RADIATED EMISSIONS

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T346 (dB/m)	Amp/Cbl/Fltr/Pad (dB)	DC Corr (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	UNII Non-Restricted (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
2	* 5	47.34	PK-U	34.5	-28.4	0	53.44	-		74	-20.56	-	-	210	201	Н
	* 5	38.17	ADR	34.5	-28.4	.24	44.51	54	-9.49	-	-	-	-	210	201	н
5	* 1.44	54.58	PK-U	28.3	-34.3	0	48.58		-	74	-25.42	-	-	215	148	Н
	* 1.44	44.3	ADR	28.3	-34.3	.24	38.54	54	-15.46	-	-	-	-	215	148	н
3	* 4.979	47.73	PK-U	34.5	-28.9	0	53.33	-	-	74	-20.67	-	-	115	100	V
	* 4.979	37.45	ADR	34.5	-28.9	.24	43.29	54	-10.71	-	-	-	-	115	100	V
1	* 5.455	42.01	PK-U	35.1	-18.9	0	58.21	-	-	74	-15.79	-	-	269	304	н
	* 5.455	33.31	ADR	35.1	-18.9	.24	49.75	54	-4.25	-	-	-	-	269	304	н
4	1.92	47.85	PK-U	31.1	-32.8	0	46.15	-		-	-	68.2	-22.05	243	208	Н
6	9.911	33.9	PK-U	37.7	-24.5	0	47.1	-	-	-	-	68.2	-21.1	213	145	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U - U-NII: Maximum Peak

ADR - U-NII AD primary method, RMS average

HORIZONTAL

Page 602 of 648

Below 1GHz DATA

Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	AF T243 (dB/m)	Amp/Cbl (dB)	Corrected Reading (dBuV/m)	QPk Limit (dBuV/m)	Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
6	499.9999	53.76	Qp	21.7	-29.6	45.86	46.02	16	293	102	V
1	* 129.0081	52.43	Pk	18	-31.2	39.23	43.52	-4.29	0-360	199	Н
4	* 132.1114	47.46	Pk	17.8	-31.1	34.16	43.52	-9.36	0-360	101	V
2	200	48.05	Pk	16.7	-30.8	33.95	43.52	-9.57	0-360	101	Н
5	200	48.7	Pk	16.7	-30.8	34.6	43.52	-8.92	0-360	199	V
3	499.1389	45.75	Pk	21.7	-29.6	37.85	46.02	-8.17	0-360	299	Н

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band

Qp - Quasi-Peak detector Pk - Peak detector

Page 603 of 648

9.3. WORST-CASE 18-26GHz

Page 604 of 648

18-26GHz DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	T89 AF (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBuVolts)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)
1	20.862	39.42	Pk	32.6	-25.4	-9.5	37.12	54	-16.88	74	-36.88
2	22.88	38.64	Pk	33.4	-24.9	-9.5	37.64	54	-16.36	74	-36.36
3	24.993	38.5	Pk	34.2	-24.5	-9.5	38.7	54	-15.3	74	-35.3
4	21.207	37.47	Pk	33.1	-24.7	-9.5	36.37	54	-17.63	74	-37.63
5	24.018	37.97	Pk	33.3	-24.3	-9.5	37.47	54	-16.53	74	-36.53
6	25.415	38.81	Pk	33.8	-24.3	-9.5	38.81	54	-15.19	74	-35.19

Pk - Peak detector

Page 605 of 648

Page 606 of 648

26-40GHz DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	T90 AF (dB/m)	Amp/Cbl (dB)	Dist Corr (dB)	Corrected Reading (dBuVolts)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)
1	28.159	44.06	Pk	35.8	-32.9	-9.5	37.46	54	-16.54	74	-36.54
2	34.45	43.16	Pk	37.4	-31.5	-9.5	39.56	54	-14.44	74	-34.44
3	39.126	43.63	Pk	37.9	-30.7	-9.5	41.33	54	-12.67	74	-32.67
4	26.096	46.24	Pk	35.6	-35.1	-9.5	37.24	54	-16.76	74	-36.76
5	34.804	43.42	Pk	37.2	-31.5	-9.5	39.62	54	-14.38	74	-34.38
6	38.309	43.16	Pk	37.1	-30.8	-9.5	39.96	54	-14.04	74	-34.04

Pk - Peak detector

Page 607 of 648

9.5. WORST-CASE CO-LOCATION

2.4 GHz and 5GHz WIFI signals are generated from different chipsets with different transmission paths up to the antennas where only antenna 1 is able to transmit both signals

Page 608 of 648

CO-LOCATION DATA

Marker	Frequency (GHz)	Meter Reading (dBuV)	Det	AF T119 (dB/m)	Amp/Cbl/Fltr/P ad (dB)	Corrected Reading (dBuV/m)	Avg Limit (dBuV/m)	Margin (dB)	Peak Limit (dBuV/m)	PK Margin (dB)	Azimuth (Degs)	Height (cm)	Polarity
7	* 2.717	47.27	PK-U	32.6	-20.7	59.17	-	-	74	-14.83	345	155	Н
	* 2.718	34.34	ADR	32.6	-20.7	46.24	54	-7.76	-	-	345	155	Н
1	* 4.924	47.81	PK-U	34.2	-28.2	53.81	-	-	74	-20.19	274	201	Н
	* 4.924	43.09	ADR	34.2	-28.2	49.09	54	-4.91	-	-	274	201	Н
4	* 5	45.52	PK-U	34.2	-28.8	50.92	-	-	74	-23.08	265	199	Н
	* 5	36.84	ADR	34.2	-28.8	42.24	54	-11.76	-	-	265	199	Н
5	* 4.982	45.27	PK-U	34.2	-28.7	50.77	-	-	74	-23.23	277	206	Н
	* 4.979	33.9	ADR	34.2	-28.7	39.4	54	-14.6	-	-	277	206	Н
6	* 4.924	48.03	PK-U	34.2	-28.2	54.03	-	-	74	-19.97	43	196	V
	* 4.924	43.14	ADR	34.2	-28.2	49.14	54	-4.86	-	-	43	196	V
2	* 7.64	44.12	PK-U	36.1	-24.8	55.42	-	-	74	-18.58	357	195	Н
	* 7.641	32.92	ADR	36.1	-24.8	44.22	54	-9.78	-	-	357	195	Н
3	* 7.386	43.11	PK-U	36	-25.8	53.31	-	-	74	-20.69	54	164	V
	* 7.385	36.27	ADR	36	-25.8	46.47	54	-7.53	-	-	54	164	V

* - indicates frequency in CFR47 Pt 15 / IC RSS-Restricted Band PK-U - U-NII: Maximum Peak ADR - U-NII AD primary method, RMS average

Page 609 of 648

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 "	56 to 46 "			
0.5-5	56	46			
5-30	60	50			

Decreases with the logarithm of the frequency.

TEST PROCEDURE

The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.10.

The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average.

Line conducted data is recorded for both NEUTRAL and HOT lines.

RESULTS

Page 610 of 648

LINE 1 RESULTS

Range	Range 1: Line-L1 .15 - 30MHz										
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	LISN L1	LC Cables C1&C3	Limiter (dB)	Corrected Reading dBuV	CFR 47 Part 15 Class B QP	QP Margin (dB)	CFR 47 Part 15 Class B Avg	Av(CISPR) Margin (dB)
1	.23775	28.14	Qp	0	0	10.1	38.24	62.17	-23.93	-	-
2	.23775	14.13	Са	0	0	10.1	24.23	-	-	52.17	-27.94
3	.69225	24.93	Qp	0	0	10.1	35.03	56	-20.97	-	-
4	.69225	9.86	Са	0	0	10.1	19.96	-	-	46	-26.04
5	19.89375	24.56	Qp	.1	.3	10.3	35.26	60	-24.74	-	-
6	19.91625	14.66	Са	.1	.3	10.3	25.36	-	-	50	-24.64

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 611 of 648

LINE 2 RESULTS

Range	Range 2: Line-L2 .15 - 30MHz										
Marker	Frequency (MHz)	Meter Reading (dBuV)	Det	LISN L2	LC Cables C2&C3	Limiter (dB)	Corrected Reading dBuV	CFR 47 Part 15 Class B QP	QP Margin (dB)	CFR 47 Part 15 Class B Avg	Av(CISPR) Margin (dB)
7	.23775	28.52	Qp	0	0	10.1	38.62	62.17	-23.55	-	-
8	.23775	14.57	Са	0	0	10.1	24.67	-	-	52.17	-27.5
9	.69225	26.12	Qp	0	0	10.1	36.22	56	-19.78	-	-
10	.69225	12.12	Са	0	0	10.1	22.22	-	-	46	-23.78
11	19.89375	25.02	Qp	0	.3	10.3	35.62	60	-24.38	-	-
12	19.91625	15.01	Са	0	.3	10.3	25.61	-	-	50	-24.39

Qp - Quasi-Peak detector

Ca - CISPR average detection

Page 612 of 648

11. DYNAMIC FREQUENCY SELECTION

11.1. OVERVIEW

11.1.1. LIMITS

INDUSTRY CANADA

IC RSS-247 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-247 Issue 2

Note: For the band 5600–5650 MHz, no operation is permitted.

Until further notice, devices subject to this annex shall not be capable of transmitting in the band 5600–5650 MHz. This restriction is for the protection of Environment Canada weather radars operating in this band.

<u>FCC</u>

§15.407 (h), FCC KDB 905462 D02 "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION" and KDB 905462 D03 "U-NII CLIENT DEVICES WITHOUT RADAR DETECTION CAPABILITY".

Page 613 of 648

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode						
	Master	Client (without radar detection)	Client (with radar detection)				
Non-Occupancy Period	Yes	Not required	Yes				
DFS Detection Threshold	Yes	Not required	Yes				
Channel Availability Check Time	Yes	Not required	Not required				
U-NII Detection Bandwidth	Yes	Not required	Yes				

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode						
	Master	Client	Client				
		(without DFS)	(with DFS)				
DFS Detection Threshold	Yes	Not required	Yes				
Channel Closing Transmission Time	Yes	Yes	Yes				
Channel Move Time	Yes	Yes	Yes				
U-NII Detection Bandwidth	Yes	Not required	Yes				

Additional requirements for	Master Device or Client with	Client					
devices with multiple bandwidth	Radar DFS	(without DFS)					
modes							
U-NII Detection Bandwidth and	All BW modes must be	Not required					
Statistical Performance Check	tested						
Channel Move Time and Channel	Test using widest BW mode	Test using the					
Closing Transmission Time	available	widest BW mode					
		available for the link					
All other tests	Any single BW mode	Not required					
Note: Frequencies selected for statistical performance check (Section 7.8.4) should include							
several frequencies within the radar detection bandwidth and frequencies near the edge of the							
radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in all 20							
MHz channel blocks and a null frequency between the bonded 20 MHz channel blocks							

Page 614 of 648

Table 3: Interference Threshold values, Master or Client incorporating In-ServiceMonitoring

Maximum Transmit Power	Value						
	(see notes)						
E.I.R.P. ≥ 200 mill watt	-64 dBm						
E.I.R.P. < 200 mill watt and	-62 dBm						
power spectral density < 10 dBm/MHz							
E.I.R.P. < 200 mill watt that do not meet power spectral	-64 dBm						
density requirement							
Note 1: This is the level at the input of the receiver assuming a	0 dBi receive antenna						
Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude							
of the test transmission waveforms to account for variations in measurement equipment. This							
will ensure that the test signal is at or above the detection threshold level to trigger a DFS							

response. **Note 3:** E.I.R.P. is based on the highest antenna gain. For MIMO devices refer to KDB publication 662911 D01.

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds (See Note 1)
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second period. (See Notes 1 and 2)
U-NII Detection Bandwidth	Minimum 100% of the U- NII 99% transmission power bandwidth. (See Note 3)

Table 4: DFS Response requirement values

Note 1: *Channel Move Time* and the *Channel Closing Transmission Time* should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Page 615 of 648

Table 5 – Short Pulse Radar Test Waveforms

Radar	Pulse	PRI	Pulses	Minimum	Minimum
Туре	Width	(usec)		Percentage	Trials
	(usec)			of Successful	
-				Detection	
0	1	1428	18	See Note 1	See Note 1
1	1	Test A: 15 unique		60%	30
		PRI values randomly			
		selected from the list	Roundup:		
		of 23 PRI values in	{(1/360) x (19 x 10° PRI _{usec})}		
		table 5a			
		Test B: 15 unique			
		PRI values randomly			
		selected within the			
		range of 518-3066			
		usec. With a			
		minimum increment			
		of 1 usec, excluding			
		PRI values selected			
		in Test A			
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
		Aggregate (Radar T	ypes 1-4)	80%	120
Note 1:	Short P	ulse Radar Type 0 shou	ld be used for the Detection Bal	ndwidth test, Ch	annel
Move T	<i>Time</i> , and	Channel Closing Time to	ests.		

Table 6 – Long Pulse Radar Test Signal

Radar	Pulse	Chirp	PRI	Pulses	Number	Minimum	Minimum
Waveform	Width	Width	(µsec)	per	of	Percentage	Trials
Туре	(µsec)	(MHz)		Burst	Bursts	of Successful	
-						Detection	
5	50-100	5-20	1000-	1-3	8-20	80%	30
			2000				

Table 7 – Frequency Hopping Radar Test Signal

Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	per	Rate	Sequence	Percentage of	Trials
Туре	(µsec)		Нор	(kHz)	Length	Successful	
					(msec)	Detection	
6	1	333	9	0.333	300	70%	30

Page 616 of 648

11.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

Page 617 of 648

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 1, 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of KDB 905462 D02. The frequency of the signal generator is incremented in 1 MHz steps from F_L to F_H for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is –64 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Page 618 of 648

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST							
Description	Manufacturer	Model	Serial Number	Cal Due			
Spectrum Analyzer, PXA, 3Hz to 44GHz	Keysight	N9030A	US51350187	06/22/18			
Signal Generator, MXG X-Series RF Vector	Agilent	N5182B	MY51350337	04/21/18			

11.1.3. TEST AND MEASUREMENT SOFTWARE

The following test and measurement software was utilized for the tests documented in this report:

TEST SOFTWARE LIST					
Name Version Test / Function					
Aggregate Time-PXA	3.0	Channel Loading and Aggregate Closing Time			
PXA Read	3.0.0.9	Signal Generator Screen Capture			
SGXProject.exe	1.7	Radar Waveform Generation and Download			

11.1.4. TEST ROOM ENVIRONMENT

The test room temperature and humidity shall be maintained within normal temperature of 15~35 °C and normal humidity 20~75% (relative humidity).

ENVIRONMENT CONDITION

Parameter	Value
Temperature	24.9 °C
Humidity	26 %

Page 619 of 648

11.1.5. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

F	PERIPHERAL SU	PPORT EQUIPME	NT LIST	
Description	Manufacturer	Model	Serial Number	FCC ID
Notebook PC (EUT Console)	Lenovo	Type 2325-JS1	R9-VHRDM 12/11	DoC
AC Adapter (Console PC)	Lenovo	92P1160	11S92P1160Z1ZBGH89 VE6	DoC
802.11ac Dual Band Wireless Access Point (Master Device)	Cisco	AIR-CAP3702E-A- K9	FTX181570A6	LDK102087
P.O.E. Injector (Master)	Phihong	POE30U-560(G)	PHI170102N2	DoC
Notebook PC (Master Controller PC)	Lenovo	Туре 4236-В92	PB-HEX04 12/05	DoC
AC Adapter (Controller PC)	Lenovo	42T4418	11S42T4418Z1ZGWG08 R90M	DoC

Page 620 of 648

11.1.6. DESCRIPTION OF EUT

For FCC the EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges.

For IC the EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges, excluding the 5600-5650 MHz range.

The EUT is a Slave Device without Radar Detection.

For FCC the highest power level within these bands is 27.1 dBm EIRP in the 5250-5350 MHz band and 28.6 dBm EIRP in the 5470-5725 MHz band.

For IC the highest power level within these bands is 28.6 dBm EIRP in the 5250-5350 MHz band and 28.34 dBm EIRP in the 5470-5725 MHz band.

The only antenna assembly utilized with the EUT consists of two antennas with respective gains of 5.0 dBi and 4.9 dBi in the 5250-5350 MHz band and 5.5 dBi and 4.2 dBi in the 5470-5725 MHz band.

Two antennas are utilized to meet the diversity and MIMO operational requirements.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides a margin to the limit.

The EUT uses two transmitter/receiver chains, each connected to an antenna to perform radiated tests.

WLAN traffic that meets or exceeds the minimum required loading was generated by transferring a data stream from the Master Device to the Slave Device using iPerf version 2.0.5 software package.

TPC is required since the maximum EIRP is greater than 500 mW (27 dBm).

The EUT utilizes the 802.11ac architecture. Three nominal channel bandwidths are implemented: 20 MHz, 40 MHz and 80 MHz.

The software installed in the EUT is v1.29.99992

The software installed in the access point is AP3G2-K9W7-M Version 15.2(4)JB4.

Page 621 of 648

UNIFORM CHANNEL SPREADING

This is requirement not applicable to Slave Devices.

OVERVIEW OF MASTER DEVICE WITH RESPECT TO §15.407 (h) REQUIREMENTS

The Master Device is a Cisco Access Point, FCC ID: LDK102087. The minimum antenna gain for the Master Device is 6 dBi.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides a margin to the limit.

Page 622 of 648

11.2. RESULTS FOR 20 MHz BANDWIDTH

11.2.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5500 MHz.

11.2.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

Page 623 of 648

TRAFFIC

Page 624 of 648

CHANNEL LOADING

The level of traffic loading on the channel by the EUT is 32.27%

Page 625 of 648

11.2.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

11.2.4. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Channel Move Time	Limit
(sec)	(sec)
0.0972	10

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
0.0	60

MOVE TIME

Page 627 of 648

CHANNEL CLOSING TIME

Page 628 of 648

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the aggregate monitoring period.

Page 629 of 648

11.3. RESULTS FOR 40 MHz BANDWIDTH

11.3.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5510 MHz.

11.3.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

Page 630 of 648

TRAFFIC

RL 1 == 500 Center Freq 5.510000	DOOD GHz] SEASE WIT	Aug Type: Log-Pwr	09:53:56 AM Sep 25, 2017 TRACE 12 3 5 6 TYPE With Million	Frequency
Ref Offset -20.8 0 dEl/div Ref -45.00 dl	IFGain:High I dB Bm	#Atten: 0 dB		Mkr1 13.07 s -76.27 dBm	Auto Tune
65,0 ⁻					Center Freq 5.510000000 GHz
55 0				1	Start Freq 5.51000000 GHz
		A DESCRIPTION OF A DESC	A ROLL Y ROLL Y	A Charles Maria a	
eso iso	ความดูสุลปนใหล่มใหล่งpa	ala kata kata pada na	adadadan karatatan	ngan darin dalah sering	Stop Freq 5.510000000 GHz
98-0 105 115	la dogla dy ha i a rakrija d	ates kala (jeda julija) je je	udan bekara menaketyi 		Stop Frec 5.510000000 GH: 5.510000000 GH: 3.000000 MH: Auto Mar
98-0 55-0 -105 					Stop Fred 5.51000000 GH2 3.000000 MH2 Auto Mar Freq Offset 0 H2

Page 631 of 648

CHANNEL LOADING

The level of traffic loading on the channel by the EUT is 34.79%

Page 632 of 648

11.3.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

11.3.4. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Channel Move Time	Limit
(sec)	(sec)
0.244	10

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
0.0	60

MOVE TIME

Page 634 of 648

CHANNEL CLOSING TIME

Page 635 of 648

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the aggregate monitoring period.

Page 636 of 648

11.4. RESULTS FOR 80 MHz BANDWIDTH

11.4.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5530 MHz.

11.4.2. RADAR WAVEFORM AND TRAFFIC

RADAR WAVEFORM

Page 637 of 648

TRAFFIC

Page 638 of 648

CHANNEL LOADING

The level of traffic loading on the channel by the EUT is 35.27%

Page 639 of 648

11.4.3. OVERLAPPING CHANNEL TESTS

RESULTS

These tests are not applicable.

11.4.4. MOVE AND CLOSING TIME

REPORTING NOTES

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

RESULTS

Channel Move Time	Limit
(sec)	(sec)
0.0532	10

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
0.0	60

MOVE TIME

Page 641 of 648

CHANNEL CLOSING TIME

Page 642 of 648

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the aggregate monitoring period.

Page 643 of 648

11.4.5. 30-MINUTE NON-OCCUPANCY PERIOD

RESULTS

No EUT transmissions were observed on the test channel during the 30-minute observation time.

RL	50 D CC 30000000 GH	Z Trig: Free Run	Avg Type: Log-Pwr	11:25:52 AM Sep 20, 2017 TRACE 1 5 5 6 TYPE WALLAND	Frequency
الا التحقيق التحقيق التحقيق التحقيق التحق التحقيق التحقيق التحقيق التحقيق التحقيق التحقيق التحقيق التحقيق التحق التحق التحق التحق التحقيق التحق التحق التحق التحق التحقيق التحقيق التحقيق التحقيق التحقيق التحق التحقيق التحقيق التحق التحق التحق التحق التحقيق التحق التحق التحق التحق التحقيق التحق التحق التحق التحقيق التحق التحق التحق التحق التح الت التحق التحق التحي التحق التحق التحق التح					
5.0 5.0					Center Freq 5,530000000 GHz
20 <mark>%2</mark>					Start Free 5.530000000 GHz
e d 15 d		c		102-	Stop Free 5.530000000 GHz
105					CF Step 3.000000 MH Auto Mar
05					Freq Offset 0 Hz
135 Center 5 53000000	10 GH2			Snan 0 Hz	-

Page 644 of 648