Document Name: MBS Leopard Transmitter Usert NOC Operating Manual Version No: 1.4

Company Name: NextNav, LLC.

2.6 Tune-up procedure not to exceed maximum TX power

A CSV file (configuration file) per transmitter are created by the NOC engineer based on the installation parameters such as line lengths, antenna type etc. **The TX output power level setting is contained in the CSV file**.

The output power is adjusted by the 'PA gain" setting. This value in the CSV file is calculated by a formula to set the output power (not to exceed 30W ERP). The variables used in the calculation include PA Gain (Gpa), TX Antenna Gain (Gant), TX filter insertion loss (ILflt), internal cable loss (ILint), external cable loss (ILext), and transceiver output power (PTCVR).

ERP (W) =
$$10^{(PTCVR - ILint + Gpa - ILflt - ILext + Gant) / 10) / 1000}$$

The PA gain setting should be set to a proper value so that total sum of net antenna gain and cable loss coupled with PA output does not exceed 30 Watts EIRP, PEP (Peak Envelope Power). Table 2 is a list of all possible antennas and RF cable combinations with corresponding RF power settings required to comply with the FCC requirement of 30 Watts EIRP Peal Envelope Power (PEP).

Tx Band	PA Gain	PA out	Antenna	Antenna	Cable	ERP	ERP (W)
	(dB)	(dBm)	Туре	Gain	Loss (dB)	(dBm)	(PEP)
				(dBd)			
2 MHz	60.3 max	+41.53	DB586-Y	6.0	2.8 min	+44.73	29.7
	61.0 max	+42.23	SC433-	2.5	0.0 min	+44.73	29.7
			HF6LDF				
	60.3 max	+41.53	BCD-8707	6.5	3.3 min	+44.73	29.7
	60.6 max	+41.83	OD9-5	2.9	0.0 min	+44.73	29.7
IDB Mode A or B			DB586-Y	6.0	2.8 min	+44.76	29.9
2 MHz channel	59.0 max	+41.56	SC433-	2.5	0.0 min	+44.06	25.5
			HF6LDF				
			BCD-8707	6.5	3.3 min	+44.76	29.9
			OD9-5	2.9	0.0 min	+44.46	27.9
IDB Mode A or B			DB586-Y	6.0	2.8 min	+44.53	28.4
5 MHz channel	59.0 max	+41.33	SC433-	2.5	0.0 min	+43.83	24.2
			HF6LDF				
			BCD-8707	6.5	3.3 min	+44.53	27.9
			OD9-5	2.9	0.0 min	+44.23	26.5

Table 2 Maximum allowable RF power settings with various antenna/cable

Note 1: PA module provides means of RF Gain control in steps of 0.1 dB from 0 to 65 dB.

Maximum PA Gain values listed in the table2 are required to ensure that conducted and radiated spurious emission standards of Part 90 are met . The difference of PA output

Confidential Page 12 Page 12 13

Company Name: NextNav, LLC.

levels between 2 MHz and IDB mode is compensated using internal RF attenuation that can be set remotely by NOSS engineers to ensure that 30 Watts ERP is met in both cases.

3 Technical Specifications

Parameter	Value/Description			
Modulation	BPSK modulation with CDMA spreading			
Maximum ON time	200ms/1second			
Duration of a single burst	100ms			
Center Frequencies	926.227MHz for single 2 MHz band and in IDB			
	band Type B			
	920.773 MHz for 2 MHz IDB band Type A			
	924.692 MHz for 5MHz in IDB band Type A			
	and B			
Necessary Signal Bandwidth	2.046MHz for single band,			
	5.115MHz for IDB band Type A & B			
Frequency Stability	<10ppb			
EIRP	30W ERP `			
Data Rate	99 bits in a 100ms slot			
Power Supply	Nominal: 110 VAC (primary means)			
	48 VDC (secondary means – battery backup)			
Power Consumption	330 W max, 140 W average, 7.5A			
Operating Conditions	-40°C to +50°C, plus solar radiation			
	0 to 95% humidity, non-condensing			
Remote Monitoring	Via SNMP protocol			
Environmental Standard	IP66			