

### FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-210 ISSUE 8

BLUETOOTH LOW ENERGY CERTIFICATION TEST REPORT

FOR

BLUETOOTH & DTS/UNII a/b/g/n/ac

**MODEL NUMBER: GG1** 

FCC ID: A4R-GG1 IC: 10395A-GG1

REPORT NUMBER: 15U19985-E6

**ISSUE DATE: MAY 13, 2015** 

Prepared for GOOGLE INC. 1600 AMPHITHEATRE PARKWAY MOUNTAIN VIEW CA, 94043, U.S.A

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

R

NVLAP LAB CODE 200065-0

#### **Revision History**

| Rev. | Issue<br>Date | Revisions     | Revised By |
|------|---------------|---------------|------------|
|      | 5/13/15       | Initial Issue | F. de Anda |

Page 2 of 64

# TABLE OF CONTENTS

| 1.             | AT                                                                                                | TESTATION OF TEST RESULTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                  |
|----------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| 2.             | TE                                                                                                | ST METHODOLOGY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                  |
| 3.             | FA                                                                                                | CILITIES AND ACCREDITATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                  |
| 4.             | CA                                                                                                | ALIBRATION AND UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6                                                                  |
|                | 4.1.                                                                                              | MEASURING INSTRUMENT CALIBRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                  |
|                | 4.2.                                                                                              | SAMPLE CALCULATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6                                                                  |
|                | 4.3.                                                                                              | MEASUREMENT UNCERTAINTY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7                                                                  |
| 5.             | EC                                                                                                | QUIPMENT UNDER TEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                  |
|                | 5.1.                                                                                              | DESCRIPTION OF EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                  |
|                | 5.2.                                                                                              | MAXIMUM OUTPUT POWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8                                                                  |
|                | 5.3.                                                                                              | DESCRIPTION OF AVAILABLE ANTENNAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8                                                                  |
|                | 5.4.                                                                                              | SOFTWARE AND FIRMWARE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8                                                                  |
|                | 5.5.                                                                                              | WORST-CASE CONFIGURATION AND MODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                  |
|                | 5.6.                                                                                              | DESCRIPTION OF TEST SETUP1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                  |
| 6.             | TE                                                                                                | ST AND MEASUREMENT EQUIPMENT1                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                  |
|                |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                    |
| 7.             | ME                                                                                                | EASUREMENT METHODS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                  |
| 7.<br>8.       | ME<br>AN                                                                                          | EASUREMENT METHODS1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5<br>6                                                             |
| 7.<br>8.       | <b>ME</b><br><b>AN</b><br><i>8.1.</i><br>8.1<br>8.1                                               | EASUREMENT METHODS 1   INTENNA PORT TEST RESULTS 1   ON TIME, DUTY CYCLE AND MEASUREMENT METHODS 1   1.1. ON TIME AND DUTY CYCLE RESULTS 1   1.2. DUTY CYCLE PLOTS 1                                                                                                                                                                                                                                                                                                                                        | 5<br>6<br>6<br>7                                                   |
| 7.<br>8.       | ME<br>AN<br>8.1.<br>8.1<br>8.2.                                                                   | EASUREMENT METHODS 1   INTENNA PORT TEST RESULTS 1   ON TIME, DUTY CYCLE AND MEASUREMENT METHODS 1   1.1. ON TIME AND DUTY CYCLE RESULTS 1   1.2. DUTY CYCLE PLOTS 1   6 dB BANDWIDTH 1                                                                                                                                                                                                                                                                                                                     | <b>5</b><br><b>6</b><br>6<br>6<br>7<br>8                           |
| 7.<br>8.       | ME<br>AN<br>8.1.<br>8.1<br>8.2.<br>8.3.                                                           | EASUREMENT METHODS 1   INTENNA PORT TEST RESULTS 1   ON TIME, DUTY CYCLE AND MEASUREMENT METHODS 1   1.1. ON TIME AND DUTY CYCLE RESULTS 1   1.2. DUTY CYCLE PLOTS 1   6 dB BANDWIDTH 1   99% BANDWIDTH 2                                                                                                                                                                                                                                                                                                   | <b>5</b><br>6<br>6<br>7<br>8<br>2                                  |
| 7.<br>8.       | ME<br>AN<br>8.1.<br>8.1<br>8.1<br>8.1<br>8.3.<br>8.2.<br>8.3.                                     | EASUREMENT METHODS 1   INTENNA PORT TEST RESULTS 1   ON TIME, DUTY CYCLE AND MEASUREMENT METHODS 1   1.1. ON TIME AND DUTY CYCLE RESULTS 1   1.2. DUTY CYCLE PLOTS 1   6 dB BANDWIDTH 1   99% BANDWIDTH 2   OUTPUT POWER 2                                                                                                                                                                                                                                                                                  | <b>5</b><br><b>6</b><br>667<br>826                                 |
| 7.             | ME<br>8.1.<br>8.1<br>8.2.<br>8.3.<br>8.4.<br>8.5.                                                 | EASUREMENT METHODS 1   INTENNA PORT TEST RESULTS 1   ON TIME, DUTY CYCLE AND MEASUREMENT METHODS 1   1.1. ON TIME AND DUTY CYCLE RESULTS 1   1.2. DUTY CYCLE PLOTS 1   6 dB BANDWIDTH 1   99% BANDWIDTH 2   OUTPUT POWER 2   AVERAGE POWER 3                                                                                                                                                                                                                                                                | <b>5</b><br>6<br>6<br>6<br>7<br>8<br>2<br>6<br>0                   |
| 7.             | ME<br>8.1.<br>8.1<br>8.2.<br>8.3.<br>8.4.<br>8.5.<br>8.6.                                         | EASUREMENT METHODS 1   INTENNA PORT TEST RESULTS 1   ON TIME, DUTY CYCLE AND MEASUREMENT METHODS 1   1.1. ON TIME AND DUTY CYCLE RESULTS 1   1.2. DUTY CYCLE PLOTS 1   6 dB BANDWIDTH 1   99% BANDWIDTH 2   OUTPUT POWER 2   AVERAGE POWER 3   POWER SPECTRAL DENSITY 3                                                                                                                                                                                                                                     | <b>5</b><br><b>6</b><br>667<br>82<br>601                           |
| 7.             | ME<br>8.1.<br>8.1<br>8.2.<br>8.3.<br>8.4.<br>8.5.<br>8.6.<br>8.7.                                 | EASUREMENT METHODS 1   INTENNA PORT TEST RESULTS 1   ON TIME, DUTY CYCLE AND MEASUREMENT METHODS 1   1.1. ON TIME AND DUTY CYCLE RESULTS 1   1.2. DUTY CYCLE PLOTS 1   6 dB BANDWIDTH 1   99% BANDWIDTH 2   OUTPUT POWER 2   AVERAGE POWER 3   POWER SPECTRAL DENSITY 3   CONDUCTED SPURIOUS EMISSIONS 3                                                                                                                                                                                                    | <b>5</b><br><b>6</b><br>66782601<br>5                              |
| 7.<br>8.<br>9. | ME<br>8.1.<br>8.1<br>8.2.<br>8.3.<br>8.4.<br>8.5.<br>8.6.<br>8.7.<br>RA                           | EASUREMENT METHODS 1   INTENNA PORT TEST RESULTS 1   ON TIME, DUTY CYCLE AND MEASUREMENT METHODS 1   1.1 ON TIME AND DUTY CYCLE RESULTS 1   1.2 DUTY CYCLE PLOTS 1   6 dB BANDWIDTH 1 1   99% BANDWIDTH 2 2   OUTPUT POWER 2 2   AVERAGE POWER 3 3   POWER SPECTRAL DENSITY 3 3   ADIATED TEST RESULTS 4                                                                                                                                                                                                    | <b>5</b><br><b>6</b><br>667826015<br><b>2</b>                      |
| 7.<br>8.<br>9. | ME<br>8.1.<br>8.1<br>8.2.<br>8.3.<br>8.4.<br>8.5.<br>8.6.<br>8.7.<br>8.7.<br>8.7.<br>8.7.         | EASUREMENT METHODS 1   INTENNA PORT TEST RESULTS 1   ON TIME, DUTY CYCLE AND MEASUREMENT METHODS 1   1.1 ON TIME AND DUTY CYCLE RESULTS 1   1.2 DUTY CYCLE PLOTS 1   6 dB BANDWIDTH 1   99% BANDWIDTH 2   OUTPUT POWER 2   AVERAGE POWER 3   POWER SPECTRAL DENSITY 3   CONDUCTED SPURIOUS EMISSIONS 3   ADIATED TEST RESULTS 4   LIMITS AND PROCEDURE 4                                                                                                                                                    | <b>5 6</b> 667 8 2 6 0 1 5 <b>2</b> 2                              |
| 7.<br>8.<br>9. | ME<br>8.1.<br>8.1<br>8.2.<br>8.3.<br>8.4.<br>8.5.<br>8.6.<br>8.7.<br>9.1.<br>9.2.                 | EASUREMENT METHODS 1   INTENNA PORT TEST RESULTS 1   ON TIME, DUTY CYCLE AND MEASUREMENT METHODS 1   1.1 ON TIME AND DUTY CYCLE RESULTS 1   1.2 DUTY CYCLE PLOTS 1   6 dB BANDWIDTH 1 1   99% BANDWIDTH 2 2   OUTPUT POWER 2 2   AVERAGE POWER 3 3   POWER SPECTRAL DENSITY 3 3   ADIATED TEST RESULTS 4 4   LIMITS AND PROCEDURE 4   TX ABOVE 1 GHz FOR BLUETOOTH LOW ENERGY MODE IN THE 2.4 GHz BAND 43 43                                                                                                | 5<br>6<br>6<br>6<br>6<br>7<br>8<br>2<br>6<br>0<br>1<br>5<br>2<br>2 |
| 7.<br>8.<br>9. | ME<br>8.1.<br>8.1<br>8.2.<br>8.3.<br>8.4.<br>8.5.<br>8.6.<br>8.7.<br>9.1.<br>9.2.<br>9.3.         | EASUREMENT METHODS 1   INTENNA PORT TEST RESULTS 1   ON TIME, DUTY CYCLE AND MEASUREMENT METHODS 1   1.1. ON TIME AND DUTY CYCLE RESULTS 1   1.2. DUTY CYCLE PLOTS 1   6 dB BANDWIDTH 1   99% BANDWIDTH 2   OUTPUT POWER 2   AVERAGE POWER 3   POWER SPECTRAL DENSITY 3   CONDUCTED SPURIOUS EMISSIONS 3   ADIATED TEST RESULTS 4   LIMITS AND PROCEDURE 4   TX ABOVE 1 GHz FOR BLUETOOTH LOW ENERGY MODE IN THE 2.4 GHz BAND 43   WORST-CASE ABOVE 18 GHz 5                                                | <b>5 6</b> 667 8 2 6 0 1 5 <b>2</b> 2 3                            |
| 7.<br>8.<br>9. | ME<br>8.1.<br>8.1<br>8.2.<br>8.3.<br>8.4.<br>8.5.<br>8.6.<br>8.7.<br>9.1.<br>9.2.<br>9.3.<br>9.4. | EASUREMENT METHODS 1   INTENNA PORT TEST RESULTS 1   ON TIME, DUTY CYCLE AND MEASUREMENT METHODS 1   1.1. ON TIME AND DUTY CYCLE RESULTS 1   1.2. DUTY CYCLE PLOTS 1   6 dB BANDWIDTH 1   99% BANDWIDTH 2   OUTPUT POWER 2   OUTPUT POWER 2   AVERAGE POWER 3   POWER SPECTRAL DENSITY 3   CONDUCTED SPURIOUS EMISSIONS 3   ADIATED TEST RESULTS 4   LIMITS AND PROCEDURE 4   TX ABOVE 1 GHz FOR BLUETOOTH LOW ENERGY MODE IN THE 2.4 GHz BAND 43 43   WORST-CASE ABOVE 18 GHz 5   WORST-CASE BELOW 1 GHz 5 | <b>5 6</b> 667 8 2 6 0 1 5 <b>2</b> 2 3 5                          |

| 10. | AC POWER LINE CONDUCTED EMISSIONS | 57  |
|-----|-----------------------------------|-----|
| 11. | SETUP PHOTOS                      | .61 |

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 4 of 64

### **1. ATTESTATION OF TEST RESULTS**

| COMPANY NAME: GOOGLE INC.<br>1600 AMPHITHEATRE PARKWAY<br>MOUNTAIN VIEW, CA, 94043, U.S.A |                                                     |              |  |  |  |
|-------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------|--|--|--|
| EUT DESCRIPTION: BLUETOOTH & DTS/UNII a/b/g/n/ac                                          |                                                     |              |  |  |  |
| MODEL: GG1                                                                                |                                                     |              |  |  |  |
| SERIAL NUMBER: HWP1A22F1446002Y, HWP1A42E1444002T                                         |                                                     |              |  |  |  |
| DATE TESTED:                                                                              | <b>DATE TESTED:</b> April 22, 2015 – April 29, 2015 |              |  |  |  |
|                                                                                           | APPLICABLE STANDARDS                                |              |  |  |  |
|                                                                                           | STANDARD                                            | TEST RESULTS |  |  |  |
| CFR 47 Part 15 Subpart C Pass                                                             |                                                     |              |  |  |  |
| INDUSTRY CANADA RSS-210 Issue 8 Annex 8 Pass                                              |                                                     |              |  |  |  |
| INDUSTRY CANADA RSS-GEN Issue 4 Pass                                                      |                                                     |              |  |  |  |

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

ino de Cuok

FRANCISCO DE ANDA PROJECT LEAD UL Verification Services Inc.

Tested By:

11 has

CLIFFORD SUSA EMC ENGINEER UL Verification Services Inc.

Page 5 of 64

# 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 4, and RSS-210 Issue 8.

# 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

| 47173 Benicia Street | 47266 Benicia Street |
|----------------------|----------------------|
| Chamber A            | Chamber D            |
| Chamber B            | Chamber E            |
| Chamber C            | 🛛 Chamber F          |
|                      | Chamber G            |
|                      | Chamber H            |

The above test sites and facilities are covered under FCC Test Firm Registration # 208313. Chambers A through H are covered under Industry Canada company address code 2324B with site numbers 2324B -1 through 2324B-8, respectively.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

# 4. CALIBRATION AND UNCERTAINTY

### 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

# 4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

Page 6 of 64

### 4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

| PARAMETER                             | UNCERTAINTY |
|---------------------------------------|-------------|
| Conducted Disturbance, 0.15 to 30 MHz | ± 3.52 dB   |
| Radiated Disturbance, 30 to 1000 MHz  | ± 4.94 dB   |
| Radiated Disturbance, 1 to 6 GHz      | ± 3.86 dB   |
| Radiated Disturbance, 6 to 18 GHz     | ± 4.23 dB   |
| Radiated Disturbance, 18 to 26 GHz    | ± 5.30 dB   |
| Radiated Disturbance, 26 to 40 GHz    | ± 5.23 dB   |

Uncertainty figures are valid to a confidence level of 95%.

Page 7 of 64

# 5. EQUIPMENT UNDER TEST

## 5.1. DESCRIPTION OF EUT

The EUT is an accessory device that incorporates 2.4GHz, 5GHz WLAN, BT and BT-LE radio with integral antenna. The EUT is provided with an AC charger and a USB cable. When connected to a PC, the USB cable provides a path for charging and data transfer.

### 5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

| Frequency Range | Mode | Output Power | Output Power |
|-----------------|------|--------------|--------------|
| (MHz)           |      | (dBm)        | (mW)         |
| 2402 - 2480     | BLE  | 1.80         | 1.51         |

### 5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes a PCB antenna with a maximum gain of 4dBi for 2.4GHz band.

# 5.4. SOFTWARE AND FIRMWARE

The firmware installed in the EUT during testing was V1.0.

The EUT driver software installed in the support equipment during testing was ver 6.37.32.34.1

Page 8 of 64

### 5.5. WORST-CASE CONFIGURATION AND MODE

Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

The fundamental of the EUT was investigated in three orthogonal orientations X,Y,Z, it was determined that X- orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X-orientation.

Worst-case data rates as provided by the client were:

BLE: 1Mbps Mbps.

Page 9 of 64

### 5.6. DESCRIPTION OF TEST SETUP

#### SUPPORT EQUIPMENT

| Support Equipment List                              |       |             |                |     |  |  |
|-----------------------------------------------------|-------|-------------|----------------|-----|--|--|
| Description Manufacturer Model Serial Number FCC ID |       |             |                |     |  |  |
| Laptop                                              | Apple | Macbook Air | C02FX0VTDJDJDK | N/A |  |  |
| AC Adapter                                          | Apple | A1343       | ADP-85EBT      | N/A |  |  |

#### I/O CABLES

| I/O Cable List |         |                |           |            |                     |         |  |
|----------------|---------|----------------|-----------|------------|---------------------|---------|--|
| Cable          | Port    | # of identical | Connector | Cable Type | <b>Cable Length</b> | Remarks |  |
| No             |         | ports          | Туре      |            | (m)                 |         |  |
| 1              | Antenna | 1              | Coax      | Shielded   | 0.2                 |         |  |
| 2              | USB     | 1              | USB       | Shielded   | 0.5                 |         |  |
| 3              | DC      | 1              | DC        | Shielded   | 1.5                 |         |  |

#### TEST SETUP

The EUT is connected to a host laptop via USB cable, test software exercises the radio.

Page 10 of 64

#### SETUP DIAGRAM FOR TESTS



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 11 of 64



Page 12 of 64

#### SETUP DIAGRAM FOR TESTS



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 13 of 64

# 6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

| Test Equipment List                  |                |                        |                        |           |          |  |  |
|--------------------------------------|----------------|------------------------|------------------------|-----------|----------|--|--|
| Description                          | Manufacturer   | Model                  | T No.                  | Cal Date  | Cal Due  |  |  |
| Radiated Software                    | UL             | UL EMC                 | Ver 9.5, July 22, 2014 |           |          |  |  |
| Conducted Software                   | UL             | UL EMC                 |                        | Ver 2.1.4 |          |  |  |
| Spectrum Analyzer, PXA, 3Hz to 44GHz | Agilent        | N9030A                 | 906                    | 05/07/14  | 05/07/15 |  |  |
| Antenna, Horn 18GHz                  | ETS Lindgren   | 3117                   | 712                    | 01/07/15  | 01/07/16 |  |  |
| Antenna, Hybrid, 30MHz to 1GHz       | Sunol Sciences | JB3                    | 900                    | 05/14/14  | 05/14/15 |  |  |
| Amplifier, 1-18GHz                   | Miteq          | AFS42-00101800-25-S-42 | 495                    | 06/05/14  | 06/05/15 |  |  |
| Amplifier, 10kHz - 1GHz              | Sonoma         | 310N                   | 835                    | 06/05/14  | 06/05/15 |  |  |
| Spectrum Analyzer, 40GHz             | HP             | 8564E                  | 106                    | 08/06/14  | 08/06/15 |  |  |
| Antenna, Horn 18-26GHz               | ARA            | MWH-1826               | 89                     | 12/17/14  | 12/17/15 |  |  |
| Amplifier, 1 - 26GHz                 | Agilent        | 8449B                  | 404                    | 06/05/14  | 06/05/15 |  |  |
| LISN, 30MHz                          | FCC            | 50/250-25-2            | 24                     | 01/16/15  | 01/16/16 |  |  |
| Spectrum Analyzer, PXA, 3Hz to 44GHz | Agilent        | N9030A                 | 917                    | 05/08/14  | 05/08/15 |  |  |

# 7. MEASUREMENT METHODS

6 dB BW: KDB 558074 D01 v03r02, Section 8.1.

Output Power: KDB 558074 D01 v03r02, Section 9.1.1.

Power Spectral Density: KDB 558074 D01 v03r02, Section 10.2.

Out-of-band emissions in non-restricted bands: KDB 558074 D01 v03r02, Section 11.0.

Out-of-band emissions in restricted bands: KDB 558074 D01 v03r02, Section 12.1.

Out-of-band emissions in restricted bands: KDB 558074 D01 v03r02, Section 12.2.

Page 15 of 64

# 8. ANTENNA PORT TEST RESULTS

### 8.1. ON TIME, DUTY CYCLE AND MEASUREMENT METHODS

#### **LIMITS**

None; for reporting purposes only.

#### PROCEDURE

KDB 558074 Zero-Span Spectrum Analyzer Method.

### 8.1.1. ON TIME AND DUTY CYCLE RESULTS

| Mode | <b>ON Time</b> | Period | Duty Cycle | Duty  | Duty Cycle 1/B           |             |
|------|----------------|--------|------------|-------|--------------------------|-------------|
|      | В              |        | х          | Cycle | <b>Correction Factor</b> | Minimum VBW |
|      | (              | (      | (1:        | (0/)  | (                        | (1.11-)     |
|      | (msec)         | (msec) | (linear)   | (%)   | (ab)                     | (KHZ)       |

Page 16 of 64

### 8.1.2. DUTY CYCLE PLOTS



Page 17 of 64

### 8.2. 6 dB BANDWIDTH

#### <u>LIMITS</u>

FCC §15.247 (a) (2)

IC RSS-210 A8.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

#### **RESULTS**

| Channel | Frequency<br>(MHz) | 6 dB Bandwidth<br>(MHz) | Minimum Limit<br>(MHz) |
|---------|--------------------|-------------------------|------------------------|
| Low     | 2402               | 0.6615                  | 0.5                    |
| Middle  | 2440               | 0.6689                  | 0.5                    |
| High    | 2480               | 0.6605                  | 0.5                    |

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 18 of 64

#### 6 dB BANDWIDTH



Page 19 of 64



Page 20 of 64



Page 21 of 64

### 8.3. 99% **BANDWIDTH**

#### LIMITS

None; for reporting purposes only.

#### TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the 99 % bandwidth and to 1% of the span. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized.

#### **RESULTS**

| Channel | Frequency | 99% Bandwidth |
|---------|-----------|---------------|
|         | (MHz)     | (MHz)         |
| Low     | 2402      | 1.0609        |
| Middle  | 2440      | 1.0614        |
| High    | 2480      | 1.0614        |

Page 22 of 64

#### 99% BANDWIDTH



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 23 of 64



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP4701I TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 24 of 64



Page 25 of 64

### 8.4. OUTPUT POWER

#### **LIMITS**

FCC §15.247 (b)

IC RSS-210 A8.4

The maximum antenna gain is less than or equal to 6 dBi, therefore the limit is 30 dBm.

#### **RESULTS**

| Channel | Frequency | Peak Power<br>Reading | Limit | Margin  |
|---------|-----------|-----------------------|-------|---------|
|         | (MHz)     | (dBm)                 | (dBm) | (dB)    |
| Low     | 2402      | 1.545                 | 30    | -28.455 |
| Middle  | 2440      | 1.799                 | 30    | -28.201 |
| High    | 2480      | 1.635                 | 30    | -28.365 |

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 26 of 64

#### **OUTPUT POWER**



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 27 of 64



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 28 of 64



Page 29 of 64

### 8.5. AVERAGE POWER

#### **LIMITS**

None; for reporting purposes only.

#### **RESULTS**

The cable assembly insertion loss of 11.6 dB (including 10 dB pad and 1.6 dB cable) was entered as an offset in the power meter to allow for direct reading of power.

| Channel | Frequency | AV power |
|---------|-----------|----------|
|         | (MHz)     | (dBm)    |
| Low     | 2402      | 1.41     |
| Middle  | 2440      | 1.78     |
| High    | 2480      | 1.26     |

Page 30 of 64

### 8.6. POWER SPECTRAL DENSITY

#### **LIMITS**

FCC §15.247 (e)

IC RSS-210 A8.2 (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

#### **RESULTS**

| Channel | Frequency | PSD    | Limit | Margin |
|---------|-----------|--------|-------|--------|
|         | (MHz)     | (dBm)  | (dBm) | (dB)   |
| Low     | 2402      | -13.44 | 8     | -21.44 |
| Middle  | 2440      | -12.81 | 8     | -20.81 |
| High    | 2480      | -13.04 | 8     | -21.04 |

Page 31 of 64

#### **POWER SPECTRAL DENSITY**



Page 32 of 64



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 33 of 64



Page 34 of 64

### 8.7. CONDUCTED SPURIOUS EMISSIONS

#### LIMITS

FCC §15.247 (d)

IC RSS-210 A8.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

#### TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The bandedges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

Page 35 of 64

#### **RESULTS**

#### SPURIOUS EMISSIONS, LOW CHANNEL



Page 36 of 64

|                                            | PNO: Fast C<br>IFGaint.ow                  | Trig: Free Run<br>Atten: 20 dB         | #Avg Type: RMS     | 1258:17 M 4/24, 2613<br>TRACE 1: 2: 3: 4:3:6<br>TVIDE II WARMAN<br>DET P P P P P P | Frequency                      |
|--------------------------------------------|--------------------------------------------|----------------------------------------|--------------------|------------------------------------------------------------------------------------|--------------------------------|
| Ref Offs<br>0 dBidhi Ref 20                | et 11.6 dB<br>.00 dBm                      |                                        | Mix                | r4 25.437 1 GHz<br>-50.93 dBm                                                      | Auto Tune                      |
|                                            |                                            |                                        |                    |                                                                                    | Center Fred<br>13.015000000 GH |
| 00<br>00                                   |                                            |                                        |                    | 24.12.000                                                                          | Start Free<br>30.000000 MH:    |
|                                            | Q <sup>2</sup> Q <sup>2</sup>              |                                        |                    |                                                                                    | Stop Free<br>26.000000000 GH:  |
| tart 30 MHz<br>Res BW 100 kHz              | #VB                                        | W 300 kHz                              | Sweep 9            | Stop 26.00 GHz<br>57.3 ms (40001 pts)                                              | CF Step<br>2.597000000 GH      |
| THE REAL PROPERTY AND INCOME.              | 2 404 7 (14)                               | 0.70 48-                               | UNCTON FORCED MADE |                                                                                    | Auto Mar                       |
| 2 N 1 F<br>2 N 1 F<br>5 6<br>7 7<br>8<br>9 | 4,804 6 GHz<br>7,206 8 GHz<br>25,437 1 GHz | -59,14 dBm<br>-59,04 dBm<br>-50,93 dBm |                    | -                                                                                  | Freq Offse<br>0 H              |

Page 37 of 64

#### SPURIOUS EMISSIONS, MID CHANNEL



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 38 of 64

| RL   # 1930                                              | PNO: Fast C<br>IPGaincl.ow                                | Trig: Free Run<br>Atten: 20 dB                     | #Avg Type: RMS         | 1246:16 4M 4p 24, 2613<br>TRACE 1: 3 13 6<br>TYPE II WARNAW<br>DET P P P P P P | Frequency                      |
|----------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------|------------------------|--------------------------------------------------------------------------------|--------------------------------|
| Ref Offset 11.<br>dBidhi Ref 20.00 d                     | 6 dB<br>Bm                                                |                                                    | Mic                    | 4 25.552 7 GHz<br>-52.06 dBm                                                   | Auto Tuni                      |
|                                                          |                                                           |                                                    |                        |                                                                                | Center Fred<br>13.015000000 GH |
| 00<br>00<br>00                                           |                                                           |                                                    |                        | Ad the date                                                                    | Start Free<br>30.000000 MH:    |
|                                                          | 0                                                         | and the second second                              |                        |                                                                                | Stop Free<br>26.00000000 GH    |
| tart 30 MHz<br>Res BW 100 kHz                            | #VB                                                       | W 300 kHz                                          | Sweep 9                | Stop 26.00 GHz<br>57.3 ms (40001 pts)                                          | CF Step<br>2.597000000 GH      |
| 1 N 1 f<br>2 N 1 f<br>3 N 1 f<br>5 6<br>7<br>8<br>9<br>0 | 2.440 0 GHz<br>4.880 5 GHz<br>7.319 8 GHz<br>26.552 7 GHz | 0.63 dBm<br>-58,81 dBm<br>-58,91 dBm<br>-52,06 dBm | Particin Fractionalism |                                                                                | Freq Offse<br>0 H              |

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 39 of 64

#### SPURIOUS EMISSIONS, HIGH CHANNEL



Page 40 of 64

| AL                  | 11              | 1310 DC                   | PNO: Fast G                         | Trig: Free Run<br>Atten: 20 dB         | #Avg Type: RMS  | THACE TO A 15 G                       | Frequency                       |
|---------------------|-----------------|---------------------------|-------------------------------------|----------------------------------------|-----------------|---------------------------------------|---------------------------------|
| d dBidh             | Ref Of<br>Ref 2 | fset 11.6 dB<br>20.00 dBm |                                     |                                        | Mic             | 4 22.742 1 GHz<br>-51.92 dBm          | Auto Tune                       |
| 0.0                 | 01              |                           |                                     |                                        |                 |                                       | Center Freq<br>13.015000000 GHz |
| 00                  |                 |                           |                                     |                                        |                 | Add to class                          | Start Freq<br>30.000000 MHz     |
|                     | -               | And 2                     |                                     | anin nya mina                          |                 |                                       | Stop Freq<br>26.00000000 GH:    |
| tart 30 I<br>Res BW | MHz<br>100 kH   | łz                        | #VB                                 | W 300 kHz                              | Sweep 9         | Stop 26.00 GHz<br>57.3 ms (40001 pts) | CF Step<br>2.597000000 GH:      |
| N                   | 1               | 2                         | 480 3 GHz                           | -0.61 dBm                              | INCOME FOR MORE | euxonomicuter -                       | Bullo Man                       |
| 23 5678901          |                 | 47222                     | 959 1 GHz<br>439 9 GHz<br>742 1 GHz | -56.24 dBm<br>-59.68 dBm<br>-51.92 dBm |                 |                                       | Freq Offset<br>0 Hz             |

Page 41 of 64

# 9. RADIATED TEST RESULTS

### 9.1. LIMITS AND PROCEDURE

#### LIMITS

FCC §15.205 and §15.209

IC RSS-GEN Clause 8.9 (Transmitter)

IC RSS-GEN Clause 7.1.2 (Receiver)

| Frequency Range<br>(MHz) | Field Strength Limit<br>(uV/m) at 3 m | Field Strength Limit<br>(dBuV/m) at 3 m |
|--------------------------|---------------------------------------|-----------------------------------------|
| 30 - 88                  | 100                                   | 40                                      |
| 88 - 216                 | 150                                   | 43.5                                    |
| 216 - 960                | 200                                   | 46                                      |
| Above 960                | 500                                   | 54                                      |

#### TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

For 2.4 GHz band, the spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in the 2.4 GHz band.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions.

Page 42 of 64

# 9.2. TX ABOVE 1 GHz FOR BLUETOOTH LOW ENERGY MODE IN THE 2.4 GHz BAND

#### **RESTRICTED BANDEDGE (LOW CHANNEL)**



### **Trace Markers**

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det | AF<br>T120<br>(dB/m) | Amp/Cbl/Fltr/Pad<br>(dB) | DC<br>Corr<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Average<br>Limit<br>(dBuV/m) | Margin<br>(dB) | Peak<br>Limit<br>(dBuV/m) | PK<br>Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|-----|----------------------|--------------------------|--------------------|----------------------------------|------------------------------|----------------|---------------------------|----------------------|-------------------|----------------|----------|
| 1      | * 2.39             | 37.38                      | PK  | 31.9                 | -20.9                    | 0                  | 48.38                            | -                            |                | 74                        | -25.62               | 120               | 141            | Н        |
| 2      | * 2.335            | 40.84                      | PK  | 31.8                 | -21                      | 0                  | 51.64                            | -                            | -              | 74                        | -22.36               | 120               | 141            | Н        |
| 3      | * 2.39             | 27.98                      | RMS | 31.9                 | -20.9                    | 2.52               | 41.5                             | 54                           | -12.5          | -                         | -                    | 120               | 141            | Н        |
| 4      | * 2.313            | 29.09                      | RMS | 31.8                 | -21                      | 2.52               | 42.41                            | 54                           | -11.59         | -                         | -                    | 120               | 141            | Н        |

\* - indicates frequency in CFR 47, Part 15 Restricted Band" and "Industry Canada RSS-Restricted Band

PK - Peak detector RMS - RMS detection

Page 43 of 64



### **Trace Markers**

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det | AF<br>T120<br>(dB/m) | Amp/Cbl/Fltr/Pad<br>(dB) | DC<br>Corr<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Average<br>Limit<br>(dBuV/m) | Margin<br>(dB) | Peak<br>Limit<br>(dBuV/m) | PK<br>Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|-----|----------------------|--------------------------|--------------------|----------------------------------|------------------------------|----------------|---------------------------|----------------------|-------------------|----------------|----------|
| 1      | * 2.39             | 37.58                      | РК  | 31.9                 | -20.9                    | 0                  | 48.58                            | -                            | -              | 74                        | -25.42               | 103               | 221            | V        |
| 2      | * 2.385            | 41.12                      | PK  | 31.9                 | -20.9                    | 0                  | 52.12                            | -                            | -              | 74                        | -21.88               | 103               | 221            | V        |
| 3      | * 2.39             | 28.5                       | RMS | 31.9                 | -20.9                    | 2.52               | 42.02                            | 54                           | -11.98         | -                         | -                    | 103               | 221            | V        |
| 4      | * 2.352            | 28.93                      | RMS | 31.9                 | -20.9                    | 2.52               | 42.45                            | 54                           | -11.55         | -                         | -                    | 103               | 221            | V        |

\* - indicates frequency in CFR 47, Part 15 Restricted Band" and "Industry Canada RSS-Restricted Band

PK - Peak detector RMS - RMS detection

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 44 of 64

#### AUTHORIZED BANDEDGE (HIGH CHANNEL)



#### **Trace Markers**

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det | AF<br>T120<br>(dB/m) | Amp/Cbl/Fltr/Pad<br>(dB) | DC<br>Corr<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Average<br>Limit<br>(dBuV/m) | Margin<br>(dB) | Peak<br>Limit<br>(dBuV/m) | PK<br>Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|-----|----------------------|--------------------------|--------------------|----------------------------------|------------------------------|----------------|---------------------------|----------------------|-------------------|----------------|----------|
| 1      | * 2.484            | 37.1                       | РК  | 32.2                 | -20.9                    | 0                  | 48.4                             | -                            | -              | 74                        | -25.6                | 115               | 208            | Н        |
| 2      | 2.558              | 40.35                      | PK  | 32.5                 | -20.8                    | 0                  | 52.05                            | -                            | -              | 74                        | -21.95               | 115               | 208            | н        |
| 3      | * 2.484            | 27.91                      | RMS | 32.2                 | -20.9                    | 2.52               | 41.73                            | 54                           | -12.27         | -                         | -                    | 115               | 208            | Н        |
| 4      | 2.562              | 28.69                      | RMS | 32.5                 | -20.8                    | 2.52               | 42.91                            | 54                           | -11.09         | -                         | -                    | 115               | 208            | н        |

\* - indicates frequency in CFR 47, Part 15 Restricted Band" and "Industry Canada RSS-Restricted Band

PK - Peak detector RMS - RMS detection

Page 45 of 64



### **Trace Markers**

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det | AF<br>T120<br>(dB/m) | Amp/Cbl/Fltr/Pad<br>(dB) | DC<br>Corr<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | Average<br>Limit<br>(dBuV/m) | Margin<br>(dB) | Peak<br>Limit<br>(dBuV/m) | PK<br>Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|-----|----------------------|--------------------------|--------------------|----------------------------------|------------------------------|----------------|---------------------------|----------------------|-------------------|----------------|----------|
| 1      | * 2.484            | 37.37                      | PK  | 32.2                 | -20.9                    | 0                  | 48.67                            | -                            | -              | 74                        | -25.33               | 178               | 263            | V        |
| 2      | 2.528              | 40.31                      | PK  | 32.4                 | -20.9                    | 0                  | 51.81                            | -                            | -              | 74                        | -22.19               | 178               | 263            | V        |
| 3      | * 2.484            | 27.88                      | RMS | 32.2                 | -20.9                    | 2.52               | 41.7                             | 54                           | -12.3          | -                         |                      | 178               | 263            | V        |
| 4      | 2.543              | 28.74                      | RMS | 32.4                 | -20.9                    | 2.52               | 42.76                            | 54                           | -11.24         | -                         | -                    | 178               | 263            | V        |

\* - indicates frequency in CFR 47, Part 15 Restricted Band" and "Industry Canada RSS-Restricted Band

PK - Peak detector RMS - RMS detection

Page 46 of 64

#### HARMONICS AND SPURIOUS EMISSIONS

#### LOW CHANNEL



Page 47 of 64

#### **Trace Markers**

| Marker | Frequency | Meter   | Det  | AF T120 | Amp/Cbl/ | DC Corr | Corrected | Avg Limit | Margin | Peak     | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|------|---------|----------|---------|-----------|-----------|--------|----------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |      | (dB/m)  | Fltr/Pad | (dB)    | Reading   | (dBuV/m)  | (dB)   | Limit    | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |      |         | (dB)     |         | (dBuV/m)  |           |        | (dBuV/m) |           |         |        |          |
| 1      | * 1.313   | 41.55   | PK2  | 29.9    | -22.2    | 0       | 49.25     | -         | -      | 74       | -24.75    | 1       | 202    | н        |
|        | * 1.311   | 30.25   | MAv1 | 29.9    | -22.2    | 2.52    | 40.47     | 54        | -13.53 | -        | -         | 1       | 202    | н        |
| 4      | * 1.337   | 41.7    | PK2  | 29.7    | -22.2    | 0       | 49.2      | -         | -      | 74       | -24.8     | 11      | 209    | V        |
|        | * 1.34    | 30.47   | MAv1 | 29.7    | -22.2    | 2.52    | 40.49     | 54        | -13.51 | -        | -         | 11      | 209    | V        |
| 2      | * 3.778   | 38.11   | PK2  | 34.3    | -28.7    | 0       | 43.71     | -         | -      | 74       | -30.29    | 30      | 192    | н        |
|        | * 3.778   | 27.63   | MAv1 | 34.3    | -28.7    | 2.52    | 35.75     | 54        | -18.25 | -        | -         | 30      | 192    | н        |
| 3      | * 7.513   | 36.53   | PK2  | 35.7    | -25.8    | 0       | 46.43     | -         | -      | 74       | -27.57    | 12      | 202    | н        |
|        | * 7.513   | 25.93   | MAv1 | 35.7    | -25.8    | 2.52    | 38.35     | 54        | -15.65 | -        | -         | 12      | 202    | н        |
| 5      | * 4.585   | 37.81   | PK2  | 34      | -28      | 0       | 43.81     | -         | -      | 74       | -30.19    | 22      | 198    | V        |
|        | * 4.583   | 27.16   | MAv1 | 34      | -28      | 2.52    | 35.68     | 54        | -18.32 | -        | -         | 22      | 198    | V        |
| 6      | * 10.841  | 34.69   | PK2  | 38.1    | -22      | 0       | 50.79     | -         | -      | 74       | -23.21    | 13      | 102    | V        |
|        | * 10.839  | 23.3    | MAv1 | 38.1    | -22      | 2.52    | 41.92     | 54        | -12.08 | -        | -         | 13      | 102    | V        |

\* - indicates frequency in CFR 47, Part 15 Restricted Band" and "Industry Canada RSS-Restricted Band

PK - Peak detector

PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 48 of 64

#### **MID CHANNEL**



Page 49 of 64

#### **Trace Markers**

| Marker | Frequency | Meter   | Det  | AF T120 | Amp/Cbl/ | DC Corr | Corrected | Avg Limit | Margin | Peak     | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|------|---------|----------|---------|-----------|-----------|--------|----------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |      | (dB/m)  | Fltr/Pad | (dB)    | Reading   | (dBuV/m)  | (dB)   | Limit    | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |      |         | (dB)     |         | (dBuV/m)  |           |        | (dBuV/m) |           |         |        |          |
| 1      | * 1.303   | 41.89   | PK2  | 30      | -22.2    | 0       | 49.69     | -         | -      | 74       | -24.31    | 360     | 202    | н        |
|        | * 1.303   | 30.44   | MAv1 | 30      | -22.2    | 2.52    | 40.76     | 54        | -13.24 | -        | -         | 360     | 202    | н        |
| 4      | * 2.281   | 41.42   | PK2  | 31.7    | -21      | 0       | 52.12     | -         | -      | 74       | -21.88    | 360     | 101    | V        |
|        | * 2.281   | 30.24   | MAv1 | 31.7    | -21      | 2.52    | 43.46     | 54        | -10.54 | -        | -         | 360     | 101    | V        |
| 2      | * 3.781   | 38.46   | PK2  | 34.2    | -28.7    | 0       | 43.96     | -         | -      | 74       | -30.04    | 360     | 101    | н        |
|        | * 3.785   | 27.37   | MAv1 | 34.2    | -28.7    | 2.52    | 35.39     | 54        | -18.61 | -        | -         | 360     | 101    | н        |
| 3      | * 7.366   | 36.45   | PK2  | 35.7    | -26      | 0       | 46.15     | -         | -      | 74       | -27.85    | 360     | 101    | н        |
|        | * 7.366   | 25.88   | MAv1 | 35.7    | -26      | 2.52    | 38.1      | 54        | -15.9  | -        | -         | 360     | 101    | н        |
| 5      | * 4.79    | 38.82   | PK2  | 34.1    | -27.5    | 0       | 45.42     | -         | -      | 74       | -28.58    | 360     | 101    | V        |
|        | * 4.79    | 27.51   | MAv1 | 34.1    | -27.5    | 2.52    | 36.63     | 54        | -17.37 | -        | -         | 360     | 101    | V        |
| 6      | * 10.975  | 34.36   | PK2  | 38.1    | -22.2    | 0       | 50.26     | -         | -      | 74       | -23.74    | 360     | 101    | V        |
|        | * 10.976  | 23.34   | MAv1 | 38.1    | -22.2    | 2.52    | 41.76     | 54        | -12.24 | -        | -         | 360     | 101    | V        |

\* - indicates frequency in CFR 47, Part 15 Restricted Band" and "Industry Canada RSS-Restricted Band

PK - Peak detector

PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 50 of 64

#### **HIGH CHANNEL**



Page 51 of 64

#### **Trace Markers**

| Marker | Frequency | Meter   | Det  | AF T120 | Amp/Cbl/ | DC Corr | Corrected | Avg Limit | Margin | Peak     | PK Margin | Azimuth | Height | Polarity |
|--------|-----------|---------|------|---------|----------|---------|-----------|-----------|--------|----------|-----------|---------|--------|----------|
|        | (GHz)     | Reading |      | (dB/m)  | Fltr/Pad | (dB)    | Reading   | (dBuV/m)  | (dB)   | Limit    | (dB)      | (Degs)  | (cm)   |          |
|        |           | (dBuV)  |      |         | (dB)     |         | (dBuV/m)  |           |        | (dBuV/m) |           |         |        |          |
| 1      | * 1.299   | 41.58   | PK2  | 30      | -22.2    | 0       | 49.38     | -         | -      | 74       | -24.62    | 1       | 202    | н        |
|        | * 1.299   | 30.52   | MAv1 | 30      | -22.2    | 2.52    | 40.84     | 54        | -13.16 | -        | -         | 1       | 202    | н        |
| 4      | * 2.24    | 42.2    | PK2  | 31.6    | -21      | 0       | 52.8      | -         | -      | 74       | -21.2     | 1       | 202    | V        |
|        | * 2.241   | 30.3    | MAv1 | 31.6    | -21      | 2.52    | 43.42     | 54        | -10.58 | -        | -         | 1       | 202    | V        |
| 2      | * 3.719   | 38.71   | PK2  | 34.6    | -29.3    | 0       | 44.01     | -         | -      | 74       | -29.99    | 11      | 100    | н        |
|        | * 3.717   | 27.98   | MAv1 | 34.6    | -29.3    | 2.52    | 35.8      | 54        | -18.2  | -        | -         | 11      | 100    | н        |
| 3      | 6.433     | 37.46   | PK2  | 35.9    | -27.1    | 0       | 46.26     | -         | -      | -        | -         | 14      | 100    | н        |
|        | 6.431     | 26.54   | MAv1 | 35.9    | -27.1    | 2.52    | 37.86     | -         | -      | -        | -         | 14      | 100    | н        |
| 5      | * 4.769   | 37.94   | PK2  | 34.1    | -27.4    | 0       | 44.64     | -         | -      | 74       | -29.36    | 14      | 202    | V        |
|        | * 4.768   | 27.52   | MAv1 | 34.1    | -27.4    | 2.52    | 36.74     | 54        | -17.26 | -        | -         | 14      | 202    | V        |
| 6      | * 7.533   | 37.16   | PK2  | 35.7    | -25.8    | 0       | 47.06     | -         | -      | 74       | -26.94    | 14      | 202    | V        |
|        | * 7.531   | 25.95   | MAv1 | 35.7    | -25.8    | 2.52    | 38.37     | 54        | -15.63 | -        | -         | 14      | 202    | V        |

\* - indicates frequency in CFR 47, Part 15 Restricted Band" and "Industry Canada RSS-Restricted Band

PK - Peak detector

PK2 - KDB558074 Method: Maximum Peak

MAv1 - KDB558074 Option 1 Maximum RMS Average

Page 52 of 64

### 9.3. WORST-CASE ABOVE 18 GHz

#### SPURIOUS EMISSIONS 18 TO 26 GHz (WORST-CASE CONFIGURATION)



Page 53 of 64

#### **Trace Markers**

| Marker | Frequency<br>(GHz) | Meter<br>Reading<br>(dBuV) | Det | T89 AF<br>(dB/m) | Amp/Cbl<br>(dB) | Dist Corr<br>(dB) | Corrected<br>Reading<br>(dBuVolts) | Avg Limit<br>(dBuV/m) | Margin<br>(dB) | Peak<br>Limit<br>(dBuV/m) | PK<br>Margin<br>(dB) |
|--------|--------------------|----------------------------|-----|------------------|-----------------|-------------------|------------------------------------|-----------------------|----------------|---------------------------|----------------------|
| 1      | 18.719             | 40.7                       | PK  | 32.7             | -24.9           | -20               | 28.5                               | 54                    | -25.5          | 74                        | -45.5                |
| 2      | 21.271             | 40.37                      | PK  | 33.3             | -24.5           | -20               | 29.167                             | 54                    | -24.833        | 74                        | -44.833              |
| 3      | 23.935             | 43.3                       | PK  | 34.2             | -24             | -20               | 33.5                               | 54                    | -20.5          | 74                        | -40.5                |
| 4      | 18.366             | 41.77                      | PK  | 32.5             | -25.1           | -20               | 29.167                             | 54                    | -24.833        | 74                        | -44.833              |
| 5      | 20.418             | 40.53                      | PK  | 33               | -24.7           | -20               | 28.833                             | 54                    | -25.167        | 74                        | -45.167              |
| 6      | 24.921             | 44.2                       | PK  | 34.5             | -23.7           | -20               | 35                                 | 54                    | -19            | 74                        | -39                  |

PK - Peak detector

Page 54 of 64

## 9.4. WORST-CASE BELOW 1 GHz

#### SPURIOUS EMISSIONS 30 TO 1000 MHz (WORST-CASE CONFIGURATION)



Page 55 of 64

#### **Trace Markers**

| Marker | Frequency<br>(MHz) | Meter<br>Reading<br>(dBuV) | Det | AF T899<br>(dB/m) | Amp Cbl<br>(dB) | Corrected<br>Reading<br>(dBuV/m) | QPk Limit<br>(dBuV/m) | Margin<br>(dB) | Azimuth<br>(Degs) | Height<br>(cm) | Polarity |
|--------|--------------------|----------------------------|-----|-------------------|-----------------|----------------------------------|-----------------------|----------------|-------------------|----------------|----------|
| 7      | 32.905             | 36.42                      | QP  | 22.1              | -31.3           | 27.22                            | 40                    | -12.78         | 257               | 104            | V        |
| 1      | 81                 | 56.5                       | QP  | 10.3              | -30.7           | 36.1                             | 40                    | -3.9           | 177               | 268            | Н        |

QP - Quasi-Peak detector

Page 56 of 64

# **10. AC POWER LINE CONDUCTED EMISSIONS**

#### LIMITS

FCC §15.207 (a)

RSS-Gen 8.8

| Frequency of Emission (MHz) | Conducted I | Limit (dBuV) |
|-----------------------------|-------------|--------------|
|                             | Quasi-peak  | Average      |
| 0.15-0.5                    | 66 to 56 *  | 56 to 46 *   |
| 0.5-5                       | 56          | 46           |
| 5-30                        | 60          | 50           |

\* Decreases with the logarithm of the frequency.

#### TEST PROCEDURE

ANSI C63.4

#### **RESULTS**

Page 57 of 64

#### **<u>6 WORST EMISSIONS</u>**

| Marker | Frequency | Meter   | Det | T24 IL L1 | LC Cables | Corrected | CISPR 22   | Margin | CISPR 22 | Margin |
|--------|-----------|---------|-----|-----------|-----------|-----------|------------|--------|----------|--------|
|        | (MHz)     | Reading |     |           | 1&3       | Reading   | Class B QP | (dB)   | Class B  | (dB)   |
|        |           | (dBuV)  |     |           |           | dBuV      |            |        | Avg      |        |
| 1      | .18128    | 41.87   | Qp  | 1.1       | 0         | 42.97     | 64.43      | -21.46 | -        | -      |
| 2      | .18713    | 32.89   | Ca  | 1         | 0         | 33.89     | -          | -      | 54.16    | -20.27 |
| 3      | .24338    | 37.82   | Qp  | .7        | 0         | 38.52     | 61.98      | -23.46 | -        | -      |
| 4      | .25013    | 19.07   | Ca  | .7        | 0         | 19.77     | -          | -      | 51.75    | -31.98 |
| 5      | .30413    | 29.4    | Qp  | .5        | 0         | 29.9      | 60.13      | -30.23 | -        | -      |
| 6      | .30413    | 13.4    | Ca  | .5        | 0         | 13.9      | -          | -      | 50.13    | -36.23 |

Range 2: Line-L2 .15 - 30MHz

| Marker | Frequency | Meter   | Det | T24 IL L2 | LC Cables | Corrected | CISPR 22   | Margin | CISPR 22 | Margin |
|--------|-----------|---------|-----|-----------|-----------|-----------|------------|--------|----------|--------|
|        | (MHz)     | Reading |     |           | 2&3       | Reading   | Class B QP | (dB)   | Class B  | (dB)   |
|        |           | (dBuV)  |     |           |           | dBuV      |            |        | Avg      |        |
| 7      | .17363    | 42.28   | Qp  | 1.2       | 0         | 43.48     | 64.78      | -21.3  | -        | -      |
| 8      | .18263    | 36.17   | Ca  | 1.1       | 0         | 37.27     | -          | -      | 54.37    | -17.1  |
| 9      | .23438    | 39.12   | Qp  | .8        | 0         | 39.92     | 62.29      | -22.37 | -        | -      |
| 10     | .23888    | 23.28   | Ca  | .8        | 0         | 24.08     | -          | -      | 52.14    | -28.06 |
| 11     | .54578    | 38.17   | Qp  | .3        | 0         | 38.47     | 56         | -17.53 | -        | -      |
| 12     | .54578    | 32.79   | Ca  | .3        | 0         | 33.09     | -          | -      | 46       | -12.91 |

Ca - CISPR average detection

Qp - Quasi-Peak detector

Page 58 of 64

#### LINE 1 RESULTS



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 59 of 64

#### LINE 2 RESULTS



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. FORM NO: CCSUP47011 TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 60 of 64