

FCC CFR47 PART 15 SUBPART E INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

802.11a/b/g/n WiFi AND BLUETOOTH AUDIO/VIDEO DEVICE

MODEL NUMBER: W1

FCC ID: A4R-W1

REPORT NUMBER: 11U14119-2

ISSUE DATE: MAY 12, 2012

Prepared for GOOGLE INC. 1600 AMPHITHEATRE PARKWAY MONTAINVIEW CA, 94043, U.S.A

Prepared by

COMPLIANCE CERTIFICATION SERVICES (UL CCS) 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888

REPORT NO: 11U14119-2 DATE: MAY 12, 2012 FCC ID: A4R-W1

Revision History

Rev.	Issue Date	Revisions	Revised By
	5/12/12	Initial Issue	T. LEE

TABLE OF CONTENTS

1.	ATTE	ESTATION OF TEST RESULTS	. 5
2.	TEST	METHODOLOGY	. 6
3.	FACI	LITIES AND ACCREDITATION	6
4.		BRATION AND UNCERTAINTY	
••		MEASURING INSTRUMENT CALIBRATION	
_		SAMPLE CALCULATION	
		MEASUREMENT UNCERTAINTY	
5	FOU	PMENT UNDER TEST	7
		DESCRIPTION OF EUT	
_		MAXIMUM OUTPUT POWER	
_		DESCRIPTION OF AVAILABLE ANTENNAS	
_		SOFTWARE AND FIRMWARE	
5		NORST-CASE CONFIGURATION AND MODE	
5		DESCRIPTION OF TEST SETUP	
6.	TEST	AND MEASUREMENT EQUIPMENT	10
7		ENNA PORT TEST RESULTS	
7	7.1. 8 7.1.1. 7.1.2. 7.1.3. GHz	. MEASUREMENT METHOD FOR POWER AND PPSD	11 11
	7.1.4		
	7.1.5. 7.1.6.		
	7.1.1	OUTPUT POWER AND PPSD	19
	7.1.2. 7.1.1.		_
7		302.11n HT20 MODE IN THE 5.2 GHz BAND	
•	7.2.1.	ON TIME, DUTY CYCLE AND MEASUREMENT METHODS	27
	7.2.2. 7.2.3.		
	7.2.4		
	GHz 7.2.5	27 . 26 dB BANDWIDTH	20
	7.2.1		
	7.2.2		
	7.2.3. 7.2.4.	. AVERAGE POWER	
8.	RADI	ATED TEST RESULTS	43
J .		Page 3 of 69	

. •	5 15.77 H. TT	
8	3.1. LIMITS AND PROCEDURE	43
8	8.2. TRANSMITTER ABOVE 1 GHz	44 49
8	3.3. WORST-CASE BELOW 1 GHz	55
9.	AC POWER LINE CONDUCTED EMISSIONS	58
10.	MAXIMUM PERMISSIBLE EXPOSURE	62
11.	SETUP PHOTOS	65

DATE: MAY 12, 2012

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: GOOGLE INC.

1600 AMPHITHEATRE PARKWAY MOUNTAIN VIEW, CA, 94043, U.S.A

EUT DESCRIPTION: 802.11a/b/g/n and Bluetooth Audio /Video Device

MODEL: W1

SERIAL NUMBER: AD3C12020001, AD3C12020005, AD8C12160093

DATE TESTED: JANUARY 18~30, and MAY 4-11, 2012

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart E

Pass

INDUSTRY CANADA RSS-210 Issue 8 Annex 9

Pass

INDUSTRY CANADA RSS-GEN Issue 3

Pass

Compliance Certification Services (UL CCS) tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL CCS based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL CCS and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL CCS will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL CCS By: Tested By:

TIM LEE

STAFF ENGINEER

UL CCS

TOM CHEN EMC ENGINEER

UL CCS

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, RSS-GEN Issue 3, and RSS-210 Issue 8

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL CCS is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://www.ccsemc.com.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.52 dB
Radiated Disturbance, 30 to 1000 MHz	4.94 dB

Uncertainty figures are valid to a confidence level of 95%.

DATE: MAY 12, 2012

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is an audio/video device incorporating 802.11 a/b/g/n, Bluetooth, and near field communicator technology. The EUT has TOSLINK, audio, Ethernet, HDMI, and USB ports.

The EUT transmit only at the 5180 – 5240 MHz band. The EUT does not transmit at the 5.3 or 5.6 GHz UNII bands.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range	Mode	Output Power	Output Power
(MHz)		(dBm)	(mW)
5180 - 5240	802.11a	14.27	26.73
5180 - 5240	802.11n	13.74	23.66

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an PCB antenna, with a maximum gain of 6.0 dBi at 5 GHz band.

5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was rev. 1.0.

The EUT driver software installed during testing was rev. 1.0.

The test utility software used during testing was rev. 1.0.

5.5. WORST-CASE CONFIGURATION AND MODE

For Radiated Emissions below 1 GHz and Power line Conducted Emissions, the channel with the highest conducted output power was selected as worst-case scenario.

Based on the manufacturer's attestation that the nominal output power is reduced as the data rate increases, the data rates tested represent the highest power and worst-case with respect to EMC performance. Worst-case data rates are:

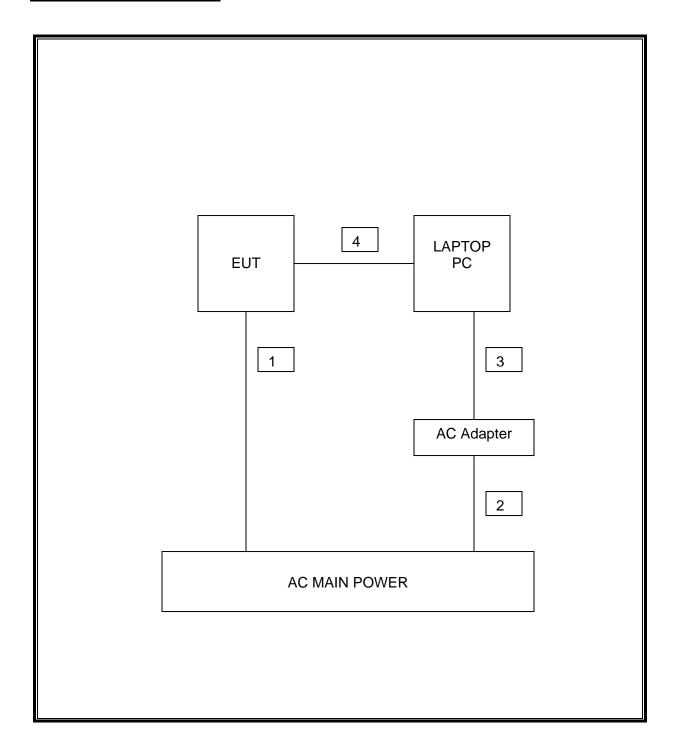
For 11a mode (5.2 GHz band): 6Mbps

For 11n, HT20 mode (5.2 GHz band): MSCO

DESCRIPTION OF TEST SETUP 5.6.

SUPPORT EQUIPMENT

PERIPHERAL SUPPORT EQUIPMENT LIST							
Description Manufacturer Model Serial Number FCC ID							
Laptop	Lenovo	2768-HH4	R8-PCNFE 210124	DoC			
Laptop AC Adapter	Lenovo	92P1109	Z1ZBTZ85VM0	DoC			


I/O CABLES

	I/O CABLE LIST									
Cable No.			Connector Type	Cable Type	Cable Length	Remarks				
1	AC	1	US 115V	Un-shielded	1.8m	N/A				
2	AC	1	US 115V	Un-shielded	1m	N/A				
3	DC	1	DC	Un-shielded	1.8m	N/A				
4	USB	1	Mini USB	Un-shielded	1.2m	Connect to Laptop				

TEST SETUP

DATE: MAY 12, 2012

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

TEST EQUIPMENT LIST								
Description	Manufacturer	Model	Asset	Cal Date	Cal Due			
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01176	08/04/11	08/04/12			
Spectrum Analyzer, 44 GHz	Agilent / HP	E4446A	C01176	08/04/11	08/04/12			
Antenna, Horn, 18 GHz	EMCO	3115	C00872	06/29/11	06/29/12			
Preamplifier, 26.5 GHz	Agilent / HP	8449B	C00749	07/18/11	07/18/12			
Antenna, Bilog, 2 GHz	Sunol Sciences	JB1	C01171	07/16/11	07/16/12			
Preamplifier, 1300 MHz	Agilent / HP	8447D	C00558	11/11/11	11/11/12			
Peak Power Meter	Agilent / HP	N1911A	1282124A	08/04/11	08/04/12			
Peak and Avg Power Sensor	Agilent / HP	E9323A	1240537J	08/04/11	08/04/12			
EMI Test Receiver, 9 kHz-7 GHz	R&S	ESCI7	1000741	7/6/2011	7/6/2012			
LISN, 30 MHz	FCC	LISN-50/250-25-2	N02625	11/10/11	11/10/12			
Horn Antenna, 26 GHz	ARA	MWH-1826/B	C00589	07/28/11	07/28/12			
Horn Antenna, 40 GHz	ARA	MWH-2640/B	C00981	06/14/11	06/14/12			
Preamplifier, 40 GHz	Miteq	NSP4000-SP2	C00990	08/12/11	08/12/12			

7. ANTENNA PORT TEST RESULTS

7.1. 802.11a MODE IN THE 5.2 GHz BAND

7.1.1. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

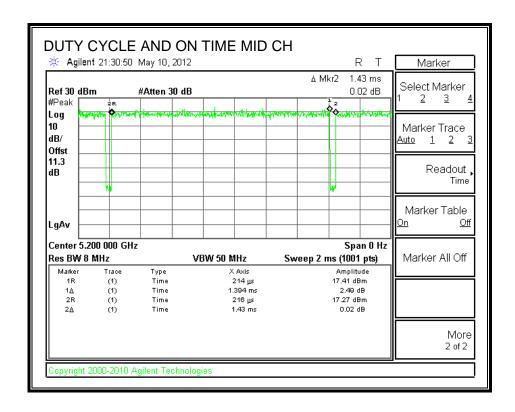
LIMITS

None; for reporting purposes only.

PROCEDURE

KDB 789033 Zero-Span Spectrum Analyzer Method.

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
802.11a 20 MHz	1.394	1.43	0.975	97.5%	0.11	0.717


7.1.2. MEASUREMENT METHOD FOR POWER AND PPSD

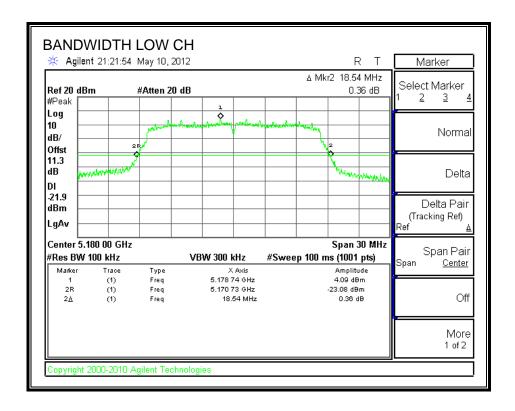
The Duty Cycle is less than 98% and consistent therefore KDB 789033 Method SA-2 is used.

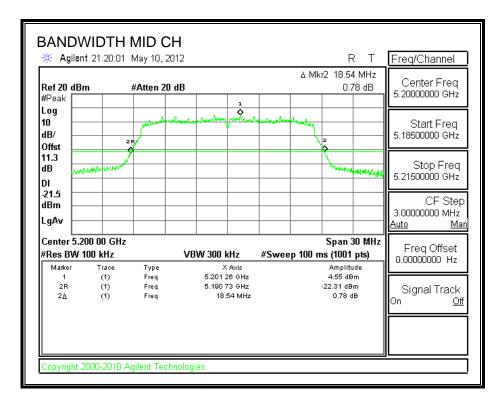
7.1.3. MEASUREMENT METHOD FOR AVERAGE SPURIOUS EMISSIONS ABOVE 1 GHz

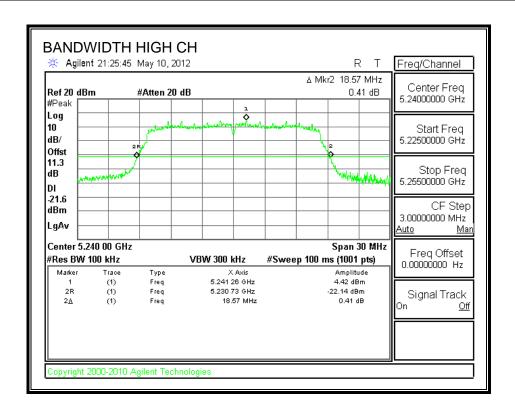
The Duty Cycle is less than 98% and consistent, KDB 789033 Method VB with Power RMS Averaging is used.

7.1.4. DUTY CYCLE AND ON TIME

7.1.5. 26 dB BANDWIDTH


LIMITS

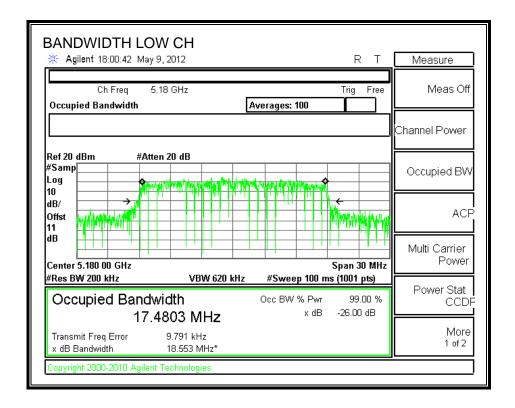

None; for reporting purposes only.

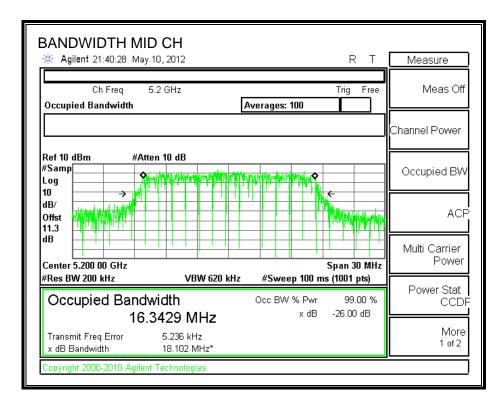

RESULTS

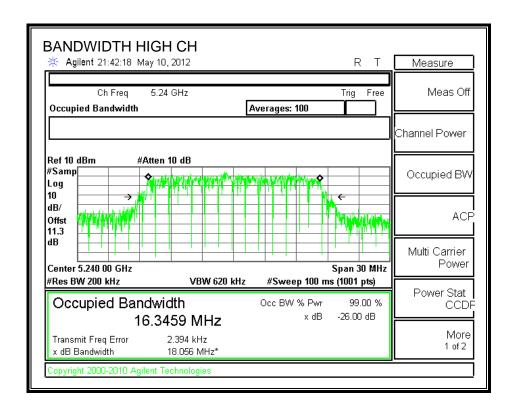
Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5180	18.54
Mid	5200	18.54
High	5240	18.57

26 dB BANDWIDTH

7.1.6. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.


RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5180	17.4803
Mid	5200	16.3429
High	5240	16.3459

99% BANDWIDTH

7.1.1. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DATE: MAY 12, 2012

DIRECTIONAL ANTENNA GAIN

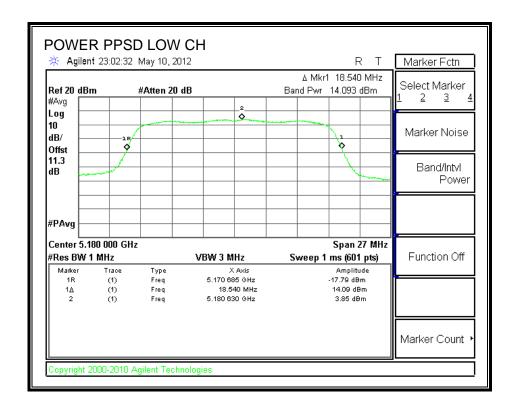
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

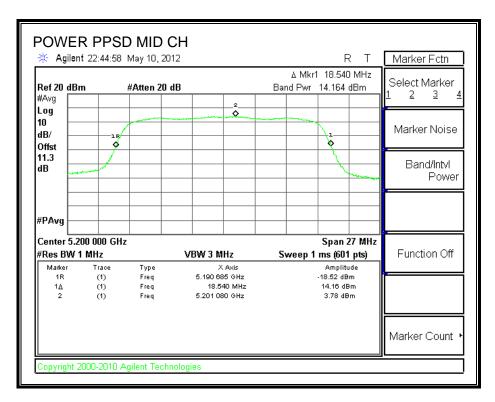
RESULTS

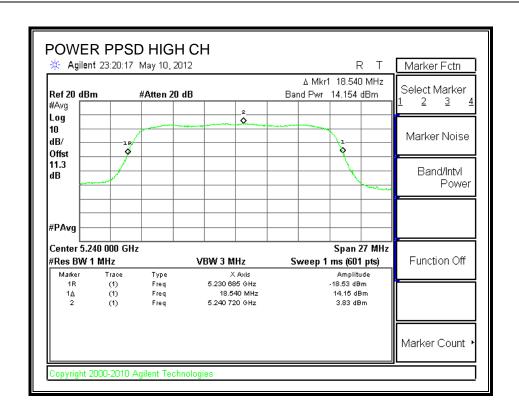
Limits

Channel	Frequency	Fixed	В	4 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5180	17	18.5	16.68	6.00	16.68	4.00
Mid	5200	17	18.5	16.68	6.00	16.68	4.00
High	5240	17	18.6	16.69	6.00	16.69	4.00

Duty Cycle CF (dB) 0.11	Included in Calculations of Corr'd Power & PPSD
-------------------------	---


Output Power Results


Channel	Frequency	Meas	Corr'd	Power	Power
		Power	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	14.09	14.20	16.68	-2.48
Mid	5200	14.16	14.27	16.68	-2.41
High	5240	14.15	14.26	16.69	-2.43


PPSD Results

Channel	Frequency	Meas	Corr'd	PPSD	PPSD
		PPSD	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	3.85	3.96	4.00	-0.04
Mid	5200	3.78	3.89	4.00	-0.11
High	5240	3.83	3.94	4.00	-0.06

OUTPUT POWER AND PPSD

7.1.2. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

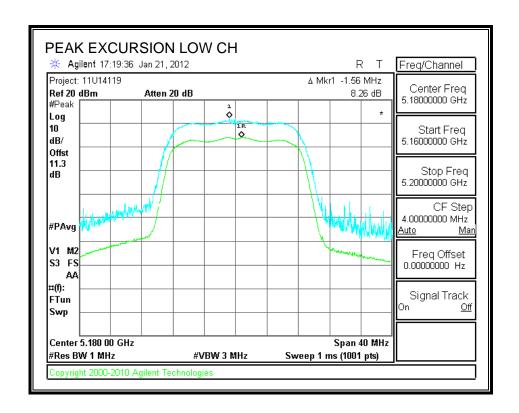
RESULTS

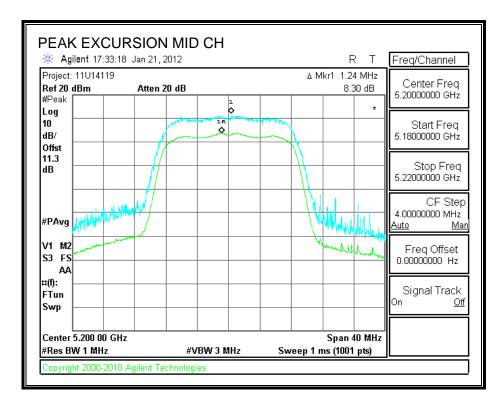
The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

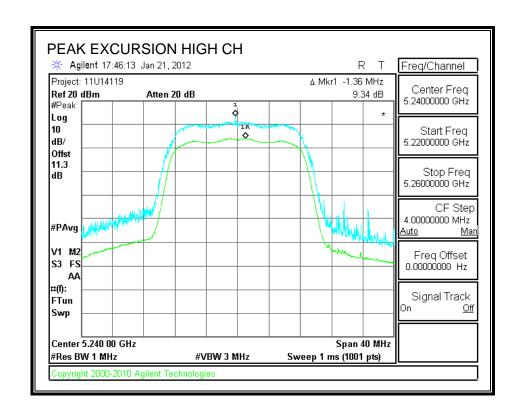
Channel	Frequency	Power
	(MHz)	(dBm)
Low	5180	13.43
Middle	5200	13.85
High	5240	13.70

7.1.1. PEAK EXCURSION

LIMITS


FCC §15.407 (a) (6)


The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.


RESULTS

Channel	Frequency Peak Excursion		Limit	Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	8.26	13	-4.7
Mid	5200	8.30	13	-4.7
High	5240	9.34	13	-3.7

PEAK EXCURSION

7.2. 802.11n HT20 MODE IN THE 5.2 GHz BAND

7.2.1. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

LIMITS

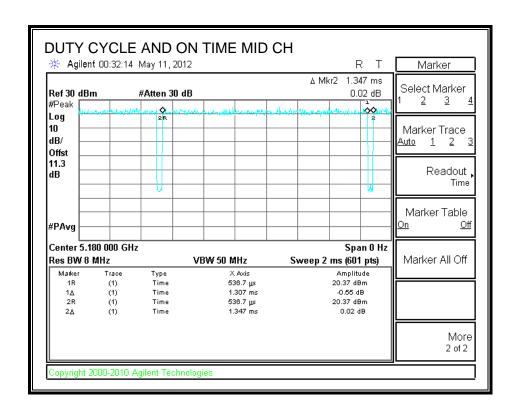
None; for reporting purposes only.

PROCEDURE

KDB 789033 Zero-Span Spectrum Analyzer Method.

7.2.2. ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
802.11a 20 MHz	1.307	1.347	0.970	97.0%	0.13	0.765


7.2.3. MEASUREMENT METHOD FOR POWER AND PPSD

The Duty Cycle is less than 98% and consistent therefore KDB 789033 Method SA-2 is used.

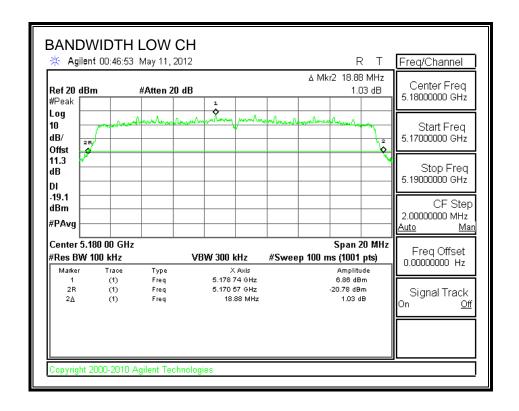
7.2.4. MEASUREMENT METHOD FOR AVERAGE SPURIOUS EMISSIONS ABOVE 1 GHz

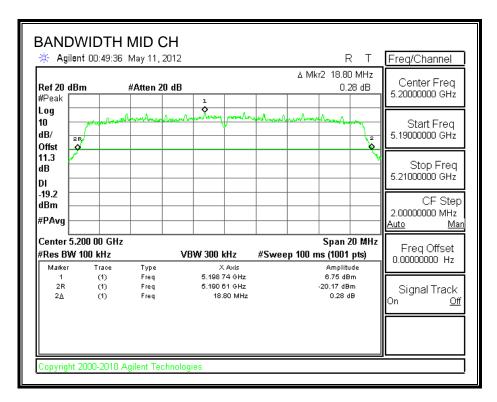
The Duty Cycle is less than 98% and consistent, KDB 789033 Method VB with Power RMS Averaging is used.

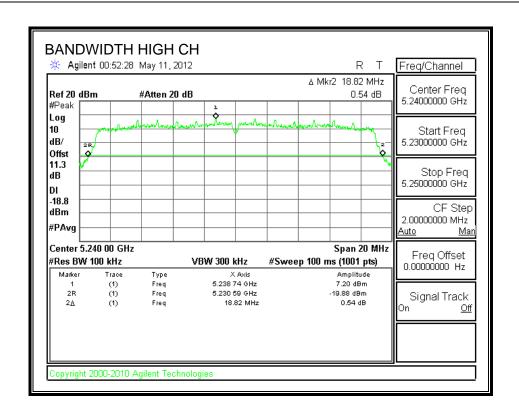
DUTY CYCLE AND ON TIME

REPORT NO: 11U14119-2 DATE: MAY 12, 2012 FCC ID: A4R-W1

7.2.5. 26 dB BANDWIDTH


LIMITS

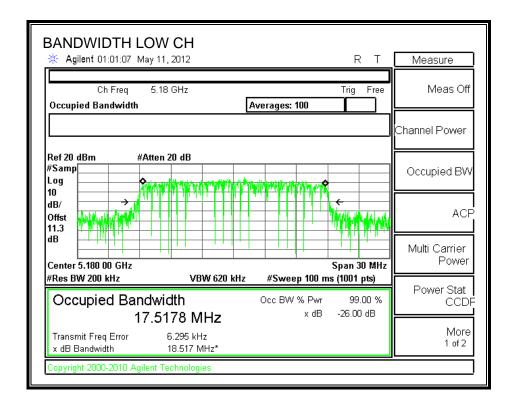

None; for reporting purposes only.

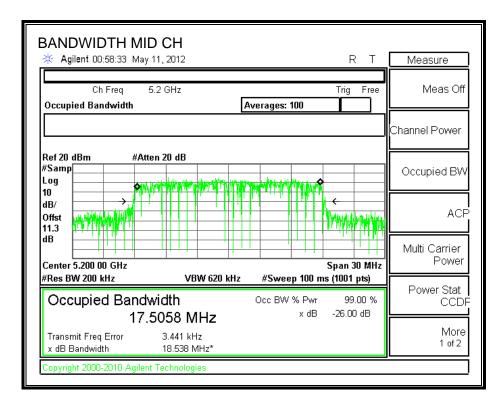

RESULTS

Channel	Frequency	26 dB Bandwidth
	(MHz)	(MHz)
Low	5180	18.88
Mid	5200	18.80
High	5240	18.82

26 dB BANDWIDTH

7.2.1. 99% BANDWIDTH


LIMITS


None; for reporting purposes only.

RESULTS

Channel	Frequency	99% Bandwidth
	(MHz)	(MHz)
Low	5180	17.5178
Mid	5200	17.5058
High	5240	17.5121


99% BANDWIDTH

FORM NO: CCSUP4701D

FAX: (510) 661-0888

7.2.2. OUTPUT POWER AND PPSD

LIMITS

FCC §15.407 (a) (1)

IC RSS-210 A9.2 (1)

For the band 5.15–5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10 log B, where B is the 26–dB emission bandwidth in MHz. In addition, the peak power spectral density shall not exceed 4 dBm in any 1–MHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DATE: MAY 12, 2012

DIRECTIONAL ANTENNA GAIN

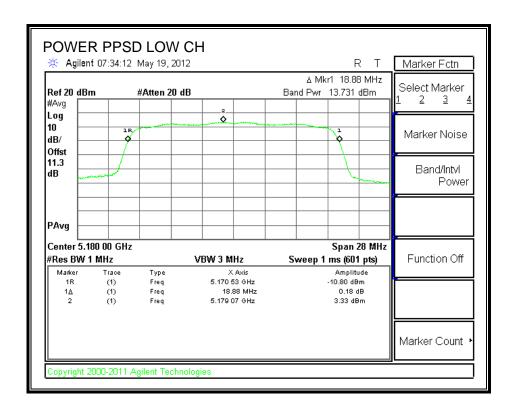
There is only one transmitter output therefore the directional gain is equal to the antenna gain.

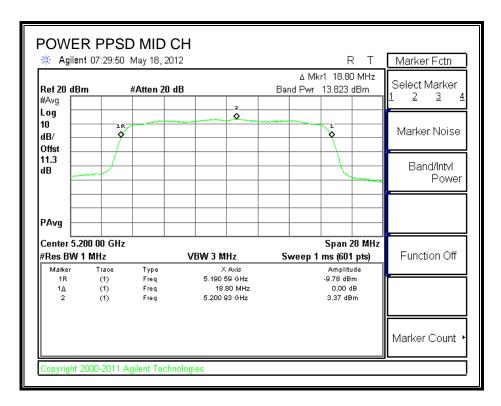
RESULTS

Limits

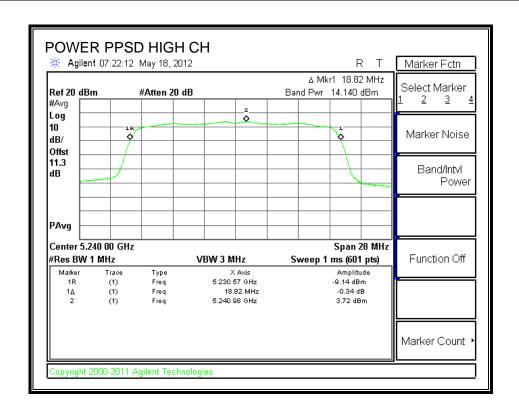
Channel	Frequency	Fixed	В	4 + 10 Log B	Directional	Power	PPSD
		Limit		Limit	Gain	Limit	Limit
	(MHz)	(dBm)	(MHz)	(dBm)	(dBi)	(dBm)	(dBm)
Low	5180	17	18.5	16.68	6.00	16.68	4.00
Mid	5200	17	18.5	16.68	6.00	16.68	4.00
High	5240	17	18.6	16.69	6.00	16.69	4.00

Duty Cycle CF (dB) 0.11	Included in Calculations of Corr'd Power & PPSD
-------------------------	---


Output Power Results


Channel	Frequency	Meas	Corr'd	Power	Power
		Power	Power	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	13.58	13.69	16.68	-2.99
Mid	5200	13.55	13.66	16.68	-3.02
High	5240	13.63	13.74	16.69	-2.95

PPSD Results


Channel	Frequency	Meas	Corr'd	PPSD	PPSD
		PPSD	PPSD	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dBm)	(dB)
Low	5180	3.33	3.44	4.00	-0.56
Mid	5200	3.37	3.48	4.00	-0.52
High	5240	3.72	3.83	4.00	-0.17

OUTPUT POWER AND PPSD

TEL: (510) 771-1000

7.2.3. AVERAGE POWER

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a power meter.

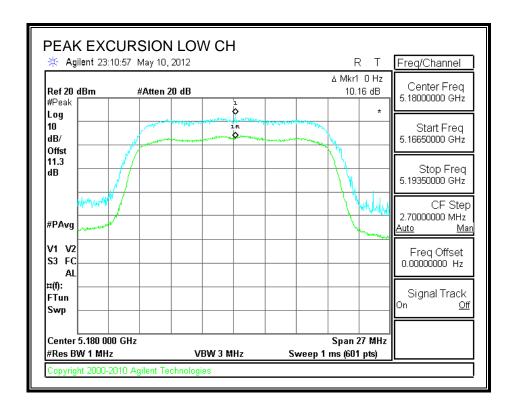
RESULTS

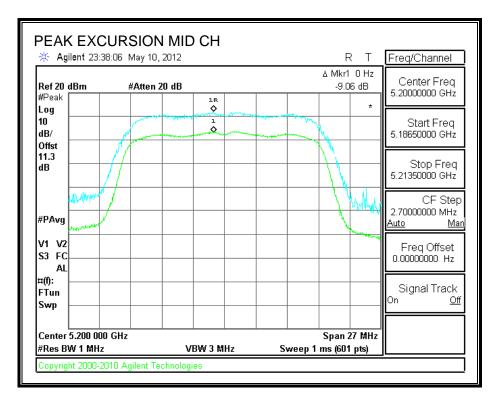
The cable assembly insertion loss of 11.3 dB (including 10 dB pad and 1.3 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

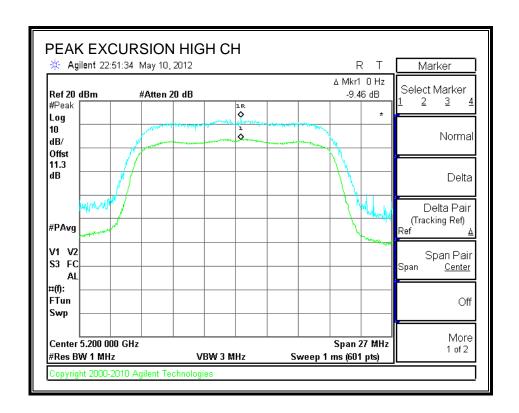
Channel	Frequency	Power
	(MHz)	(dBm)
Low	5180	13.58
Middle	5200	13.55
High	5240	13.63

7.2.4. PEAK EXCURSION

LIMITS


FCC §15.407 (a) (6)


The ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the peak transmit power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.


RESULTS

Channel	Frequency	requency Peak Excursion		Margin
	(MHz)	(dB)	(dB)	(dB)
Low	5180	10.16	13	-2.8
Mid	5200	9.06	13	-3.9
High	5240	9.46	13	-3.5

PEAK EXCURSION

DATE: MAY 12, 2012

8. RADIATED TEST RESULTS

8.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

IC RSS-210 Clause 2.6 (Transmitter)

IC RSS-GEN Clause 6 (Receiver)

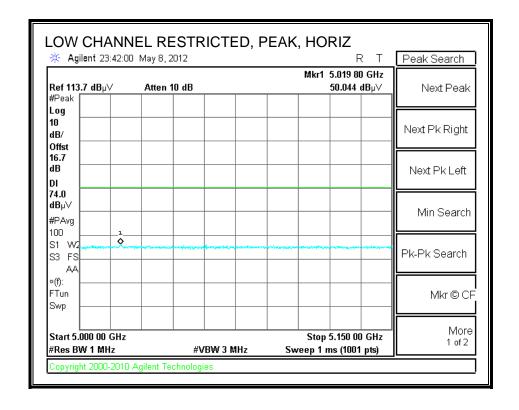
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

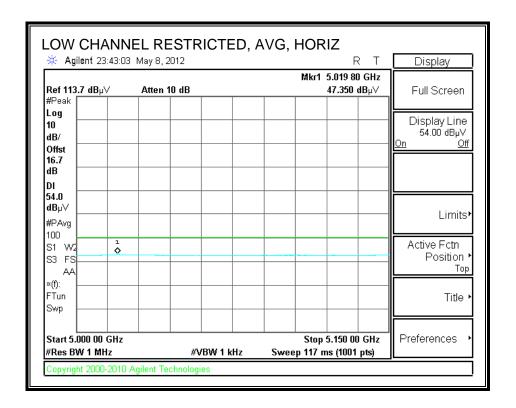
TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

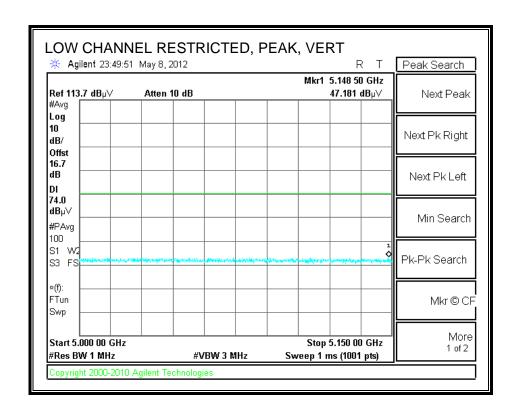
For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

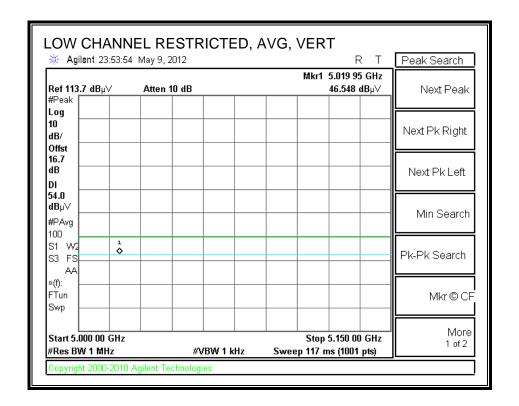
For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

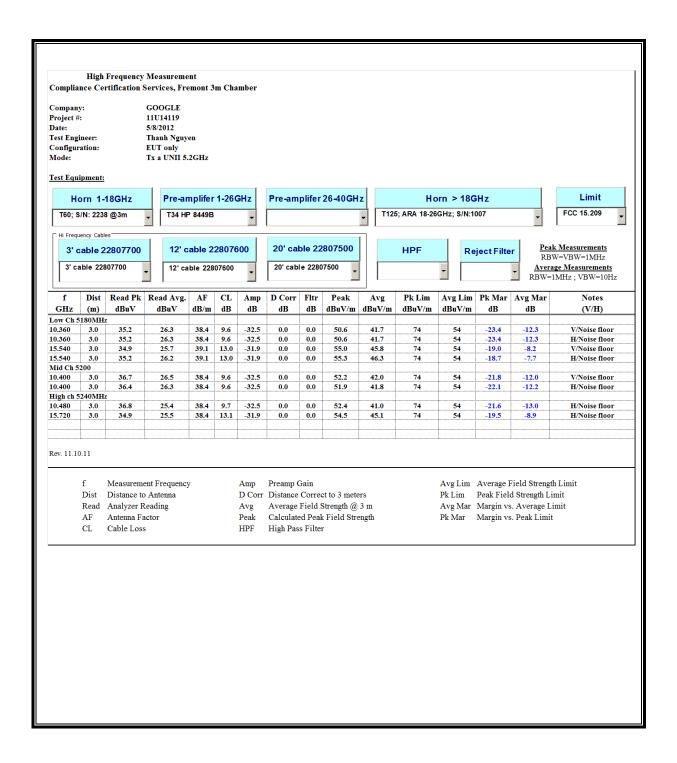

The spectrum from 30 MHz to 40 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each appplicable band.


The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

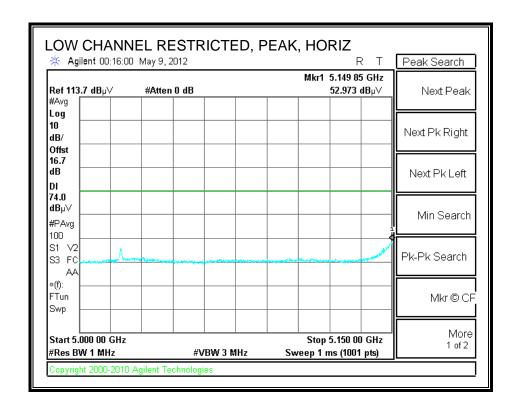
8.2. TRANSMITTER ABOVE 1 GHz

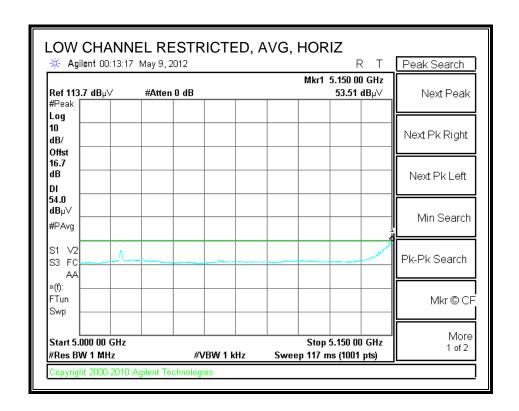

8.2.1. TX ABOVE 1 GHz FOR 802.11a MODE IN THE LOWER 5.2 GHz BAND

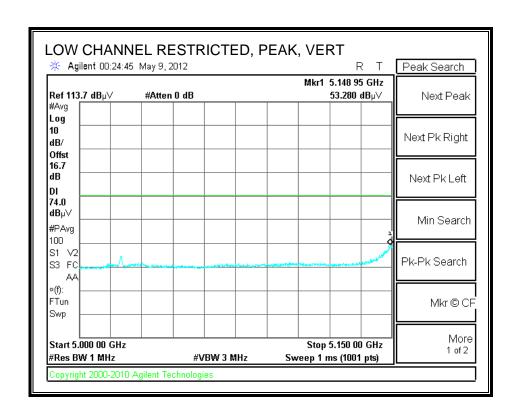

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)

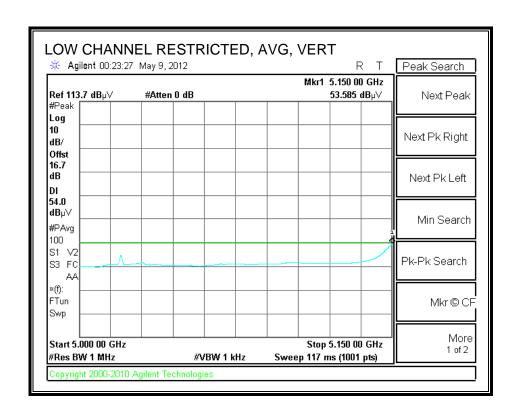


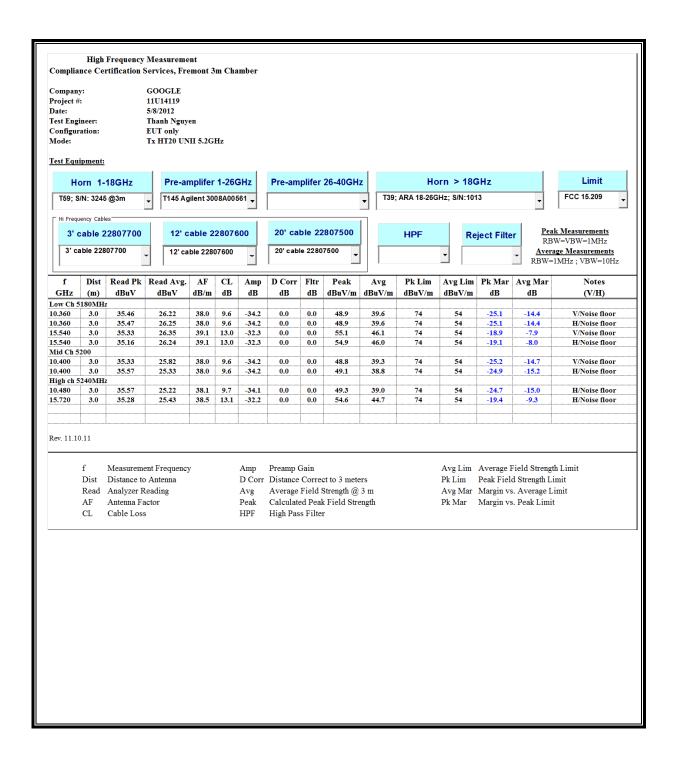
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



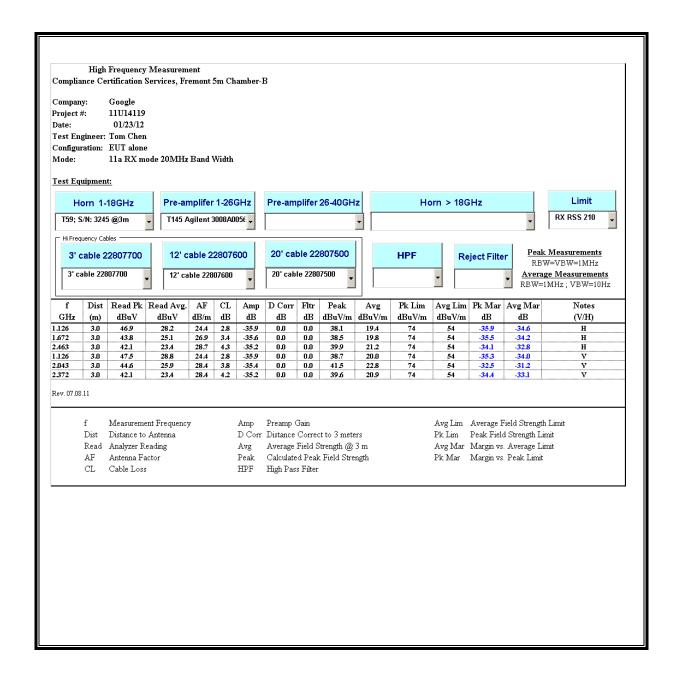

HARMONICS AND SPURIOUS EMISSIONS


8.2.2. TX ABOVE 1 GHz FOR 802.11n MODE IN THE LOWER 5.2 GHz BAND

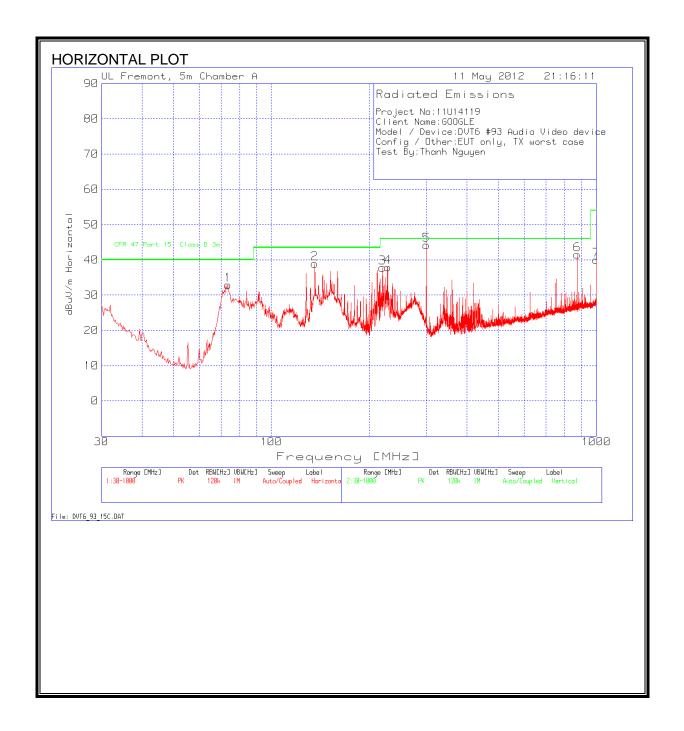

RESTRICTED BANDEDGE (LOW CHANNEL, HORIZONTAL)



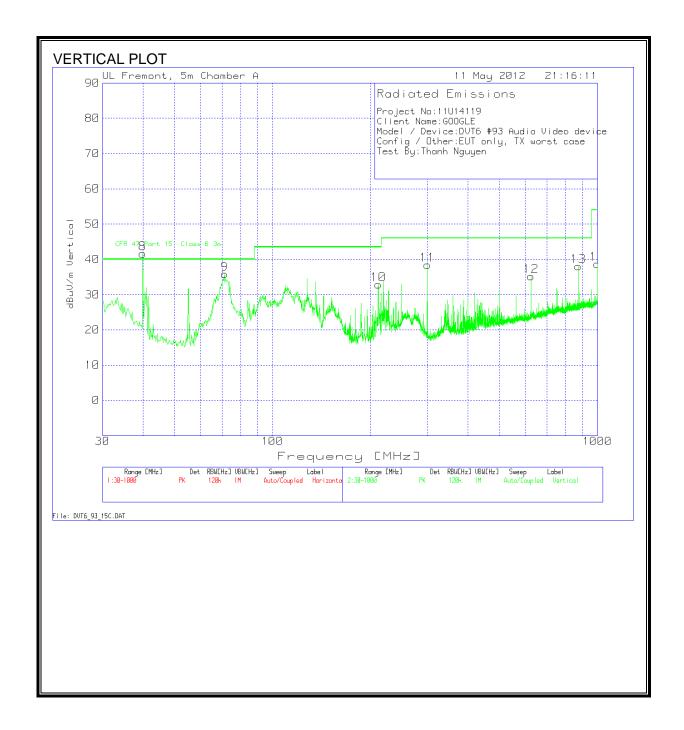
RESTRICTED BANDEDGE (LOW CHANNEL, VERTICAL)



HARMONICS AND SPURIOUS EMISSIONS


8.2.3. RECEIVER ABOVE 1 GHz

RECEIVER ABOVE 1 GHz FOR 20 MHz BANDWIDTH IN THE 5.2 GHz BAND


8.3. WORST-CASE BELOW 1 GHz

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, HORIZONTAL)

73 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL CCS.

SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION, VERTICAL)

Project No:	11U14119								
Client Nam	e:GOOGLE								
Model / De	vice:DVT6	#93 Audio	Video devi	ce					
Config / Ot	her:EUT on	ly, TX wor	st case						
Test By:Tha	nh Nguyen	1							
Horizontal 3	30 - 1000M	Hz							
Test	Meter	Detector	PreAmp	Antenna	EMI	CFR 47	Margin	Height	Polarity
Frequency	Reading		Gain	+Cable	Value	Part 15		[cm]	
			(dB)	Factor	dBuV/m	Class B			
						3m limit			
73.6151	52.04	PK	-27.1	8	32.94	40	-7.06	200	Horz
135.8393	52.7	PK	-26.7	13	39	43.5	-4.5	300	Horz
219.7742	53.34	PK	-26.2	10.6	37.74	46	-8.26	100	Horz
228.1095	53.18	PK	-26.1	10.8	37.88	46	-8.12	100	Horz
300.026	56.84	PK	-25.8	13.2	44.24	46	-1.76	100	Horz
300.0044	56.36	QP	-25.8	13.2	43.76	46	-2.24	101	Horz
875.1639	43.18	PK	-23.2	21.5	41.48	46	-4.52	100	Horz
1000	40.04	PK	-23.1	23	39.94	54	-14.06	100	Horz
Vertical 30	- 1000MHz								
Test	Meter	Detector	PreAmp	Antenna	EMI	CFR 47	Margin	Height	Polarity
Frequency	Reading		Gain	+Cable	Value	Part 15		[cm]	·
			(dB)	Factor	dBuV/m	Class B			
						3m limit			
39.8861	54.95	PK	-27.3	14	41.65	40	1.65	200	Vert
40.3997	30.58	QP	-27.3	13.7	16.98	40	-23.02	135	Vert
71.289	54.79	PK	-27.1	8.1	35.79	40	-4.21	100	Vert
211.8265	48.55	PK	-26.1	10.4	32.85	43.5	-10.65	200	Vert
300.026	50.98	PK	-25.8	13.2	38.38	46	-7.62	200	Vert
625.1039	39.93	PK	-23.7	19	35.23	46	-10.77	100	Vert
875.1639	39.7	PK	-23.2	21.5	38	46	-8	100	Vert
1000	38.82	PK	-23.1	23	38.72	54	-15.28	100	Vert

9. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

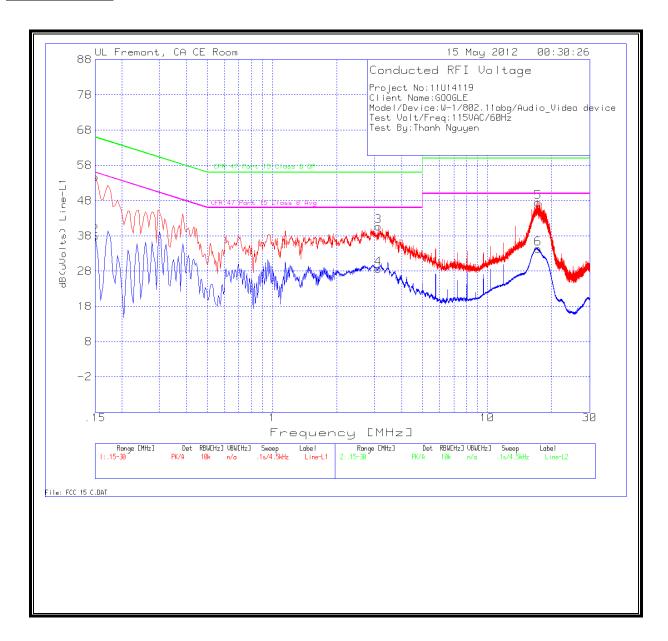
FCC §15.207 (a)

RSS-Gen 7.2.2

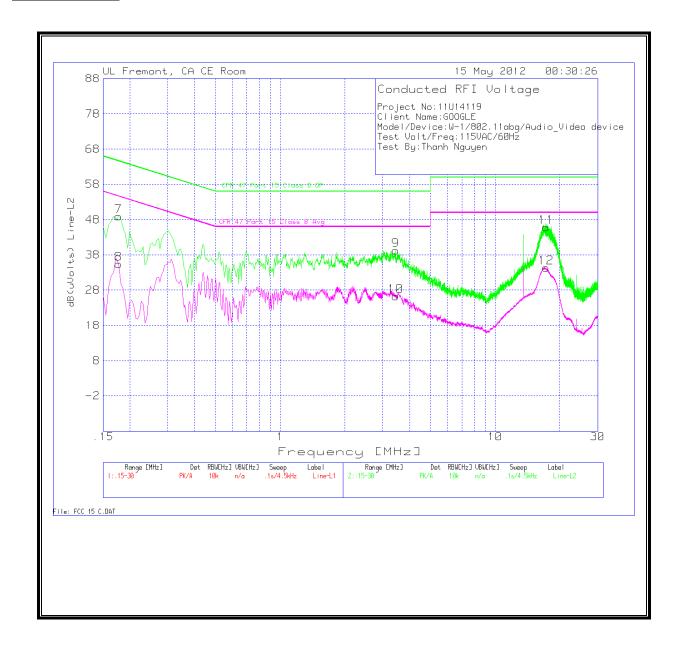
Frequency of Emission (MHz)	Conducted Limit (dBuV)			
	Quasi-peak	Average		
0.15-0.5	66 to 56 °	56 to 46 *		
0.5-5	56	46		
5-30	60	50		

Decreases with the logarithm of the frequency.

TEST PROCEDURE


ANSI C63.4

RESULTS


6 WORST EMISSIONS

Client Name	:GOOGLE								
Model/Devi	ce:W-1/802	2.11abg/A	udio Video	device					
Test Volt/Fre	-								
Test By:Thar	-								
•	, , , , , , , , , , , , , , , , , , ,								
Line-L1 .15 -	30MHz								
Test	Meter	Detector	T24 IL	LC Cables	dB(uVolts)	CFR 47	Margin	CFR 47	Margin
Frequency	Reading		L1.TXT	1&3.TXT		Part 15		Part 15	
			(dB)	(dB)		Class B		Class B	
						QP		Avg	
0.15	54.57	PK	0.1	0	54.67	66	-11.33	-	-
0.15	37.69	Av	0.1	0	37.79	-	-	56	-18.21
3.12	40.53	PK	0.1	0.1	40.73	56	-15.27	-	-
3.12	28.44	Av	0.1	0.1	28.64	-	-	46	-17.30
17.2275	47.15	PK	0.2	0.2	47.55	60	-12.45	-	-
17.2275	33.91	Av	0.2	0.2	34.31	-	-	50	-15.69
Line-L2 .15 -	30MHz								
Test	Meter	Detector	T24 IL	LC Cables	dB(uVolts)	CFR 47	Margin	CFR 47	Margin
Frequency	Reading		L1.TXT	1&3.TXT		Part 15		Part 15	
			(dB)	(dB)		Class B		Class B	
						QP		Avg	
0.177	48.89	PK	0.1	0	48.99	64.6	-15.61	-	-
0.177	35.31	Av	0.1	0	35.41	-	-	54.6	-19.19
3.4485	39.11	PK	0.1	0.1	39.31	56	-16.69	-	-
3.4485	26.04	Av	0.1	0.1	26.24	-	-	46	-19.70
17.2365	45.47	PK	0.2	0.2	45.87	60	-14.13	-	-
17.2365	33.95	Av	0.2	0.2	34.35	-	-	50	-15.6

LINE 1 RESULTS

LINE 2 RESULTS

10. **MAXIMUM PERMISSIBLE EXPOSURE**

FCC RULES

§1.1310 The criteria listed in Table 1 shall be used to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in §1.1307(b), except in the case of portable devices which shall be evaluated according to the provisions of §2.1093 of this chapter.

TABLE 1—LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)	
(A) Lin	nits for Occupational	/Controlled Exposu	res		
0.3–3.0 3.0–30 30–300 300–1500 1500–100,000	614 1842# 61.4	1.63 4.89# 0.163	*(100) *(900/f²) 1.0 f/300 5	6 6 6 6	
(B) Limits	for General Populati	on/Uncontrolled Exp	posure		
0.3–1.34	614 824 <i>f</i> f	1.63 2.19/f	*(100) *(180/f²)	30 30	

TABLE 1-LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)-Continued

Frequency range (MHz)	Electric field strength (V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Averaging time (minutes)
30–300 300–1500 1500–100,000	27.5	0.073	0.2 f/1500 1.0	30 30 30

f = frequency in MHz

* = Plane-wave equivalent power density
NOTE 1 TO TABLE 1: Occupational/controlled limits apply in situations in which persons are exposed as a consequence of their employment provided those persons are fully aware of the potential for exposure and can exercise control over their exposure. Limits for occupational/controlled exposure also apply in situations when an individual is transient through a location where occupational/controlled limits apply provided he or she is made aware of the potential for exposure.

NOTE 2 TO TABLE 1: General population/uncontrolled exposures apply in situations in which the general public may be exposed, or in which persons that are exposed as a consequence of their employment may not be fully aware of the potential for exposure or can not exercise control over their exposure.

IC RULES

IC Safety Code 6, Section 2.2.1 (a) A person other than an RF and microwave exposed worker shall not be exposed to electromagnetic radiation in a frequency band listed in Column 1 of Table 5, if the field strength exceeds the value given in Column 2 or 3 of Table 5, when averaged spatially and over time, or if the power density exceeds the value given in Column 4 of Table 5, when averaged spatially and over time.

DATE: MAY 12, 2012

Table 5 Exposure Limits for Persons Not Classed As RF and Microwave Exposed Workers (Including the General Public)

1 Frequency (MHz)	2 Electric Field Strength; rms (V/m)	3 Magnetic Field Strength; rms (A/m)	4 Power Density (W/m ²)	5 Averaging Time (min)
0.003–1	280	2.19		6
1–10	280/f	2.19/ <i>f</i>		6
10–30	28	2.19/f		6
30–300	28	0.073	2*	6
300–1 500	1.585 $f^{0.5}$	0.0042f ^{0.5}	f/150	6
1 500–15 000	61.4	0.163	10	6
15 000–150 000	61.4	0.163	10	616 000 /f ^{1.2}
150 000–300 000	0.158f ^{0.5}	4.21 x 10 ⁻⁴ f ^{0.5}	6.67 x 10 ⁻⁵ f	616 000 /f ^{1.2}

^{*} Power density limit is applicable at frequencies greater than 100 MHz.

Notes: 1. Frequency, f, is in MHz.

2. A power density of 10 W/m² is equivalent to 1 mW/cm².

 A magnetic field strength of 1 A/m corresponds to 1.257 microtesla (μT) or 12.57 milligauss (mG).

EQUATIONS

Power density is given by:

$$S = EIRP / (4 * Pi * D^2)$$

where

 $S = Power density in W/m^2$

EIRP = Equivalent Isotropic Radiated Power in W

D = Separation distance in m

Power density in units of W/m^2 is converted to units of mWc/m^2 by dividing by 10.

Distance is given by:

$$D = SQRT (EIRP / (4 * Pi * S))$$

where

D = Separation distance in m

EIRP = Equivalent Isotropic Radiated Power in W

 $S = Power density in W/m^2$

For multiple colocated transmitters operating simultaneously in frequency bands where the limit is identical, the total power density is calculated using the total EIRP obtained by summing the Power * Gain product (in linear units) of each transmitter.

Total EIRP =
$$(P1 * G1) + (P2 * G2) + ... + (Pn * Pn)$$

where

Px = Power of transmitter x

Gx = Numeric gain of antenna x

In the table(s) below, Power and Gain are entered in units of dBm and dBi respectively and conversions to linear forms are used for the calculations.

LIMITS

From FCC §1.1310 Table 1 (B), the maximum value of S = 1.0 mW/cm²

From IC Safety Code 6, Section 2.2 Table 5 Column 4, S = 10 W/m^2

RESULTS

Band	Mode	Separation	Output	Antenna	IC Power	FCC Power
		Distance	Power	Gain	Density	Density
		(m)	(dBm)	(dBi)	(W/m^2)	(mW/cm^2)
5 GHz	WLAN	0.20	13.85	6.00	0.19	0.019

Page 64 of 69

DATE: MAY 12, 2012