

Report No. : FR8N0620-05D

FCC RADIO TEST REPORT

FCC ID	: A4RG020J
Equipment	: Phone
Model Name	: G020J
Applicant	: Google LLC
	1600 Amphitheatre Parkway,
	Mountain View, California, 94043 USA
Standard	: FCC Part 15 Subpart C §15.225

The product was received on Nov. 07, 2018 and testing was started from Apr. 24, 2019 and completed on May 03, 2019. We, SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Jones Tsai

Reviewed by: Jones Tsai SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

History	/ of this test report	3
Summa	ary of Test Result	4
	eral Description	
1.1	Product Feature of Equipment Under Test	
1.2	Product Specification of Equipment Under Test	
1.3	Modification of EUT	
1.4	Testing Location	
1.5	Applicable Standards	
2. Test	Configuration of Equipment Under Test	
2.1	Descriptions of Test Mode	7
2.2	Connection Diagram of Test System	7
2.3	Table for Supporting Units	
2.4	EUT Operation Test Setup	
3. Test	Results	9
3.1	AC Power Line Conducted Emissions Measurement	
3.2	20dB and 99% OBW Spectrum Bandwidth Measurement	
3.3	Frequency Stability Measurement	
3.4	Field Strength of Fundamental Emissions and Mask Measurement	
3.5	Radiated Emissions Measurement	
3.6	Antenna Requirements	
4. List	of Measuring Equipment	
	ertainty of Evaluation	
•		

Appendix A. Test Results of Conducted Emission Test

Appendix B. Test Results of Conducted Test Items

- B1. Test Result of 20dB Spectrum Bandwidth
- B2. Test Result of Frequency Stability

Appendix C. Test Results of Radiated Test Items

- C1. Test Result of Field Strength of Fundamental Emissions
- C2. Results of Radiated Emissions (9 kHz~30MHz)
- C3. Results of Radiated Emissions (30MHz~1GHz)

TEL : 886-3-327-3456	Page Number	: 2 of 20
FAX : 886-3-328-4978	Issued Date	: Jun. 27, 2019
Report Template No.: BU5-FR15CNFC Version 2.4	Report Version	: 01

History of this test report

Version	Description	Issued Date
01	Initial issue of report	Jun. 27, 2019
<u> </u>		

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.207	AC Power Line Conducted Emissions	Pass	Under limit 3.56 dB at
5.1	15.207	AC FOWER LINE CONducted Emissions	r ass	13.560MHz
3.2	15.215(c)	20dB Spectrum Bandwidth	Pass	-
5.2	2.1049	99% OBW Spectrum Bandwidth	Reporting only	-
3.3	15.225(e)	Frequency Stability	Pass	-
3.4	15.225(a)(b)(c)	Field Strength of Fundamental Emissions	Pass	Max level 21.81 dBµV/m at 13.560 MHz
3.5	15.225(d) 15.209	Radiated Spurious Emissions	Pass	Under limit 7.31 dB at 40.670MHz for Quasi-Peak
3.6	15.203	Antenna Requirements	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Reviewed by: Wii Chang

Report Producer: Aileen Huang

TEL : 886-3-327-3456	Page Number	: 4 of 20
FAX : 886-3-328-4978	Issued Date	: Jun. 27, 2019
Report Template No.: BU5-FR15CNFC Version 2.4	Report Version	: 01

1. General Description

1.1 Product Feature of Equipment Under Test

Product Feature		
Equipment Phone		
Model Name	G020J	
FCC ID	A4RG020J	
	CDMA/EV-DO/GSM/EGPRS/WCDMA/HSPA/LTE/NFC/ GNSS/WPC	
EUT supports Radios application	WLAN 11b/g/n HT20 WLAN 11a/n HT20/HT40	
	WLAN 11ac VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE 60 GHz Low Power Transmitter	
EUT Stage	Identical Prototype	

Remark: The above EUT's information was declared by manufacturer.

EUT Information List	
No.	S/N
#1	92UBA06655
#2	92UBA06683

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification		
Tx/Rx Frequency Range13.553 ~ 13.567MHz		
Channel Number	1	
20dBW	2.64KHz	
99%OBW	2.26KHz	
Antenna Type Loop Antenna		
Type of Modulation ASK		

Remark: The above EUT's information was declared by manufacturer.

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Test Site	SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory	
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978	
Test Site No.	Sporton Site No.	
Test Site No.	TH03-HY	CO05-HY
Test Engineer	Benjamin Lin	Louis Chung
Temperature	22~24 °C	22.5~26.9 ℃
Relative Humidity	53~55%	45.8~46.2%

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC., EMC & Wireless Communications Laboratory	
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855	
Test Site No.	Sporton Site No.	
03CH11-HY		
Test Engineer	HAO Shu and Fu Chen	
Temperature	21~26 ℃	
Relative Humidity	52~57%	

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW1190 and TW0007

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

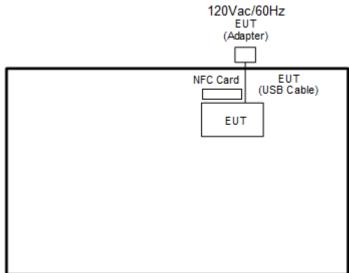
- FCC Part 15 Subpart C §15.225
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

2. Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

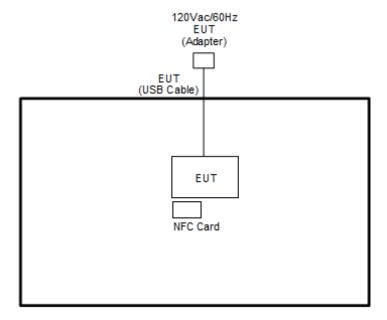
Investigation has been done on all the possible configurations.

The following table is a list of the test modes shown in this test report.


Test Items		
AC Power Line Conducted Emissions Field Strength of Fundamental Emissions		
20dB Spectrum Bandwidth	Frequency Stability	
Radiated Emissions 9kHz~30MHz	Radiated Emissions 30MHz~1GHz	

The EUT pre-scanned in four NFC type, A, B, F, V. The worst type (type F) was recorded in this report. Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Z plane as worst plane) from all possible combinations.

Test Cases					
AC					
Conducted	Mode 1: NFC Tx + USB (Type C) Cable (Charging from Adapter)				
Emission					


2.2 Connection Diagram of Test System

<AC Conducted Emissions>

<Radiated Emission Mode>

2.3 Table for Supporting Units

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	NFC Card	N/A	N/A	N/A	N/A	N/A

2.4 EUT Operation Test Setup

The EUT was programmed to be in continuously transmitting mode.

The ancillary equipment, NFC card, is used to make the EUT (NFC) continuously transmit at 13.56MHz and is placed around 3 cm gap to the EUT.

3. Test Results

3.1 AC Power Line Conducted Emissions Measurement

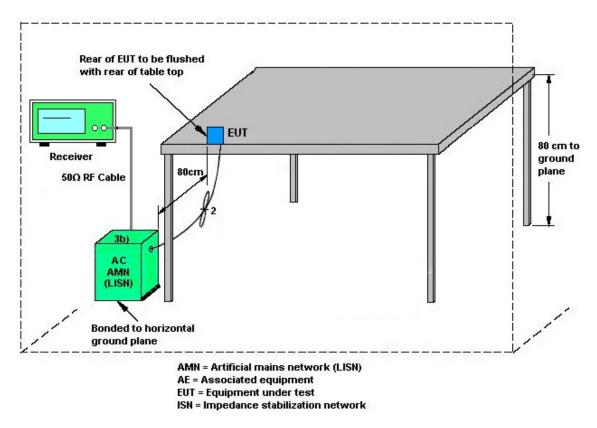
3.1.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)			
(MHz)	Quasi-Peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


See list of measuring equipment of this test report.

3.1.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.1.4 Test setup

3.1.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.2 20dB and 99% OBW Spectrum Bandwidth Measurement

3.2.1 Limit

Intentional radiators must be designed to ensure that the 20dB and 99% emission bandwidth in the specific band 13.553~13.567MHz.

3.2.2 Measuring Instruments

See list of measuring instruments of this test report.

3.2.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT in peak Max hold mode.
- 2. The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used.
- 3. Measured the spectrum width with power higher than 20dB below carrier.
- 4. Measured the 99% OBW.

3.2.4 Test Setup

Spectrum Analyzer

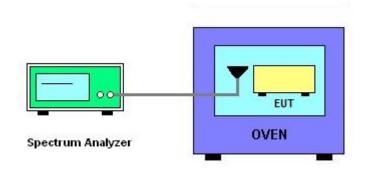
3.2.5 Test Result of Conducted Test Items

Please refer to Appendix B.

3.3 Frequency Stability Measurement

3.3.1 Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% (100ppm) of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C. For battery operated equipment, the equipment tests shall be performed using a new battery.


3.3.2 Measuring Instruments

See list of measuring instruments of this test report.

3.3.3 Test Procedures

- 1. The spectrum analyzer connected via a receive antenna placed near the EUT.
- 2. EUT have transmitted signal and fixed channelize.
- 3. Set the spectrum analyzer span to view the entire emissions bandwidth.
- 4. Set RBW = 1 kHz, VBW = 3 kHz with peak detector and maxhold settings.
- 5. The fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 10^6$ ppm and the limit is less than ±100ppm.
- 6. Extreme temperature rule is -20°C~50°C.

3.3.4 Test Setup

3.3.5 Test Result of Conducted Test Items

Please refer to Appendix B.

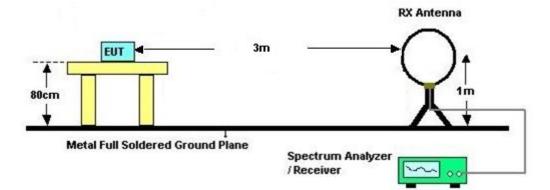
3.4 Field Strength of Fundamental Emissions and Mask Measurement

3.4.1 Limit

Rules and specifications	FCC CFR 47 Part 15 section 15.225					
Description	Compliance with the spectrum mask is tested with RBW set to 9kHz.					
Free of Emission (MUT)	Field Strength	Field Strength	Field Strength	Field Strength		
Freq. of Emission (MHz)	(µV/m) at 30m	(dBµV/m) at 30m	(dBµV/m) at 10m	(dBµV/m) at 3m		
1.705~13.110	30	29.5	48.58	69.5		
13.110~13.410	106	40.5	59.58	80.5		
13.410~13.553	334	50.5	69.58	90.5		
13.553~13.567	15848	84.0	103.08	124.0		
13.567~13.710	334	50.5	69.58	90.5		
13.710~14.010	106	40.5	59.58	80.5		
14.010~30.000	30	29.5	48.58	69.5		

3.4.2 Measuring Instruments

See list of measuring instruments of this test report.



3.4.3 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the loop receiving antenna mounted antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the receiving antenna was fixed at one meter above ground to find the maximum emissions field strength.
- 4. For Fundamental emissions, use the receiver to measure QP reading.
- 5. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 6. Compliance with the spectrum mask is tested with RBW set to 9kHz. Note: Emission level (dB μ V/m) = 20 log Emission level (μ V/m).

3.4.4 Test Setup

For radiated emissions below 30MHz

3.4.5 Test Result of Field Strength of Fundamental Emissions and Mask

Please refer to Appendix C.

3.5 Radiated Emissions Measurement

3.5.1 Limit

The field strength of any emissions which appear outside of 13.110 ~14.010MHz band shall not exceed the general radiated emissions limits.

Frequencies	Field Strength	Measurement Distance
(MHz)	(μV/m)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

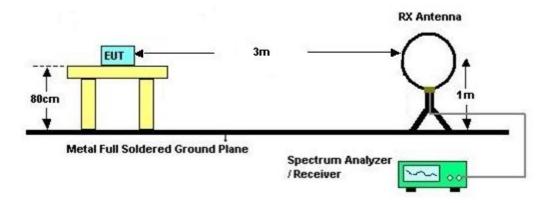
See list of measuring instruments of this test report.

3.5.3 Measuring Instrument Setting

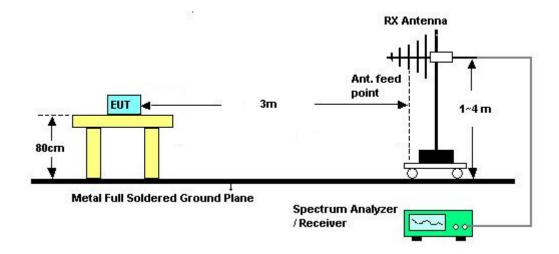
The following table is the setting of receiver:

Receiver Parameter	Setting
Attenuation	Auto
Frequency Range: 9kHz~150kHz	RBW 200Hz for QP
Frequency Range: 150kHz~30MHz	RBW 9kHz for QP
Frequency Range: 30MHz~1000MHz	RBW 120kHz for Peak

Note: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz and 110-490 kHz. Radiated emission limits in these two bands are based on measurements employing an average detector.


3.5.4 Test Procedures

- Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 0.8 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value.
- 7. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver.



3.5.5 Test Setup

For radiated emissions below 30MHz

For radiated emissions above 30MHz

3.5.6 Test Result of Radiated Emissions Measurement

Please refer to Appendix C.

Remark: There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.6 Antenna Requirements

3.6.1 Standard Applicable

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited.

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.6.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4. List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Software	Audix	E3 6.2009-8-24	RK-00104 2	N/A	N/A	Apr. 24, 2019	N/A	Radiation (03CH11-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Dec. 04, 2018	Apr. 24, 2019	Dec. 03, 2019	Radiation (03CH11-HY)
Bilog Antenna	TESEQ	CBL 6111D& N-6-06	35414&AT- N0602	30MHz~1GHz	Oct. 13, 2018	Apr. 24, 2019	Oct. 12, 2019	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY542004 86	10Hz ~ 44GHz	Oct. 19, 2018	Apr. 24, 2019	Oct. 18, 2019	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500- B	N/A	1~4m	N/A	Apr. 24, 2019	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Apr. 24, 2019	N/A	Radiation (03CH11-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY532900 45	N/A	Jan. 19, 2019	Apr. 24, 2019	Jan. 18, 2020	Radiation (03CH11-HY)
Filter	Wainwright	WHK20/1000 C7/40SS	SN2	20M High Pass	Sep. 16, 2018	Apr. 24, 2019	Sep. 15, 2019	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4 PE	9kHz-30MHz	Mar. 14, 2018	Apr. 24, 2019	Mar. 13, 2020	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY9837/4 PE	30M-18G	Mar. 14, 2018	Apr. 24, 2019	Mar. 13, 2020	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz-40GHz	Mar. 14, 2018	Apr. 24, 2019	Mar. 13, 2020	Radiation (03CH11-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Jan. 07, 2019	Apr. 24, 2019	Jan. 06, 2020	Radiation (03CH11-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	May 03, 2019	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9KHz~3.6GHz	Nov. 12, 2018	May 03, 2019	Nov. 11, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 14, 2018	May 03, 2019	Nov. 13, 2019	Conduction (CO05-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	May 03, 2019	N/A	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Dec. 31, 2018	May 03, 2019	Dec. 30, 2019	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Dec. 31, 2018	May 03, 2019	Dec. 30, 2019	Conduction (CO05-HY)
AC Power Source	AC POWER	AFC-500W	F10407001 1	50Hz~60Hz	Mar. 21, 2018	Apr. 26, 2019	Mar. 05, 2020	Conducted (TH03-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP30	101329	9kHz~30GHz	Jun. 29, 2018	Apr. 26, 2019	Jun. 28, 2019	Conducted (TH03-HY)
Temperature Chamber	ESPEC	SU-641	92013721	-30℃ ~70℃	Dec. 06, 2017	Apr. 26, 2019	Dec. 05, 2019	Conducted (TH03-HY)

5. Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

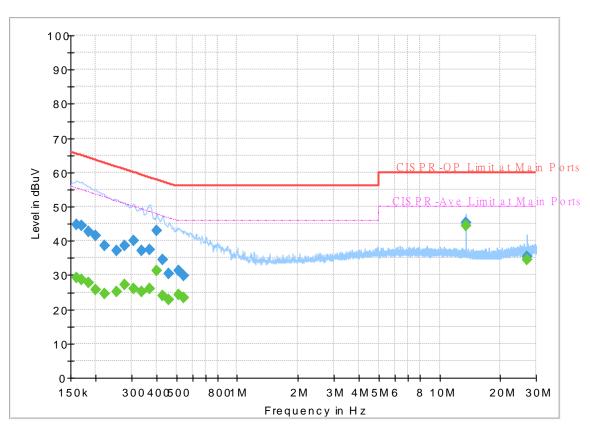
Measuring Uncertainty for a Level of Confidence	2.20
of 95% (U = 2Uc(y))	2.20

Uncertainty of Radiated Emission Measurement (9 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.45
of 95% (U = 2Uc(y))	5.45

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.20
of 95% (U = 2Uc(y))	5.20



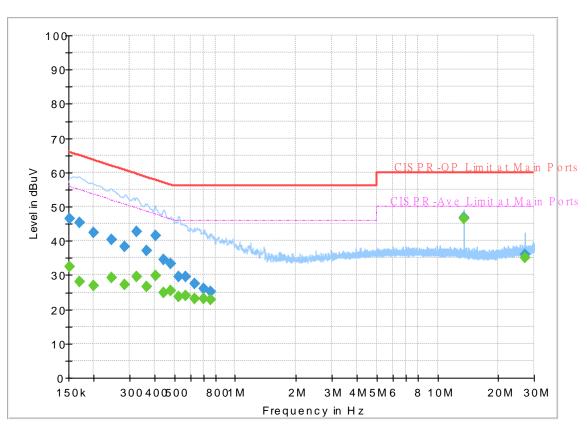
Appendix A. Test Results of Conducted Emission Test

Tost Engineer :	Temperature :	25.5~26.9 ℃
Test Engineer :	Relative Humidity :	45.8~46.2%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 8N0620-05 Mode 1 120Vac/60Hz Line

Full Spectrum


Final_Result

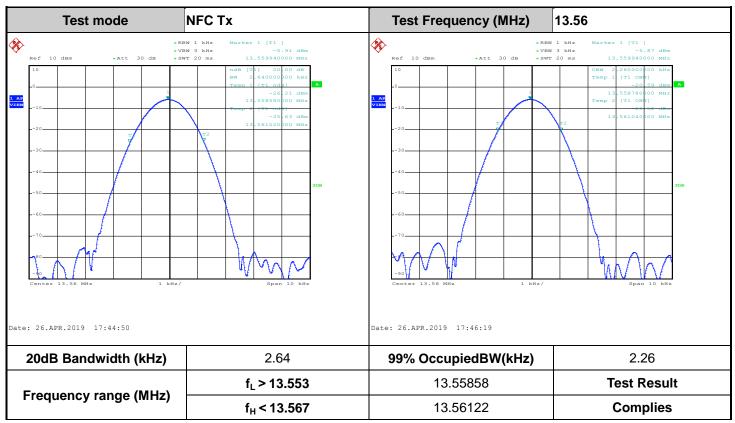
Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.161250		29.19	55.40	26.21	L1	OFF	19.5
0.161250	44.78		65.40	20.62	L1	OFF	19.5
0.170250		28.52	54.95	26.43	L1	OFF	19.5
0.170250	44.41		64.95	20.54	L1	OFF	19.5
0.183750		27.82	54.31	26.49	L1	OFF	19.5
0.183750	42.59		64.31	21.72	L1	OFF	19.5
0.199500		25.76	53.63	27.87	L1	OFF	19.5
0.199500	41.42		63.63	22.21	L1	OFF	19.5
0.219750		24.69	52.83	28.14	L1	OFF	19.5
0.219750	38.55		62.83	24.28	L1	OFF	19.5
0.253500		25.25	51.64	26.39	L1	OFF	19.5
0.253500	37.21		61.64	24.43	L1	OFF	19.5
0.276000		27.08	50.94	23.86	L1	OFF	19.5
0.276000	38.47		60.94	22.47	L1	OFF	19.5
0.307500		26.12	50.04	23.92	L1	OFF	19.5
0.307500	40.17		60.04	19.87	L1	OFF	19.5
0.336750		25.24	49.28	24.04	L1	OFF	19.5
0.336750	37.03		59.28	22.25	L1	OFF	19.5
0.368250		25.89	48.54	22.65	L1	OFF	19.5
0.368250	37.38		58.54	21.16	L1	OFF	19.5
0.399750		31.21	47.86	16.65	L1	OFF	19.5

99750	42.91		57.86	14.95	L1	OFF	19.5
29000		24.03	47.27	23.24	L1	OFF	19.5
29000	34.45		57.27	22.82	L1	OFF	19.5
60500		22.78	46.68	23.90	L1	OFF	19.5
60500	30.49		56.68	26.19	L1	OFF	19.5
14500		24.29	46.00	21.71	L1	OFF	19.5
14500	31.38		56.00	24.62	L1	OFF	19.5
46000		23.35	46.00	22.65	L1	OFF	19.5
46000	29.83		56.00	26.17	L1	OFF	19.5
60000		44.58	50.00	5.42	L1	OFF	20.0
60000	45.20		60.00	14.80	L1	OFF	20.0
18500		34.48	50.00	15.52	L1	OFF	20.4
18500	35.37		60.00	24.63	L1	OFF	20.4

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 8N0620-05 Mode 1 120Vac/60Hz Neutral

Full Spectrum


Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.152250		32.32	55.88	23.56	Ν	OFF	19.5
0.152250	46.63		65.88	19.25	Ν	OFF	19.5
0.170250		28.12	54.95	26.83	Ν	OFF	19.5
0.170250	45.31		64.95	19.64	Ν	OFF	19.5
0.199500		26.93	53.63	26.70	Ν	OFF	19.5
0.199500	42.34		63.63	21.29	Ν	OFF	19.5
0.244500		29.29	51.94	22.65	Ν	OFF	19.5
0.244500	40.49		61.94	21.45	Ν	OFF	19.5
0.285000		27.18	50.67	23.49	Ν	OFF	19.5
0.285000	38.25		60.67	22.42	Ν	OFF	19.5
0.325500		29.45	49.57	20.12	Ν	OFF	19.5
0.325500	42.58		59.57	16.99	Ν	OFF	19.5
0.363750		26.48	48.64	22.16	Ν	OFF	19.5
0.363750	36.99		58.64	21.65	Ν	OFF	19.5
0.402000	1	29.84	47.81	17.97	Ν	OFF	19.5
0.402000	41.40		57.81	16.41	Ν	OFF	19.5
0.444750		24.86	46.97	22.11	Ν	OFF	19.5
0.444750	34.61		56.97	22.36	Ν	OFF	19.5
0.480750		25.45	46.33	20.88	Ν	OFF	19.5
0.480750	33.32		56.33	23.01	Ν	OFF	19.5
0.525750		23.74	46.00	22.26	Ν	OFF	19.5

0.525750	29.47		56.00	26.53	Ν	OFF	19.5
0.566250		23.85	46.00	22.15	Ν	OFF	19.5
0.566250	29.57		56.00	26.43	Ν	OFF	19.5
0.629250		23.24	46.00	22.76	Ν	OFF	19.6
0.629250	27.62		56.00	28.38	Ν	OFF	19.6
0.701250		23.22	46.00	22.78	Ν	OFF	19.6
0.701250	25.93		56.00	30.07	Ν	OFF	19.6
0.753000		22.91	46.00	23.09	Ν	OFF	19.6
0.753000	25.26		56.00	30.74	Ν	OFF	19.6
13.560000		46.44	50.00	3.56	Ν	OFF	20.1
13.560000	46.74		60.00	13.26	Ν	OFF	20.1
27.120750		35.18	50.00	14.82	Ν	OFF	20.6
27.120750	36.06		60.00	23.94	Ν	OFF	20.6

Appendix B. Test Results of Conducted Test Items

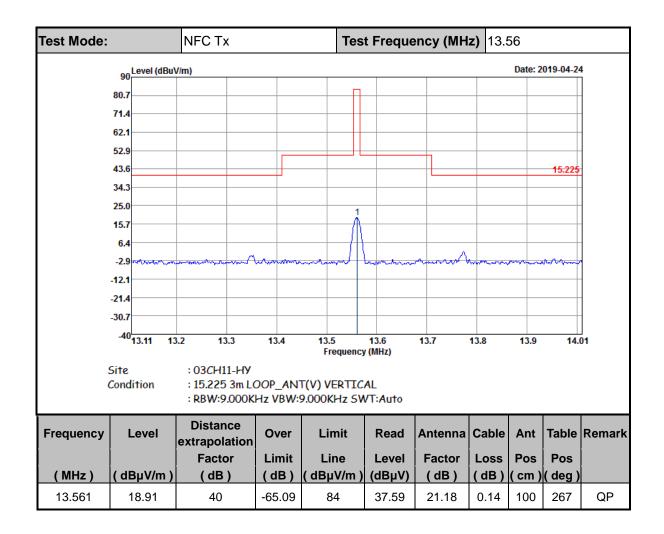
B1. Test Result of 20dB Spectrum Bandwidth

Remark: Because the measured signal is CW adjusting the RBW per C63.10 would not be practical since measured bandwidth will always follow the RBW and the result will be approximately twice the RBW.

B2. Test Result of Frequency Stability

B3. Voltage vs. Fr	equency Stability	Temper	ature vs. Freque	ency Stability
Voltage (Vac)	Measurement Frequency (MHz)	Temperature (°C)	Time	Measurement Frequency (MHz)
120	13.559900	-20	0	13.559920
102	13.559900		2	13.559900
138	13.559900		5	13.559910
			10	13.559900
		-10	0	13.559900
			2	13.559900
			5	13.559900
			10	13.559900
		0	0	13.559900
			2	13.559900
			5	13.559900
			10	13.559900
		10	0	13.559900
			2	13.559900
			5	13.559900
			10	13.559900
		20	0	13.559900
			2	13.559900
			5	13.559900
			10	13.559900
		30	0	13.559900
			2	13.559900
			5	13.559900
			10	13.559900
		40	0	13.559900
			2	13.559900
			5	13.559900
			10	13.559900

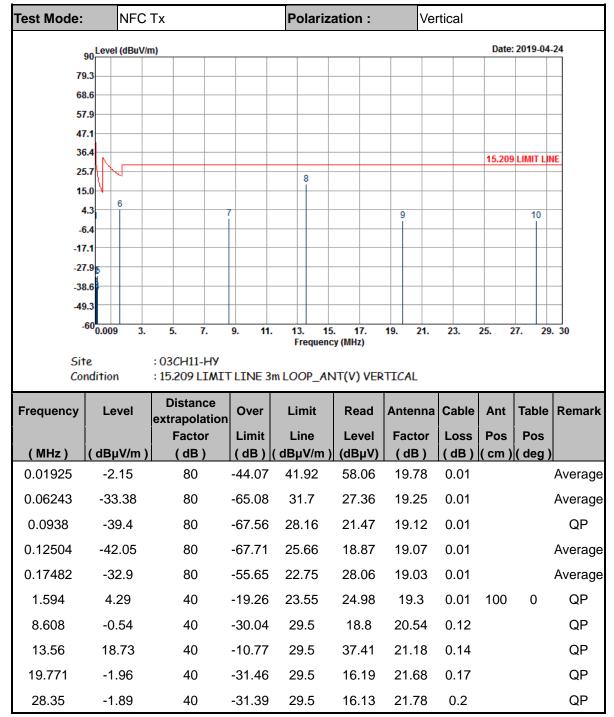
Voltage vs. Frequ	ency Stability	Tempe	rature vs. Frequ	ency Stability
	Measurement	Temperature (°C)	Time	Measurement
Voltage (Vac)	Frequency (MHz)	remperature (C)	Time	Frequency (MHz)
		50	0	13.559900
			2	13.559900
			5	13.559900
			10	13.559900
Max.Deviation (MHz)	-0.000100	Max.Deviati	on (MHz)	-0.000100
Max.Deviation (ppm)	-7.3746	Max.Deviati	on (ppm)	-7.3746
Limit	FS < ±100 ppm	Limi	it	FS < ±100 ppm
Test Result	PASS	Test Re	esult	PASS



Appendix C. Test Results of Radiated Test Items

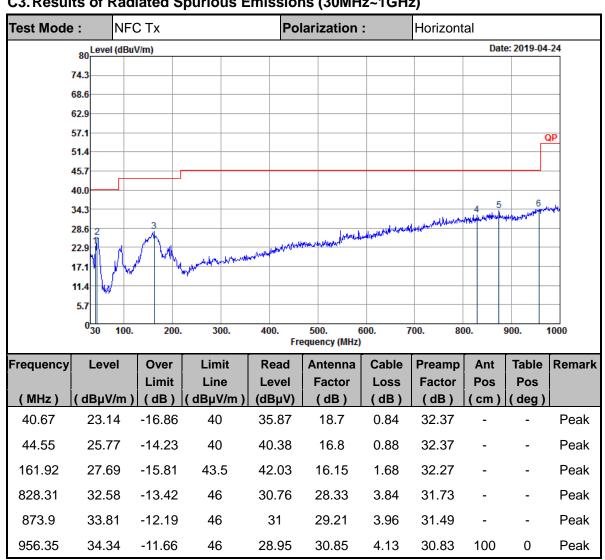
Test Mode: NFC Tx Test Frequency (MHz) 13.56 90 Level (dBuV/m) Date: 2019-04-24 80.7 71.4 62.1 52.9 43.6 15.225 34.3 25.0 15.7 6.4 -2.9 March -12.1 -21.4 -30.7 -40<mark>13.11</mark> 13.2 13.3 13.4 13.7 13.8 13.9 14.01 13.5 13.6 Frequency (MHz) Site :03CH11-HY Condition : 15.225 3m LOOP_ANT(H) HORIZONTAL : RBW:9.000KHz VBW:9.000KHz SWT:Auto Distance Frequency Over Limit Antenna Cable Table Remark Level Read Ant extrapolation Pos Factor Limit Line Level Pos Factor Loss (MHz) (dBµV/m) (dB) (dB) (dBµV/m) (dBµV) (dB) (deg) (dB) cm) 13.56 21.81 40 -62.19 84 40.49 21.18 0.14 100 0 QP

C1. Test Result of Field Strength of Fundamental Emissions



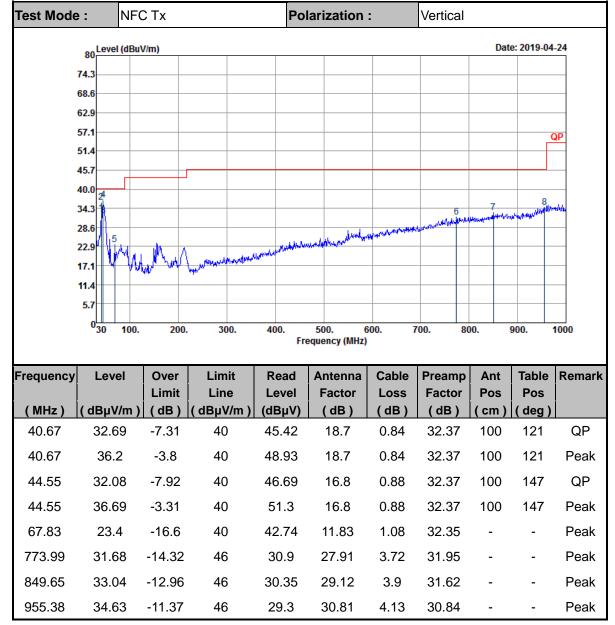
Test Mode:	N	-C Tx		Polariz	ation :	Но	rizontal			
								Dete		
9	90 Level (dE	suV/m)						Date:	2019-04-	-24
79).3									_
68										-
57										
47 36										
25	IN -			8				15.209	LIMIT LIN	IE
15	i.0									_
4	.3			7		9		10		-
	j.4									-
-17 -27										
-27										_
										_
-49	.3									
ا۔ Sit	60 <mark>0.009</mark>	3. 5. 7. : 03CH11-H	ЧУ	Frequence	cy (MHz)	19. 21.		25. 2	27. 29	. 30
ا۔ Sit	60 <mark>0.009</mark>	: 03CH11-F : 15.209 LI Distanc	-IY IMIT LINE 3	Frequence	cy (MHz)		L	25. 2 Ant		
Sit Cor	60 _{0.009} e ndition	: 03CH11-F : 15.209 LI	HY MIT LINE 3 ce tion Over	Frequence m LOOP_AN	су (MHz) NT(H) HO	RIZONTA	L			. 30 Remark
Sit Cor	60 _{0.009} e ndition	: 03CH11-k : 15.209 LI Distanc extrapola Factor	HY MIT LINE 3 ce tion Over	Frequence m LOOP_AN Limit Line	Cy (MHz) NT(H) HO Read Level	RIZONTA	Cable	Ant	Table Pos	
ہ۔ Sit Cor Frequency	6000.009 ndition Leve	: 03CH11- : 15.209 LI Distance extrapola Factor m) (dB)	HY MIT LINE 3 ce tion r Limit	Frequence m LOOP_AN Limit Line	Cy (MHz) NT(H) HO Read Level	RIZONTA Antenna Factor	L Cable Loss	Ant Pos	Table Pos	
Sit Cor Frequency (MHz)	60 _{0.009} e ndition Level (dBµV/	: 03CH11-4 : 15.209 LI Distance extrapola Factor m) (dB) 80	TY MIT LINE 3 tion r Limit (dB)	Frequend m LOOP_AN Limit Line (dBµV/m)	cy (MHz) NT(H) HO Read Level (dBµV)	RIZONTA Antenna Factor (dB)	Cable Loss (dB)	Ant Pos	Table Pos	Remar
Sit Cor Frequency (MHz) 0.01925	60 <mark>0.009</mark> e ndition Leve (dBµV/r -1.01	: 03CH11-4 : 15.209 LI extrapola Factor m) (dB) 80 5 80	AV MIT LINE 3 tion r Limit (dB) -42.93	Frequend m LOOP_AN Limit Line (dBµV/m) 41.92	cy (MHz) NT(H) HO Read Level (dBµV) 59.2	RIZONTA Antenna Factor (dB) 19.78	Cable Loss (dB) 0.01	Ant Pos	Table Pos	Remar
Sit Cor Frequency (MHz) 0.01925 0.06252	6000.009 ndition Leve (dBµV// -1.01 -28.4	: 03CH11-4 : 15.209 LI extrapola Factor m) (dB) 80 5 80 80	AV MIT LINE 3 tion Cover Limit (dB) -42.93 -60.13	Frequence m LOOP_AN Limit Line (dBµV/m) 41.92 31.68	cy (MHz) NT(H) HO Read Level (dBµV) 59.2 32.29	Antenna Factor (dB) 19.78 19.25	Cable Loss (dB) 0.01 0.01	Ant Pos	Table Pos (deg)	Remar Averag Averag
Sit Cor Frequency (MHz) 0.01925 0.06252 0.09382	600.009 e ndition Level (dBµV/r -1.01 -28.44 -34.4	: 03CH11-+ : 15.209 LT extrapolar Factor m) (dB) 80 5 80 80 6 80 80 80	AY MIT LINE 3 r Limit (dB) -42.93 -60.13 -62.56	Frequent m LOOP_AN Limit Line (dBµV/m) 41.92 31.68 28.16	cy (MHz) NT(H) HO Read Level (dBµV) 59.2 32.29 26.47	RIZONTA Antenna Factor (dB) 19.78 19.25 19.12	Cable Loss (dB) 0.01 0.01 0.01	Ant Pos	Table Pos (deg)	Remar Averag Averag QP Averag
Frequency (MHz) 0.01925 0.06252 0.09382 0.14068	600.009 e ndition Level (dBµV// -1.01 -28.44 -34.4 -38.00	: 03CH11-+ : 15.209 LI extrapolar Factor m) (dB) 80 5 80 5 80 80 6 80 6 80	-IV MIT LINE 3 r Limit (dB) -42.93 -60.13 -62.56 -62.72	Frequent m LOOP_AN Limit Line (dBµV/m) 41.92 31.68 28.16 24.64	су (МНz) NT(H) HO Read Level (dBµV) 59.2 32.29 26.47 22.85	RIZONTA Antenna Factor (dB) 19.78 19.25 19.12 19.06	L Cable Loss (dB) 0.01 0.01 0.01 0.01	Ant Pos	Table Pos (deg)	Remark Averag Averag QP
Frequency (MHz) 0.01925 0.06252 0.09382 0.14068 0.15782	e ndition Level (dBµV/ -1.01 -28.4 -38.0 -38.0 -28.9	: 03CH11-+ : 15.209 LI extrapolar Factor m) (dB) 80 5 80 5 80 80 6 80 6 80	-19 20 20 20 20 20 20 20 20 20 20	Frequent m LOOP_AN Limit Line (dBµV/m) 41.92 31.68 28.16 28.16 24.64 23.64	су (МНz) NT(H) HO Read Level (dBµV) 59.2 32.29 26.47 22.85 31.99	RIZONTA Antenna Factor (dB) 19.78 19.25 19.12 19.06 19.04	L Cable Loss (dB) 0.01 0.01 0.01 0.01 0.01	Ant Pos (cm)	Table Pos (deg)	Remar Averag Averag QP Averag Averag
Line Contract Contrac	60 0.009 e ndition Level (dBµV/ -1.01 -28.44 -38.04 -38.04 -38.04 -28.90 6.39	: 03CH11- : 15.209 LI Distance extrapolar Factor m) (dB) 80 5 80 80 5 80 80 5 80 40 40	-19 20 20 20 20 20 20 20 20 20 20	Frequence m LOOP_AN Limit Line (dBµV/m) 41.92 31.68 28.16 24.64 23.64 23.64 23.39	Cy (MHz) (H) HO Read Level (dBµV) 59.2 32.29 26.47 22.85 31.99 27.08	RIZONTA Factor (dB) 19.78 19.25 19.12 19.06 19.04 19.3	L Cable Loss (dB) 0.01 0.01 0.01 0.01 0.01 0.01	Ant Pos (cm)	Table Pos (deg)	Remar Averag Averag QP Averag Averag QP
Sit Corr Frequency (MHz) 0.01925 0.06252 0.09382 0.14068 0.15782 1.624 13.344	60 0.009 re Indition Level (dBµV// -1.01 -28.44 -34.4 -34.4 -38.04 -28.90 6.39 -0.6	: 03CH11-H : 15.209 LT extrapolar Factor (dB) 80 5 80 6 80 6 80 6 80 6 80 6 80 6 80 6 40 40 8 40	AT LINE 3 Control Control Con	Frequence m LOOP_AN Limit Line (dBµV/m) 41.92 31.68 28.16 24.64 23.64 23.64 23.39 29.5	Cy (MHz) Read Level (dBµV) 59.2 32.29 26.47 22.85 31.99 27.08 18.09	RIZONTA Factor (dB) 19.78 19.25 19.12 19.06 19.04 19.3 21.17	L Cable Loss (dB) 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Ant Pos (cm)	Table Pos (deg)	Remar Averag Averag Averag Averag QP QP

C2. Results of Radiated Spurious Emissions (9 kHz~30MHz)



Note:

1. 13.56 MHz is fundamental signal which can be ignored.


- 2. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 3. Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

C3. Results of Radiated Spurious Emissions (30MHz~1GHz)

Note:

- 1. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 2. Emission level (dB μ V/m) = 20 log Emission level (μ V/m).
- 3. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor= Level.

------THE END------