

FCC Test Report

(PART 27)

Report No.: RF180920C22-11

FCC ID: A4RG020C

Model Name: G020C

Received Date: Sep. 21, 2018

Test Date: Oct. 09, 2018 ~ Oct. 24, 2018

Issued Date: Dec. 27, 2018

Applicant: Google LLC

Address: 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C)

Test Location (1): No. 19, Hwa Ya 2nd Rd, Wen Hwa Vil, Kwei Shan Dist., Taoyuan City 33383, Taiwan (R.O.C)

FCC Registration / 788550 / TW0003 Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies

Table of Contents

Re	eleas	e Control Record	3		
1	Cer	tificate of Conformity	4		
2	Sun	ease Control Record			
3	Ger	eral Information	7		
	3.1	General Description of EUT	7		
	3.2				
	~ ~				
4	Tes	t Types and Results	.11		
	4.1	Output Power Measurement	.11		
			-		
	4.2				
	43				
		4.3.4 Test Results	19		
	4.4				
	4.1 Uitput Power Measurement. 4.1.1 Limits of Output Power Measurement. 4.1.2 Test Procedures. 4.1.3 Test Setup. 4.1.4 Test Results. 4.2 Modulation Characteristics Measurement. 4.2.1 Limits of Modulation Characteristics. 4.2.2 Test Setup. 4.2.3 Test Procedure 4.2.4 Test Results 4.3 Frequency Stability Measurement 4.3.1 Limits of Frequency Stability Measurement 4.3.2 Test Procedure 4.3.3 Test Procedure 4.3.4 Test Results 4.4 Occupied Bandwidth Measurement 4.4.1 Limits of Occupied Bandwidth Measurement 4.4.2 Test Procedure 4.4.3 Test Procedure 4.4.4 Test Result 4.5 Band Edge Measurement 4.5.1 Limits of Band Edge Measurement 4.5.2 Test Result 4.5 Band Edge Measurement 4.5.1 Limits of Band Edge Measurement 4.5.2 Test Results 4.6				
 4.2.1 Limits of Modulation Characteristics. 4.2.2 Test Setup. 4.2.3 Test Procedure 4.2.4 Test Results. 4.3 Frequency Stability Measurement 4.3.1 Limits of Frequency Stability Measurement 4.3.2 Test Procedure 4.3.3 Test Setup. 4.3.4 Test Results. 4.4 Occupied Bandwidth Measurement. 4.4.1 Limits of Occupied Bandwidth Measurement 4.4.2 Test Procedure 4.4.3 Test Setup. 4.4.4 Test Result 4.5 Band Edge Measurement. 4.5.1 Limits of Band Edge Measurement 4.5.2 Test Setup. 4.5.3 Test Procedures. 4.5.4 Test Results. 					
	4 5				
	4.5	•	24		
		•			
	4.6				
		4.6.3 Test Procedure	29		
	4.7				
5	Pict	ures of Test Arrangements	44		
Ap	open	dix – Information on the Testing Laboratories	45		

Release Control Record

Issue No.	Description	Date Issued
RF180920C22-11	Original Release	Dec. 27, 2018

1 Certificate of Conformity

Product:	Smartphone
Model Name:	G020C
Sample Status:	Identical Prototype
Applicant:	Google LLC
Test Date:	Oct. 09, 2018 ~ Oct. 24, 2018
Standards:	FCC Part 27, Subpart C, D

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

Date: Dec. 27, 2018

Ivonne Wu / Supervisor

Date: Dec. 27, 2018

pphi Cres

Approved by :

Dylan Chiou / Project Engineer

	Applied Standard: FCC Part 27 & Part 2							
FCC Clause	Test Item	Result	Remarks					
2.1046 27.50(a)(3)			Meet the requirement of limit.					
2.1047	Modulation Characteristics	Pass	Meet the requirement.					
2.1055 27.54	Frequency Stability		Meet the requirement of limit.					
2.1049 27.53(a)(5)	Occupied Bandwidth	Pass	Meet the requirement of limit.					
2.1051 27.53(a)(4)	Band Edge Measurements	Pass	Meet the requirement of limit.					
2.1051 27.53(a)(4)	Conducted Spurious Emissions	Pass	Meet the requirement of limit.					
2.1053 27.53(a)(4)	Radiated Spurious Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -3.12 dB at 30.00 MHz.					

2 Summary of Test Results

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Padiated Emissions up to 1 CHz	30 MHz ~ 200 MHz	2.93 dB
Radiated Emissions up to 1 GHz	200 MHz ~ 1000 MHz	2.95 dB
Dedicted Emissions above 4 CUL	1 GHz ~ 18 GHz	2.26 dB
Radiated Emissions above 1 GHz	18 GHz ~ 40 GHz	1.94 dB

2.2 Test Site And Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent	N9038A	MY51210203	Mar. 16, 2018	Mar. 15, 2019
Spectrum Analyzer Keysight	N9010A	MY56070348	Sep. 06, 2018	Sep. 05, 2019
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Jan. 11, 2018	Jan. 10, 2019
HORN Antenna SCHWARZBECK	BBHA 9120D	9120D-969	Dec. 12, 2017	Dec. 11, 2018
HORN Antenna SCHWARZBECK	BBHA 9170	148	Dec. 13, 2017	Dec. 12, 2017
BILOG Antenna SCHWARZBECK	VULB 9168	9168-472	Dec. 06, 2017	Dec. 05, 2018
Fixed Attenuator Mini-Circuits	MDCS18N-10	MDCS18N-10-01	Apr. 16, 2018	Apr. 15, 2019
MXG Vector signal generator Agilent	N5182B	MY53052658	May 24, 2018	May 23, 2019
Preamplifier EMCI	EMC 184045	980116	Oct. 12, 2018	Oct. 11, 2019
Preamplifier EMCI	EMC 012645	980115	Oct. 12, 2018	Oct. 11, 2019
Preamplifier EMCI	EMC 330H	980112	Oct. 12, 2018	Oct. 11, 2019
RF Coaxial Cable HUBER+SUHNNER	EMC104-SM-SM-800 0&3000	140811+170717	Oct. 12, 2018	Oct. 11, 2019
RF Coaxial Cable HUBER+SUHNNER	SUCOFLEX 104	EMC104-SM-SM-1 000(140807)	Oct. 12, 2018	Oct. 11, 2019
RF Coaxial Cable WOKEN	8D-FB	Cable-Ch10-01	Oct. 12, 2018	Oct. 11, 2019
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Software BV ADT	E3 6.120103	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA
Radio Communication Analyzer Anritsu	MT8820C	6201300640	Aug. 16, 2017	Aug. 15, 2019
Temperature & Humidity Chamber	GTH-120-40-CP-AR	MAA1306-019	Sep. 05, 2018	Sep. 04, 2019
DC Power Supply Topward	33010D	807748	NA	NA

Note: 1. The calibration interval of the above test instruments is 12 / 24 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 10.
- 3. The horn antenna and preamplifier (model: EMC 184045) are used only for the measurement of emission frequency above 1 GHz if tested.
- 4. The IC Site Registration No. is 7450F-10.

3 General Information

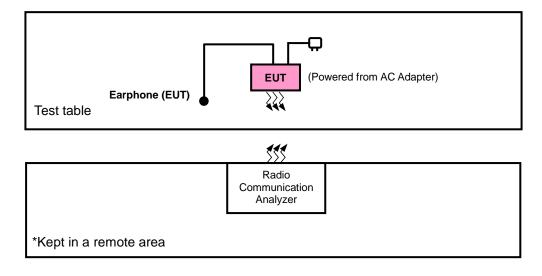
3.1 General Description of EUT

Product	Smartphone					
Model Name	G020C					
Status of EUT	Identical Prototype					
	3.85 Vdc (Li-ion battery)					
Power Supply Rating	5.0 Vdc or 9 Vdc (adapter)					
	5.0 Vdc (host equipment)					
Modulation Type QPSK, 16QAM, 64QAM						
	LTE Band 30 (Channel Bandwidth: 5 MHz)	2307.5 ~ 2312.5 MHz				
Frequency Range	LTE Band 30 (Channel Bandwidth: 10 MHz)	2310 MHz				
	LTE Band 30 (Channel Bandwidth: 5 MHz)	88.10 mW / 5MHz				
Max. EIRP Power	LTE Band 30 (Channel Bandwidth: 10 MHz)	89.54 mW / 5MHz				
Emission Designator	LTE Band 30 (Channel Bandwidth: 5 MHz) 4M50W7D					
Emission Designator	LTE Band 30 (Channel Bandwidth: 10 MHz)	8M97W7D				
Antenna Type	PIFA Antenna with 0.8 dBi gain					
Accessory Device	Refer to Note as below					
Data Cable Supplied	Refer to Note as below					

Note:

1. There're 2 configurations for the EUT listed as below.

Main Sample: EUT + Battery 1


2nd Sample: EUT + Battery 2

- ♦ After pre-tested with the EUT, only the worst configuration (main sample) was chosen for the final test.
- 2. The EUT's accessories list refers to Ext. Pho.
- 3. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.

3.2 Configuration of System Under Test

<Radiated Emission Test>

<E.I.R.P. Test>

Test table	EUT (Powered from battery)
	\$\$ \$
	Radio Communication Analyzer
*Kept in a remote area	

3.2.1 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units.

3.3 Test Mode Applicability and Tested Channel Detail

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports

The worst case was found when positioned on X-plane for EIRP and X-axis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT Configure Mode	Test Item	Available Channel	Tested Channel	Channel Bandwidth	Modulation	Mode
	EIRP	27685 to 27735	27685, 27710, 27735	5 MHz	QPSK, 16QAM, 64QAM	1 RB / 0 RB Offset
-	LIKF	27710	27710	10 MHz	QPSK, 16QAM, 64QAM	1 RB / 0 RB Offset
-	Modulation Characteristics	27685 to 27735	27710	5 MHz	QPSK, 16QAM, 64QAM	25 RB / 0 RB Offset
	Frequency	27685 to 27735	27685, 27735	5 MHz	QPSK	1 RB / 0 RB Offset
-	Stability	27710	27710	10 MHz	QPSK	1 RB / 0 RB Offset
	Occupied Bandwidth	27685 to 27735	27685, 27710, 27735	5 MHz	QPSK, 16QAM, 64QAM	25 RB / 0 RB Offset
-		27710	27710	10 MHz	QPSK, 16QAM, 64QAM	50 RB / 0 RB Offset
		27685 to 27735	27685, 27710, 27735	5 MHz	QPSK, 16QAM	25 RB / 0 RB Offset
-	Band Edge	27710	27710	10 MHz	QPSK, 16QAM	50 RB / 0 RB Offset
	Conducted	27685 to 27735	27685, 27710, 27735	5 MHz	QPSK	1 RB / 0 RB Offset
-	Emission	27710	27710	10 MHz	QPSK	1 RB / 0 RB Offset
	Radiated	27685 to 27735	27685, 27710, 27735	5 MHz	QPSK	1 RB / 0 RB Offset
-	Emission	27710	27710	10 MHz	QPSK	1 RB / 0 RB Offset

Note: This device was tested under all bandwidths, RB configurations and modulations. The worst case was found in QPSK modulation.

Test Condition:

Test Item	Environmental Conditions	Input Power	Tested By
EIRP	25 deg. C, 65 % RH	3.85 Vdc	Thomas Wei
Modulation Characteristics	25 deg. C, 65 % RH	3.85 Vdc	Wayne Lin
Frequency Stability	25 deg. C, 65 % RH	3.85 Vdc	Wayne Lin
Occupied Bandwidth	25 deg. C, 65 % RH	3.85 Vdc	Wayne Lin
Band Edge	25 deg. C, 65 % RH	3.85 Vdc	Wayne Lin
Conducted Emission	25 deg. C, 65 % RH	3.85 Vdc	Wayne Lin
Radiated Emission	25 deg. C, 65 % RH	120 Vac, 60 Hz	Thomas Wei

3.4 EUT Operating Conditions

The EUT makes a call to the communication simulator. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC 47 CFR Part 2 FCC 47 CFR Part 27 KDB 971168 D01 Power Meas License Digital Systems v03r01 ANSI/TIA/EIA-603-E 2016 ANSI 63.26-2015

NOTE: All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Output Power Measurement

4.1.1 Limits of Output Power Measurement

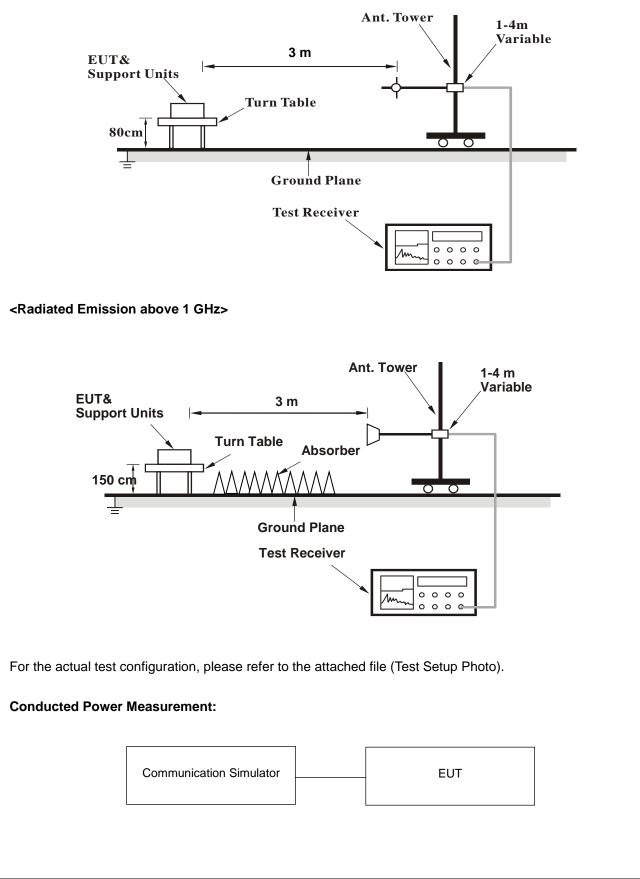
Mobile and portable stations. (i) For mobile and portable stations transmitting in the 2305-2315 MHz band or the 2350-2360 MHz band, the average EIRP must not exceed 50 milliwatts within any 1 megahertz of authorized bandwidth, except that for mobile and portable stations compliant with 3GPP LTE standards or another advanced mobile broadband protocol that avoids concentrating energy at the edge of the operating band the average EIRP must not exceed 250 milliwatts within any 5 megahertz of authorized bandwidth but may exceed 50 milliwatts within any 1 megahertz of authorized bandwidth. For mobile and portable stations using time division duplexing (TDD) technology, the duty cycle must not exceed 38 percent in the 2305-2315 MHz and 2350-2360 MHz bands. Mobile and portable stations using FDD technology are restricted to transmitting in the 2305-2315 MHz band. Power averaging shall not include intervals in which the transmitter is off.

4.1.2 Test Procedures

EIRP Measurement:

- a. All measurements were done at low, middle and high operational frequency range. RBW is 5 MHz and VBW is 15 MHz for LTE mode.
- b. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8 m (below or equal 1 GHz) and/or 1.5 m (above 1 GHz) height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- c. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step b. Record the power level of S.G.
- d. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.

Conducted Power Measurement:


- a. The EUT was set up for the maximum power with LTE link data modulation and link up with simulator.
- b. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

4.1.3 Test Setup

EIRP / ERP Measurement:

<Radiated Emission below or equal 1 GHz>

4.1.4 Test Results

The worst configuration mode is presented in the report as below. Please refer to SAR test report for more detail test mode.

Band		TX Antenna	WLAN Function	Body-Worn/Hotspot
LTE	LTE B30		WLAN-Off	Body-Worn/Hotspot

Conducted Output Power (dBm)

	LTE Band 30												
	Body-Worn / Hotspot												
	Ant-2												
BW	MCS	RB Size	RB Offset	Mid	3GPP MPR	BW	MCS	RB Size	RB Offset	Low	Mid	High	3GPP MPR
BW	Index	Cha	nnel	27710	(dB)	DVV	Index	Cha	nnel	27685	27710	27735	(dB)
		Frequen	cy (MHz)	2310.0	(0.5)			Frequen	cy (MHz)	2307.5	2310.0	2312.5	(03)
		1	0	24.68	0			1	0	24.57	24.65	24.61	0
		1	24	24.66	0			1	12	24.55	24.63	24.59	0
		1	49	24.62	0			1	24	24.51	24.59	24.55	0
	QPSK	25	0	23.69	1		QPSK	12	0	23.58	23.66	23.62	1
		25	12	23.65	1			12	6	23.54	23.62	23.58	1
		25	25	23.64	1			12	13	23.53	23.61	23.57	1
		50	0	23.66	1			25	0	23.55	23.63	23.59	1
		1	0	23.63	1			1	0	23.52	23.60	23.56	1
		1	24	23.61	1			1	12	23.50	23.58	23.54	1
		1	49	23.57	1			1	24	23.46	23.54	23.50	1
10M	16QAM	25	0	22.64	2	5M	16QAM	12	0	22.53	22.61	22.57	2
		25	12	22.60	2			12	6	22.49	22.57	22.53	2
		25	25	22.59	2			12	13	22.48	22.56	22.52	2
		50	0	22.61	2			25	0	22.50	22.58	22.54	2
		1	0	22.62	2			1	0	22.51	22.59	22.55	2
		1	24	22.60	2	-		1	12	22.49	22.57	22.53	2
		1	49	22.56	2			1	24	22.45	22.53	22.49	2
	64QAM	25	0	21.63	3		64QAM	12	0	21.52	21.60	21.56	3
		25	12	21.59	3			12	6	21.48	21.56	21.52	3
		25	25	21.58	3			12	13	21.47	21.55	21.51	3
		50	0	21.60	3			25	0	21.49	21.57	21.53	3

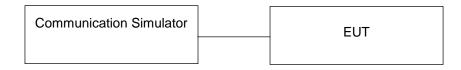
EIRP Power (dBm)

LTE Band 30												
	Channel Bandwidth: 5 MHz / QPSK											
Plane	ne Channel Frequency (MHz) Reading (dBm/5MHz) Correction Factor (dB) EIRP Power Density (dBm/5MHz) (dBm/5MHz) (mW/5MHz)											
	27685	2307.5	-19.54	38.99	19.45	88.10						
	27710	2310.0	-18.89	38.17	19.28	84.72	н					
х	27735	2312.5	-19.50	38.55	19.05	80.35						
^	27685	2307.5	-27.65	39.27	11.62	14.52						
	27710	2310.0	-27.29	38.68	11.39	13.77	V					
	27735 2312.5		-27.37	38.55	11.18	13.12						
Channel Bandwidth: 5 MHz / 16QAM												
	27685	2307.5	-20.57	38.99	18.42	69.50						
	27710	2310.0	-19.92	38.17	18.25	66.83	Н					
х	27735	2312.5	-20.53	38.55	18.02	63.39						
^	27685	2307.5	-28.68	39.27	10.59	11.46	V					
	27710	2310.0	-28.32	38.68	10.36	10.86						
	27735	2312.5	-28.40	38.55	10.15	10.35						
	-	-	Channel Band	width: 5 MHz	64QAM							
	27685	2307.5	-21.59	38.99	17.40	54.95						
	27710	2310.0	-20.94	38.17	17.23	52.84	Н					
х	27735	2312.5	-21.55	38.55	17.00	50.12						
^	27685	2307.5	-29.70	39.27	9.57	9.06						
	27710	2310.0	-29.34	38.68	9.34	8.59	V					
	27735	2312.5	-29.42	38.55	9.13	8.18						

Note: EIRP (dBm) = Reading (dBm) + Correction Factor (dB)

	LTE Band 30											
	Channel Bandwidth: 10 MHz / QPSK											
Plane	PlaneChannelFrequency (MHz)Reading (dBm/5MHz)Correction Factor (dB)EIRP Power Density (dBm/5MHz)EIRP Power Density (mW/5MHz)Pole											
V	27710	2310.0	-18.65	38.17	19.52	89.54	Н					
Х	27710	2310.0	-27.05	38.68	11.63	14.55	V					
		(Channel Band	width: 10 MHz	/ 16QAM							
V	27710	2310.0	-19.66	38.17	18.51	70.96	Н					
Х	27710	2310.0	-28.06	38.68	10.62	11.53	V					
			Channel Band	width: 10 MHz	/ 64QAM							
v	27710	2310.0	-20.65	38.17	17.52	56.49	Н					
Х	27710	2310.0	-29.05	38.68	9.63	9.18	V					

Note: EIRP (dBm) = Reading (dBm) + Correction Factor (dB)

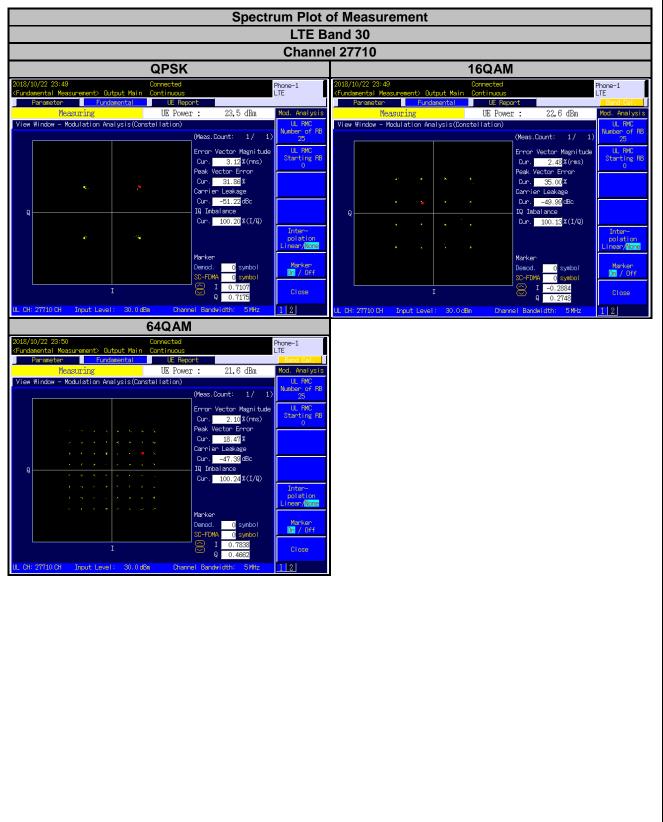


4.2 Modulation Characteristics Measurement

4.2.1 Limits of Modulation Characteristics

N/A

4.2.2 Test Setup

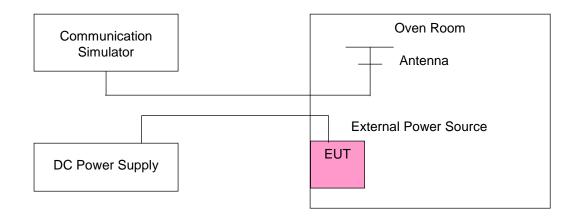


4.2.3 Test Procedure

Connect the EUT to Communication Simulator via the antenna connector. The frequency band is set as EUT supported Modulation and Channels, the EUT output is matched with 50 ohm load, the waveform quality and constellation of the EUT was tested.

4.2.4 Test Results

4.3 Frequency Stability Measurement


4.3.1 Limits of Frequency Stability Measurement

The frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized bands of operation.

- 4.3.2 Test Procedure
- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ± 0.5 °C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.

Note: The frequency error was recorded frequency error from the communication simulator.

4.3.3 Test Setup

4.3.4 Test Results

Frequency Error vs. Voltage

	LTE Band 30								
Voltage	Channel Bandwidth: 5 MHz								
(Volts)	Low C	hannel	High Channel						
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)					
3.85	2307.500001	0.0004	2312.500002	0.0010					
3.6	2307.500002	0.0009	2312.500001	0.0006					
4.4	2307.500001	0.0005	2312.500003	0.0014					

Note: The applicant defined the normal working voltage of the battery is from 3.6 Vdc to 4.4 Vdc.

Frequency Error vs. Temperature

	LTE Band 30							
	Channel Bandwidth: 5 MHz							
Temp. (℃)	Low C	hannel	High C	hannel				
	Frequency (MHz)	Frequency Error (ppm)	Frequency (MHz)	Frequency Error (ppm)				
-30	2307.500001	0.0004	2312.500001	0.0005				
-20	2307.500003	0.0011	2312.500002	0.0010				
-10	2307.500002	0.0010	2312.500001	0.0005				
0	2307.500003	0.0011	2312.500003	0.0013				
10	2307.500001	0.0004	2312.500003	0.0012				
20	2307.499998	-0.0007	2312.499998	-0.0008				
30	2307.499996	-0.0017	2312.499997	-0.0013				
40	2307.499999	-0.0006	2312.499997	-0.0013				
50	2307.499999	-0.0006	2312.499998	-0.0009				
55	2307.499999	-0.0005	2312.499998	-0.0007				

Frequency Error vs. Voltage

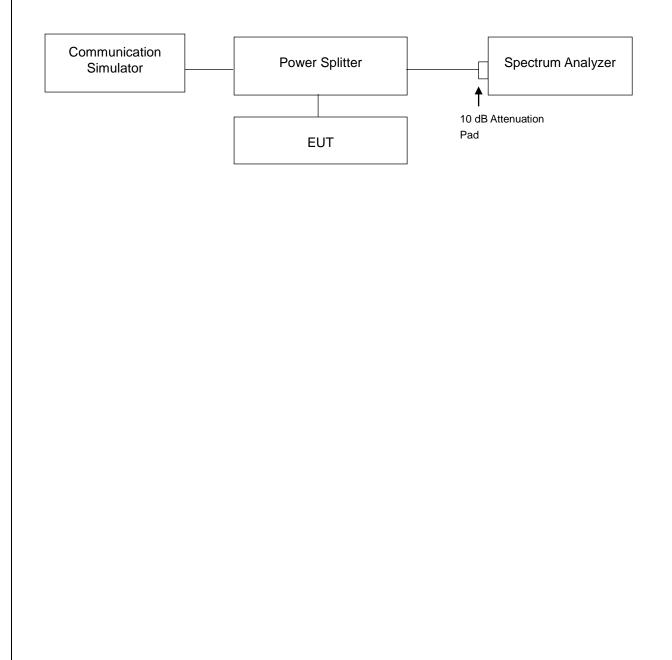
	LTE Band 30						
Voltage (Volts)	Channel Bandwidth: 10 MHz						
(10113)	Frequency (MHz)	Frequency Error (ppm)					
3.85	2310.000002	0.0010					
3.6	2310.000004	0.0016					
4.4	2310.000002	0.0010					

Note: The applicant defined the normal working voltage of the battery is from 3.6 Vdc to 4.4 Vdc.

Frequency Error vs. Temperature

	LTE Band 30						
Temp. (℃)	Channel Bandwidth: 10 MHz						
	Frequency (MHz)	Frequency Error (ppm)					
-30	2310.000001	0.0006					
-20	2310.000003	0.0012					
-10	2310.000002	0.0006					
0	2310.000004	0.0016					
10	2310.000004	0.0017					
20	2309.999996	-0.0016					
30	2309.999998	-0.0009					
40	2309.999996	-0.0016					
50	2309.999998	-0.0009					
55	2309.999997	-0.0011					

4.4 Occupied Bandwidth Measurement

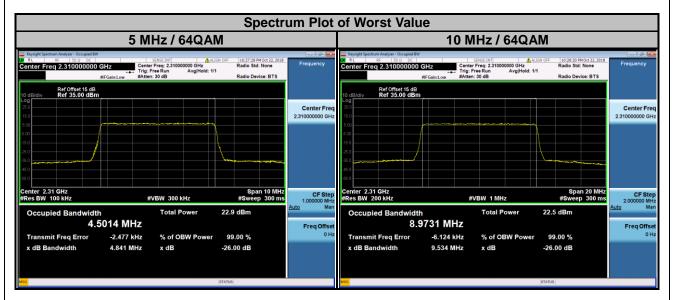

4.4.1 Limits of Occupied Bandwidth Measurement

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

4.4.2 Test Procedure

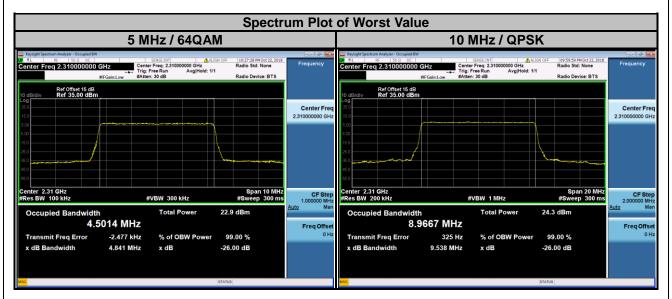
- a. The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- b. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth.

4.4.3 Test Setup



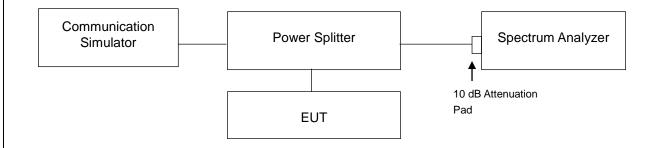
4.4.4 Test Result

<99 % Occupied Bandwidth>


LTE Band 30											
(Channel Band		С	hannel Band	width: 1	0 MHz					
Channel	Frequency (MHz)	99 % Occupied Bandwidth (MHz)		Channel	Frequency	99 % Occupied Bandwidth (MHz)					
		QPSK	16QAM	64QAM		(MHz)	QPSK	16QAM	64QAM		
27685	2307.5	4.4918	4.4917	4.4986							
27710	2310.0	4.4891	4.4924	4.5014	27710	27710 23	2310.0	8.9667	8.9692	8.9731	
27735	2312.5	4.4896	4.4920	4.5002							

<26 dB Bandwidth>

LTE Band 30											
(Channel Band		С	hannel Band	width: 1	0 MHz					
Ohannal	Frequency	26 dB Bandwidth (MHz)				Frequency	26 dB Bandwidth (MHz)				
Channel	(MHz)	QPSK	16QAM	64QAM	Channel	(MHz)	QPSK	16QAM	64QAM		
27685	2307.5	4.815	4.816	4.826							
27710	2310.0	4.825	4.808	4.841	27710	27710	27710 2310.0	2310.0	2310.0 9.538	9.526	9.534
27735	2312.5	4.816	4.807	4.841							

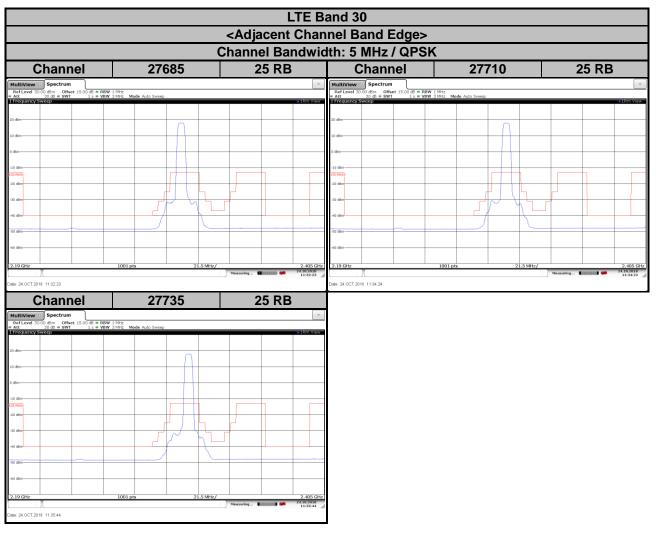

4.5 Band Edge Measurement

4.5.1 Limits of Band Edge Measurement

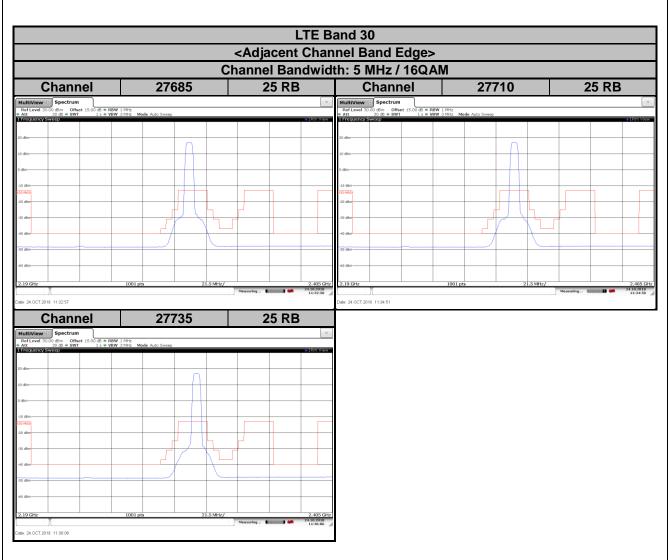
According to FCC 27.53(a) (4) For mobile and portable stations operating in the 2305-2315 MHz and 2350-2360 MHz bands:

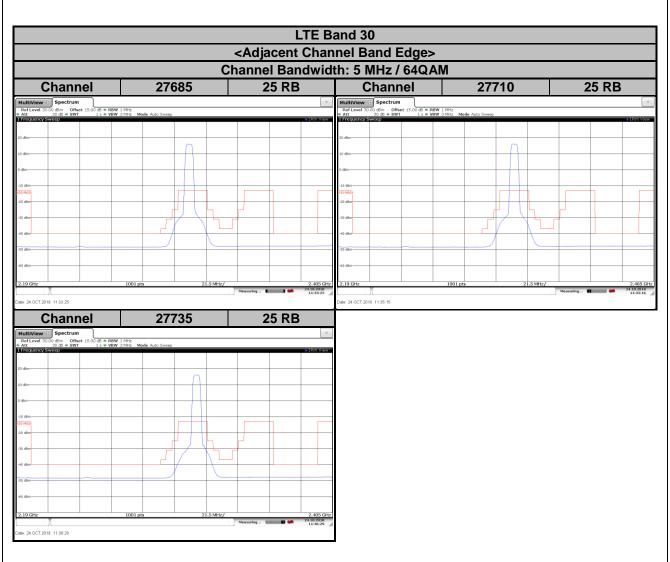
- (i) By a factor of not less than: 43 + 10 log (P) dB on all frequencies between 2305 and 2320 MHz and on all frequencies between 2345 and 2360 MHz that are outside the licensed band(s) of operation, not less than 55 + 10 log (P) dB on all frequencies between 2320 and 2324 MHz and on all frequencies between 2341 and 2345 MHz, not less than 61 + 10 log (P) dB on all frequencies between 2327 and 2341 MHz, and not less than 67 + 10 log (P) dB on all frequencies between 2328 and 2337 MHz;
- (ii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2300 and 2305 MHz, 55 + 10 log (P) dB on all frequencies between 2296 and 2300 MHz, 61 + 10 log (P) dB on all frequencies between 2292 and 2296 MHz, 67 + 10 log (P) dB on all frequencies between 2288 and 2292 MHz, and 70 + 10 log (P) dB below 2288 MHz;
- (iii) By a factor of not less than 43 + 10 log (P) dB on all frequencies between 2360 and 2365 MHz, and not less than 70 + 10 log (P) dB above 2365 MHz.

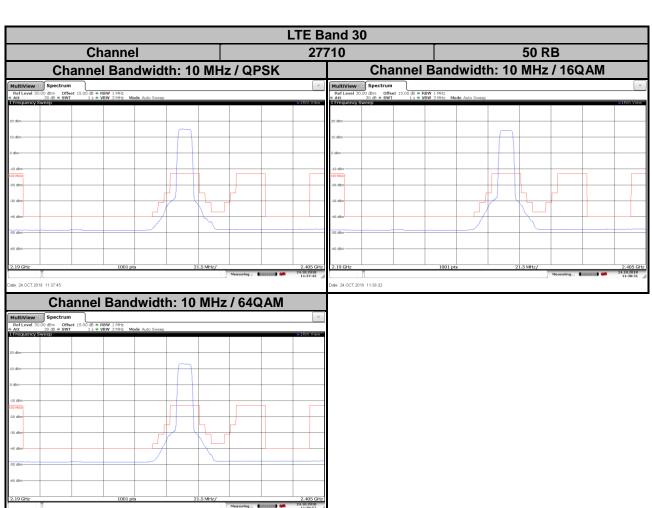
4.5.2 Test Setup



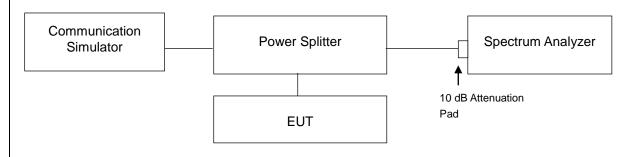
4.5.3 Test Procedures


- a. The EUT was set up for the maximum peak power with LTE link data modulation. The power was measured with R&S Spectrum Analyzer. All measurements were done at 2 channels (low and high operational frequency range).
- b. The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.
- c. Measuring frequency range is from 2200 MHz to 2395 MHz. 10 dB attenuation pad is connected with spectrum. RBW = 1 MHz and VBW = 3 MHz are used for conducted emission measurement.
- d. Record the max trace plot into the test report.


4.5.4 Test Results



Date: 24.0CT.2018 11:38:56

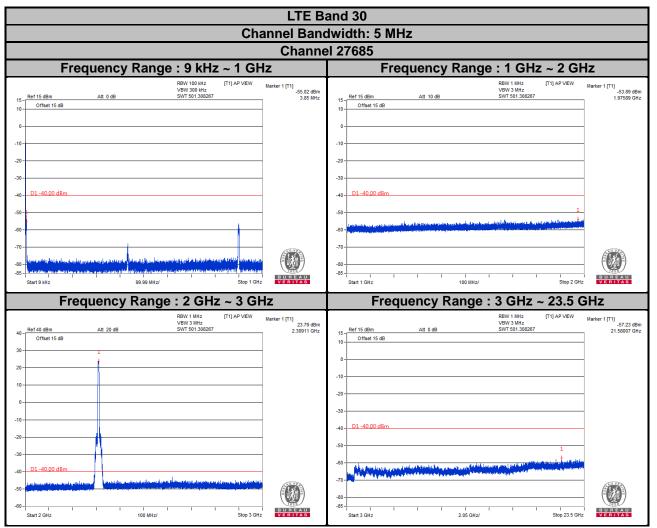


4.6 Conducted Spurious Emissions

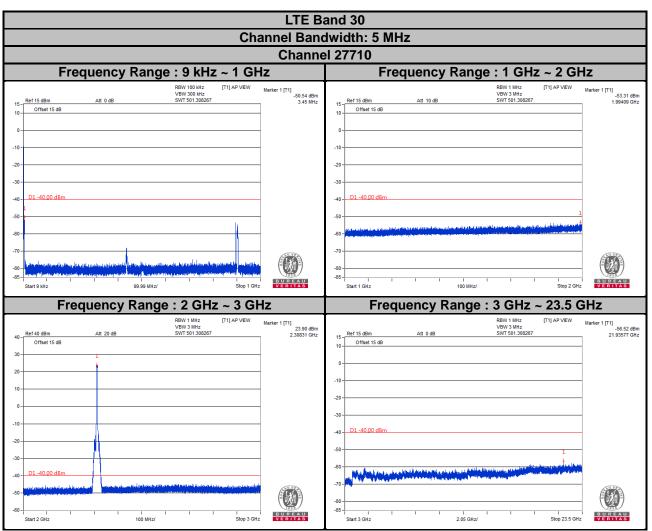
4.6.1 Limits of Conducted Spurious Emissions Measurement

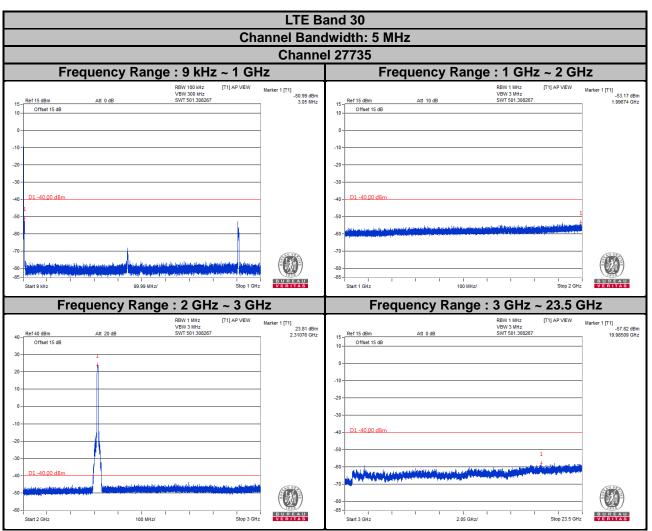
The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 70 +10 log10(P) dB. The limit of emission is equal to -40 dBm.

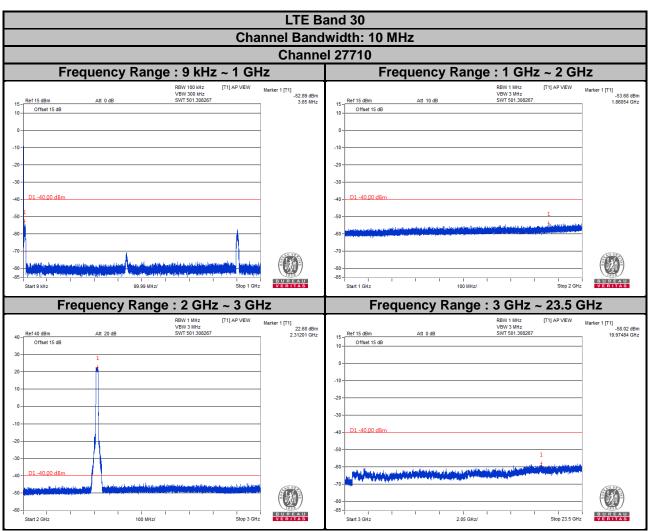
4.6.2 Test Setup



4.6.3 Test Procedure


- a. The EUT makes a phone call to the communication simulator. All measurements were done at low, middle and high operational frequency range.
- Measuring frequency range is from 9 kHz to 1 GHz. 10 dB attenuation pad is connected with spectrum.
 RBW = 100 kHz and VBW = 300 kHz are used for conducted emission measurement.
- c. Measuring frequency range is from 1 GHz to 23.5 GHz. 10 dB attenuation pad is connected with spectrum. RBW = 1 MHz and VBW = 3 MHz are used for conducted emission measurement.


4.6.4 Test Results



4.7 Radiated Emission Measurement

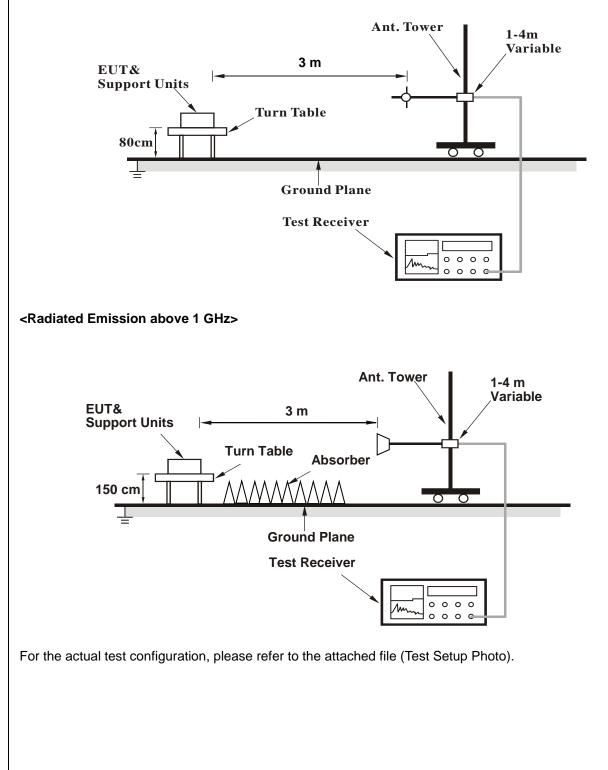
4.7.1 Limits of Radiated Emission Measurement

The power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) by at least 70 +10 log10(P) dB. The limit of emission is equal to -40 dBm.

4.7.2 Test Procedure

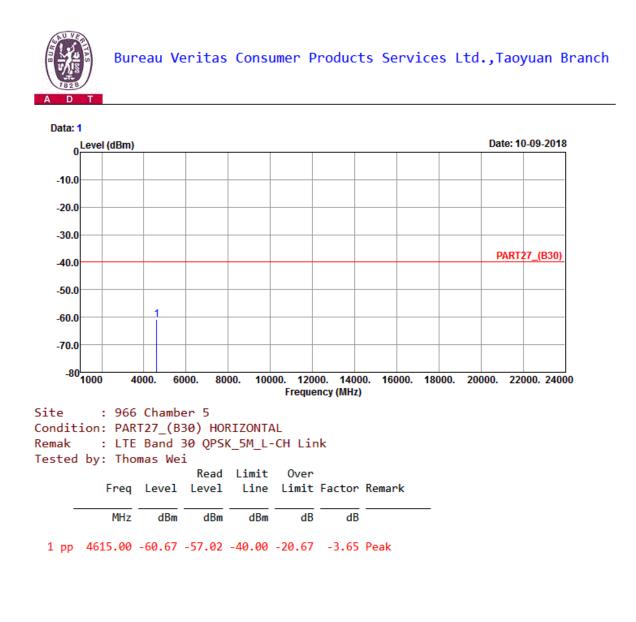
- a. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8 m (below or equal 1 GHz) and/or 1.5 m (above 1 GHz) height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1 m to 4 m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value " of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.R.P power 2.15 dB.

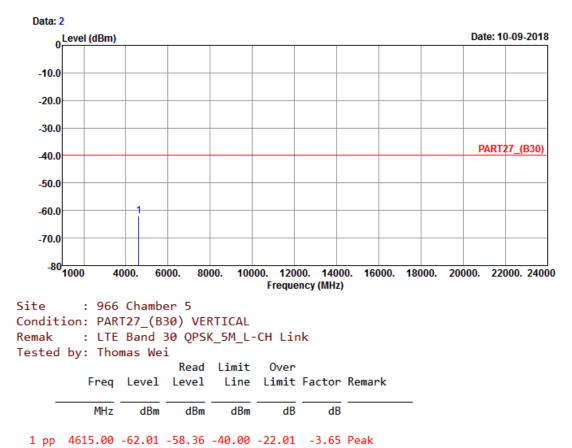
Note: The resolution bandwidth of spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz.


4.7.3 Deviation from Test Standard

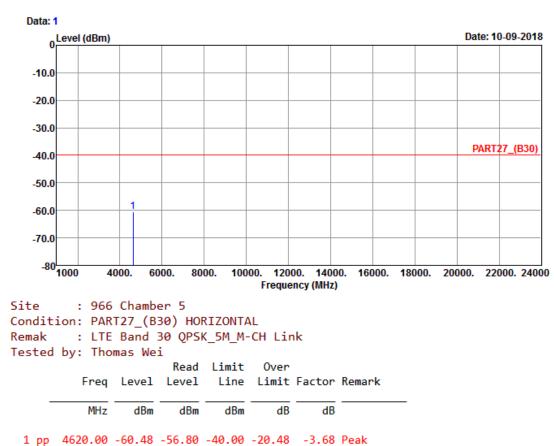
No deviation.

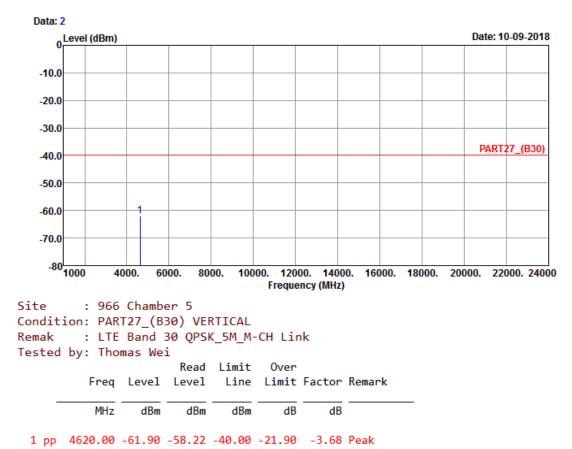
4.7.4 Test Setup

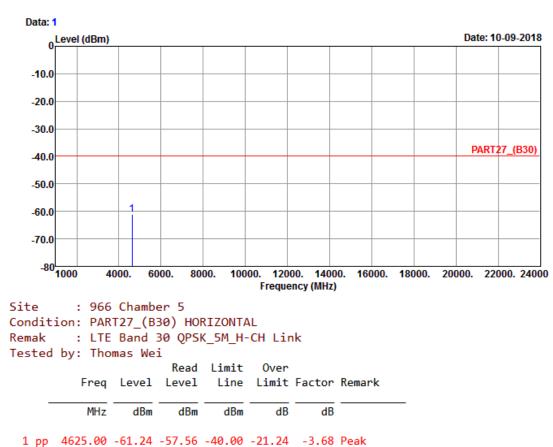

<Radiated Emission below or equal 1 GHz>


4.7.5 Test Results

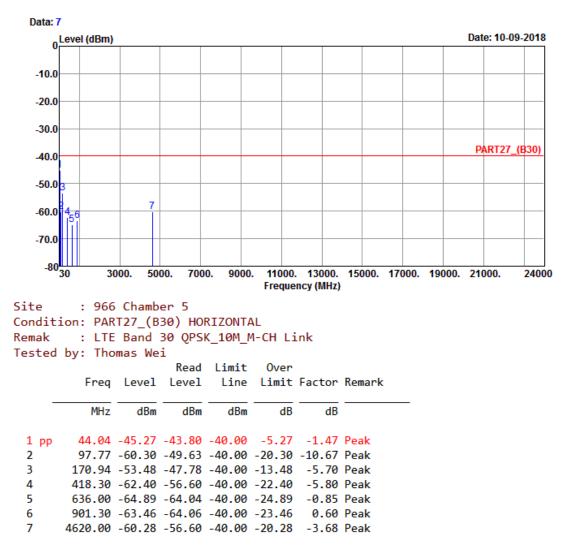
LTE Band 30 Channel Bandwidth: 5 MHz / QPSK Low Channel

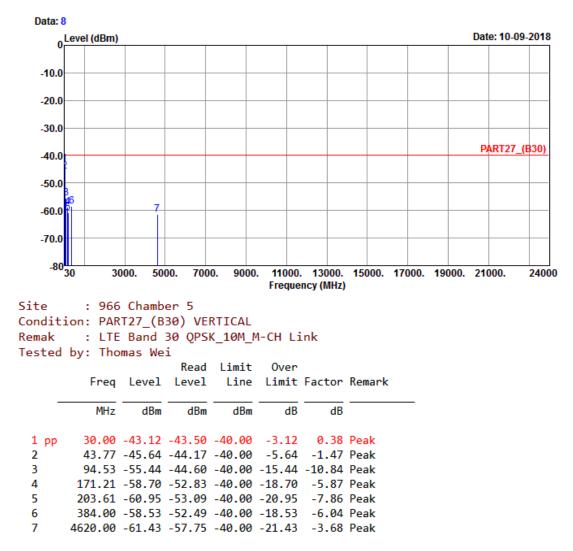



Middle Channel



High Channel




Channel Bandwidth: 10 MHz / QPSK Middle Channel

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----