

Report No. : FR891147-01B

FCC RADIO TEST REPORT

FCC ID	: A4RG020D
Equipment	: Smartphone
Model Name	: G020D
Applicant	: Google LLC 1600 Amphitheatre Parkway,
	Mountain View, CA 94043, USA
Standard	: FCC Part 15 Subpart C §15.247

The product was completed on Dec. 17, 2018. We, SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any agency of government.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory, the test report shall not be reproduced except in full.

Approved by: Jones Tsai SPORTON INTERNATIONAL INC. EMC & Wireless Communications Laboratory No. 52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.)

Table of Contents

His	tory o	f this test report	3
Sur	nmary	/ of Test Result	4
1	Gene	ral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Product Specification of Equipment Under Test	5
	1.3	Modification of EUT	5
	1.4	Testing Location	6
	1.5	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency Channel	
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	Test	Result	11
	3.1	6dB and 99% Bandwidth Measurement	
	3.2	Output Power Measurement	18
	3.3	Power Spectral Density Measurement	19
	3.4	Conducted Band Edges and Spurious Emission Measurement	26
	3.5	Radiated Band Edges and Spurious Emission Measurement	35
	3.6	AC Conducted Emission Measurement	39
	3.7	Antenna Requirements	41
4	List o	of Measuring Equipment	42
5	Unce	rtainty of Evaluation	44
		A. Conducted Test Results	
		B. AC Conducted Emission Test Result	
Арр	pendix	C. Radiated Spurious Emission	
Арр	bendix	CD. Radiated Spurious Emission Plots	

Appendix E. Duty Cycle Plots

History of this test report

Report No.	Version	Description	Issued Date
FR891147-01B	01	Initial issue of report	Dec. 26, 2018

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-
3.2	15.247(b)(3)	Peak Output Power	Pass	-
3.3	15.247(e)	Power Spectral Density	Pass	-
3.4	15.247(d)	Conducted Band Edges and Spurious Emission	Pass	-
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	Pass	Under limit 6.01 dB at 35.670 MHz
3.6	15.207	AC Conducted Emission	Pass	Under limit 9.40 dB at 0.184 MHz
3.7	15.203 & 15.247(b)	Antenna Requirement	Pass	-

Reviewed by: Wii Chang Report Producer: Natasha Hsieh

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature			
Equipment Smartphone			
Model Name	G020D		
Sample 1	The device with 1st battery		
Sample 2 The device with 2nd battery			
	GSM/EGPRS/WCDMA/HSPA/LTE/NFC/GNSS		
	WLAN 11b/g/n HT20		
EUT supports Radios application	WLAN 11a/n HT20/HT40		
	WLAN 11ac VHT20/VHT40/VHT80		
	Bluetooth BR/EDR/LE		
EUT Stage Identical Prototype			

Remark: The above EUT's information was declared by manufacturer.

1.2 Product Specification of Equipment Under Test

Standards-related Product Specification			
Tx/Rx Frequency Range2402 MHz ~ 2480 MHz			
Number of Channels	40		
Carrier Frequency of Each Channel 40 Channel(37 hopping + 3 advertising channe			
Maximum Output Power to Antenna	Bluetooth LE (1Mbps) : 9.73 dBm (0.0094 W)		
Maximum Output Power to Antenna	Bluetooth LE (2Mbps) : 9.88 dBm (0.0097 W)		
99% Occupied Bandwidth	Bluetooth LE (1Mbps) : 1.020 MHz		
	Bluetooth LE (2Mbps) : 2.030 MHz		
Antenna Type / Gain	PIFA Antenna type with gain -0.5 dBi		
Type of Modulation Bluetooth LE : GFSK			

1.3 Modification of EUT

No modifications are made to the EUT during all test items.

1.4 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1190 and TW0007 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.		
Test Site Location	No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-3456 FAX: +886-3-328-4978		
Test Site No.	Sporton Site No. TH05-HY CO05-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

Test Site	SPORTON INTERNATIONAL INC.		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No. 03CH12-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v05
- FCC KDB 414788 D01 Radiated Test Site v01r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

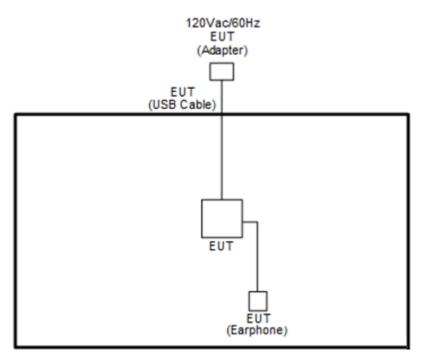
2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

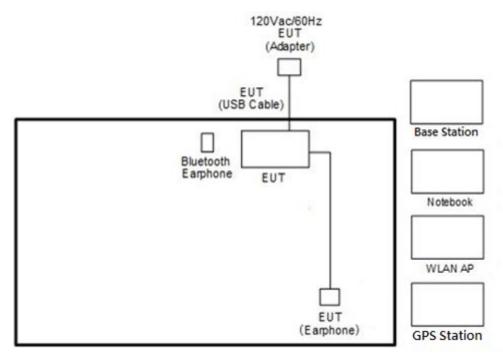
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7	2416	28	2458
	8	2418	29	2460
	9	2420	30	2462
2400-2483.5 MHz	10	2422	31	2464
	11 12 13	2424	32	2466
		2426	33	2468
		2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

2.2 Test Mode

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, pre-scanned in three orthogonal panels, X, Y, Z. The worst cases (X plane) were recorded in this report.
- b. AC power line Conducted Emission was tested under maximum output power.


The following summary table is showing all test modes to demonstrate in compliance with the standard.

	Summary table of Test Cases				
Test Item	Data Rate / Modulation				
Test item	Bluetooth – LE / GFSK				
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
Conducted	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps				
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps				
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps				
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps				
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps				
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps				
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps				
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps				
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps				
AC	Mode 1: GSM850 Idle + Bluetooth Link + WLAN (2.4GHz) Link + GPS Rx +				
Conducted	Earphone + USB Type C Cable 1 (Charging form Adapter 1) + Battery<10%				
Emission	for Sample 1				
Remark: For	Radiated Test Cases, the tests were performed with USB Type C Cable 1.				



2.3 Connection Diagram of Test System

<Bluetooth-LE Tx Mode>

<AC Conducted Emissions Mode>

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	GPS Station	Pendulum	GSG-54	N/A	N/A	Unshielded,1.8m
3.	Bluetooth Earphone	Sony	SBH20	PY7-RD0010	N/A	N/A
4.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded,1.8m
5.	Notebook	DELL	P20G	FCC DoC/ Contains FCC ID: QDS-BRCM1051	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example :

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 4.2 + 10 = 14.2 (dB)

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

See list of measuring equipment of this test report.

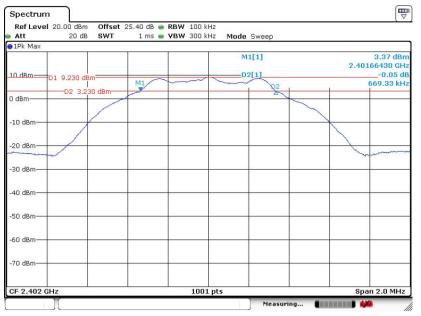
3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- 5. For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 1-5% of the emission bandwidth and set the Video bandwidth (VBW) \ge 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

EUT

Spectrum Analyzer

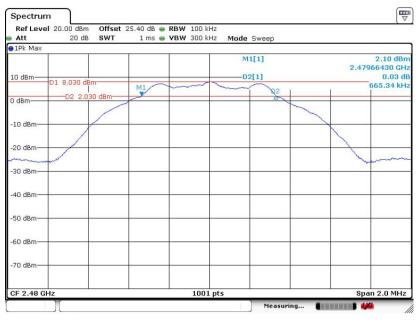


3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

<1Mbps>

6 dB Bandwidth Plot on Channel 00

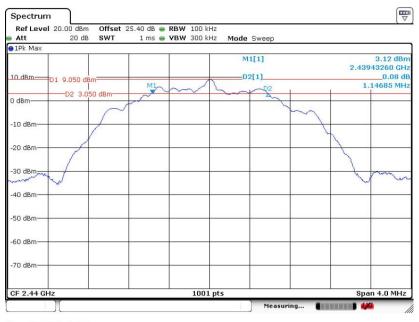

Date: 11.OCT.2018 19:46:14

6 dB Bandwidth Plot on Channel 19

Date: 11.OCT.2018 19:42:53

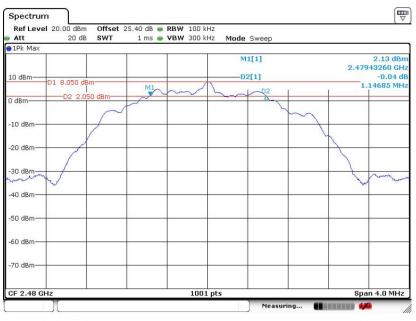
6 dB Bandwidth Plot on Channel 39

Date: 11.OCT.2018 19:50:10


<2Mbps>

6 dB Bandwidth Plot on Channel 00

Date: 11.OCT.2018 19:32:06

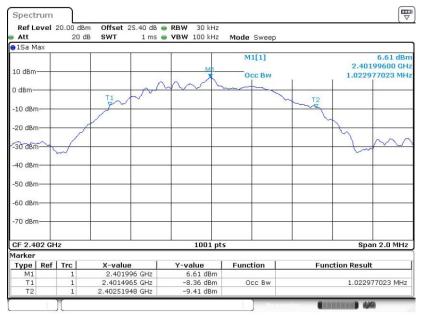


6 dB Bandwidth Plot on Channel 19

Date: 11.OCT.2018 19:28:44

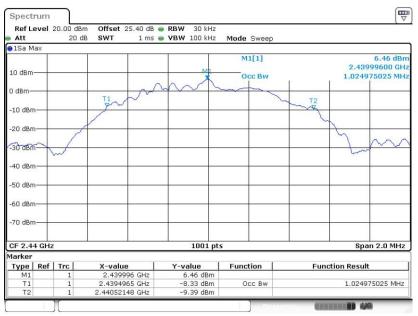
6 dB Bandwidth Plot on Channel 39

Date: 11.OCT.2018 19:37:31

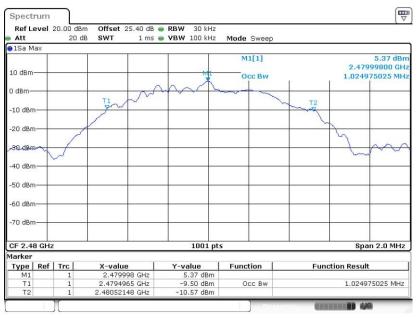


3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

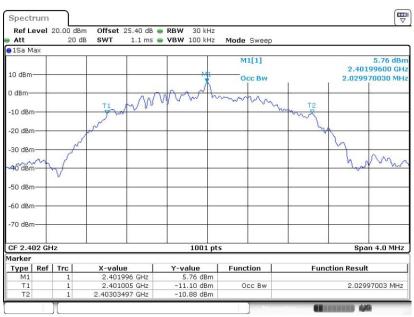

<1Mbps>

99% Bandwidth Plot on Channel 00


Date: 11.OCT.2018 19:49:00

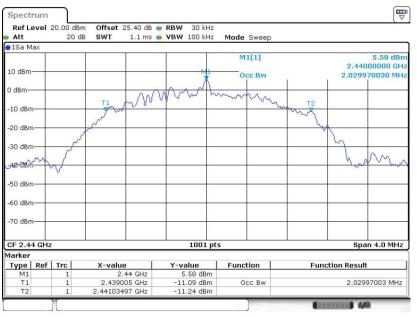
99% Occupied Bandwidth Plot on Channel 19

Date: 11.OCT.2018 19:44:46



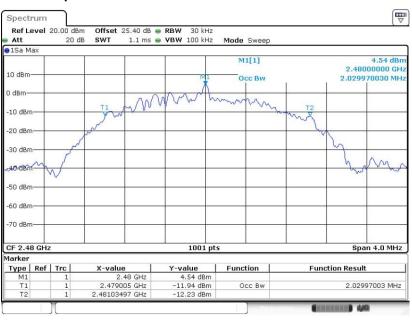
99% Occupied Bandwidth Plot on Channel 39

Date: 11.OCT.2018 19:52:44


<2Mbps>

99% Bandwidth Plot on Channel 00

Date: 11.OCT.2018 19:34:47



99% Occupied Bandwidth Plot on Channel 19

Date: 11.OCT.2018 19:30:27

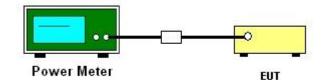
Date: 11.OCT.2018 19:39:57

Note : The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6 dBi.


3.2.2 Measuring Instruments

See list of measuring equipment of this test report.

3.2.3 Test Procedures

- 1. For Peak Power, the testing follows ANSI C63.10 Section 11.9.1.3 PKPM1.
- For Average Power, the testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v05 section 9.2.3.1 Method AVGPM.
- 3. The RF output of EUT was connected to the power meter by RF cable and attenuator.
- 4. The path loss was compensated to the results for each measurement.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Peak Output Power

Please refer to Appendix A.

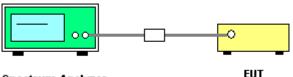
3.2.6 Test Result of Average Output Power (Reporting Only)

Please refer to Appendix A.

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

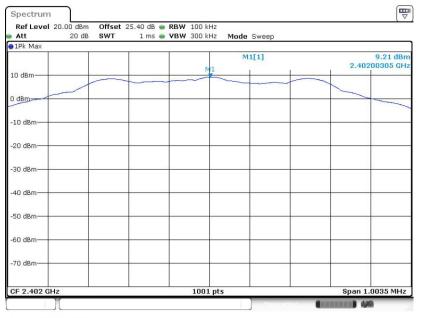
See list of measuring equipment of this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

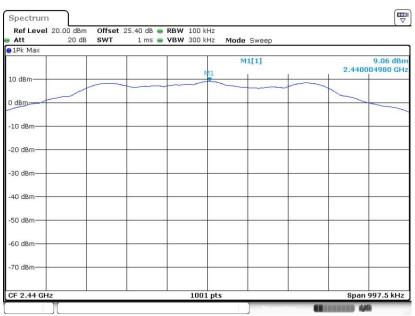
3.3.4 Test Setup

Spectrum Analyzer


3.3.5 Test Result of Power Spectral Density

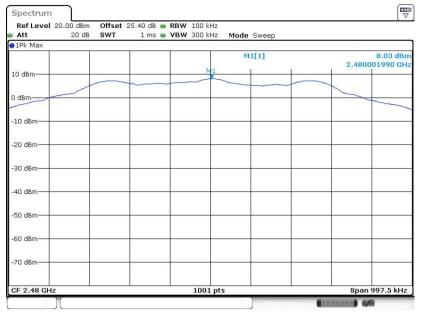
Please refer to Appendix A.

3.3.6 Test Result of Power Spectral Density Plots (100kHz)

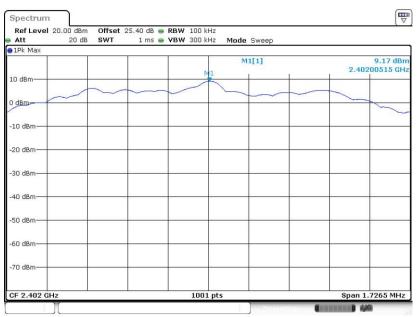

<1Mbps>

PSD 100kHz Plot on Channel 00

Date: 11.OCT.2018 19:46:43

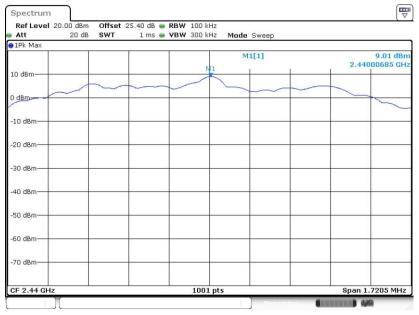

PSD 100kHz Plot on Channel 19

Date: 11.OCT.2018 19:43:40

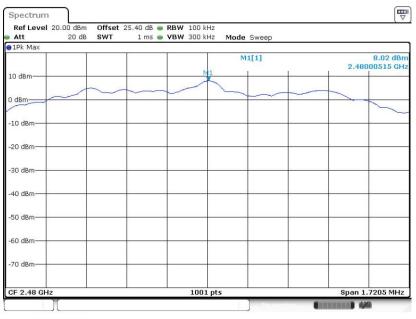

PSD 100kHz Plot on Channel 39

Date: 11.OCT.2018 19:51:20

<2Mbps>


PSD 100kHz Plot on Channel 00

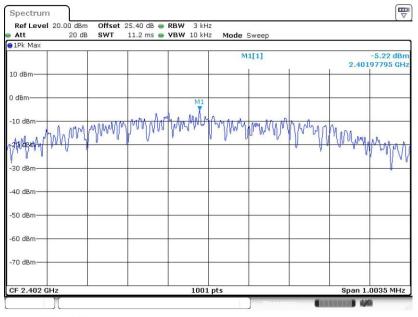
Date: 11.OCT.2018 19:32:44



PSD 100kHz Plot on Channel 19

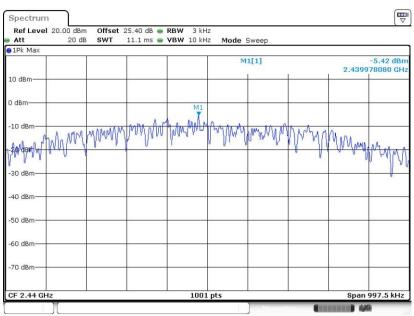
Date: 11.OCT.2018 19:29:14

PSD 100kHz Plot on Channel 39



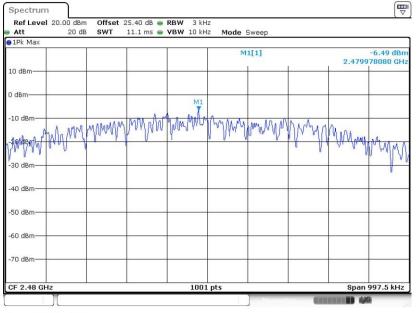
Date: 11.OCT.2018 19:38:01

3.3.7 Test Result of Power Spectral Density Plots (3kHz)

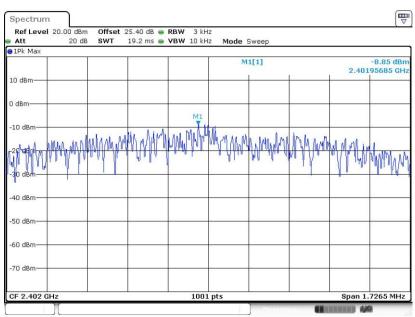

<1Mbps>

PSD 3kHz Plot on Channel 00

Date: 11.OCT.2018 19:46:30

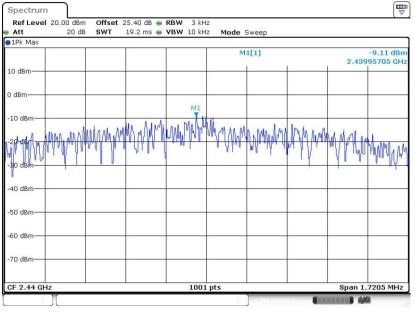

PSD 3kHz Plot on Channel 19

Date: 11.OCT.2018 19:43:20

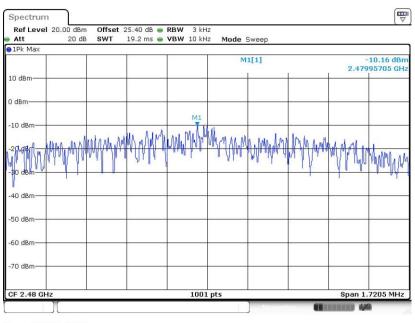

PSD 3kHz Plot on Channel 39

Date: 11.OCT.2018 19:50:33

<2Mbps>


PSD 3kHz Plot on Channel 00

Date: 11.OCT.2018 19:32:20



PSD 3kHz Plot on Channel 19

Date: 11.OCT.2018 19:28:58

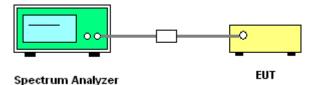
PSD 3kHz Plot on Channel 39

Date: 11.OCT.2018 19:37:45

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

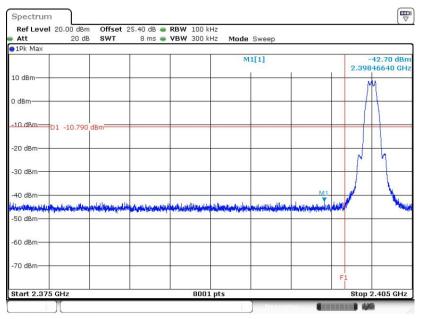

3.4.2 Measuring Instruments

See list of measuring equipment of this test report.

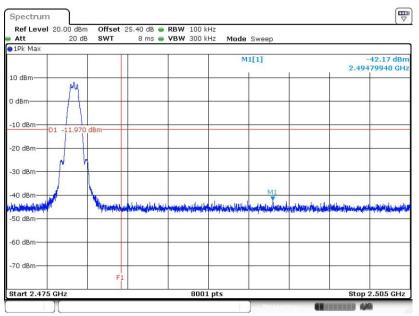
3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup



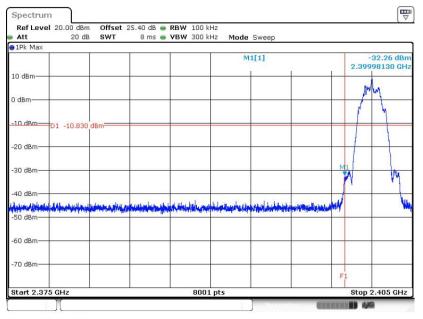
3.4.5 Test Result of Conducted Band Edges Plots


<1Mbps>

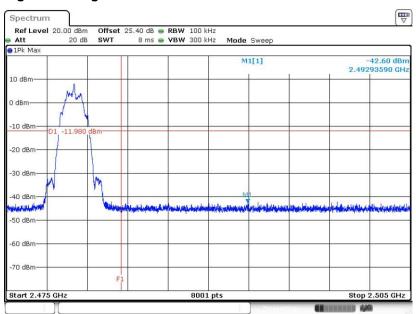
Low Band Edge Plot on Channel 00

Date: 11.OCT.2018 19:47:14

High Band Edge Plot on Channel 39

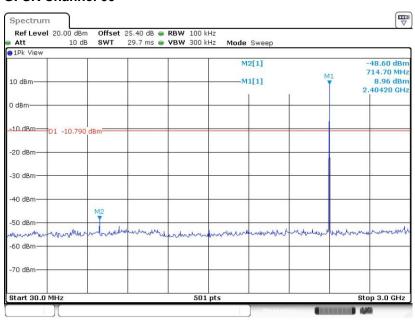


Date: 11.OCT.2018 19:51:38


<2Mbps>

Low Band Edge Plot on Channel 00

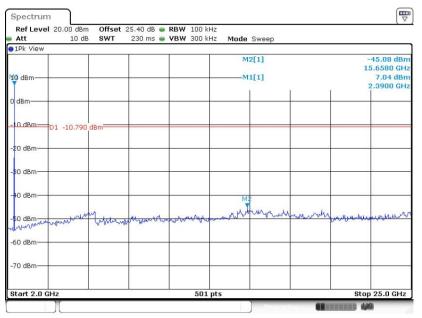
Date: 11.OCT.2018 19:33:05


High Band Edge Plot on Channel 39

Date: 11.OCT.2018 19:38:29

3.4.6 Test Result of Conducted Spurious Emission Plots

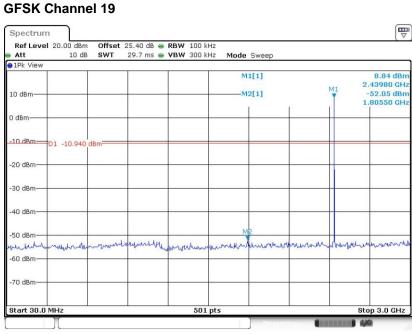
Conducted Spurious Emission Plot on Bluetooth LE 1Mbps



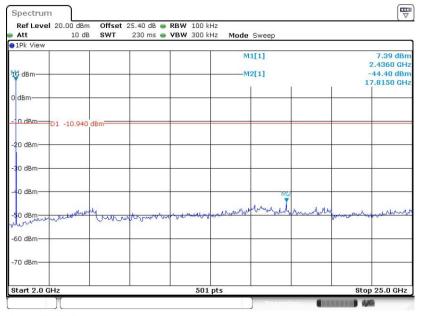
GFSK Channel 00

Date: 11.OCT.2018 19:48:21

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

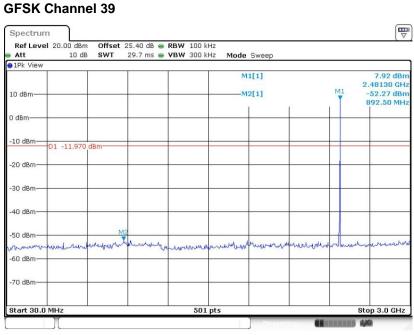

GFSK Channel 00

Date: 11.OCT.2018 19:48:36

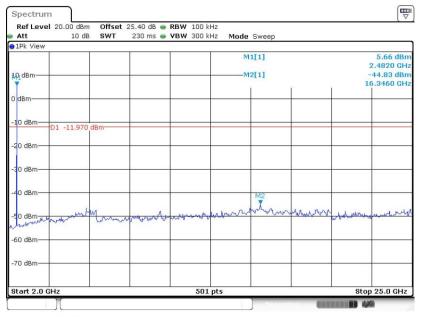


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Date: 11.OCT.2018 19:44:08


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

Date: 11.OCT.2018 19:44:23

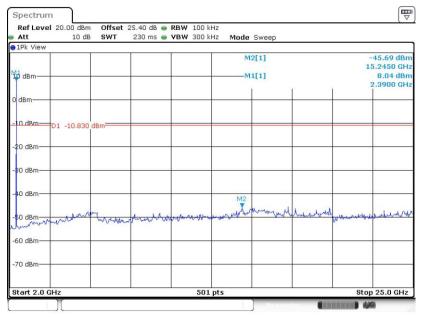


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

Date: 11.OCT.2018 19:52:05

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

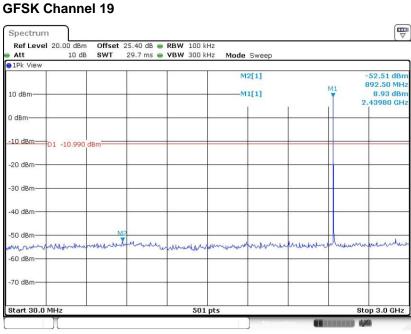
Date: 11.OCT.2018 19:52:30



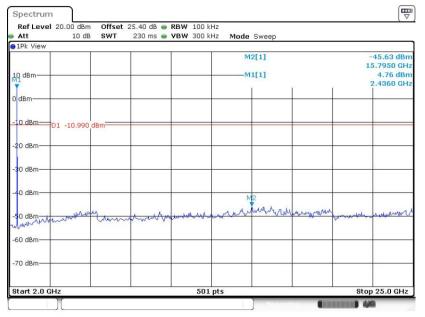
GFSK Channel 00 Spectrum Offset 25.40 dB ● RBW 100 kHz SWT 29.7 ms ● VBW 300 kHz Ref Level 20.00 dBm Att 10 dB Mode Sweep ●1Pk Viev M2[1] 52 24 dBn 833.30 MH M1 -M1[1] 10 dBm 8.92 dBn 2.40420 GH 0 dBm--10 dBm-D1 -10.830 -20 dBm -30 dBm -40 dBrr -50 dBm - marganet about the mound we induly MA ham have mornanne -60 dBm -70 dBm Stop 3.0 GHz Start 30.0 MHz 501 pts

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps

Date: 11.OCT.2018 19:33:32

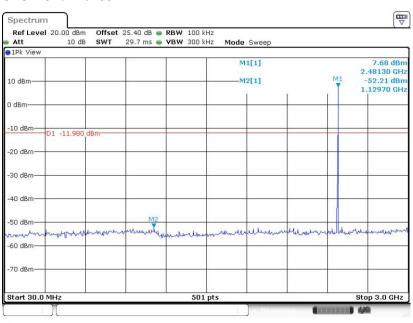

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 00

Date: 11.OCT.2018 19:33:47

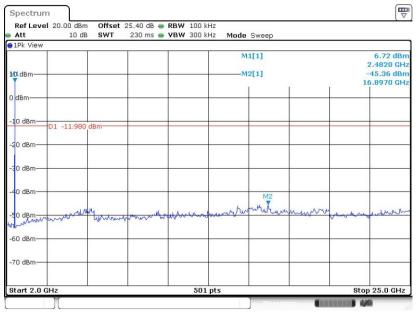


Conducted Spurious Emission Plot on Bluetooth LE 2Mbps

Date: 11.OCT.2018 19:29:51


Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 19

Date: 11.OCT.2018 19:30:10



Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 39

Date: 11.OCT.2018 19:38:48

Conducted Spurious Emission Plot on Bluetooth LE 2Mbps GFSK Channel 39

Date: 11.OCT.2018 19:39:13

3.5 Radiated Band Edges and Spurious Emission Measurement

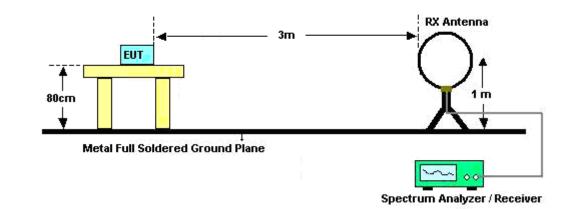
3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

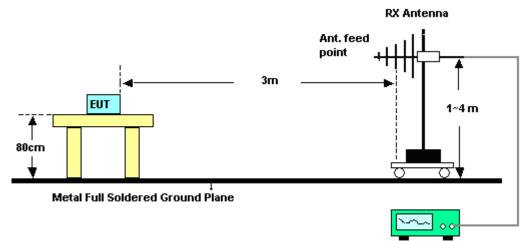
Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.5.2 Measuring Instruments

See list of measuring equipment of this test report.

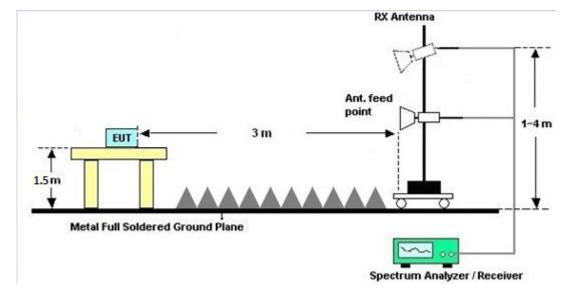

3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For testing below 1GHz, if the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then peak values of EUT will be reported, otherwise, the emissions will be repeated one by one using the CISPR quasi-peak method and reported.
- 7. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in average mode also complies with the limit in average mode), then peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.



3.5.4 Test Setup

For radiated emissions below 30MHz


For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receiver

TEL : 886-3-327-3456	Page Number	: 37 of 44
FAX : 886-3-328-4978	Issued Date	: Dec. 26, 2018
Report Template No.: BU5-FR15CBT4.0 Version 2.4	Report Version	: 01

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.

There is a comparison data of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result came out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

3.6 AC Conducted Emission Measurement

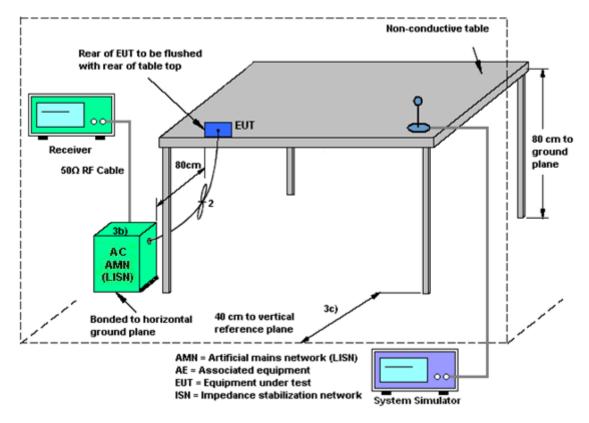
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)					
Frequency of emission (MHZ)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


See list of measuring equipment of this test report.

3.6.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

ON LAB. TOO RADIO TEST REFORT

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Power Meter	Agilent	E4416A	GB41292344	N/A	Dec. 20, 2017	Oct. 11, 2018	Dec. 19, 2018	Conducted (TH05-HY)
Power Sensor	Agilent	E9327A	US40441548	50MHz~18GHz	Dec. 20, 2017	Oct. 11, 2018	Dec. 19, 2018	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101397	10Hz~40GHz	Nov. 07, 2017	Oct. 11, 2018	Nov. 06, 2018	Conducted (TH05-HY)
Switch Box & RF Cable	Burgeon	ETF-058	EC1300484	N/A	Mar. 01, 2018	Oct. 11, 2018	Feb. 28, 2019	Conducted (TH05-HY)
Hygrometer	Testo	DTM-303A	TP157075	N/A	Mar. 06, 2018	Oct. 11, 2018	Mar. 05, 2019	Conducted (TH05-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY84209521	1GHz~26GHz	Dec. 01, 2017	Oct. 11, 2018	Nov. 30, 2018	Conducted (TH05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Dec. 04, 2018	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102388	9KHz~3.6GHz	Nov. 12, 2018	Dec. 04, 2018	Nov. 11, 2019	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz~30MHz	Nov. 14, 2018	Dec. 04, 2018	Nov. 13, 2019	Conduction (CO05-HY)
LF Cable	HUBER + SUHNER	RG-214/U	LF01	N/A	Jan. 03, 2018	Dec. 04, 2018	Jan. 02, 2019	Conduction (CO05-HY)
Test Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Dec. 04, 2018	N/A	Conduction (CO05-HY)
Pulse Limiter	Rohde & Schwarz	ESH3-Z2	100851	N/A	Jan. 03, 2018	Dec. 04, 2018	Jan. 02, 2019	Conduction (CO05-HY)
Hygrometer	Testo	608-H1	34913912	N/A	Mar. 06, 2018	Dec. 04, 2018	Mar. 05, 2019	Conduction (CO05-HY)
Loop Antenna	TESEQ	HLA 6120	31244	9 kHz~30 MHz	Mar. 29, 2018	Nov. 30, 2018~ Dec. 17, 2018	Mar. 28, 2019	Radiation (03CH12-HY)
Bilog Antenna	TESEQ	CBL 6111D&00800 N1D01N-06	37059&01	30MHz~1GHz	Oct. 13, 2018	Nov. 30, 2018~ Dec. 17, 2018	Oct. 12, 2019	Radiation (03CH12-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120D	9120D-1328	1GHz ~ 18GHz	Oct. 19, 2018	Nov. 30, 2018~ Dec. 17, 2018	Oct. 18, 2019	Radiation (03CH12-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA917057 6	18GHz ~ 40GHz	May 08, 2018	Nov. 30, 2018~ Dec. 17, 2018	May 07, 2019	Radiation (03CH12-HY)
EMI Test Receiver	Rohde & Schwarz	ESU26	100390	20Hz~26.5GHz	Dec. 25, 2017	Nov. 30, 2018~ Dec. 17, 2018	Dec. 24, 2018	Radiation (03CH12-HY)
Spectrum Analyzer	Keysight	N9010A	MY55370526	10Hz~44GHz	Mar. 15, 2018	Nov. 30, 2018~ Dec. 17, 2018	Mar. 14, 2019	Radiation (03CH12-HY)
Preamplifier	COM-POWER	PA-103	161075	10MHz~1GHz	Mar. 26, 2018	Nov. 30, 2018~ Dec. 17, 2018	Mar. 25, 2019	Radiation (03CH12-HY)
Preamplifier	Keysight 83017A		MY53270148	1GHz~26.5GHz	Jan. 15, 2018	Nov. 30, 2018~ Dec. 17, 2018	Jan. 14, 2019	Radiation (03CH12-HY)
Preamplifier	Jet-Power	JPA0118-55-3 03K	17100018000 54002	1GHz~18GHz	Apr. 17, 2018	Nov. 30, 2018~ Dec. 17, 2018	Apr. 16, 2019	Radiation (03CH12-HY)
Preamplifier	MITEQ	TTA1840-35- HG	1864481	18GHz ~ 40GHz	Aug. 24, 2018	Nov. 30, 2018~ Dec. 17, 2018	Aug. 23, 2019	Radiation (03CH12-HY)

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	TECPEL	DTM-303B	TP161243	N/A	May 12, 2018	Nov. 30, 2018~ Dec. 17, 2018	May 11, 2019	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0058/126E	30M-18G	Mar. 14, 2018	Nov. 30, 2018~ Dec. 17, 2018	Mar. 13, 2019	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30M~40GHz	Oct. 16, 2018	Nov. 30, 2018~ Dec. 17, 2018	Oct. 15, 2019	Radiation (03CH12-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	800740/2	30M~40GHz	Oct. 16, 2018	Nov. 30, 2018~ Dec. 17, 2018	Oct. 15, 2019	Radiation (03CH12-HY)
Filter	Wainwright	WLKS1200-1 2SS	SN2	1.2GHz Low Pass	Mar. 21, 2018	Nov. 30, 2018~ Dec. 17, 2018	Mar. 20, 2019	Radiation (03CH12-HY)
Filter	Wainwright	WHKX12-270 0-3000-18000 -60ST	SN2	3GHz High Pass	Mar. 21, 2018	Nov. 30, 2018~ Dec. 17, 2018	Mar. 20, 2019	Radiation (03CH12-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Nov. 30, 2018~ Dec. 17, 2018	N/A	Radiation (03CH12-HY)
Antenna Mast	EMEC AM-BS-4500 B		N/A	1m~4m	N/A	Nov. 30, 2018~ Dec. 17, 2018	N/A	Radiation (03CH12-HY)
Turn Table	EMEC TT2000		N/A	0~360 Degree	N/A	Nov. 30, 2018~ Dec. 17, 2018	N/A	Radiation (03CH12-HY)
Software	Audix	E3 6.2009-8-24	RK-000989	N/A	N/A	Nov. 30, 2018~ Dec. 17, 2018	N/A	Radiation (03CH12-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.20
of 95% (U = 2Uc(y))	2.20

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	5.10
0195%(0=20C(y))	

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	5.00
of 95% (U = 2Uc(y))	5.20
0195% (0 = 20C(y))	

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	4.70
of 95% (U = 2Uc(y))	4.70

Report Number : FR891147-01B

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Kai Liao	Temperature:	21~25	°C
Test Date:	2018/10/11	Relative Humidity:	51~54	%
<1Mbps>				

<u>TEST RESULTS DATA</u> 6dB and 99% Occupied Bandwidth									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail	
BLE	1Mbps	1	0	2402	1.023	0.669	0.50	Pass	
BLE	1Mbps	1	19	2440	1.025	0.665	0.50	Pass	
BLE	1Mbps	1	39	2480	1.025	0.665	0.50	Pass	

	<u>TEST RESULTS DATA</u> <u>Peak Power Table</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Conducted	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail		
BLE	1Mbps	1	0	2402	9.73	30.00	-0.50	9.23	36.00	Pass		
BLE	1Mbps	1	19	2440	9.59	30.00	-0.50	9.09	36.00	Pass		
BLE	1Mbps	1	39	2480	8.63	30.00	-0.50	8.13	36.00	Pass		

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u> <u>(Reporting Only)</u>								
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)			
BLE	1Mbps	1	0	2402	2.05	9.45			
BLE	1Mbps	1	19	2440	2.05	9.31			
BLE	1Mbps	1	39	2480	2.05	8.23			

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail			
BLE	1Mbps	1	0	2402	9.21	-5.22	-0.50	8.00	Pass			
BLE	1Mbps	1	19	2440	9.06	-5.42	-0.50	8.00	Pass			
BLE	1Mbps	1	39	2480	8.03	-6.49	-0.50	8.00	Pass			
Note: P	SD (dBr	n/ 1(00kHz) i	is a refe	rence level u	ised for Con	ducted Ban	d Edges and	Conducted	Spurious Emission 20dBc limit.		

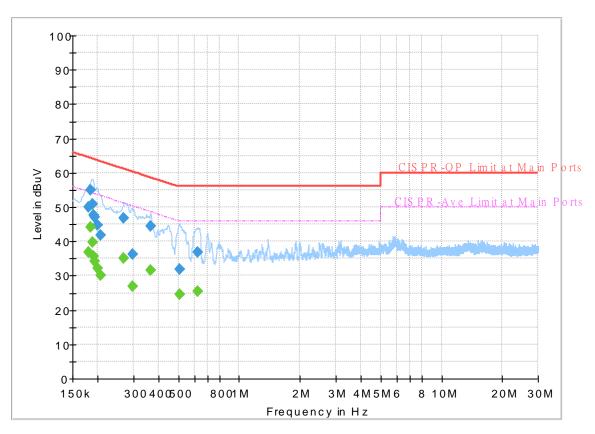
Report Number : FR891147-01B

Test Engineer:	Kai Liao	Temperature:	21~25	°C
Test Date:	2018/10/11	Relative Humidity:	51~54	%

	<u>TEST RESULTS DATA</u> <u>Peak Power Table</u>									
Mod	Data Rate	NTX	CH.	Freq. (MHz)	Peak Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE5	.0 2Mbps	1	0	2402	9.88	30.00	-0.50	9.38	36.00	Pass
BLE5	.0 2Mbps	1	19	2440	9.76	30.00	-0.50	9.26	36.00	Pass
BLE5	.0 2Mbps	1	39	2480	8.76	30.00	-0.50	8.26	36.00	Pass

	<u>TEST RESULTS DATA</u> <u>Average Power Table</u> <u>(Reporting Only)</u>								
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Duty Factor (dB)	Average Conducted Power (dBm)			
BLE5.0	2Mbps	1	0	2402	4.84	9.44			
BLE5.0	2Mbps	1	19	2440	4.84	9.27			
BLE5.0	2Mbps	1	39	2480	4.84	8.24			

	<u>TEST RESULTS DATA</u> <u>Peak Power Density</u>									
Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail	
BLE5.0	2Mbps	1	0	2402	9.17	-8.85	-0.50	8.00	Pass	
BLE5.0	2Mbps	1	19	2440	9.01	-9.11	-0.50	8.00	Pass	
BLE5.0	2Mbps	1	39	2480	8.02	-10.16	-0.50	8.00	Pass	



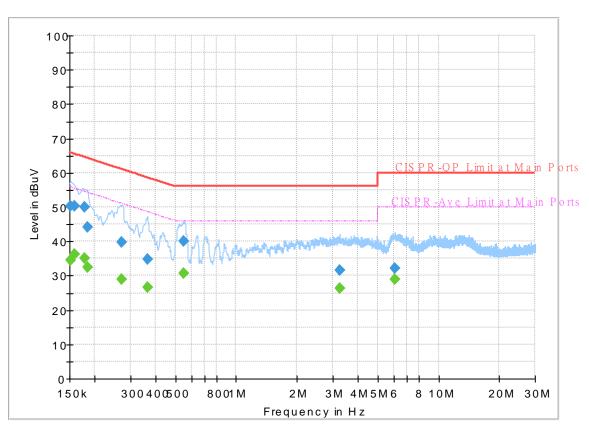
Appendix B. AC Conducted Emission Test Results

Test Engineer :	Diak Lin	Temperature :	23~25 ℃
		Relative Humidity :	55~58%

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 891147-01 Mode 1 120Vac/60Hz Line

FullSpectrum


Final_Result

Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.179250		36.74	54.52	17.78	L1	OFF	19.5
0.179250	50.00		64.52	14.52	L1	OFF	19.5
0.183750		44.13	54.31	10.18	L1	OFF	19.5
0.183750	54.91		64.31	9.40	L1	OFF	19.5
0.188250		39.81	54.11	14.30	L1	OFF	19.5
0.188250	50.80		64.11	13.31	L1	OFF	19.5
0.190500		35.65	54.02	18.37	L1	OFF	19.5
0.190500	47.55		64.02	16.47	L1	OFF	19.5
0.192750		34.32	53.92	19.60	L1	OFF	19.5
0.192750	47.02		63.92	16.90	L1	OFF	19.5
0.199500		32.11	53.63	21.52	L1	OFF	19.5
0.199500	44.62		63.63	19.01	L1	OFF	19.5
0.206250		30.07	53.36	23.29	L1	OFF	19.5
0.206250	41.83		63.36	21.53	L1	OFF	19.5
0.269250		35.23	51.14	15.91	L1	OFF	19.5
0.269250	46.79		61.14	14.35	L1	OFF	19.5
0.298500		26.79	50.28	23.49	L1	OFF	19.5
0.298500	36.36		60.28	23.92	L1	OFF	19.5
0.363750		31.71	48.64	16.93	L1	OFF	19.5
0.363750	44.56		58.64	14.08	L1	OFF	19.5
0.505500		24.63	46.00	21.37	L1	OFF	19.5

0.505500	31.94		56.00	24.06	L1	OFF	19.5
0.624750		25.49	46.00	20.51	L1	OFF	19.6
0.624750	36.91		56.00	19.09	L1	OFF	19.6

EUT Information

Report NO : Test Mode : Test Voltage : Phase : 891147-01 Mode 1 120Vac/60Hz Neutral

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.152250		34.47	55.88	21.41	N	OFF	19.5
0.152250	50.43		65.88	15.45	Ν	OFF	19.5
0.159000		36.20	55.52	19.32	Ν	OFF	19.5
0.159000	50.42		65.52	15.10	Ν	OFF	19.5
0.177000		35.19	54.63	19.44	Ν	OFF	19.5
0.177000	49.90		64.63	14.73	Ν	OFF	19.5
0.183750		32.36	54.31	21.95	Ν	OFF	19.5
0.183750	44.23		64.31	20.08	Ν	OFF	19.5
0.271500		28.85	51.07	22.22	Ν	OFF	19.5
0.271500	39.82		61.07	21.25	Ν	OFF	19.5
0.363750		26.54	48.64	22.10	Ν	OFF	19.5
0.363750	34.76		58.64	23.88	Ν	OFF	19.5
0.550500		30.81	46.00	15.19	Ν	OFF	19.5
0.550500	40.17		56.00	15.83	Ν	OFF	19.5
3.259500		26.46	46.00	19.54	Ν	OFF	19.6
3.259500	31.69		56.00	24.31	Ν	OFF	19.6
6.065250		28.81	50.00	21.19	Ν	OFF	19.8
6.065250	32.20		60.00	27.80	Ν	OFF	19.8

Appendix C. Radiated Spurious Emission

Test Engineer :	Jack Cheng, Lance Chiang, and Peter Liao	Temperature :	22~24°C
Test Engineer .		Relative Humidity :	52~60%

<For Sample 1>

<Adapter 1>

2.4GHz 2400~2483.5MHz

BLE 1Mbps (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2365.23	56.35	-17.65	74	43.71	27.57	16.65	31.58	125	112	Ρ	Н
		2383.185	45.9	-8.1	54	33.28	27.53	16.67	31.58	125	112	А	Н
	*	2402	103.45	-	-	90.82	27.5	16.7	31.57	125	112	Ρ	Н
	*	2402	102.4	-	-	89.77	27.5	16.7	31.57	125	112	А	Н
515													Н
BLE													Н
CH 00 2402MHz		2338.455	57.97	-16.03	74	45.28	27.67	16.61	31.59	358	49	Р	V
240211112		2386.545	46.15	-7.85	54	33.52	27.53	16.68	31.58	358	49	А	V
	*	2402	103.53	-	-	90.9	27.5	16.7	31.57	358	49	Р	V
	*	2402	102.55	-	-	89.92	27.5	16.7	31.57	358	49	А	V
													V
													V

		2387.42	57.45	-16.55	74	44.82	27.53	16.68	31.58	168	28	Ρ	н
		2327.5	45.85	-8.15	54	33.11	27.74	16.59	31.59	168	28	А	н
	*	2440	103.35	-	-	90.74	27.42	16.76	31.57	168	28	Р	Н
	*	2440	102.37	-	-	89.76	27.42	16.76	31.57	168	28	А	Н
		2492.72	56.26	-17.74	74	43.67	27.31	16.83	31.55	168	28	Ρ	н
BLE		2488.31	45.45	-8.55	54	32.86	27.32	16.83	31.56	168	28	А	Н
CH 19		2354.38	56.98	-17.02	74	44.34	27.59	16.63	31.58	349	47	Ρ	V
2440MHz		2383.08	45.79	-8.21	54	33.17	27.53	16.67	31.58	349	47	А	V
	*	2440	103.55	-	-	90.94	27.42	16.76	31.57	349	47	Р	V
	*	2440	102.6	-	-	89.99	27.42	16.76	31.57	349	47	А	V
		2486.56	56.11	-17.89	74	43.51	27.33	16.83	31.56	349	47	Ρ	V
		2494.19	45.54	-8.46	54	32.94	27.31	16.84	31.55	349	47	А	V
	*	2480	103.62	-	-	91.02	27.34	16.82	31.56	201	27	Ρ	Н
	*	2480	102.68	-	-	90.08	27.34	16.82	31.56	201	27	А	Н
		2498.92	56.63	-17.37	74	44.04	27.3	16.84	31.55	201	27	Р	Н
		2497.32	45.49	-8.51	54	32.89	27.31	16.84	31.55	201	27	А	Н
BLE													H H
CH 39	*	2480	103.59	-	-	90.99	27.34	16.82	31.56	378	45	Р	V
2480MHz	*	2480	102.67	-	-	90.07	27.34	16.82	31.56	378	45	А	V
		2487.08	56.53	-17.47	74	43.93	27.33	16.83	31.56	378	45	Р	V
		2497.52	45.87	-8.13	54	33.28	27.3	16.84	31.55	378	45	А	V
													V
													V

2.4GHz 2400~2483.5MHz	
-----------------------	--

	r r		r		: 1Mbps (H		e Jilij		ſ	ſ	-	r	- i
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		4804	38.17	-35.83	74	53.23	31.1	10.42	56.58	100	0	Р	Н
													Н
													н
BLE													н
CH 00		4804	38.78	-35.22	74	53.84	31.1	10.42	56.58	100	0	Р	V
2402MHz							••••					-	V
													V
													V
		4880	37.43	-36.57	74	52.41	31.1	10.47	56.55	100	0	Р	Н
		7320	42.76	-31.24	74	49.64	36.56	12.78	56.22	100	0	Р	Н
													н
BLE													Н
CH 19		4880	37.95	-36.05	74	52.93	31.1	10.47	56.55	100	0	Р	V
2440MHz		7320	43.01	-30.99	74	49.89	36.56	12.78	56.22	100	0	Р	V
													V
													V
		4960	38.93	-35.07	74	53.62	31.32	10.51	56.52	100	0	Р	Н
		7440	44.35	-29.65	74	51.24	36.38	12.8	56.07	100	0	Ρ	Н
													н
BLE													Н
CH 39 2480MHz		4960	39.09	-34.91	74	53.78	31.32	10.51	56.52	100	0	Р	V
2480MHZ		7440	43.83	-30.17	74	50.72	36.38	12.8	56.07	100	0	Р	V
													V
													V
Remark		o other spurious			Avoraga	it ling							
	2. All	results are PA	ss against F	reak and	Average IIM	it line.							

BLE 1Mbps (Harmonic @ 3m)

Emission below 1GHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	1
		30.54	24.76	-15.24	40	30.2	24.05	0.71	30.2	-	-	Р	Н
		178.5	28.32	-15.18	43.5	41.62	15.04	2	30.34	-	-	Р	Н
		227.37	27.65	-18.35	46	39.94	15.77	2.21	30.27	-	-	Р	Н
		561.1	29.47	-16.53	46	29.89	25.94	3.33	29.69	-	-	Р	Н
		742.4	34.66	-11.34	46	32.42	27.85	3.81	29.42	-	-	Р	Н
		955.9	35.63	-10.37	46	29.36	30.81	4.44	28.98	100	0	Р	Н
													н
													Н
													Н
													Н
													н
2.4GHz													н
BLE LF		30	29.99	-10.01	40	34.9	24.57	0.7	30.18	-	-	Р	V
LF		38.64	28.6	-11.4	40	38.26	19.82	0.83	30.31	-	-	Р	V
		177.42	27.28	-16.22	43.5	40.55	15.08	2	30.35	-	-	Р	V
		638.1	30.24	-15.76	46	29.99	26.29	3.55	29.59	-	-	Р	V
		746.6	34.04	-11.96	46	31.76	27.87	3.82	29.41	-	-	Р	V
		895	37.38	-8.62	46	33.37	28.92	4.24	29.15	100	0	Р	V
													V
													V
													V
													V
													V
													V
	1. No	o other spurious	s found										V
Remark		results are PA		mit line									

2.4GHz 2400~2483.5MHz

BLE 2Mbps (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2346.015	56.85	-17.15	74	44.19	27.62	16.62	31.58	185	30	Р	Н
		2361.03	47.31	-6.69	54	34.67	27.58	16.64	31.58	185	30	А	Н
	*	2402	102.7	-	-	90.07	27.5	16.7	31.57	185	30	Р	н
	*	2402	101.1	-	-	88.47	27.5	16.7	31.57	185	30	A	Н
BLE													H H
CH 00		0007405	50.00	47.00	74	40.00	07.00	40.04	24 50	400	64	Р	п V
2402MHz		2337.195	56.68	-17.32	74	43.98	27.68	16.61	31.59	400	64		
	*	2377.935	47.54	-6.46	54	34.91	27.54	16.67	31.58	400	64	A	V
		2402	101.69	-	-	89.06	27.5	16.7	31.57	400	64	Р	V
	*	2402	100.12	-	-	87.49	27.5	16.7	31.57	400	64	A	V
													V
													V
		2350.04	56.01	-17.99	74	43.36	27.6	16.63	31.58	199	29	Р	Н
		2334.92	47.1	-6.9	54	34.4	27.69	16.6	31.59	199	29	А	Н
	*	2440	102.41	-	-	89.8	27.42	16.76	31.57	199	29	Р	Н
	*	2440	101.43	-	-	88.82	27.42	16.76	31.57	199	29	А	н
		2496.5	56.02	-17.98	74	43.42	27.31	16.84	31.55	199	29	Ρ	Н
BLE CH 19		2492.3	46.86	-7.14	54	34.26	27.32	16.83	31.55	199	29	А	Н
2440MHz		2347.52	57.04	-16.96	74	44.39	27.61	16.62	31.58	398	47	Ρ	V
2440101112		2331.98	47.28	-6.72	54	34.56	27.71	16.6	31.59	398	47	А	V
	*	2440	103.49	-	-	90.88	27.42	16.76	31.57	398	47	Р	V
	*	2440	101.91	-	-	89.3	27.42	16.76	31.57	398	47	А	V
		2498.6	57.16	-16.84	74	44.57	27.3	16.84	31.55	398	47	Р	V
		2487.54	46.5	-7.5	54	33.91	27.32	16.83	31.56	398	47	А	V

	*	0.400	100 71				07.04	10.00	04.50			_	<u> </u>
		2480	103.71	-	-	91.11	27.34	16.82	31.56	200	28	Р	Н
	*	2480	102.04	-	-	89.44	27.34	16.82	31.56	200	28	Α	Н
		2483.88	57.61	-16.39	74	45.02	27.33	16.82	31.56	200	28	Р	Н
		2491.4	47.05	-6.95	54	34.46	27.32	16.83	31.56	200	28	А	Н
													н
BLE													н
CH 39 2480MHz	*	2480	103.4	-	-	90.8	27.34	16.82	31.56	379	46	Р	V
240010172	*	2480	101.54	-	-	88.94	27.34	16.82	31.56	379	46	А	V
		2484.16	57.53	-16.47	74	44.94	27.33	16.82	31.56	379	46	Р	V
		2498.92	46.68	-7.32	54	34.09	27.3	16.84	31.55	379	46	А	V
													V
													V
Remark		o other spuriou: I results are PA		Peak and	Average lii	mit line.							

					zwops (n				-	-	-		
BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos		Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)		(dB/m)	(dB)	(dB)	(cm)	(deg)		
		4804	39.05	-34.95	74	54.11	31.1	10.42	56.58	100	0	Р	Н
													Н
													н
BLE													н
CH 00		4804	39.07	-34.93	74	54.13	31.1	10.42	56.58	100	0	Р	V
2402MHz							-	-					V
													V
													V
		4880	38.83	-35.17	74	53.81	31.1	10.47	56.55	100	0	Р	Н
		7320	43.75	-30.25	74	50.63	36.56	12.78	56.22	100	0	Р	Н
													н
BLE													н
CH 19 2440MHz		4880	38.75	-35.25	74	53.73	31.1	10.47	56.55	100	0	Р	V
244011112		7320	43.18	-30.82	74	50.06	36.56	12.78	56.22	100	0	Р	V
													V
													V
		4960	38.74	-35.26	74	53.43	31.32	10.51	56.52	100	0	Р	н
		7440	43.77	-30.23	74	50.66	36.38	12.8	56.07	100	0	Р	Н
BLE													Н
													н
CH 39 2480MHz		4960	38.9	-35.1	74	53.59	31.32	10.51	56.52	100	0	Р	V
210011112		7440	44.57	-29.43	74	51.46	36.38	12.8	56.07	100	0	Р	V
													V
													V
Remark		o other spurious results are PA		eak and	Average lim	it line.							

BLE 2Mbps (Harmonic @ 3m)

Emission below 1GHz

	(MHz) 30	(dBµV/m)	Limit (dB)	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
-			(dB)									
	30			(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)		(P/A)	
		24.65	-15.35	40	29.56	24.57	0.7	30.18	-	-	P	Н
_	157.17	27.01	-16.49	43.5	38.93	16.59	1.86	30.37	-	-	Ρ	Н
	 225.75	28.66	-17.34	46	41.06	15.67	2.2	30.27	-	-	Р	Н
	834.8	32.91	-13.09	46	29.95	28.15	4.05	29.24	-	-	Ρ	Н
	885.9	37.69	-8.31	46	33.67	28.97	4.21	29.16	100	0	Р	Н
	949.6	35.49	-10.51	46	29.5	30.56	4.43	29	-	-	Р	Н
												н
												н
												н
												н
												н
2.4GHz												н
BLE	30	29.65	-10.35	40	34.56	24.57	0.7	30.18	-	-	Р	V
LF —	38.64	27.77	-12.23	40	37.43	19.82	0.83	30.31	-	-	Р	V
	177.69	26.43	-17.07	43.5	39.7	15.08	2	30.35	-	-	Р	V
	836.9	35.18	-10.82	46	32.08	28.28	4.06	29.24	-	-	Р	V
	887.3	37.64	-8.36	46	33.62	28.97	4.21	29.16	100	0	Р	V
	948.9	35.14	-10.86	46	29.19	30.52	4.43	29	-	-	Р	V
												V
												V
												V
												V
												V
												v
											<u> </u>	v

<Adapter 2>

2.4GHz 2400~2483.5MHz

BLE 2Mbps (Band Edge @ 3m)

(MHz) 2322.18	(dBµV/m)		Line	Level	Factor						
	(dBµV/m)		4 · · · · · · · ·		Factor	Loss	Factor	Pos	Pos	Avg.	
1222 10		(dB)	(dBµV/ m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
2322.10	57.62	-16.38	74	44.86	27.77	16.58	31.59	126	107	Р	Н
2358.825	47.08	-6.92	54	34.44	27.58	16.64	31.58	126	107	А	Н
2402	104.25	-	-	91.62	27.5	16.7	31.57	126	107	Р	Н
2402	102.7	-	-	90.07	27.5	16.7	31.57	126	107	А	Н
											Н
											н
2382.555	56.59	-17.41	74	43.97	27.53	16.67	31.58	354	66	Р	V
2359.98	47.39	-6.61	54	34.75	27.58	16.64	31.58	354	66	А	V
2402	103.96	-	-	91.33	27.5	16.7	31.57	354	66	Р	V
2402	102.24	-	-	89.61	27.5	16.7	31.57	354	66	А	V
											V
											V
-		eak and A	verage lim	it line.							
	2402 2382.555 2359.98 2402 2402 2402	2402 102.7 2382.555 56.59 2359.98 47.39 2402 103.96 2402 102.24 0 0 0 0 0 0	2402 102.7 - 2382.555 56.59 -17.41 2359.98 47.39 -6.61 2402 103.96 - 2402 102.24 - 2402 102.24 - 0 0 0 0 0 0 0 0 0 0 0 0	2402 102.7 - 2382.555 56.59 -17.41 2359.98 47.39 -6.61 2402 103.96 - 2402 102.24 - 2402 102.24 - 2402 102.24 - 2402 102.24 - 2402 102.24 - 2402 102.24 - 0 0 0	2402 102.7 - - 90.07 2382.555 56.59 -17.41 74 43.97 2359.98 47.39 -6.61 54 34.75 2402 103.96 - - 91.33 2402 102.24 - 89.61 102.24 - - 101.23 2402 102.24 - - 101.23 2402 102.24 - - 101.23	2402 102.7 - - 90.07 27.5 2382.555 56.59 -17.41 74 43.97 27.53 2382.555 56.59 -17.41 74 43.97 27.53 2359.98 47.39 -6.61 54 34.75 27.58 2402 103.96 - - 91.33 27.5 2402 102.24 - - 89.61 27.5 2402 102.24 - - 89.61 27.5 other spurious found. - - - 89.61 27.5	2402 102.7 - - 90.07 27.5 16.7 2382.555 56.59 -17.41 74 43.97 27.53 16.67 2359.98 47.39 -6.61 54 34.75 27.58 16.64 2402 103.96 - - 91.33 27.5 16.7 2402 102.24 - - 89.61 27.5 16.7 2402 102.24 - - 89.61 27.5 16.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2402 102.24 - - 89.61 27.5 16.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2402 102.7 - - 90.07 27.5 16.7 31.57 2382.555 56.59 -17.41 74 43.97 27.53 16.67 31.58 2382.555 56.59 -17.41 74 43.97 27.58 16.64 31.58 2359.98 47.39 -6.61 54 34.75 27.58 16.64 31.58 2402 103.96 - - 91.33 27.5 16.7 31.57 2402 102.24 - - 89.61 27.5 16.7 31.57 2402 102.24 - - 89.61 27.5 16.7 31.57 2402 102.24 - - 89.61 27.5 16.7 31.57 2402 102.24 - - 89.61 27.5 16.7 31.57 90 other spurious found. -	2402 102.7 - - 90.07 27.5 16.7 31.57 126 1	2402 102.7 - - 90.07 27.5 16.7 31.57 126 107 2402 102.7 - - 90.07 27.5 16.7 31.57 126 107 2402 10.1 -	2402 102.7 - - 90.07 27.5 16.7 31.57 126 107 A 2382.555 56.59 -17.41 74 43.97 27.53 16.67 31.58 354 66 P 2359.98 47.39 -6.61 54 34.75 27.58 16.67 31.58 354 66 A 2402 103.96 - - 91.33 27.5 16.7 31.57 354 66 P 2402 102.24 - - 89.61 27.5 16.7 31.57 354 66 A 2402 102.24 - - 89.61 27.5 16.7 31.57 354 66 A 2402 102.24 - - 89.61 27.5 16.7 31.57 354 66 A 0 - - 89.61 27.5 16.7 31.57 354 66 A 0 - - - 89.61 27.5 16.7 31.57 354 66<

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	
		4804	38.29	-35.71	74	53.35	31.1	10.42	56.58	100	0	Р	н
													Н
													Н
BLE													н
CH 00 2402MHz		4804	39.23	-34.77	74	54.29	31.1	10.42	56.58	100	0	Р	V
240211112													V
													V
													V
Remark		o other spurious results are PA		eak and	Average lim	it line.							

2.4GHz 2400~2483.5MHz BLE 2Mbps (Harmonic @ 3m)

TEL : 886-3-327-3456 FAX : 886-3-328-4978

Emission below 1GHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		102.09	24.55	-18.95	43.5	37.55	16.01	1.42	30.43	-	-	P	Н
		181.47	31.02	-12.48	43.5	44.42	14.92	2.02	30.34	-	-	Р	Н
		218.73	28.61	-17.39	46	41.69	15.05	2.16	30.29	-	-	Р	Н
		647.2	30.91	-15.09	46	30.61	26.3	3.58	29.58	-	-	Р	Н
		869.8	34.35	-11.65	46	30.32	29.07	4.15	29.19	-	-	Р	Н
		953.1	35.93	-10.07	46	29.77	30.7	4.44	28.98	100	0	Ρ	Н
													Н
													Н
													н
													н
													Н
2.4GHz													Н
BLE LF		33.78	31	-9	40	37.99	22.49	0.76	30.24	100	0	Р	V
L1		88.86	26.74	-16.76	43.5	41.35	14.49	1.34	30.44	-	-	Ρ	V
		179.04	29.41	-14.09	43.5	42.76	14.99	2	30.34	-	-	Ρ	V
		570.9	30.27	-15.73	46	30.74	25.85	3.35	29.67	-	-	Р	V
		874.7	33.84	-12.16	46	29.84	29.02	4.16	29.18	-	-	Р	V
		957.3	36.53	-9.47	46	30.22	30.84	4.44	28.97	-	-	Ρ	V
													V
													V
													V
													V
													V
													V
			1										_ ·
Remark		o other spurious											
	2. All	results are PA	SS against li	mit line.									

2.4GHz BLE (LF)

<For Sample 2>

<Adapter 1>

2.4GHz 2400~2483.5MHz

BLE 2Mbps (Band Edge @ 3m)

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/ m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2366.7	57.16	-16.84	74	44.52	27.57	16.65	31.58	100	103	Ρ	н
		2345.805	47.82	-6.18	54	35.15	27.63	16.62	31.58	100	103	А	Н
	*	2402	100.63	-	-	88	27.5	16.7	31.57	100	103	Ρ	Н
	*	2402	98.71	-	-	86.08	27.5	16.7	31.57	100	103	А	Н
													Н
BLE													Н
CH 00 2402MHz		2386.965	57.12	-16.88	74	44.49	27.53	16.68	31.58	400	65	Ρ	V
2402101712		2369.85	47.57	-6.43	54	34.94	27.56	16.65	31.58	400	65	А	V
	*	2402	98.85	-	-	86.22	27.5	16.7	31.57	400	65	Ρ	V
	*	2402	96.96	-	-	84.33	27.5	16.7	31.57	400	65	А	V
													V
													V
Remark	1. Nc	other spurious	s found.										
	2. All	results are PA	SS against P	eak and A	verage lim	it line.							

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBµV/m)	Limit (dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	(H/V)
		4804	43.54	-30.46	74	58.6	31.1	10.42	56.58	100	0	Ρ	н
													н
													н
BLE													Н
CH 00 2402MHz		4804	42.05	-31.95	74	57.11	31.1	10.42	56.58	100	0	Ρ	V
240211112													V
													V
													V
Remark		o other spurious results are PA		eak and	Average limi	it line.							

2.4GHz 2400~2483.5MHz BLE 2Mbps (Harmonic @ 3m)

TEL : 886-3-327-3456 FAX : 886-3-328-4978

Emission below 1GHz

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)		(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	
		38.1	26.57	-13.43	40	35.69	20.36	0.82	30.3	-	-	Р	Н
		169.05	25.31	-18.19	43.5	38.15	15.57	1.94	30.35	-	-	Р	Н
		225.75	26.91	-19.09	46	39.31	15.67	2.2	30.27	-	-	Р	Н
		722.1	33.36	-12.64	46	32.01	27.07	3.75	29.47	-	-	Р	Н
		808.2	32.61	-13.39	46	30.24	27.66	3.99	29.28	-	-	Ρ	Н
		896.4	35.8	-10.2	46	31.8	28.91	4.24	29.15	100	0	Ρ	Н
													Н
													н
													Н
													Н
													Н
2.4GHz													Н
BLE LF		35.67	33.99	-6.01	40	42.05	21.43	0.78	30.27	100	0	Р	V
		64.56	23.48	-16.52	40	41.05	11.75	1.14	30.46	-	-	Ρ	V
		168.78	27.01	-16.49	43.5	39.85	15.57	1.94	30.35	-	-	Ρ	V
		837.6	32.87	-13.13	46	29.7	28.34	4.06	29.23	-	-	Ρ	V
		895	35.87	-10.13	46	31.86	28.92	4.24	29.15	-	-	Ρ	V
		958.7	35.97	-10.03	46	29.61	30.88	4.45	28.97	-	-	Ρ	V
													V
													V
													V
													V
													V
													V
Remark		o other spurious		mit line.									`

2.4GHz BLE (LF)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any unwanted emissions shall not
	exceed the level of the fundamental frequency.
!	Test result is over limit line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

BLE	Note	Frequency	Level	Over	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Limit	Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	A	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Over Limit(dB) = Level(dBµV/m) – Limit Line(dBµV/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Over Limit(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

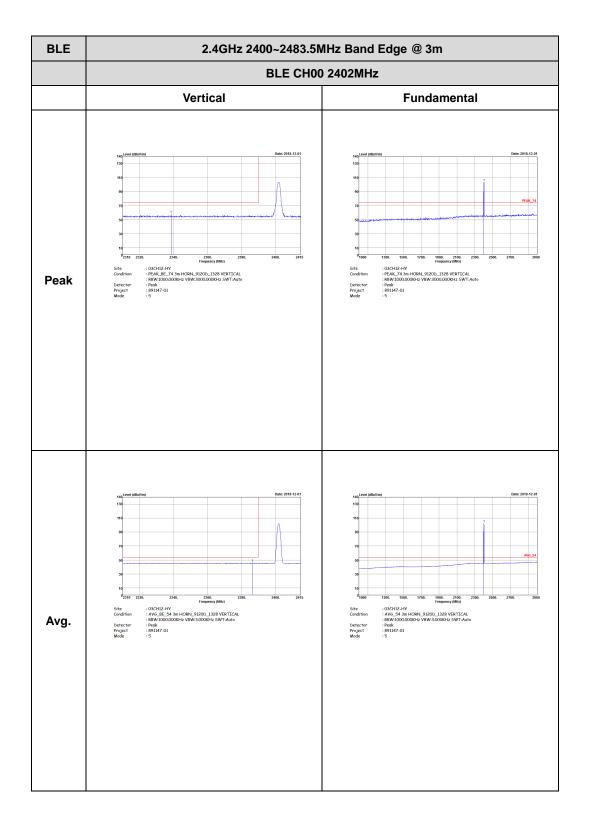
Appendix D. Radiated Spurious Emission Plots

Test Engineer :		Temperature :	22~24°C
lest Engineer .	Jack Cheng, Lance Chiang, and Peter Liao	Relative Humidity :	52~60%

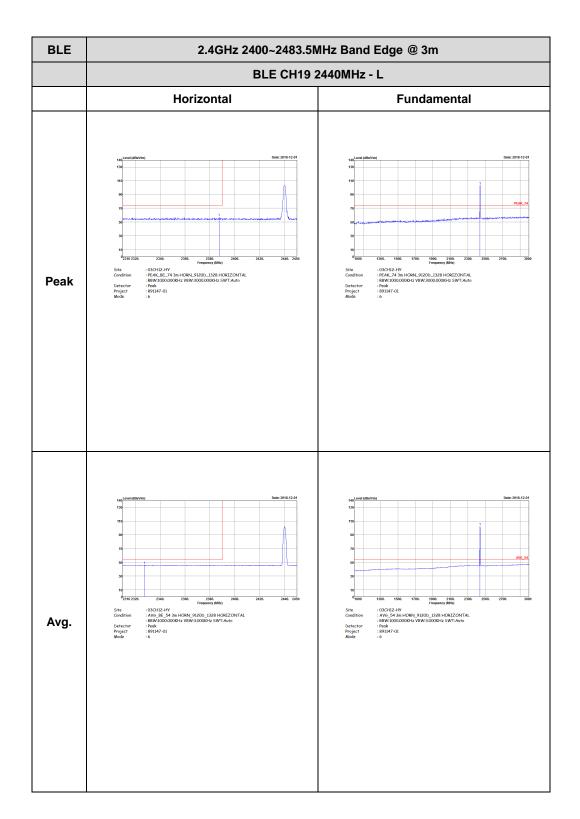
Note symbol

-L	Low channel location
-R	High channel location

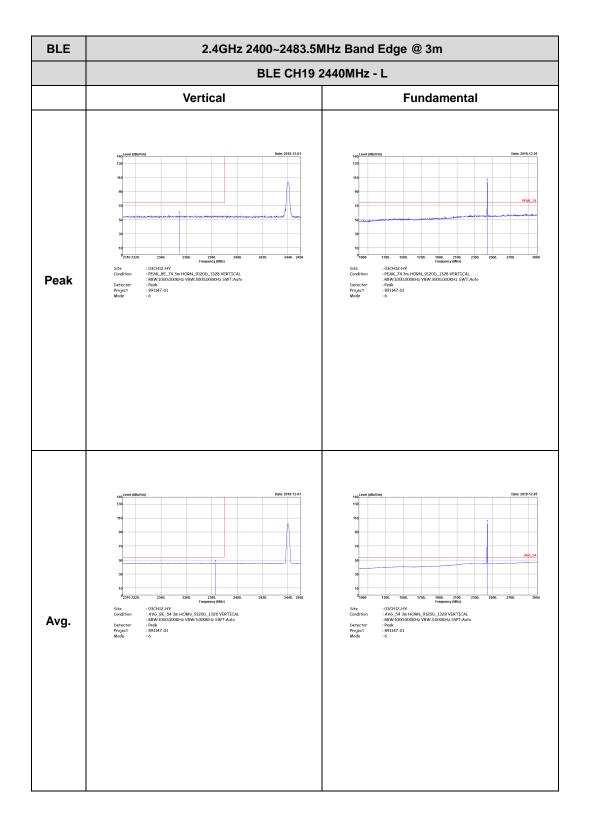
<For Sample 1>


<Adapter 1>

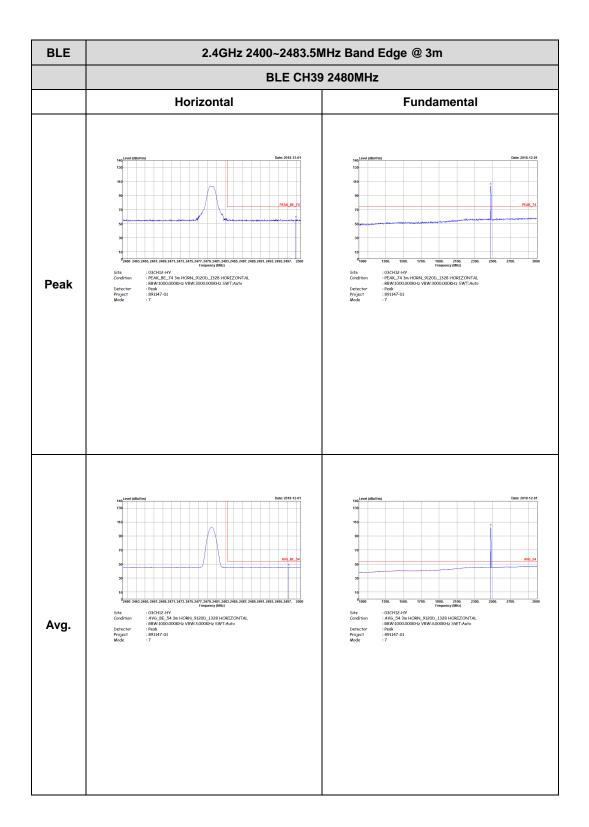
2.4GHz 2400~2483.5MHz

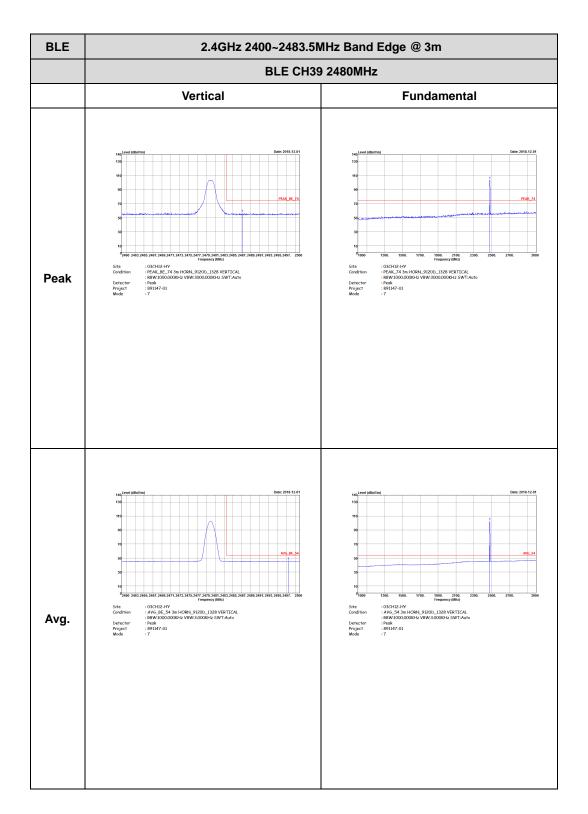

BLE (Band Edge @ 3m)

BLE	2.4GHz 2400~2483.5M	/Hz Band Edge @ 3m
	BLE CHO) 2402MHz
	Horizontal	Fundamental
Peak	main filtering Difference of the second	image:
Avg.	methods methods	111

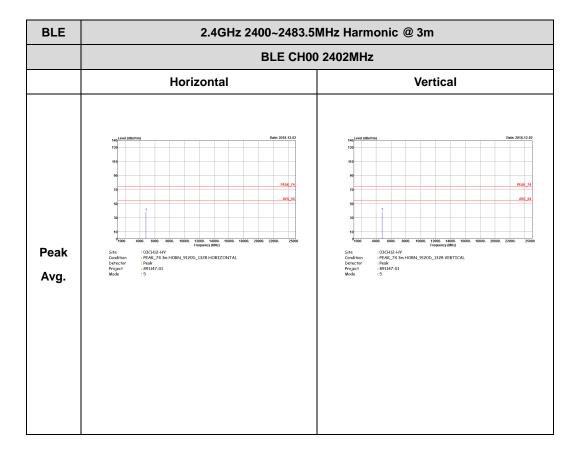


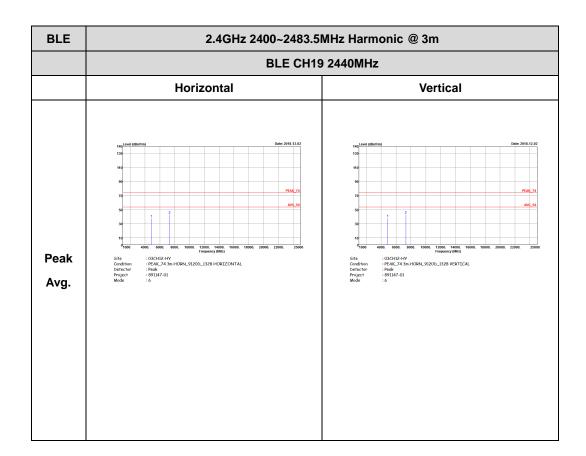
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m						
	BLE CH19 2440	MHz - R					
	Horizontal	Fundamental					
Peak	endedtationDiscretizedd	Left blank					
Avg.	metrophilon provide the second	Left blank					

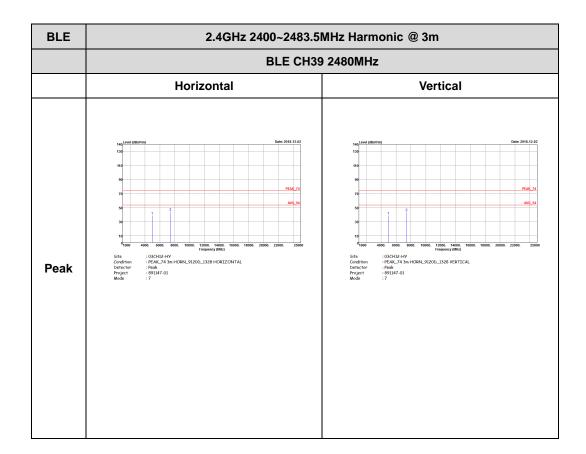


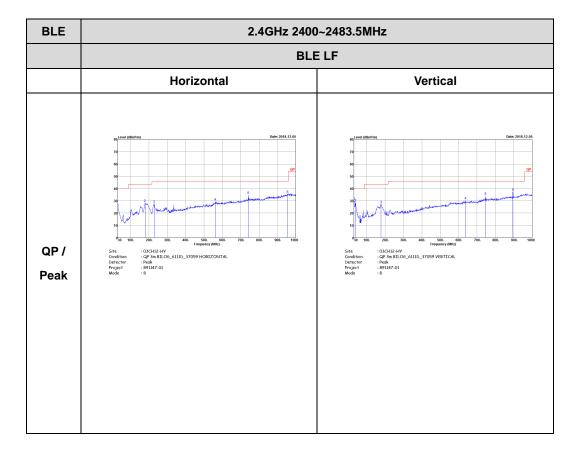


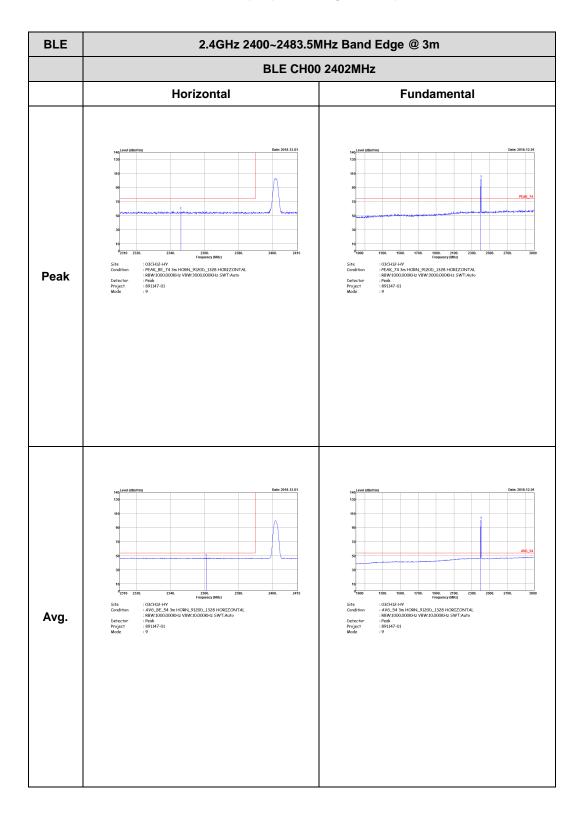
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m					
	BLE CH19 2440MHz - R					
	Vertical	Fundamental				
Peak	endedDifferenceended <td< th=""><th>Left blank</th></td<>	Left blank				
Avg.	technologic Des: 2018-12-81 19 1 </th <th>Left blank</th>	Left blank				



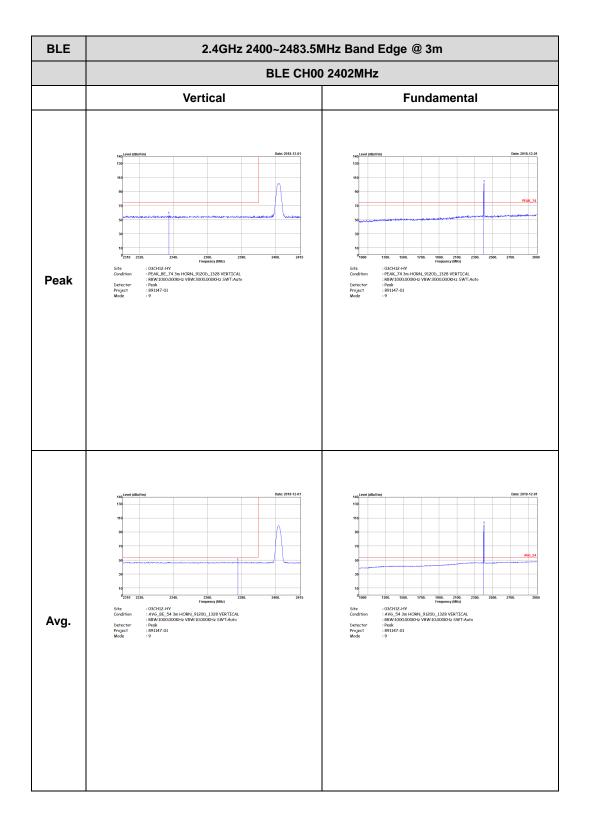


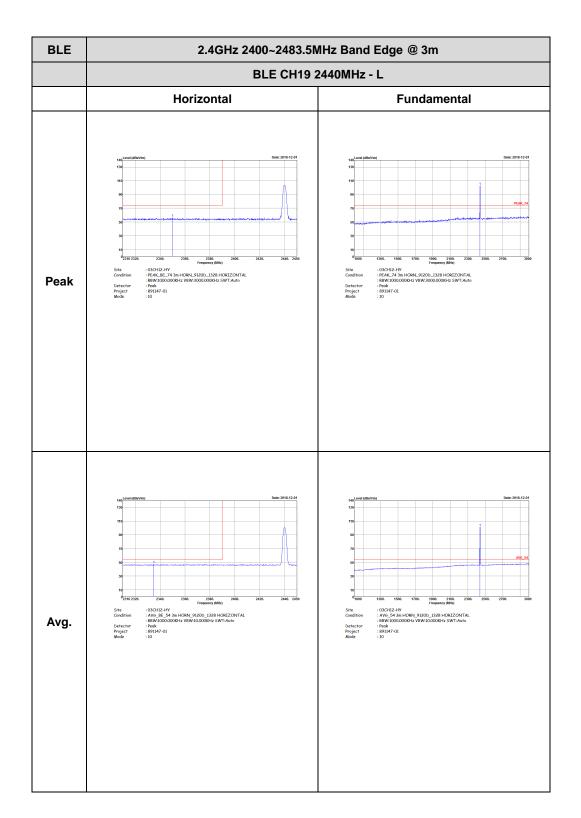

BLE 1Mbps (Harmonic @ 3m)

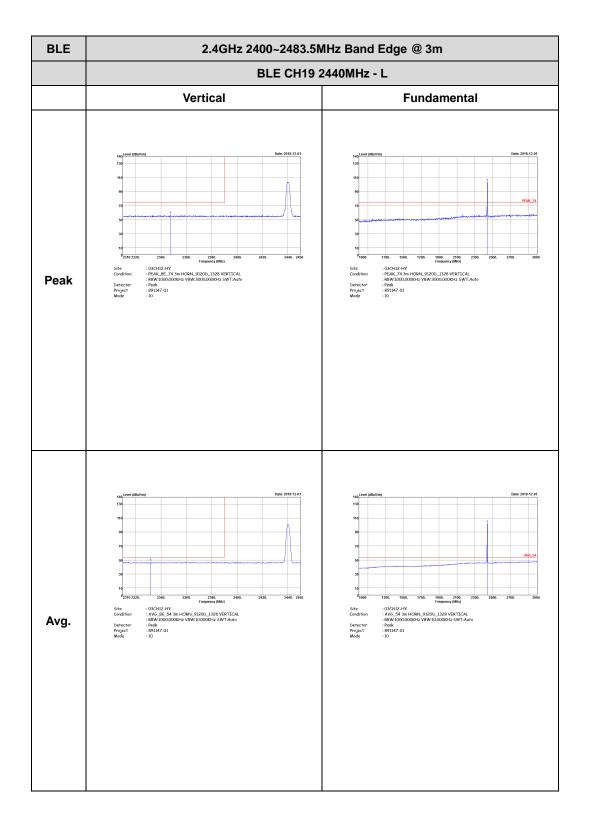




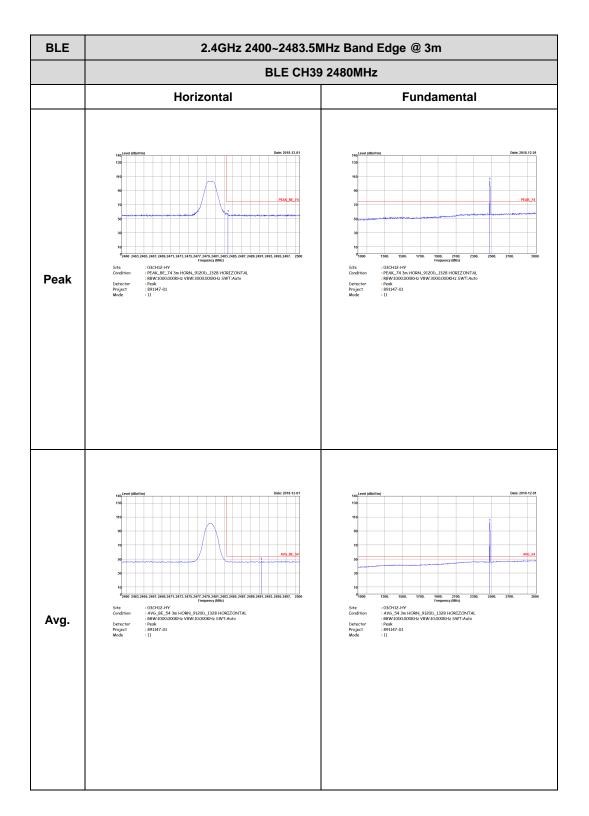
2.4GHz BLE (LF)

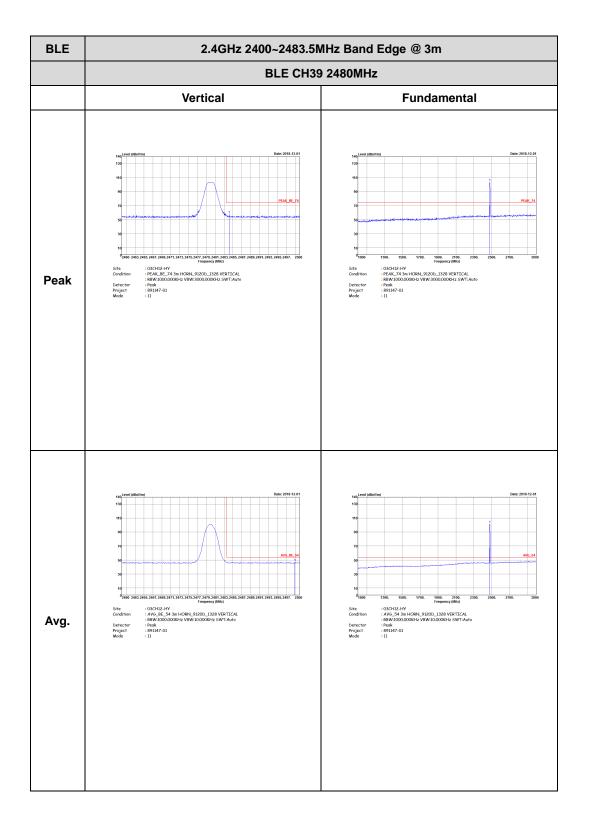



BLE 2Mbps (Band Edge @ 3m)

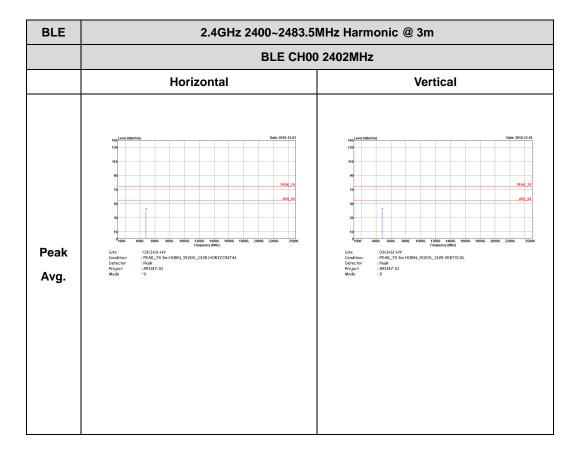


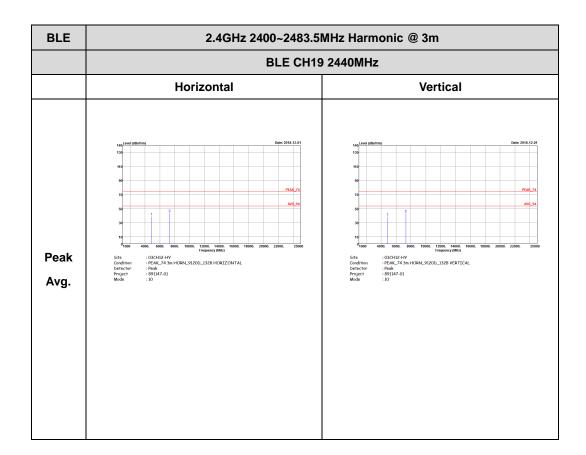
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m						
	BLE CH19 2440	MHz - R					
	Horizontal	Fundamental					
Peak	<figure><text></text></figure>	Left blank					
Avg.	$M_{1} = M_{2} = M_{2}$	Left blank					

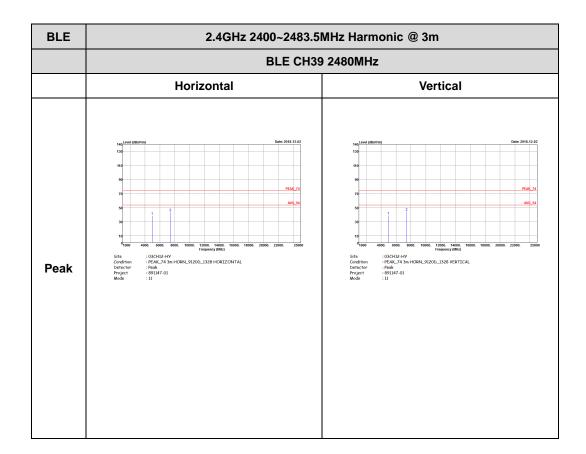




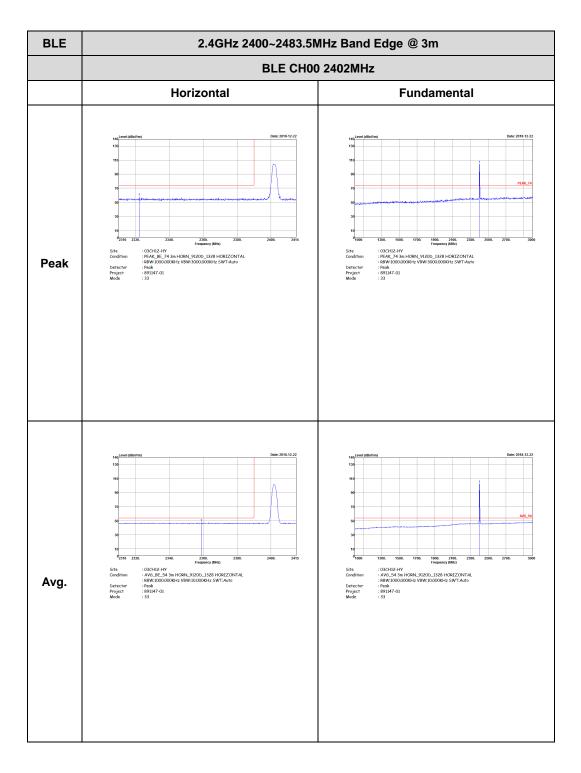
BLE	2.4GHz 2400~2483.5MHz Band Edge @ 3m						
	BLE CH19 2440MHz - R						
	Vertical	Fundamental					
Peak	endertailedchicketender	Left blank					
Avg.	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Left blank					

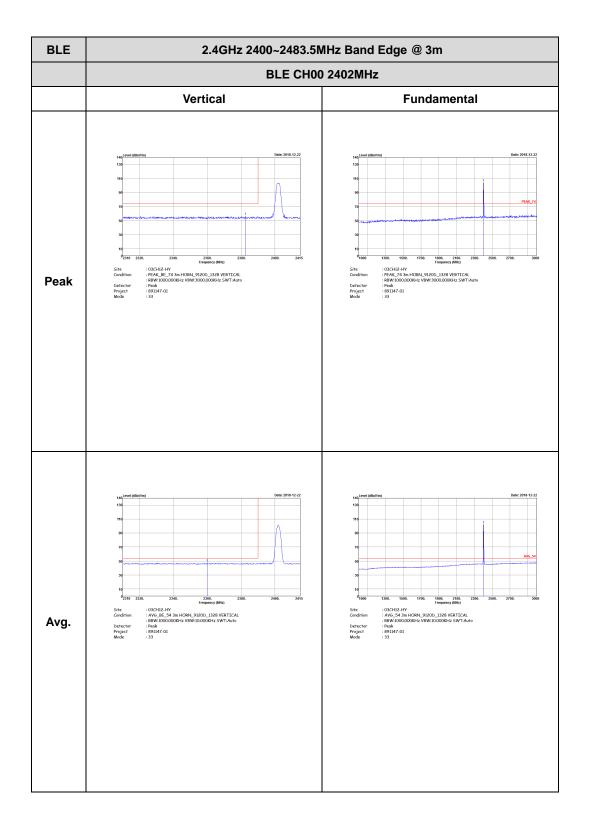





BLE 2Mbps (Harmonic @ 3m)

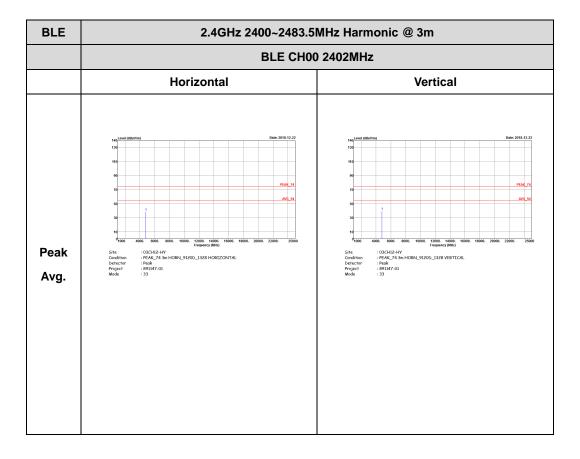
BLE 2.4GHz 2400-2483.5MHz BLE LF Horizontal Vertical Image: Constrained of the second of the second

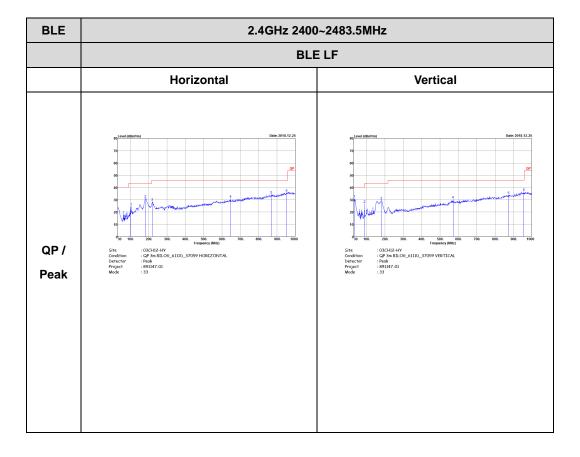

2.4GHz BLE 2Mbps (LF)


<Adapter 2>

2.4GHz 2400~2483.5MHz

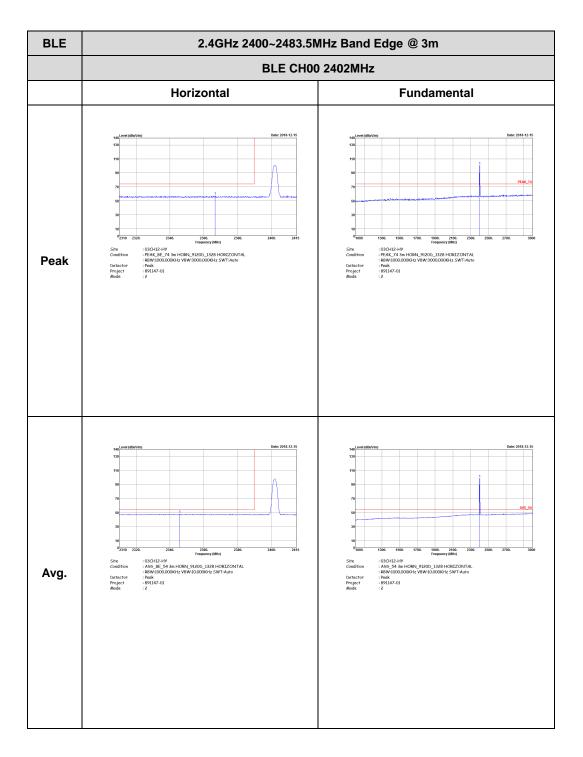
BLE 2Mbps (Band Edge @ 3m)

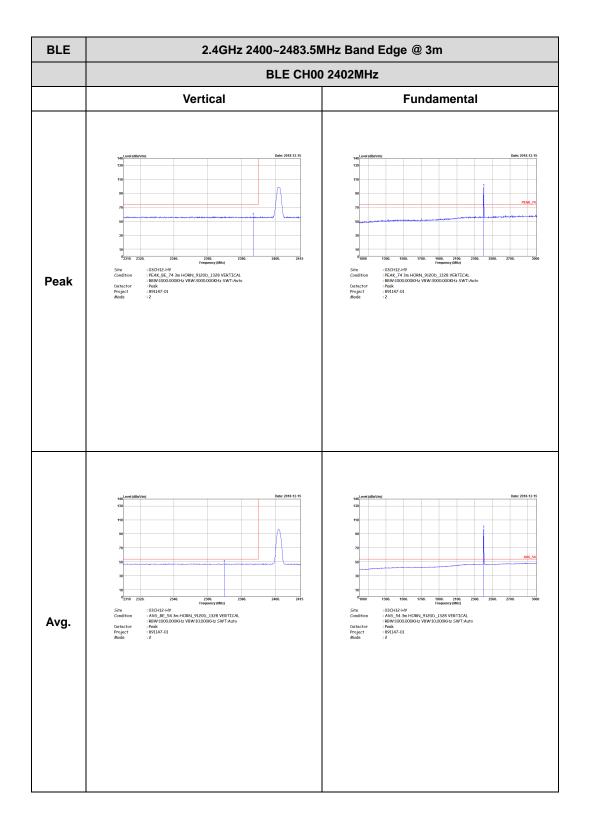




BLE 2Mbps (Harmonic @ 3m)

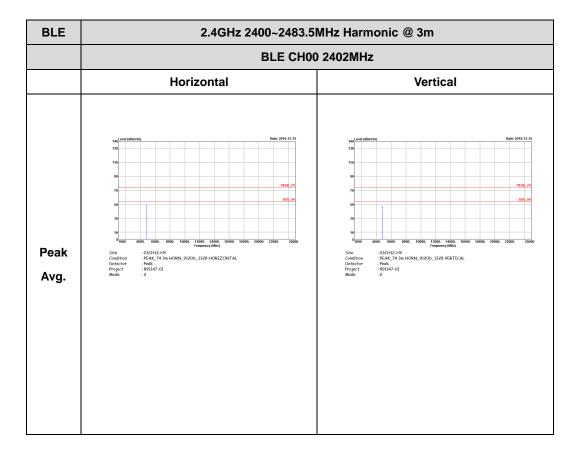
2.4GHz BLE 2Mbps (LF)

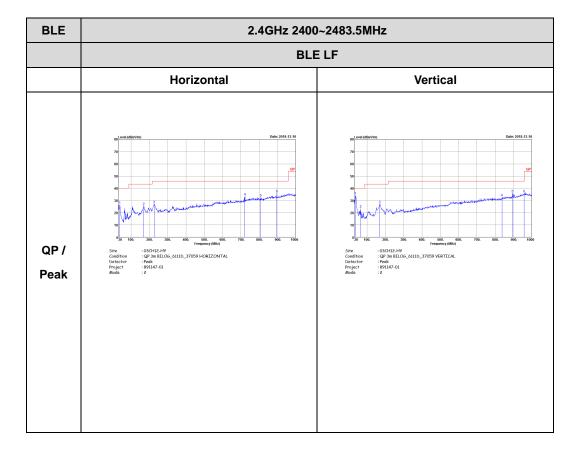



<For Sample 2> <Adapter 1>

2.4GHz 2400~2483.5MHz

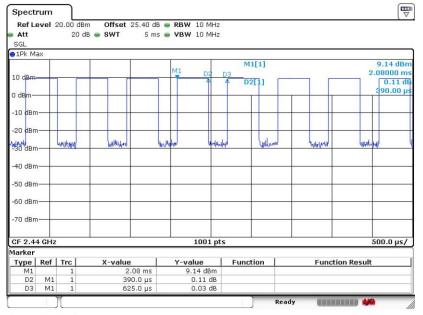
BLE 2Mbps (Band Edge @ 3m)



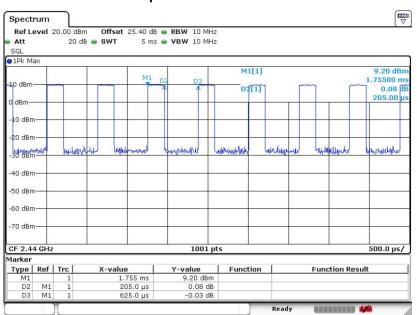


BLE 2Mbps (Harmonic @ 3m)

2.4GHz BLE 2Mbps (LF)



Appendix E. Duty Cycle Plots


Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting	Duty Factor(dB)
Bluetooth – LE for 1Mbps	62.4	390	2.56	3kHz	2.05
Bluetooth – LE for 2Mbps	32.8	205	4.88	10kHz	4.84

Bluetooth – LE for 1Mbps

Date: 11.OCT.2018 19:41:27

Bluetooth – LE for 2Mbps

Date: 11.OCT.2018 19:27:39

-THE END------