

RF EXPOSURE EVALUATION REPORT

FCC ID	: A4RG020MN
Equipment	: Phone
Model Name	: G020M, G020N
Applicant	: Google LLC 1600 Amphitheatre Parkway, Mountain View, California, 94043 USA
Manufacturer	: Google LLC 1600 Amphitheatre Parkway, Mountain View, California, 94043 USA
Standard	: FCC 47 CFR Part 2 (2.1093)

We, SPORTON INTERNATIONAL INC have been evaluated this device in accordance with 47 CFR Part 2.1093 and it complies with applicable limit.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Gua Unang.

Approved by: Cona Huang / Deputy Manager

SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

1. Summary	. 4
2. Guidance Applied	. 4
3. Equipment Under Test (EUT) Information	. 5
3.1 General Information	. 5
4. RF Exposure Limits	. 6
4.1 Uncontrolled Environment	
4.2 Controlled Environment	. 6
5. System Description and Setup	. 7
5.1 EUmmWave Probe / E-Field 5G Probe	. 8
5.2 Data Acquisition Electronics (DAE)	. 9
5.3 Scan configuration	. 9
6. Test Equipment List	. 9
7. System Verification Source	10
8. Power Density System Verification	11
9. System Verification Results	11
9.1 Computation of the Electric Field Polarization Ellipse	12
9.2 Total Field and Power Flux Density Reconstruction	12
9.3 Test Positions	13
10. RF Exposure Evaluation Results	13
11. Uncertainty Assessment	14
12. References	15

Appendix A. Plots of System Performance Check Appendix B. Plots of Power Density Measurement Appendix C. DASY Calibration Certificate Appendix D. Sim-Tx Analysis Appendix D. Setup Photo

History of this test report

Report No.	Version	Description	Issued Date
FA8N0616-06C	01	Initial issue of report	Jul. 10, 2019
FA8N0616-06C	02	Update section 1	Aug. 28, 2019

1. <u>Summary</u>

The maximum measured average power density found during testing for Google LLC, Phone, are as follows.

	Simultaneous transmission with other transmitters		
RF	Highest Total Power Density, averaging over 4cm ² (mW/cm ²)	Limit (FCC part 1.310) (mW/cm ²)	Summation of Exposure Ratio
60GHz Transmitter	0.00704	1	0.996

2. <u>Guidance Applied</u>

The Power Density testing specification, method, and procedure for this device is in accordance with the following standards:

- FCC 47 CFR Part 2.1091
- FCC 47 CFR Part 2.1093
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03
- TCBC workshop notes
- IEC Draft TR 63170

Report No. : FA8N0616-06C

3. Equipment Under Test (EUT) Information

3.1 General Information

Product Feature & Specification					
Equipment Name	Phone				
Model Name	G020M, G020N				
FCC ID	A4RG020MN				
Wireless Technology and Frequency Range	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band II: 1852.4 MHz ~ 1907.6 MHz WCDMA Band V: 826.4 MHz ~ 846.6 MHz LTE Band 2: 1850.7 MHz ~ 1909.3 MHz LTE Band 2: 1850.7 MHz ~ 1754.3 MHz LTE Band 5: 824.7 MHz ~ 848.3 MHz LTE Band 7: 2502.5 MHz ~ 2567.5 MHz LTE Band 12: 699.7 MHz ~ 715.3 MHz LTE Band 13: 779.5 MHz ~ 784.5 MHz LTE Band 13: 779.5 MHz ~ 784.5 MHz LTE Band 13: 779.5 MHz ~ 713.5 MHz LTE Band 26: 1850.7 MHz ~ 1914.3 MHz LTE Band 26: 1850.7 MHz ~ 2617.5 MHz LTE Band 38: 2572.5 MHz ~ 2617.5 MHz LTE Band 38: 2572.5 MHz ~ 2617.5 MHz LTE Band 66: 1710.7 MHz ~ 1779.3 MHz LTE Band 66: 1710.7 MHz ~ 1779.3 MHz LTE Band 71: 665.5 MHz ~ 695.5 MHz WLAN 2.4GHz Band: 2412 MHz ~ 2472 MHz WLAN 5.2GHz Band: 5180 MHz ~ 5240 MHz WLAN 5.3GHz Band: 5500 MHz ~ 5720 MHz WLAN 5.3GHz Band: 5500 MHz ~ 5720 MHz MLAN 5.4GHz Band: 5745 MHz ~ 5825 MHz Bluetooth: 2402 MHz ~ 2480 MHz NFC : 13.56 MHz 60 GHz Low Power Transmitter: 60GHz:58-63.5GHz				
Mode	GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA LTE: QPSK, 16QAM, 64QAM WLAN: 802.11a/b/g/n/ac HT20 / HT40 / VHT20 / VHT40 / VHT80 Bluetooth BR/EDR/LE NFC:ASK				
	Class B - EUT cannot support Packet Switched and Circuit Switched Network simultaneously but can				
mode	automatically switch between Packet and Circuit Switched Network.				
EUT Stage	Identical Prototype				

Reviewed by: <u>Jason Wang</u> Report Producer: <u>Wan Liu</u>

4. RF Exposure Limits

4.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

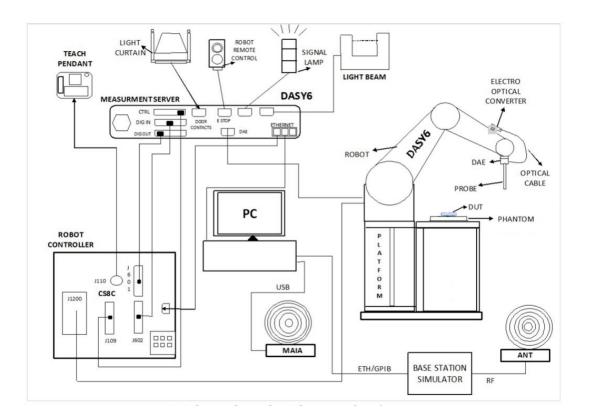
4.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure his or her exposure by leaving the area or by some other appropriate means.

The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure above 6GHz to radio frequency (RF) radiation as specified in §1.1310.

General Population Basic restriction for power density for frequencies between 1.5GHz and 100 GHz is 1.0 mW/cm² = 10 W/m^2

Frequency range (MHz)	ency range Electric field strength Magnet (V/m) (A/m)		Power density (mW/cm ²)	Averaging time (minutes)
	(A) Limits for O	ccupational/Controlled Expo	sures	Real Providence of the second se
0.3-3.0	614	1.63	*(100)	6
3.0-30	1842/	f 4.89/	f *(900/f2)	6
30-300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100,000			5	6
	(B) Limits for Gene	ral Population/Uncontrolled	Exposure	
0.3-1.34	614	1.63	*(100)	30
1.34-30	824/	f 2.19/	f *(180/f2)	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30


Table 1

5. System Description and Setup

The system to be used for the near field power density measurement

- SPEAG DASY6 system
- SPEAG cDASY6 5G module software
- EUmmWVx probe
- 5G Phantom cover

5.1 EUmmWave Probe / E-Field 5G Probe

The probe design allows measurements at distances as small as 2 mm from the sensors to the surface of the device under test (DUT). The typical sensor to probe tip distance is 1.5 mm.

Frequency	750 MHz – 110 GHz				
Probe Overall Length	320 mm				
Probe Body Diameter	8.0 mm				
Tip Length	23.0 mm				
Tip Diameter	8.0 mm				
Probe's two dipoles length	0.9 mm – Diode loaded				
Dynamic Range	< 20 V/m - 10000 V/m with PRE-10 (min < 50 V/m - 3000 V/m)				
Position Precision	< 0.2 mm				
Distance between diode sensors and probe's tip	1.5 mm				
Minimum Mechanical separation between probe tip and a Surface	0.5 mm				
Applications	E-field measurements of 5G devices and other mm-wave transmitters operating above 10GHz in < 2 mm distance from device (free-space) Power density, H-field and far-field analysis using total field reconstruction.				
Compatibility	cDASY6 + 5G-Module SW1.0 and higher				
	sensor 1,5mm calibrated device				

5.2 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

5.3 Scan configuration

Fine-resolution scans on 2 different planes are performed to reconstruct the E- and H-fields as well as the power density; the z-distance between the 2 planes is set to $\lambda/4$.

The (x, y) grid step is also set $\lambda/4$, the grid extent is set to sufficiently large to identify the field pattern and the peak.

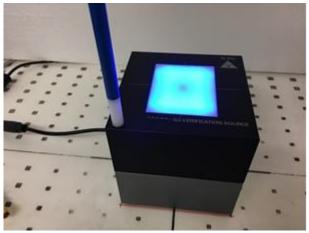
6. <u>Test Equipment List</u>

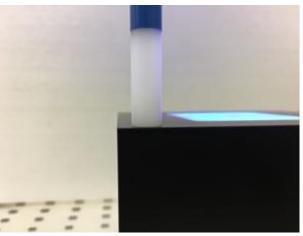
Manufacturer	Name of Equipment	Type/Model	Serial Number	Calibration		
Manufacturer	Name of Equipment	i ype/wodei	Serial Number	Last Cal.	Due Date	
SPEAG	5G Verification Source	60 GHz	1009	Apr. 24, 2019	Apr. 23, 2020	
SPEAG	EUmmWV Probe Tip Protection	EUmmWV3	9441	Jun. 12, 2019	Jun. 11, 2020	
SPEAG	Data Acquisition Electronics	DAE4	1399	Nov. 16, 2018	Nov. 15, 2019	
RCPTWN	Thermometer	HTC-1	TM560-2	Nov. 12, 2018	Nov. 11, 2019	
Rohde & Schwarz	Spectrum Analyzer	FSV40	101408	Jul. 30, 2018	Jul. 29, 2019	
Custom Microwave	Standard Horn antenna	M15RH	V91113-A	NCR	NCR	

7. System Verification Source

The System Verification sources at 30 GHz and above comprise horn-antennas and very stable signal generators.

Model	Ka-band horn antenna
Calibrated frequency:	30 GHz at 10mm from the case surface
Frequency accuracy	± 100 MHz
E-field polarization	linear
Harmonics	-20 dBc
Total radiated power	14 dBm
Power stability	0.05 dB
Power consumption	5 W
Size	00 x 100 x 100 mm
Weight	1 kg


8. Power Density System Verification


The system performance check verifies that the system operates within its specifications.

The EUT is replaced by a calibrated source, the same spatial resolution, measurement region and the test separation used in the calibration was applied to system check. Through visual inspection into the measured power density distribution, both spatially (shape) and numerically (level) have no noticeable difference. The measured results should be within 10% of the calibrated targets.

Frequency [GHz]	Grid step	Grid extent X/Y [mm]	Measurement points
10	$0.25 \left(\frac{\lambda}{4}\right)$	120/120	16×16
30	$0.25 \ (\frac{\tilde{\lambda}}{4})$	60/60	24×24
60	$0.25 \ (\frac{\hat{\lambda}}{4})$	32.5/32.5	26×26
90	$0.25 \ (\frac{\lambda}{4})$	30/30	36 imes 36

Settings for measurement of verification sources

Verification Setup photo

9. System Verification Results

Date	Frequency (GHz)	5G Verification Source	Probe S/N	DAE S/N	Distance (mm)	Measured 4 cm ² (W/m ²)	Targeted 4 cm ² (W/m ²)	Deviation (%)
2019/7/5	60	60GHz_1009	9441	1399	10	256	247	3.64%

9.1 <u>Computation of the Electric Field Polarization Ellipse</u>

For the numerical description of an arbitrarily oriented ellipse in three-dimensional space, five parameters are needed: the semi-major axis (a), the semi-minor axis (b), two angles describing the orientation of the normal vector of the ellipse (\emptyset , θ), and one angle describing the tilt of the semi-major axis (ψ). For the two extreme cases, i.e., circular and linear polarizations, three parameters only (a, \emptyset and θ) are sufficient for the description of the incident field.

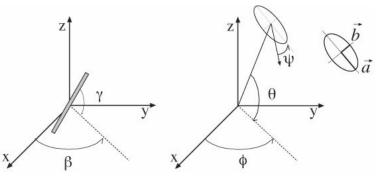


Illustration of the angles used for the numerical description of the sensor and the orientation of an ellipse in 3-D space.

For the reconstruction of the ellipse parameters from measured data, the problem can be reformulated as a nonlinear search problem. The semi-major and semi-minor axes of an elliptical field can be expressed as functions of the three angles (\emptyset , θ and ψ). The parameters can be uniquely determined towards minimizing the error based on least-squares for the given set of angles and the measured data. In this way, the number of free parameters is reduced from five to three, which means that at least three sensor readings are necessary to gain sufficient information for the reconstruction of the ellipse parameters. However, to suppress the noise and increase the reconstruction accuracy, it is desirable that the system of equations be over determined. The solution to use a probe consisting of two sensors angled by r_1 and r_2 toward the probe axis and to perform measurements at three angular positions of the probe, i.e., at $\beta 1$, $\beta 2$ and $\beta 3$, results in over-determinations by a factor of two. If there is a need for more information or increased accuracy, more rotation angles can be added. The reconstruction of the ellipse parameters can be separated into linear and non-linear parts that are best solved by the Givens algorithm combined with a downhill simplex algorithm. To minimize the mutual coupling, sensor angles are set with a shift of 90 degree ($r_2 = r_1 + 90$ degree), and to simplify, the first rotation angle of the probe ($\beta 1$) can be set to 0 degree

9.2 Total Field and Power Flux Density Reconstruction

Computation of the power density in general requires knowledge of the electric and magnetic field amplitudes and phases in the plane of incidence. Reconstruction of these quantities from pseudo-vector E-field measurements is feasible, as they are constrained by Maxwell's equations. SPEAG have developed a reconstruction approach based on the Gerchberg-Saxton algorithm, which benefits from the availability of the E-field polarization ellipse information obtained with the EUmmWV2 probe.

The average of the reconstructed power density is evaluated over a circular area in each measurement plane. Two average power density values can be computed, the average total power density and the average incident power density, and the average total power density is used to determine compliance.

- $|Re\{S\}|$ is the total Poynting vector
- $\mathbf{n} \cdot Re\{S\}$ is the normal Poything vector

The software post-processing reports to values, "S avg tot" and "S avg inc". "S avg tot" represents average total power density (all three xyz components included), and "S avg inc" represents average normal power density. The average total power density "S avg tot" is reported to determine the device compliance.

9.3 Test Positions

60GHz		Measurement Plane					
Transmitter	Front 10mm	Back 10mm	Left Side 10mm	Right Side 10mm	Top Side 10mm	Bottom Side 10mm	
Test Required	Yes	Yes	Yes	Yes	Yes	No	

Note:

1. Bottom side was not necessary due to the transmitter antenna to the edge is higher 25mm

10. RF Exposure Evaluation Results

- 1. When operation on the head, the 60GHz transmitter is disabled
- 2. The PD test was performed of a 10mm separation between sensor and EUT surface (the probe tip is 0.5mm to the EUT surface).
- 3. According to TCBC Workshop in October 2018, 4 cm^2 averaging area may now be considered.
- 4. Using test software, the device under test was configured to transmit maximum power and at 100% duty cycle, at the 60G frequency. The actual RF signal is a wideband signal and is limited to transmit at 10% duty cycle. Therefore the measured maximum 4cm² average power density was scaled to account for the 10% duty factor

Test number	Frequency (GHz)	Exposure Surface	Test separation	Epeak [V/m]	Hpeak [A/m]	Measured results Savg inc 4cm^2 (W/m2)	Measured results Savg tot 4cm^2 (W/m2)	Reported Savg tot 4cm^2 (W/m2) (10% Duty cycle)	Reported Savg tot 4cm^2 (W/m2) (10% Duty cycle)
1	60GHz	Front	10mm	25.6000	0.0650	0.6330	0.7040	0.0633	<mark>0.0704</mark>
	60GHz	Back	10mm	5.1000	0.0160	0.0170	0.0190	0.0017	0.0019
	60GHz	Right Side	10mm	5.0300	0.0220	0.0180	0.0230	0.0018	0.0023
	60GHz	Left Side	10mm	6.8300	0.0150	0.0150	0.0160	0.0015	0.0016
	60GHz	Top Side	10mm	12.6000	0.0350	0.2180	0.2360	0.0218	0.0236

Test Engineer: Steven Chang and Tom Jiang

11. Uncertainty Assessment

The budget is valid for evaluation distances > $\lambda/2\pi$. For specific tests and configurations, the Uncertainty could be considerably smaller.

Preliminary Module mmWave Uncertainty Budget Evaluation Distances to the Antennas > λ / 2π											
Error Description	Uncertainty Value (± dB)	Probability	Divisor	(Ci)	Standard Uncertainty (±dB)	(Vi) Veff					
Measurement System											
Probe Calibration	0.49	N	1	1	0.49	∞					
Hemispherical Isotropy	0.50	R	1.732	1	0.29	∞					
Linearity	0.20	R	1.732	0	0.12	∞					
System Detection Limits	0.04	R	1.732	1	0.02	∞					
Modulation Response	0.40	R	1.732	1	0.23	∞					
Readout Electronics	0.03	N	1	1	0.03	∞					
Response Time	0.00	R	1.732	1	0.00	∞					
Integration Time	0.00	R	1.732	1	0.00	∞					
RF Ambient Noise	0.2	R	1.732	1	0.12	∞					
RF Ambient Reflections	0.21	R	1.732	1	0.12	∞					
Probe Positioner	0.04	R	1.732	1	0.02	∞					
Probe Positioning	0.30	R	1.732	1	0.17	∞					
Savg Reconstruction	0.60	R	1.732	1	0.35	∞					
Test Sample Related			-								
Power Drift	0.2	R	1.732	1	0.12	∞					
Input Power	0	N	1	0	0.00	∞					
	0.76 dB	∞									
	K=2										
	1.52 dB										

SPORTON LAB. RF EXPOSURE EVALUATION REPORT

12. <u>References</u>

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [3] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.
- [4] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.