

FCC CFR47 PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

BLUETOOTH LOW ENERGY CERTIFICATION TEST REPORT

FOR

GLASS

MODEL NUMBER: XEB

FCC ID: A4R-X1

REPORT NUMBER: 12U14656-4, REVISION A

ISSUE DATE: NOVEMBER 29, 2012

Prepared for GOOGLE INC.
1600 AMPHITHEATRE PARKWAY MOUNTAIN VIEW CA, 94043, U.S.A

Prepared by
UL CCS
47173 BENICIA STREET
FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	11/29/12	Initial Issue	T. LEE
A	12/18/12	Add Duty Cycle Information	T.LEE

TABLE OF CONTENTS

1.	Α	TTEST	TATION OF TEST RESULTS	. 4
2.	Т	EST M	ETHODOLOGY	. 5
3.	F	ACILIT	TIES AND ACCREDITATION	. 5
4.	С	ALIBR	ATION AND UNCERTAINTY	. 5
	4.1.	. ME	ASURING INSTRUMENT CALIBRATION	. 5
	4.2.	. SAI	MPLE CALCULATION	. 5
	4.3.	. ME	ASUREMENT UNCERTAINTY	. 5
5.	E	QUIPN	MENT UNDER TEST	. 6
	5.1.	. DE	SCRIPTION OF EUT	. 6
	5.2.	. MA	XIMUM OUTPUT POWER	. 6
	5.3.	. DE	SCRIPTION OF AVAILABLE ANTENNAS	. 6
	5.4.	. so	FTWARE AND FIRMWARE	. 6
	5.5.	. WC	RST-CASE CONFIGURATION AND MODE	. 7
	5.6.	. DE	SCRIPTION OF TEST SETUP	. 8
7.	Α	NTEN	NA PORT TEST RESULTS	11
	7.1.	. DU	TY CYCLE	11
	7.2.	. BLU	JETOOTH LOW ENERGY	12
		.2.1.	6 dB BANDWIDTH	
	-	.2.2. .2.3.	99% BANDWIDTHAVERAGE POWER	
		.2.3. .2.4.	OUTPUT POWER	
		.2.5.	POWER SPECTRAL DENSITY	
	7	.2.6.	OUT-OF-BAND EMISSIONS	
8.	R	RADIAT	ED TEST RESULTS	29
	8.1.	. LIM	IITS AND PROCEDURE	29
	8.2.	TR	ANSMITTER ABOVE 1 GHz	30
	8		TX ABOVE 1 GHz FOR BLUETOOTH LOW ENERGY MODE IN THE 2.4 GHz	50
	8.3.	. WC	RST-CASE BELOW 1 GHz	39
9.	Α	C POV	VER LINE CONDUCTED EMISSIONS	41

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: GOOGLE INC.

1600 AMPHITHEATRE PARKWAY MOUNTAIN VIEW, CA, 94043, U.S.A

EUT DESCRIPTION: GLASS

MODEL: XEB

SERIAL NUMBER: 015498FC0A011010

DATE TESTED: NOVEMBER 28 and 29, 2012

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

DATE: NOVEMBER 29, 2012

CFR 47 Part 15 Subpart C

Pass

UL CCS tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By:

TIM LEE

WISE PROJECT ENGINEER

UL CCS

THANH NGUYEN EMC ENGINEER

Mankonguym

UL CCS

Tested By:

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 3, and RSS-210 Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a glass providing a heads-up video display. The device incorporates an 802.11 b/g 2.4 GHz WLAN and BT, BT-LE radio. This report covers the BT-LE radio mode.

The radio module is manufactured by Broadcom.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum conducted output power as follows:

Frequency Range (MHz)	Mode	Output Power (dBm)	Output Power (mW)
2402 - 2480	BT-LE	5.81	3.81

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a coaxial monopole antenna, with a maximum gain is 3.32 dBi.

5.4. SOFTWARE AND FIRMWARE

The firmware/software installed in the EUT during testing was 20121114095638.

5.5. WORST-CASE CONFIGURATION AND MODE

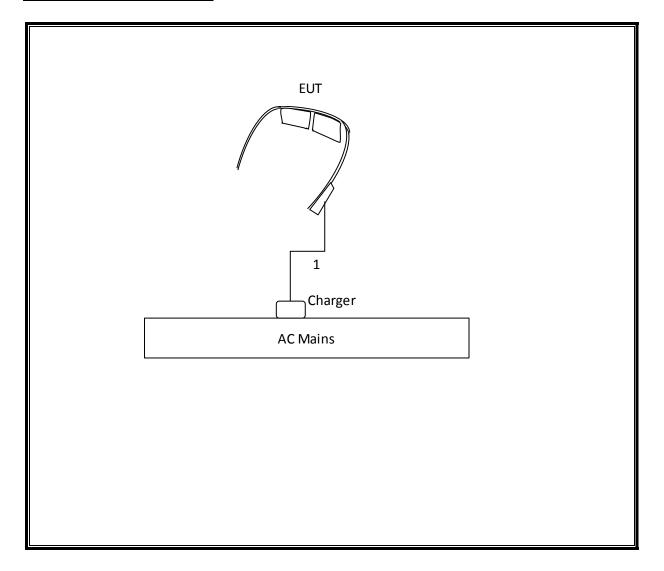
Radiated emission and power line conducted emission were performed video playing with audio sound and with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that Z orientation(The right side up) was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Z orientation operated by AC adapter.

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List							
Description Manufacturer Model Serial Number FCC ID							
AC Charger	Google	10AG212020	N/A	DoC			


I/O CABLES

	I/O Cable List							
Cable No	Port	# of identical ports	Connector Type	Cable Type	Cable Length (m)	Remarks		
1	DC	1	Barrel	Unshielded	1.8 m	To LT		

TEST SETUP

The EUT was set up as shown in the following diagrams. A video stored within the EUT was played on the heads-up display with audio running to the vibrating element and transmit the Bluetooth Low Energy mode.

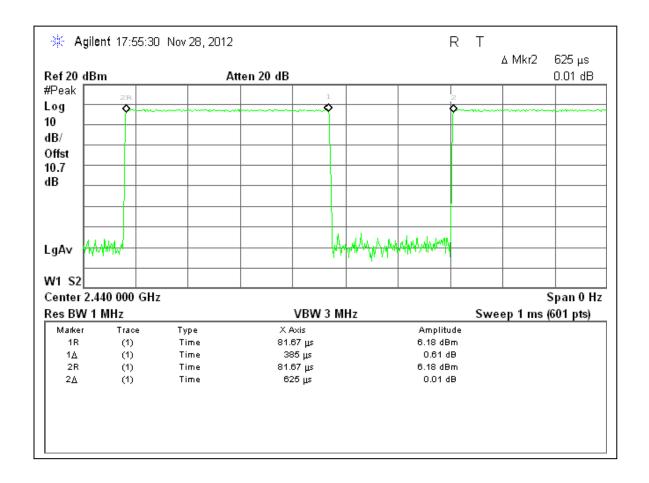
SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Test Equipment List								
Description Manufacturer Model Asset Cal Date Cal Due								
Antenna, Horn, 18 GHz	EMCO	3115	C00872	09/20/12	09/20/13			
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01012	10/21/12	21/10/13			
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C00749	10/21/12	10/21/13			
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00558	02/21/12	02/21/13			
Bilog 30-2000MHz	Sunol	JB1	C01071	01/26/12	01/26/13			
Power meter	HP	437B	T226	06/25/12	06/25/13			
Power Sensor	HP	8481A	T233	06/26/12	06/26/13			
LISN, 30 MHz	FCC	LISN-50/250-25-	N02625	12/13/11	12/13/12			
LISN, 10 kHz ~ 30 MHz	Solar	8012-50-R-24-BN	N02481	03/07/12	03/07/13			
EMI Test Receiver	R&S	ESC20	N02396	08/18/12	08/18/13			

7. ANTENNA PORT TEST RESULTS


7.1. DUTY CYCLE

LIMITS

None; for reporting purposes only.

RESULTS

Mode	Tx on	Tx on + Tx off	Duty Cycle	Correction Factor
	(usec)	(usec)	(%)	(dB)
BLE	385	625	61.60	2.10

7.2. BLUETOOTH LOW ENERGY

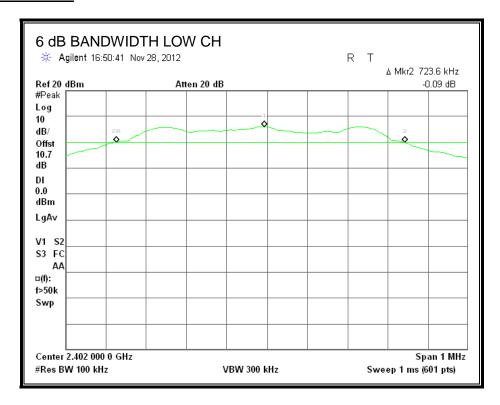
7.2.1. 6 dB BANDWIDTH

<u>LIMITS</u>

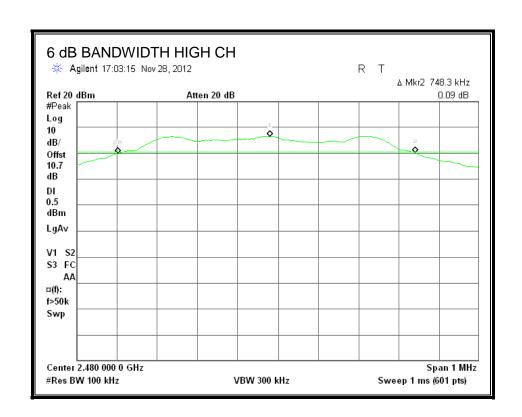
FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.


TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer with the RBW set between 1% and 5% of the EBW, the VBW $>= 3 \times RBW$, peak detector and max hold.


RESULTS

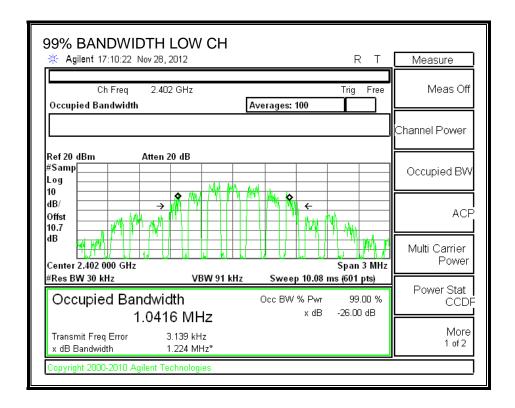
Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2402	0.7236	0.5
Middle	2440	0.7444	0.5
High	2480	0.7483	0.5

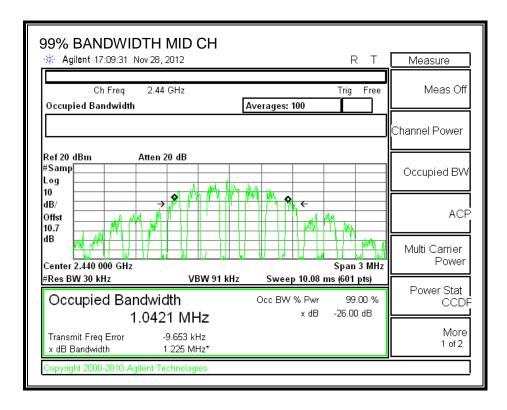
6 dB BANDWIDTH

7.2.2. 99% BANDWIDTH

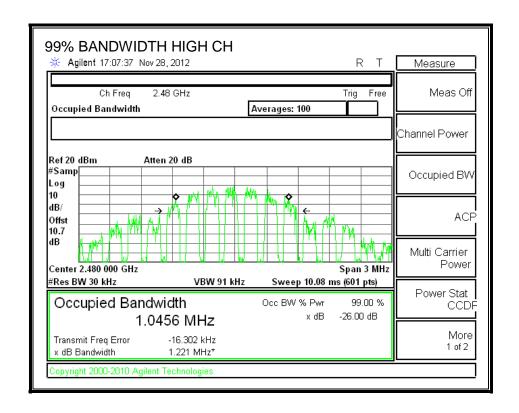
LIMITS

None; for reporting purposes only.


TEST PROCEDURE


The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

RESULTS


Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2402	1.0416
Middle	2440	1.0421
High	2480	1.0456

99% BANDWIDTH

Page 16 of 44

7.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

The cable assembly insertion loss of 10.7 dB (including 10 dB pad and .7 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

Channel	Frequency	Power
	(MHz)	(dBm)
Low	2402	3.91
Mid	2440	4.24
High	2480	4.16

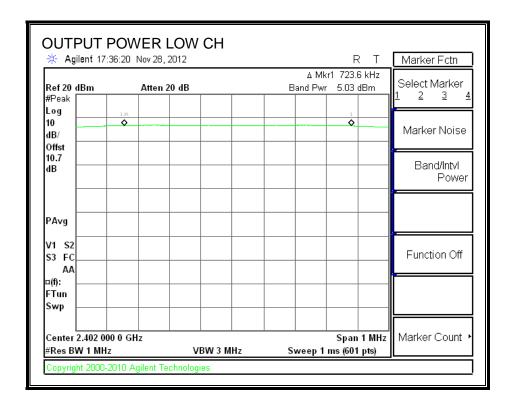
7.2.4. OUTPUT POWER

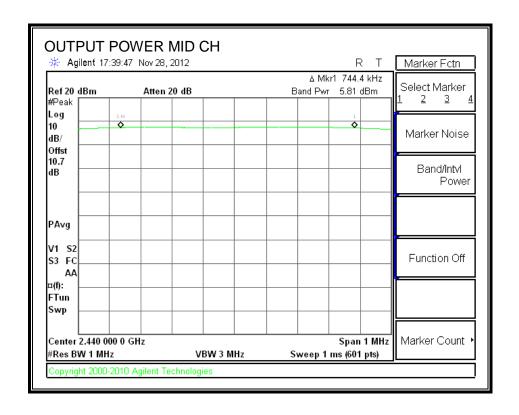
LIMITS

FCC §15.247

IC RSS-210 A8.4

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt, based on the use of antennas with directional gains that do not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


DIRECTIONAL ANTENNA GAIN


There is only one transmitter output therefore the directional gain is equal to the antenna gain.

RESULTS

Channel	Frequency (MHz)	Peak Power Reading (dBm)	Limit (dBm)	Margin (dB)
Low	2402	5.030	30	-24.970
Middle	2440	5.810	30	-24.190
High	2480	5.380	30	-24.620

OUTPUT POWER

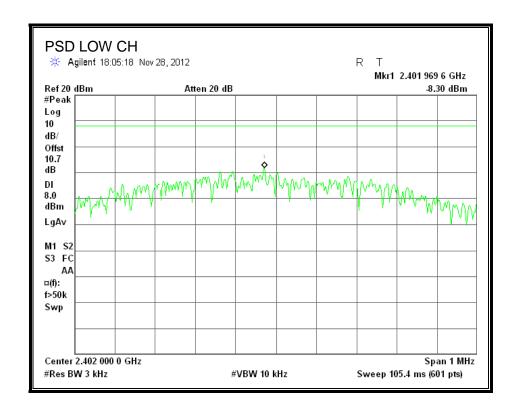
opyright 2000-2010 Agilent Technologi

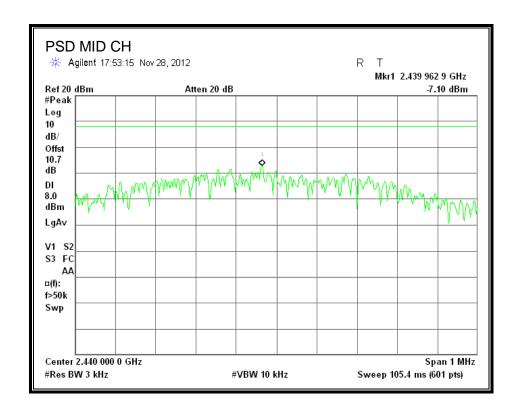
DATE: NOVEMBER 29, 2012

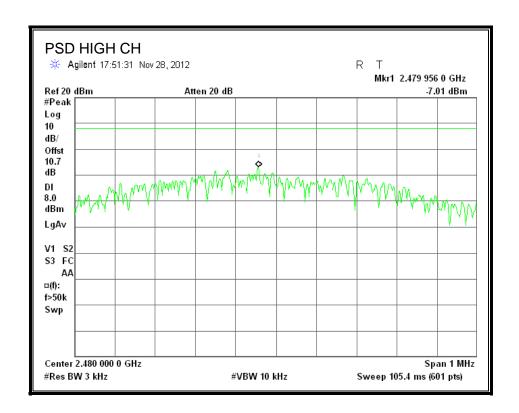
7.2.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247


IC RSS-210 A8.2


The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


RESULTS

Channel	Frequency (MHz)	PSD (dBm)	Limit (dBm)	Margin (dB)
Low	2402	-8.30	8	-16.30
Middle	2440	-7.10	8	-15.10
High	2480	-7.01	8	-15.01

POWER SPECTRAL DENSITY

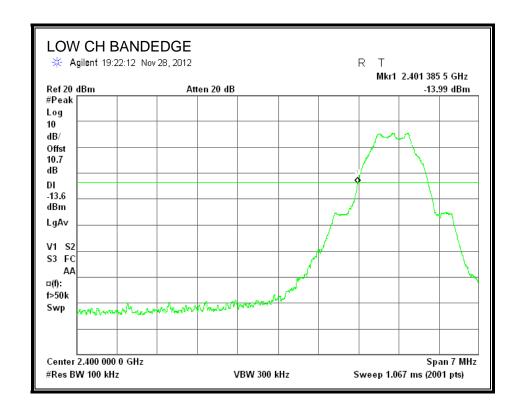
7.2.6. OUT-OF-BAND EMISSIONS

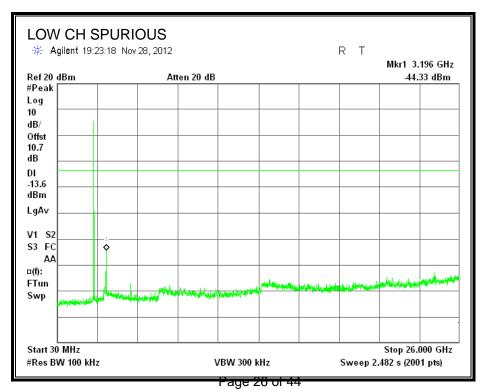
LIMITS

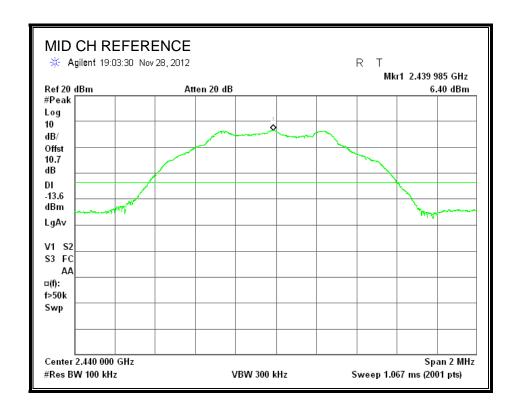
FCC §15.247 (d)

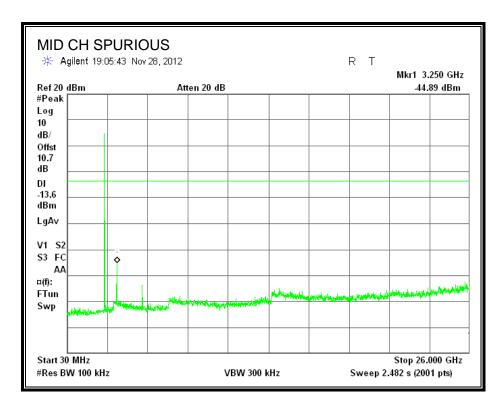
IC RSS-210 A8.5

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

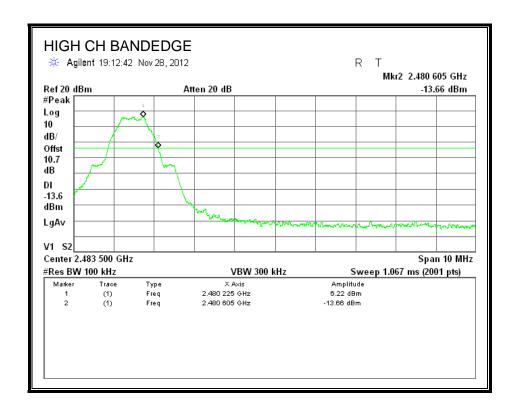

DATE: NOVEMBER 29, 2012

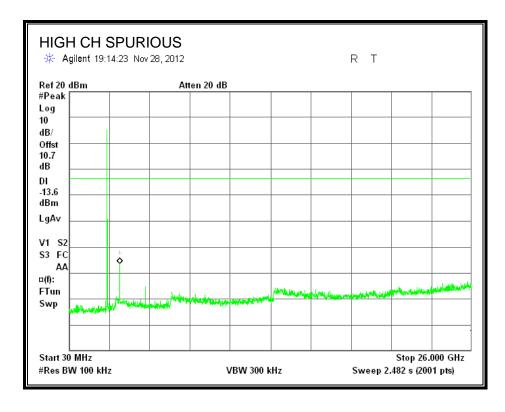

TEST PROCEDURE


The transmitter output is connected to a spectrum analyzer with RBW = 100 kHz, VBW = 300 kHz, peak detector, and max hold. Measurements utilizing these settings are made of the inband reference level, bandedge (where measurements to the general radiated limits will not be made) and out-of-band emissions.


RESULTS

SPURIOUS EMISSIONS, LOW CHANNEL





SPURIOUS EMISSIONS, HIGH CHANNEL

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

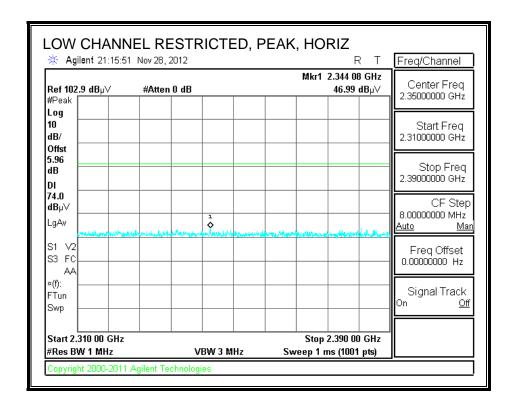
TEST PROCEDURE

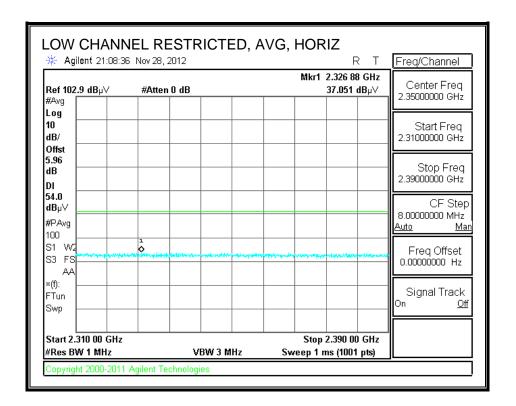
The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 1 MHz for peak measurements and as applicable for average measurements.

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band.

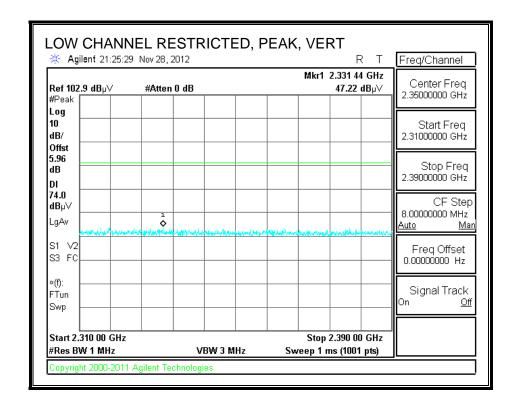

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

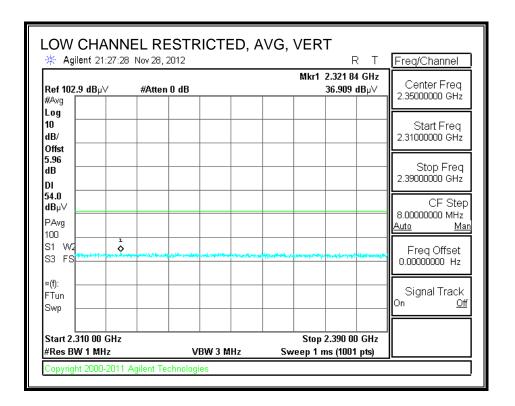

8.2. TRANSMITTER ABOVE 1 GHz

8.2.1. TX ABOVE 1 GHz FOR BLUETOOTH LOW ENERGY MODE IN THE 2.4 GHz BAND

DATE: NOVEMBER 29, 2012

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

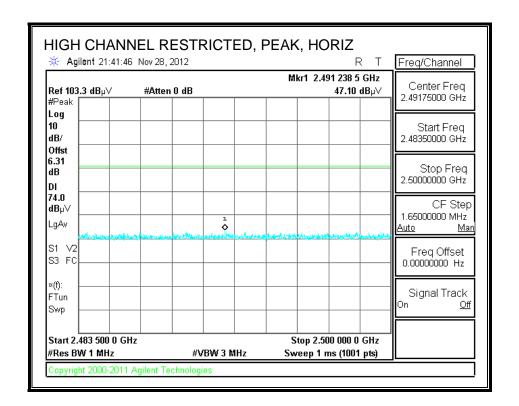


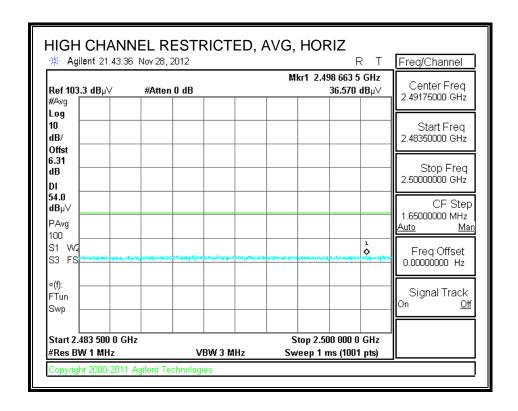


Actual Average

- = Measured Average + Correction Factor
- = 37.051 dBuV + 2.10
- = 39.15 dBuV

RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)

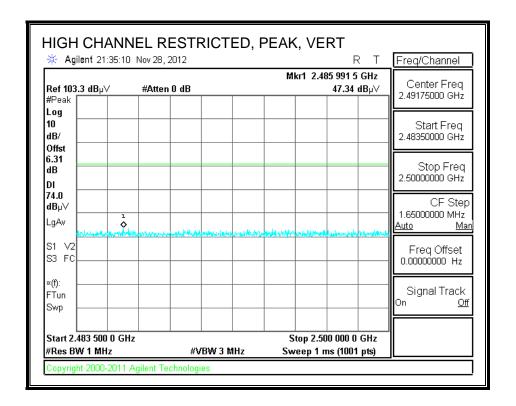


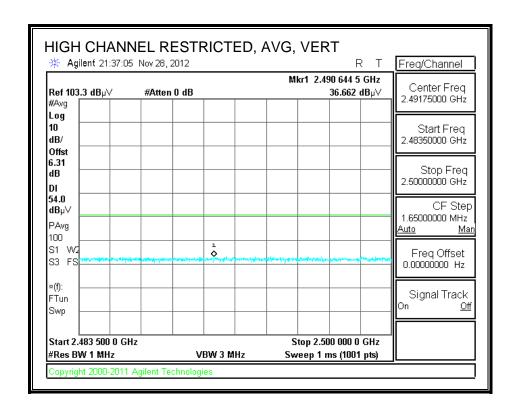

Measured Average + Correction Factor **Actual Average**

36.909 dBuV + 2.10

39.01 dBuV

RESTRICTED BANDEDGE (HIGH CHANNEL, HORIZONTAL)

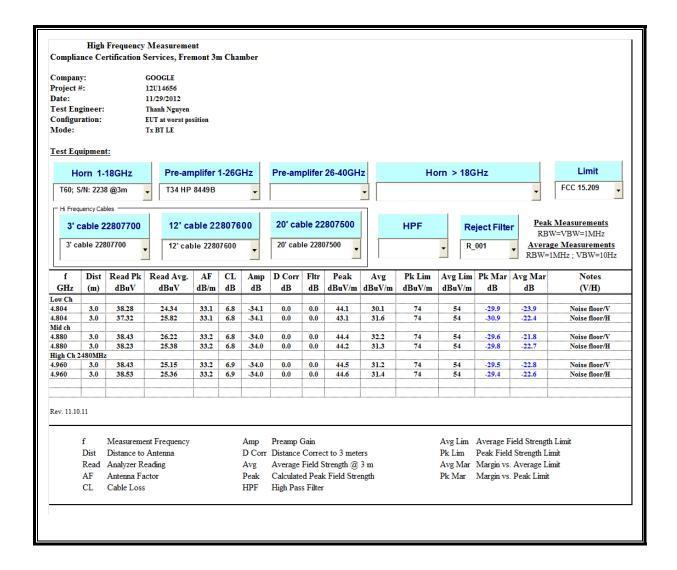



Actual Average Measured Average + Correction Factor

> 36.570 dBuV + 2.10 =

38.67 dBuV

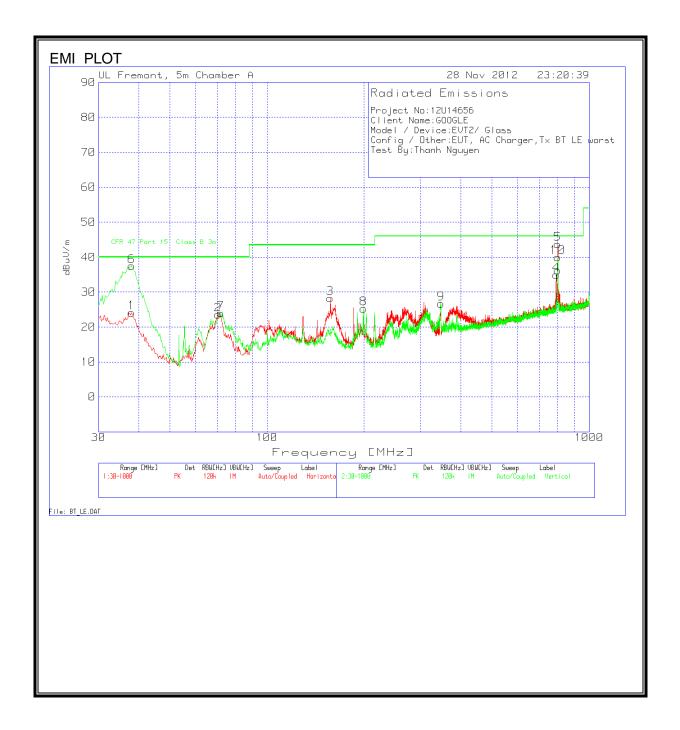
RESTRICTED BANDEDGE (HIGH CHANNEL, VERTICAL)



Actual Average = Measured Average + Correction Factor

= 36.662 dBuV + 2.10

= 38.76 dBuV


HARMONICS AND SPURIOUS EMISSIONS

8.3.

DATE: NOVEMBER 29, 2012

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)

Project No:									
Client Nam	e:GOOGLE								
Model / De									
Config / Oth			TX BT LE WO	rst case					
Test By:Tha	nh Nguyen	l							
Horizontal 3	30 - 1000M	Hz							
Test	Meter	Detector	25MHz-	T243	dBuV/m	CFR 47	Margin	Height	Polarity
Frequency	Reading		1GHz	Sunol		Part 15		[cm]	
			ChmbrA	Bilog.TXT		Class B			
			Amplifie	(dB)		3m			
			d.TX (dB)						
37.9476	36.23	PK	-27.4	15.3	24.13	40	-15.87	400	Horz
70.5136	42.54	PK	-27.1	8.1	23.54	40	-16.46	200	Horz
157.3561	42.72	PK	-26.5	12	28.22	43.5	-15.28	200	Horz
790.6475	37.7	PK	-23.3	20.6	35	46	-11	100	Horz
799.3705	46.02	PK	-23.3	21	43.72	46	-2.28	100	Horz
799.5745	37.08	QP	-23.3	21	34.78	46	-11.22	268	Horz
Vertical 30	1000MHz								
Test	Meter	Detector	25MHz-	T243	dBuV/m	CFR 47	Margin	Height	Polarity
Frequency	Reading		1GHz	Sunol		Part 15		[cm]	
			ChmbrA	Bilog.TXT		Class B			
			Amplifie	(dB)		3m			
			d.TX (dB)						
37.9476			-27.4		37.46	40	-2.54		Vert
38.0508			-27.4		32.79	40	-7.21		Vert
71.8705	43.02		-27.1	8.1	24.02	40	-15.98		Vert
199.6143	39.23		-26.2	12.3	25.33		-18.17		Vert
346.5488	38.14		-25.6	14.2	26.74	46	-19.26		Vert
798.4013	42.43		-23.3	20.9	40.03	46	-5.97		Vert
798.9114	28.31	QP	-23.3	21	26.01	46	-19.99	136	Vert

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

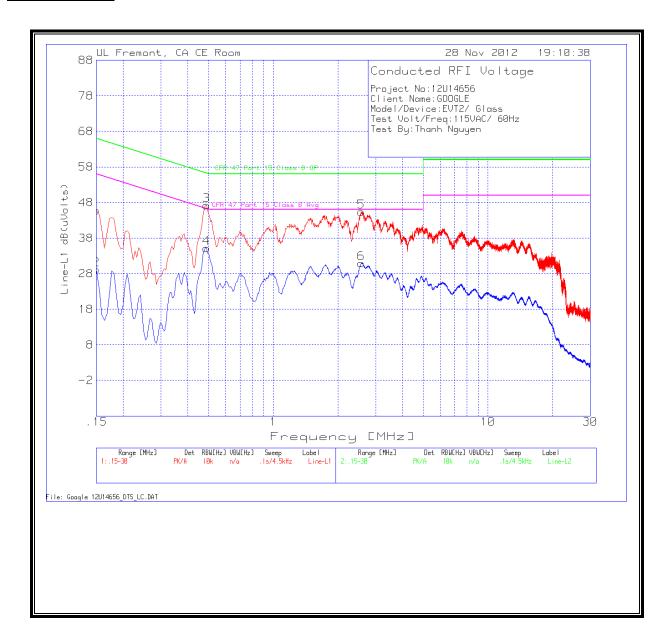
RSS-Gen 7.2.2

Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 °	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

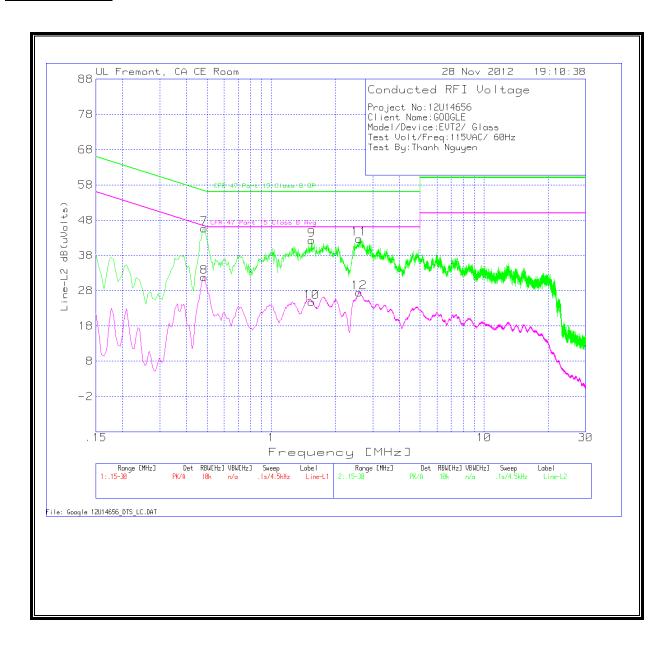
DATE: NOVEMBER 29, 2012

TEST PROCEDURE

ANSI C63.4


RESULTS

Decreases with the logarithm of the frequency.


6 WORST EMISSIONS

Project No:	:12U14656								
Client Nam	e:GOOGLE								
Model/Dev	vice:EVT2/	Glass							
Test Volt/F	req:115VA	C/ 60Hz							
Test By:Tha	nh Nguye	n							
11 14 45	208411-		1	1					
Line-L1 .15	- 30MHz Meter	Datastas	TOAU	LC Cables	dD/vValta)	CED 47	Marain	CED 47	Marain
Test		Detector		1	dB(uVolts)		Margin	CFR 47	Margin
Frequency	Keading		L1.TXT	1&3.TXT		Part 15		Part 15	
			(dB)	(dB)		Class B		Class B	
				_		QP		Avg	
0.15			0.1			66	-20.18		-
0.15	29.01		0.1				-	56	-26.8
0.4875	47.11		0.1			56.2	-8.99		-
0.4875	35.1		0.1	0	35.2		-	46.2	-1
2.571	45.25	PK	0.1	0.1	45.45	56	-10.55	-	-
2.571	30.7	Av	0.1	0.1	30.9	-	-	46	-15.
Line-L2 .15	- 30MHz								
Test	Meter	Detector	T24 IL	LC Cables	dB(uVolts)	CFR 47	Margin	CFR 47	Margin
Frequency	Reading		L1.TXT	1&3.TXT		Part 15		Part 15	
	_		(dB)	(dB)		Class B		Class B	
						QP		Avg	
0.483	45.52	PK	0.1	0	45.62	56.3	-10.68	-	-
0.483	31.78	Av	0.1	0	31.88	-	-	46.3	-14.4
1.545	42.09	PK	0.1	0.1	42.29	56	-13.71	-	-
1.545	24.64	Av	0.1	0.1	24.84	-	-	46	-21.1
2.589	42.54	PK	0.1	0.1	42.74	56	-13.26	-	-
2.589	27.28		0.1	0.1	27.48	-	-	46	-18.5

LINE 1 RESULTS

LINE 2 RESULTS

END OF REPORT