Appendix D. Duty Cycle Plots

History of this test report

Report No.	Version	Description	Issued Date
FR8N0620-06B	01	Initial issue of report	Jul. 05, 2019
FR8N0620-06B	02	Revise the conducted power of appendix A	Jul. 16, 2019

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.247(a)(2)	6dB Bandwidth	Not Required	-
-	2.1049	99% Occupied Bandwidth	Not Required	-
3.1	15.247(b)(3)	Output Power	Pass	-
-	15.247(e)	Power Spectral Density	Not Required	-
-	15.247(d)	Conducted Band Edges and Spurious Emission	Not Required	-
3.2	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	Under limit 5.37 dB at 2488.360 MHz
-	15.207	AC Conducted Emission	Not Required	-
3.3	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Remark:

1. Not required means after assessing, test items are not necessary to carry out.

 This is a variant report. All the test cases were performed on original report which can be referred to Sporton Report Number FR8N0620-05B.

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Aileen Huang

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature			
Equipment	Phone		
Model Name	G020P, G020Q		
FCC ID	A4RG020PQ		
	GSM/EGPRS/WCDMA/HSPA/LTE/NFC/GNSS/WPC		
	WLAN 11b/g/n HT20		
EUT supports Radios	WLAN 11a/n HT20/HT40		
application	WLAN 11ac VHT20/VHT40/VHT80		
	Bluetooth BR/EDR/LE		
	60 GHz Low Power Transmitter		
EUT Stage	Identical Prototype		

Remark: The above EUT's information was declared by manufacturer.

EUT Information List			
No.	S/N		
#1	94NBA009VT		
#2	958BA00AK6		

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz		
Number of Channels	40		
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)		
Maximum Output Power to Antenna	Bluetooth LE (1Mbps) : 12.00 dBm (0.0158 W)		
	Bluetooth LE (2Mbps) : 12.30 dBm (0.0170 W)		
Antenna Type / Gain	IFA Antenna type with gain -0.5 dBi		
Type of Modulation	Bluetooth LE : GFSK		

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory	
	No.52, Huaya 1st Rd., Guishan Dist.,	
Test Site Taoyuan City, Taiwan (R.O.C.)		
Location	TEL: +886-3-327-3456	
	FAX: +886-3-328-4978	
Tost Site No	Sporton Site No.	
Test Site No.	TH05-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory	
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868	
	FAX: +886-3-327-0855	
Test Site No.	Sporton Site No.	
Test Sile NO.	03CH13-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

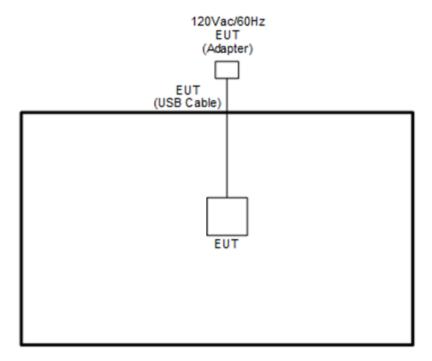
- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark: All test items were verified and recorded according to the standards and without any deviation during the test.

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
-	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-


2.2 Test Mode

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases			
Test Item	Data Rate / Modulation		
Test item	Bluetooth – LE / GFSK		
Radiated Test Cases Mode 1: Bluetooth Tx CH39_2480 MHz_2Mbps			
Remark: For Radiated Test Cases, the tests were performed with Adapter 1.			

2.3 Connection Diagram of Test System

2.4 EUT Operation Test Setup

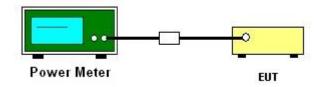
The RF test items, utility "QRCT 3.0.271.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6 dBi.


3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator.
- 3. The path loss was compensated to the results for each measurement.
- 4. Set to the maximum power setting and enable the EUT transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Average Output Power

Please refer to Appendix A.

3.2 Radiated Band Edges and Spurious Emission Measurement

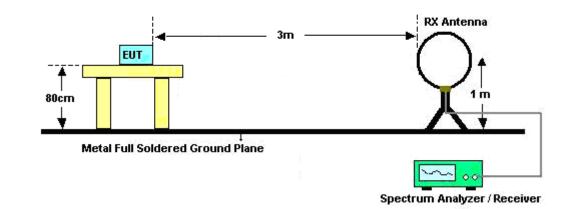
3.2.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

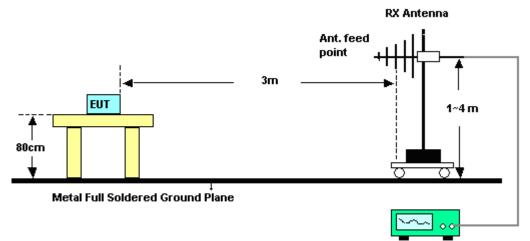
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

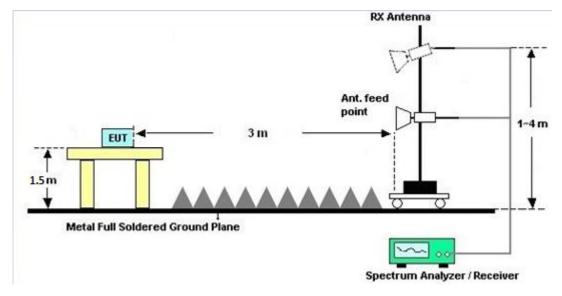

3.2.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.



3.2.4 Test Setup

For radiated emissions below 30MHz


For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

For radiated emissions above 1GHz

3.2.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.2.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.2.7 Duty Cycle

Please refer to Appendix D.

3.2.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.3 Antenna Requirements

3.3.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.3.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jan. 07, 2019	Jun. 19, 2019~ Jun. 21, 2019	Jan. 06, 2020	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-124 1	1GHz ~ 18GHz	Jun. 29, 2018	Jun. 19, 2019~ Jun. 21, 2019	Jun. 28, 2019	Radiation (03CH13-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	37059&01	30MHz~1GHz	Oct. 13, 2018	Jun. 19, 2019~ Jun. 21, 2019	Oct. 12, 2019	Radiation (03CH13-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 584	18GHz- 40GHz	Dec. 05, 2018	Jun. 19, 2019~ Jun. 21, 2019	Dec. 04, 2019	Radiation (03CH13-HY)
Preamplifier	Keysight	83017A	MY532700 80	1GHz~26.5GHz	Nov. 14, 2018	Jun. 19, 2019~ Jun. 21, 2019	Nov. 13, 2020	Radiation (03CH13-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590074	1GHz~18GHz	May 20, 2019	Jun. 19, 2019~ Jun. 21, 2019	May 19, 2020	Radiation (03CH13-HY)
Amplifier	Sonoma-Instru ment	310 N	187282	9KHz~1GHz	Dec. 18, 2018	Jun. 19, 2019~ Jun. 21, 2019	Dec. 17, 2019	Radiation (03CH13-HY)
Amplifier	MITEQ	TTA1840-35- HG	1871923	18GHz~40GHz, VSWR : 2.5:1 max	Jul. 16, 2018	Jun. 19, 2019~ Jun. 21, 2019	Jul. 15, 2019	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0030/126E	30M-18G	Feb. 13, 2019	Jun. 19, 2019~ Jun. 21, 2019	Feb. 12, 2020	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	804793/4	30M-18G	Feb. 13, 2019	Jun. 19, 2019~ Jun. 21, 2019	Feb. 12, 2020	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24961/ 4	30M-18G	Feb. 13, 2019	Jun. 19, 2019~ Jun. 21, 2019	Feb. 12, 2020	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30M~40GHz	Mar. 13, 2019	Jun. 19, 2019~ Jun. 21, 2019	Mar. 12, 2020	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY4274/2	30M~40GHz	Mar. 13, 2019	Jun. 19, 2019~ Jun. 21, 2019	Mar. 12, 2020	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY553705 26	10Hz~44GHz	Mar. 19, 2019	Jun. 19, 2019~ Jun. 21, 2019	Mar. 18, 2020	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1m~4m	N/A	Jun. 19, 2019~ Jun. 21, 2019	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Jun. 19, 2019~ Jun. 21, 2019	N/A	Radiation (03CH13-HY)
Software	AUDIX	E3 6.2009-8-24c	RK-001124	N/A	N/A	Jun. 19, 2019~ Jun. 21, 2019	N/A	Radiation (03CH13-HY)
EMI Test Receiver	Keysight	N9038A (MXE)	MY541300 85	20Hz ~ 8.4GHz	Nov. 01, 2018	Jun. 19, 2019~ Jun. 21, 2019	Oct. 31, 2019	Radiation (03CH13-HY)
Filter	Wainwright	WHKX12-108 0-1200-15000 -60ST	SN3	1.2G Low Pass	Jul. 05, 2018	Jun. 19, 2019~ Jun. 21, 2019	Jul. 04, 2019	Radiation (03CH13-HY)
Filter	Woken	WHKX8-5272. 5-6750-18000 -40ST	SN5	6.75G Highpass	Mar. 13, 2019	Jun. 19, 2019~ Jun. 21, 2019	Mar. 12, 2020	Radiation (03CH13-HY)
Power Sensor	DARE	RPR3006W	13I00030S NO32	9kHz~6GHz	Dec. 03, 2018	Jun. 22, 2019	Dec. 02, 2019	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Nov. 21, 2018	Jun. 22, 2019	Nov. 20, 2019	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC120838 2	N/A	Mar. 27, 2019	Jun. 22, 2019	Mar. 26, 2020	Conducted (TH05-HY)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.0
of 95% (U = 2Uc(y))	4.9

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.4
of 95% (U = 2Uc(y))	5.4

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4.2
of 95% (U = 2Uc(y))	4.5

Report Number : FR8N0620-06B

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Rebecca Li	Temperature:	21~25	°C
Test Date:	2019/6/22	Relative Humidity:	51~54	%

<u>TEST RESULTS DATA</u> <u>Average Power Table</u> <u>(Reporting Only)</u>								
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)			
BLE	1Mbps	1	0	2402	10.70			
BLE	1Mbps	1	19	2440	12.00			
BLE	1Mbps	1	39	2480	12.00			

Report Number : FR8N0620-06B

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u> <u>(Reporting Only)</u>								
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)				
BLE5.0	2Mbps	1	0	2402	11.10				
BLE5.0	2Mbps	1	19	2440	12.30				
BLE5.0	2Mbps	1	39	2480	12.30				
	•								

Appendix B. Radiated Spurious Emission

Toot Engineer	Ryan Lin, JC Liang and Wilson Wu	Temperature :	20~25°C
Test Engineer :	Ryan Lin, 3C Liang and Wilson Wu	Relative Humidity :	50~55%

2.4GHz 2400~2483.5MHz

BLE_2Mbps (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2480	106.2	-	-	94.31	27.46	14	29.57	107	261	Р	Н
	*	2480	104.67	-	-	92.78	27.46	14	29.57	107	261	А	н
51.5		2483.56	60.89	-13.11	74	49	27.46	14	29.57	107	261	Ρ	Н
BLE CH 39		2488.36	48.63	-5.37	54	36.69	27.5	14.01	29.57	107	261	А	Н
Сп 39 2480MHz	*	2480	102.37	-	-	90.48	27.46	14	29.57	368	277	Ρ	V
240010112	*	2480	100.98	-	-	89.09	27.46	14	29.57	368	277	А	V
		2483.52	57.25	-16.75	74	45.36	27.46	14	29.57	368	277	Ρ	V
		2488.12	46.07	-7.93	54	34.14	27.5	14	29.57	368	277	А	V
Remark	1. No	o other spurious	s found.										
Kennark	2. All	results are PA	SS against F	eak and	Average lim	it line.							

2.4GHz 2400~2483.5MHz

BLE_2Mbps (Harmonic @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		4960	37.93	-36.07	74	56.87	31.53	6.81	57.28	100	0	Р	Н
BLE		7440	43.05	-30.95	74	55.8	36.49	8.19	57.43	100	0	Р	Н
CH 39 2480MHz		4960	38.98	-35.02	74	57.92	31.53	6.81	57.28	100	0	Р	V
240011112		7440	44.37	-29.63	74	57.12	36.49	8.19	57.43	100	0	Ρ	V
Remark	1. N	o other spurious	s found.										
Kennark	2. Al	l results are PA	SS against F	eak and	Average lim	it line.							

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		64.92	23.77	-16.23	40	43.7	11.7	0.64	32.27	-	-	Ρ	Н
		164.83	31.01	-12.49	43.5	46.35	15.72	1.1	32.16	-	-	Ρ	Н
		212.36	29.32	-14.18	43.5	45.53	14.66	1.27	32.14	-	-	Ρ	Н
		301.6	25.06	-20.94	46	36.85	18.9	1.46	32.15	-	-	Ρ	Н
0.4011-		563.5	27.18	-18.82	46	31.63	25.73	2.03	32.21	-	-	Ρ	Н
2.4GHz BLE		948.59	34.04	-11.96	46	31.96	30.42	2.66	31	100	0	Ρ	Н
LF		45.52	32.92	-7.08	40	48.35	16.34	0.52	32.29	100	0	Ρ	V
LF		128.94	24.17	-19.33	43.5	38.09	17.29	0.98	32.19	-	-	Ρ	V
		165.8	27.75	-15.75	43.5	43.19	15.62	1.1	32.16	-	-	Ρ	V
		267.65	23	-23	46	34.64	19.12	1.39	32.15	-	-	Ρ	V
		680.87	29.88	-16.12	46	33.69	26.08	2.23	32.12	-	-	Ρ	V
		965.08	33.51	-20.49	54	31.08	30.6	2.69	30.86	-	-	Ρ	V
Remark	1. No	o other spurious	s found.										
Remark	2. All	results are PA	SS against li	mit line.									

Emission below 1GHz

2.4GHz BLE_2Mbps (LF)

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions
	shall not exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

Note symbol

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

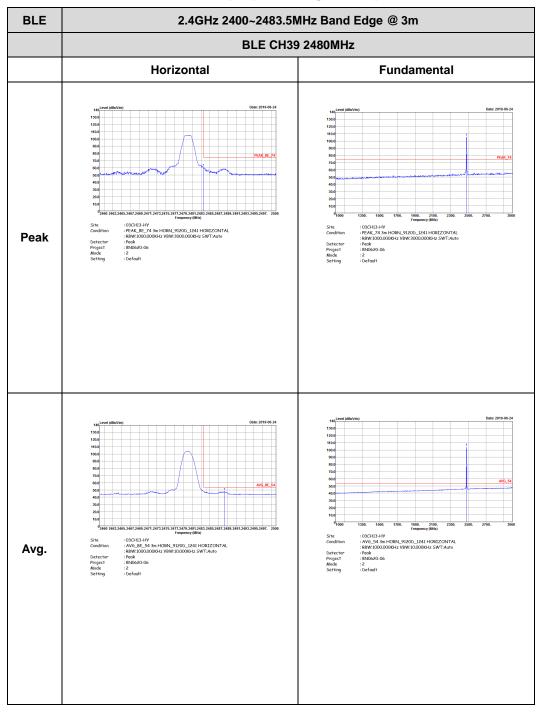
For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

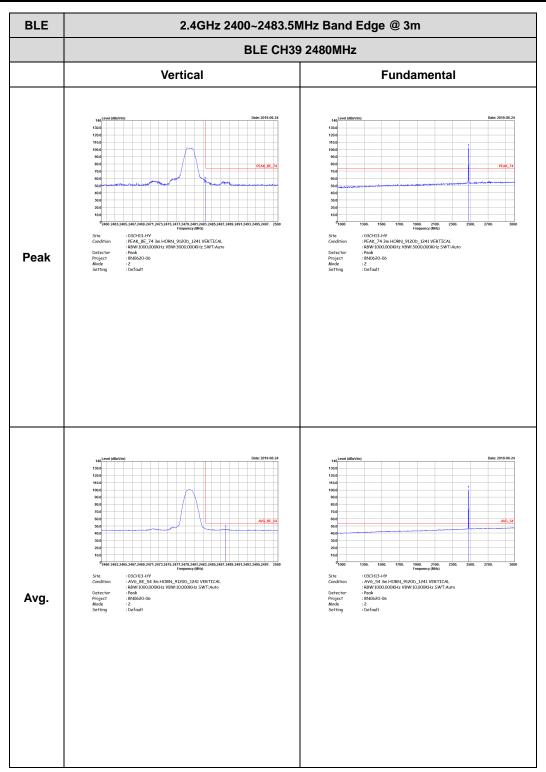
For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

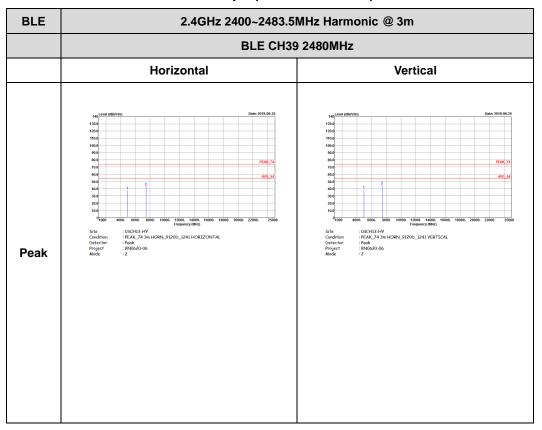


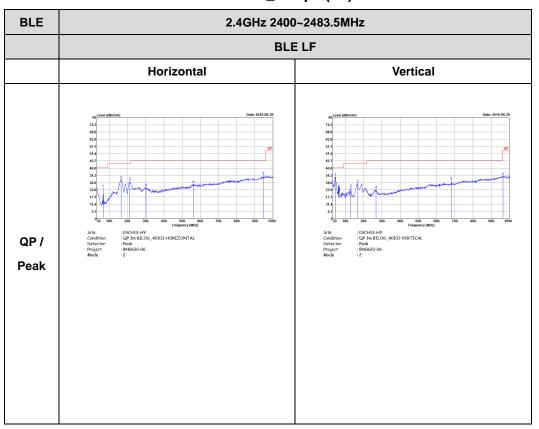
Appendix C. Radiated Spurious Emission Plots


Toot Engineer	Ryan Lin, JC Liang and Wilson Wu	Temperature :	20~25°C
Test Engineer :		Relative Humidity :	50~55%

2.4GHz 2400~2483.5MHz

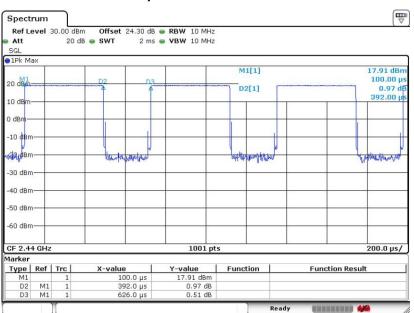
BLE_2Mbps (Band Edge @ 3m)




2.4GHz 2400~2483.5MHz

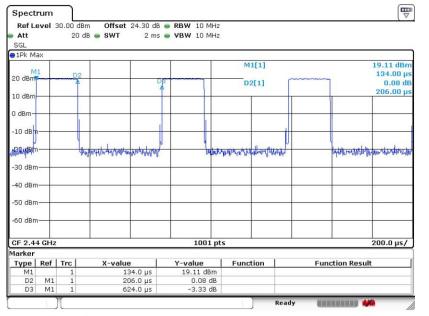
BLE_2Mbps (Harmonic @ 3m)

Emission below 1GHz


2.4GHz BLE_2Mbps (LF)

Appendix D. Duty Cycle Plots

Band	Duty Cycle (%)	T(us)	1/T(kHz)	VBW Setting	Duty Factor (dB)	
Bluetooth – LE for 1Mbps	62.62	392	2.55	3kHz	2.03	
Bluetooth – LE for 2Mbps	33.01	206	4.85	10kHz	4.81	


Bluetooth – LE for 1Mbps

Date: 22.JUN.2019 11:50:56

Bluetooth – LE for 2Mbps

Date: 22.JUN.2019 11:51:59

------THE END------