

Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel Tel. +972-4-6288001 Fax. +972-4-6288277 E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC Part 90 Subpart I, Part 15 subpart B class B

FOR:

NextNav LLC WAPS Beacon LBS System Part number: 100-0007-01 FCC ID:A4P-100-0007-01

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Table of contents

1	Applicant information	3
2	Equipment under test attributes	3
3	Manufacturer information	3
4	Test details	
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Ports and lines	5
6.3	Support and test equipment	5
6.4	Operating frequencies	5
6.5	Changes made in EUT	5
6.6	EUT block diagram	7
6.7	Transmitter characteristics	8
7	Transmitter tests according to 47CFR part 90 requirements	9
7.1	Effective radiated power of carrier	9
7.2	Occupied bandwidth test	12
7.3	Emission mask test	15
7.4	Radiated spurious emission measurements	
7.5	Spurious emissions at RF antenna connector test	
7.6	Frequency stability test	
8	Emissions tests according to 47CFR part 15 subpart B requirements	38
8.1	Conducted emissions	
8.2	Radiated emission measurements	
9	APPENDIX A Test equipment and ancillaries used for tests	48
10	APPENDIX B Measurement uncertainties	
11	APPENDIX C Test laboratory description	50
12	APPENDIX D Specification references	50
13	APPENDIX E Test equipment correction factors	51
14	APPENDIX F Abbreviations and acronyms	59

1 Applicant information

Client name:	NextNav LLC
Address:	484 Oakmead Pkwy, Sunnyvale, CA, 94085
Telephone:	001-800-775-0982
E-mail:	subbu@nextnav.com
Contact name:	Mr. Subbu Meiyappan

2 Equipment under test attributes

Product name:	WAPS Beacon LBS System
Part number:	100-0007-01
Serial number:	0000001
Hardware version:	Rev A
Software release:	1.17
Receipt date	7/22/2012

3 Manufacturer information

Manufacturer name:	NextNav LLC
Address:	484 Oakmead Pkwy, Sunnyvale, CA, 94085
Telephone:	001-800-775-0982
E-mail:	anarayan@nextnav.com
Contact name:	Mr. Arun Narayan

4 Test details

Project ID:	23128
Location:	Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel
Test started:	7/22/2012
Test completed:	9/05/2012
Test specification(s):	FCC part 90 subpart I, part 15 subpart B class B

5 Tests summary

Test	Status
Transmitter characteristics	
Section 90.205, Maximum output power	Pass
Section 90.209, Occupied bandwidth	Pass
Section 90.210, Emission mask	Pass
Section 90.210, Radiated spurious emissions	Pass
Section 90.210, Conducted spurious emissions	Pass
Section 90.213, Frequency stability	Pass
Section 90.214, Transient frequency behaviour	Not required
Section 2.1091, RF radiation exposure evaluation	Pass, exhibit provided in Application for certification
Unintentional emissions	
Section 15.107, Conducted emission at AC power port	Pass
Section 15.109, Radiated emission	Pass

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

This test report supersedes the previously issued test report identified by Doc ID:KARRAD_FCC.23128.

	Name and Title	Date	Signature
Tested by:	Mr. S.Samokha, test engineer	September 5, 2012	Can
Reviewed by:	Mrs. M. Cherniavsky, certification engineer	November 18, 2012	Chur
Approved by:	Mr. M. Nikishin, EMC and Radio group leader	November 18, 2012	ff b

6 EUT description

6.1 General information

The EUT, WAPS Beacon, is an M -LMS band LBS transmitter powered from 48 VDC delivered via DC power + Ethernet cable.

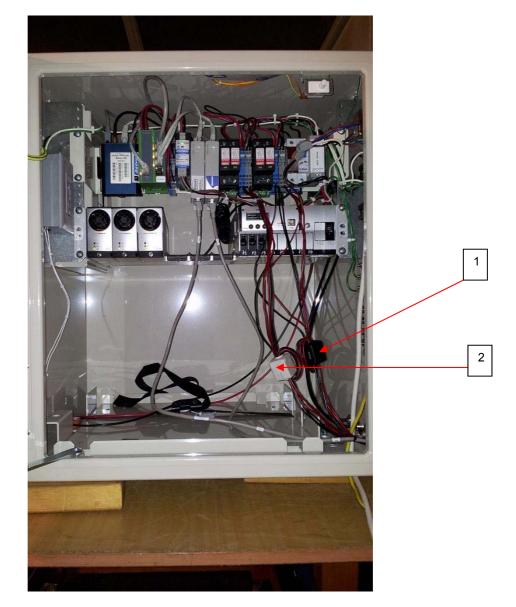
6.2 Ports and lines

Port type	Port description	Connected from	Connected to	Qty.	Cable type	Cable length, m
Power+ telecom	DC Power + Ethernet	EUT (Master)	Power system	1	Shielded	10
RF IN	GPS IN (GPS MSTR)	EUT (Tx Switch)	EUT (Master)	1	Coax	0.5
RF OUT	RF OUT	EUT (Master)	EUT (Tx Switch)	1	Coax	0.5
Signal	TXSW MSTR	EUT (Master)	EUT (Tx Switch)	1	Shielded	0.5
Signal	RB MSTR	EUT (Master)	EUT (Clock)	1	Shielded	0.5
RF OUT	Antenna	EUT (Tx Switch)	Attenuator 40 dB	1	Coax	3
Signal	WB I/F	EUT (Tx Switch)	Weather Box	1	Shielded	30

6.3 Support and test equipment

Description	Manufacturer	Model number	Serial number
Power system	Charles	RL1003NN	SO#727541
Weather box	NextNav	Rev1.1	24
Spectrum analyzer	Anritsu	MS2601B	NA
Power supply	Mean Well	SP-500-48	RB00085918

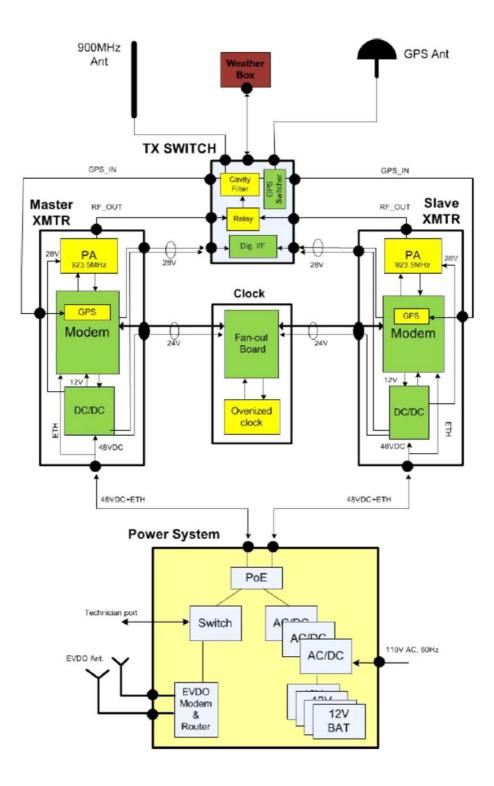
6.4 Operating frequencies


Source	Frequency, MHz							
Тх	919.75 – 927.25							
LO	926.227							
Clock	81.84 10							

6.5 Changes made in EUT

The following changes we implemented in the EUT during testing:

 One ferrite bead, P/N 74271222S, produced by Wurth Electronics was added at the Master DC harness from Panel Power connector (20 cm from connector) to 48 VDC terminal blocks as shown in attached photograph.
 One ferrite bead, P/N 74271222, produced by Wurth Electronics was added at the Slave DC harness from Panel Power connector (20 cm from connector) to 48 VDC terminal blocks as shown in attached photograph.
 It is manufacturer responsibility to implement the change in the production version of the EUT. In any case the test report applies to the tested item only.



Photograph 6.5.1 Changes made in the EUT

6.6 EUT block diagram

6.7 **Transmitter characteristics**

Type of equipment								
	inment w	ith or	without ite		trol provisions)			
	tand-alone (Equipment with or without its own control provisions) ombined equipment (Equipment where the radio part is fully integrated within another type of equipment)							
Plug-in card (Equi							i ijpo ol oquipili	
Intended use			n of use	-	* *			
V fixed	Always at a distance more than 2 m from all people							
mobile					nan 20 cm from all p			
portable	May	y oper	ate at a di	stance cl	oser than 20 cm to	human body		
Assigned frequency rang	ge	902.0	– 928.0 M	Hz				
Operating frequency ran	ge	919.75	5 – 927.25	MHz for	2.046 MHz OBW			
RF channel spacing		2.046	MHz					
		At trar	smitter 50) Ω RF οι	utput connector		44.48 dBr	n
Maximum rated output p					(aggregate power o antenna gain	of both RF chai	ns) NA	
			No					
					continuous varial	ble		
Is transmitter output pov variable?		V Ye		V	stepped variable	with stepsize	stepsize 1.0 dB	
	ľ		Yes	minimu	nimum RF power 0 dBm			
				maximum RF power 44.48 dBm				
Antenna connection								
		4l	rd connector Integral		with temporary RF connector			
unique coupling	vs	tanuar	u connect	.01	Integral	without temporary RF connector		
Antenna/s technical char	racteristi	ics						
Туре М	/lanufactu	urer		Mode	l number	Antenna gain	Feeder loss	Antenna assembly gain*
	mphenol	I Antel	, Inc	BCD-	8707	6.5 dBd	6.5 dB	0 dBd
			Т		er aggregate data ra	ate/s, Mbps		
Transmitter 99% power	bandwid	th	Type of modulation Bit rate, bps					
2.046 MHz					BPSK			100
Type of multiplexing			TDD					
Modulating test signal (baseband)				PRBS				
Maximum transmitter duty cycle in normal use						20%		
				Tra	ansmitter power sou	irce		
V DC	Nomina	l rated	voltage				powered by 120 V	/AC)
AC	Nomina	I rated	voltage					
Common power sou	rce for tr	ansmi	tter and re	ceiver		V		no

*- the manufacturer statement provided on page 5 of WAPS Beacon NOC User Manual, Document No: JGR-NN-OP-102.00-Rev1.0 (exhibit 'User_manual_23182" of Application for certification)

Test specification:	Section 90.205, Maximu	Section 90.205, Maximum output power						
Test procedure:	47 CFR, Section 2.1046; TIA	47 CFR, Section 2.1046; TIA/EIA-603-A, Section 2.2.1						
Test mode:	Compliance	Verdict: PASS						
Date(s):	7/22/2012	Verdict:	FA33					
Temperature: 24.2 °C	Air Pressure: 1004 hPa	Relative Humidity: 46 %	Power Supply: 48VDC					
Remarks:								

7 Transmitter tests according to 47CFR part 90 requirements

7.1 Effective radiated power of carrier

7.1.1 General

This test was performed to measure the peak output power at RF antenna connector. Specification test limits are given in Table 7.1.1.

Table 7.1.1 Effective radiated power limit

Assigned frequency renge MHT	ERP		
Assigned frequency range, MHz	W	dBm	
919.75 – 927.25	30.0	44.77	

7.1.2 Test procedure

- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1, energized and its proper operation was checked.
- 7.1.2.2 The EUT was adjusted to produce maximum available to the end user RF output power.
- 7.1.2.3 The peak output power was measured with spectrum analyzer as provided in Table 7.1.2 and the associated plots.

Figure 7.1.1 Output power test setup

920.773

926.227

Test specification:	Section 90.205, Maximun	Section 90.205, Maximum output power				
Test procedure:	47 CFR, Section 2.1046; TIA/	47 CFR, Section 2.1046; TIA/EIA-603-A, Section 2.2.1				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	7/22/2012	verdict:	FA33			
Temperature: 24.2 °C	Air Pressure: 1004 hPa	Relative Humidity: 46 %	Power Supply: 48VDC			
Remarks:						

Table 7.1.2 Peak output power test results

	Carrier frequency, MHz	Spectrum analyzer reading, dBm	Attenuation, dB	Cable loss, dB	RF output power, dBm	Limit, dBm	Margin, dB	Verdict	
	TRANSMITTE	R OUTPUT POWER S	SETTINGS:	Max	imum				
E	BIT RATE:			50 b	ps				
ľ	MODULATING	SIGNAL:		PRE	S				
ľ	MODULATION	:		BPS	κ				
١	VIDEO BANDV	VIDTH:		50 N	/Hz				
F	RESOLUTION	BANDWIDTH:		8 MI	Ηz				
[DETECTOR U	SED:		Pea	k				
(OPERATING F	REQUENCY RANGE	:	919.	75 – 927.25 MHz	2			

44.48 * - Margin = RF output power – Specification limit

44.31

Table 7.1.3 ERP test results

Included

Included

44.31

44.48

44.77

44.77

-0.46

-0.29

Pass

Pass

Carrier	Spectrum	Antonno volu	Feeder		I inali
TRANSMITTE	R OUTPUT POWER	SETTINGS:	Max	imum	
BIT RATE:			50 b	ps	
MODULATING	SIGNAL:		PRE	S	
MODULATION	:		BPS	к	
VIDEO BANDV	VIDTH:		50 N	/Hz	
RESOLUTION	BANDWIDTH:		8 MI	Ηz	
DETECTOR U	SED:		Pea	k	
OPERATING F	REQUENCY RANGE	:	919.	75 – 927.25 MHz	:

Included

Included

frequency, MHz	Spectrum analyzer reading, dBm	Antenna gain, dBd	Feeder loss, dB	ERP, dBm	Limit, dBm	Margin, dB**	Verdict
920.773	44.31	6.5	6.5	44.31	44.77	-0.46	Pass
926.227	44.48	6.5	6.5	44.48	44.77	-0.29	Pass

* - RF output power = SA reading + Antenna gain – Feeder loss ** - Margin = RF output power – Specification limit

Reference numbers of test equipment used

l	HL 1876	HL 2991	HL 3768	HL 3776	HL 3818	HL 3903	
	Cull deseriation		anadis. A				

Full description is given in Appendix A.



Test specification:	Section 90.205, Maximum output power				
Test procedure:	47 CFR, Section 2.1046; TIA/EIA-603-A, Section 2.2.1				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	7/22/2012	verdict:	FA33		
Temperature: 24.2 °C	Air Pressure: 1004 hPa	Relative Humidity: 46 %	Power Supply: 48VDC		
Remarks:			•••		

Plot 7.1.1 Peak output power test results at low frequency

Plot 7.1.2 Peak output power test results at high frequency

Test specification:	Section 90.209, Occupie	d bandwidth	
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Verdict:	PASS
Date(s):	7/22/2012	verdict.	FA33
Temperature: 24.2 °C	Air Pressure: 1004 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC
Remarks:			

7.2 Occupied bandwidth test

7.2.1 General

This test was performed to measure transmitter occupied bandwidth. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Occupied bandwidth limits


Assigned frequency,	Modulation envelope reference points*,	Maximum allowed bandwidth,
MHz	%	kHz
919.75 – 927.75	99%	2000

* - Modulation envelope reference points are provided in terms of attenuation below the unmodulated carrier.

7.2.2 Test procedure

- **7.2.2.1** The EUT was set up as shown in Figure 7.2.1, energized and its proper operation was checked.
- 7.2.2.2 The EUT was set to transmit the unmodulated carrier and the reference peak power level was measured.
- 7.2.2.3 The EUT was set to transmit the normally modulated carrier.
- **7.2.2.4** The transmitter occupied bandwidth was measured with spectrum analyzer as a frequency delta between the reference points on modulation envelope and provided in Table 7.2.2 and the associated plots.

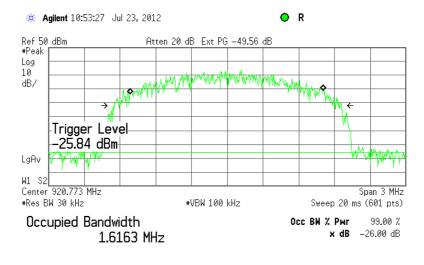
Figure 7.2.1 Occupied bandwidth test setup

Test specification:	Section 90.209, Occupie	ed bandwidth	
Test procedure:	47 CFR, Section 2.1049		
Test mode:	Compliance	Vardiate	PASS
Date(s):	7/22/2012	Verdict:	FA33
Temperature: 24.2 °C	Air Pressure: 1004 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC
Remarks:		•	

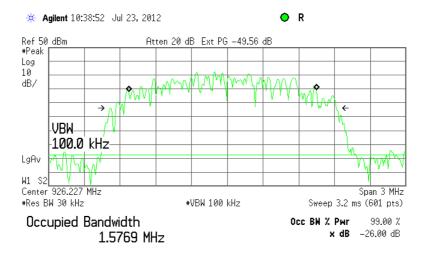
Table 7.2.2 Occupied bandwidth test results

DETECTOR USED: RESOLUTION BANDWIDTH: VIDEO BANDWIDTH: MODULATION ENVELOPE REF MODULATION: MODULATING SIGNAL: BIT RATE:	ERENCE POINTS: 99 BI	eak) kHz)0 kHz 9% PSK RBS 0 bps		
Carrier frequency, MHz	Occupied bandwidth, kHz	Limit, kHz	Margin, kHz	Verdict
920.773	1616.3	2000	-383.7	Pass
926.227	1576.9	2000	-423.1	Pass

Reference numbers of test equipment used


l	HL 1876	HL 2991	HL 3768	HL 3776	HL 3818		
		·					

Full description is given in Appendix A.


Test specification:	Section 90.209, Occupied bandwidth			
Test procedure:	47 CFR, Section 2.1049			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	7/22/2012	verdict:	FA33	
Temperature: 24.2 °C	Air Pressure: 1004 hPa	Relative Humidity: 46 %	Power Supply: 48 VDC	
Remarks:				

Plot 7.2.1 Occupied bandwidth test result at low frequency

Transmit Freq Error	–5.606 kHz
x dB Bandwidth	1.912 MHz*

Plot 7.2.2 Occupied bandwidth test result at high frequency

Transmit Freq Error	–38.388 kHz
x dB Bandwidth	1.896 MHz*

Test specification:	Section 90.210, Emission mask				
Test procedure:	47 CFR, Sections 2.1051, 2.1	47 CFR, Sections 2.1051, 2.1047 and 90.210(m); TIA/EIA-603-A, Section 2.2.13			
Test mode:	Compliance	Verdict: PASS			
Date(s):	7/23/2012	verdict.	FA33		
Temperature: 24.1 °C	Air Pressure: 1006 hPa	Relative Humidity: 43 %	Power Supply: 48 VDC		
Remarks:					

7.3 Emission mask test

7.3.1 General

This test was performed to measure emission mask at RF antenna connector. Specification test limits are given in Table 7.3.1.

Table 7.3.1 Emission mask limits

Frequency displacement from carrier,%	Attenuation below carrier, dBc	
En	nission mask K	
0 – 50	0	
50 – 250	By following equation, but in no case less than 31dB: A = 16 + 0.4(D-50) + 10logB (attenuation greater than 66 dB is not required)	
More than 250%	66.0	

Where:

A = attenuation (in decibels) below the maximum permitted output power level;

D = displacement of the center frequency of the measurement bandwidth from the center frequency of the authorized sub-band, expressed as a percentage pf the authorized bandwidth B; B = authorized bandwidth in megahertz.

7.3.2 Test procedure

7.3.2.1 The EUT was set up as shown in Figure 7.3.1, energized and its proper operation was checked.

7.3.2.2 The emission mask was measured with spectrum analyzer as provided in the associated plots.

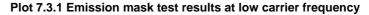
7.3.2.3 The test results provided in Table 7.3.2.

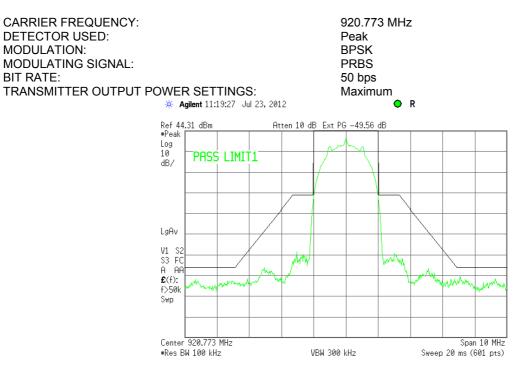
Figure 7.3.1 Emission mask test setup

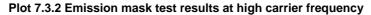
Test specification:	Section 90.210, Emission	Section 90.210, Emission mask			
Test procedure:	47 CFR, Sections 2.1051, 2.1	47 CFR, Sections 2.1051, 2.1047 and 90.210(m); TIA/EIA-603-A, Section 2.2.13			
Test mode:	Compliance	Verdict: PASS			
Date(s):	7/23/2012	verdict:	FA33		
Temperature: 24.1 °C	Air Pressure: 1006 hPa	Relative Humidity: 43 %	Power Supply: 48 VDC		
Remarks:					

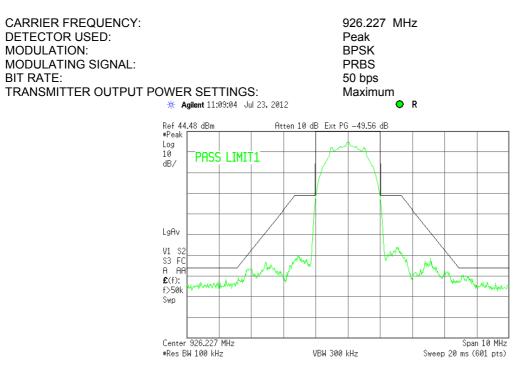
Table 7.3.2 Emission mask test results

Carrier frequency, MHz	Limit	Verdict
920.773	Emission mask K	Deep
926.227	Emission mask K	Pass


Reference numbers of test equipment used


HL 1876	HL 2991	HL 3768	HL 3776	HL 3818	HL 3903		
Full departmention in given in Appendix A							


Full description is given in Appendix A.



Test specification:	Section 90.210, Emission mask			
Test procedure:	47 CFR, Sections 2.1051, 2.1	047 and 90.210(m); TIA/EIA-603	-A, Section 2.2.13	
Test mode:	Compliance	Verdict: PASS		
Date(s):	7/23/2012	Verdict:	FA33	
Temperature: 24.1 °C	Air Pressure: 1006 hPa	Relative Humidity: 43 %	Power Supply: 48 VDC	
Remarks:				

Test specification:	Section 90.210, Radiated spurious emissions				
Test procedure:	47 CFR, Sections 2.1053 and	47 CFR, Sections 2.1053 and 90.210(m); TIA/EIA-603-A, Section 2.2.12			
Test mode:	Compliance	Verdict: PASS			
Date(s):	7/23/2012	verdict:	FA33		
Temperature: 23.8 °C	Air Pressure: 1006 hPa	Relative Humidity: 42 %	Power Supply: 48 VDC		
Remarks:					

7.4 Radiated spurious emission measurements

7.4.1 General

This test was performed to measure radiated spurious emissions from the EUT. Specification test limits are given in Table 7.4.1.

Frequency,	Attenuation below	ERP of spurious,	Equivalent field strength
MHz	carrier, dBc	dBm	limit @ 3m, dB(μV/m)**
0.009 – 10 th harmonic*	66.0	The limit shall be taken from FCC part 90.210 Emission mask K	The limit shall be calculated

* - Excluding the in band emission within ± 250 % of the authorized bandwidth from the carrier

** - Equivalent field strength limit was calculated from maximum allowed ERP of spurious as follows: E=sqrt(30×P×1.64)/r, where P is ERP in Watts, 1.64 is numeric gain of ideal dipole and r is antenna to EUT distance in meters

7.4.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- 7.4.2.1 The EUT was set up as shown in Figure 7.4.1, energized and the performance check was conducted.
- **7.4.2.2** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna was rotated around its vertical axis.
- 7.4.2.3 The worst test results (the lowest margins) were recorded in Table 7.4.2 and shown in the associated plots.

7.4.3 Test procedure for spurious emission field strength measurements above 30 MHz

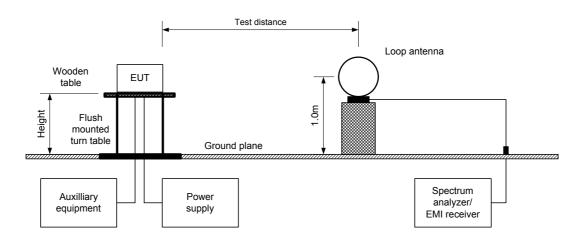
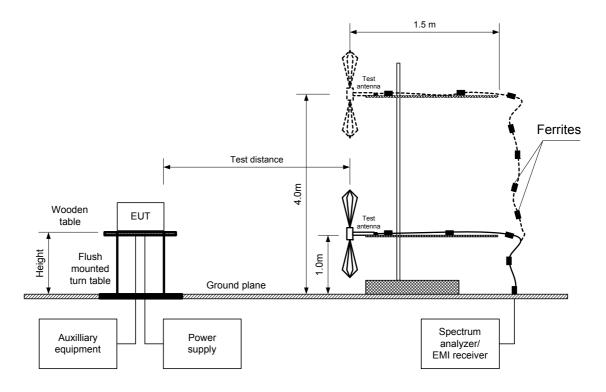
- 7.4.3.1 The EUT was set up as shown in Figure 7.4.2, energized and the performance check was conducted.
- **7.4.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer. To find maximum radiation the turntable was rotated 360⁰ and the measuring antenna height was swept from 1 to 4 m in both, vertical and horizontal, polarizations.
- 7.4.3.3 The worst test results (the lowest margins) were recorded in Table 7.4.2 and shown in the associated plots.

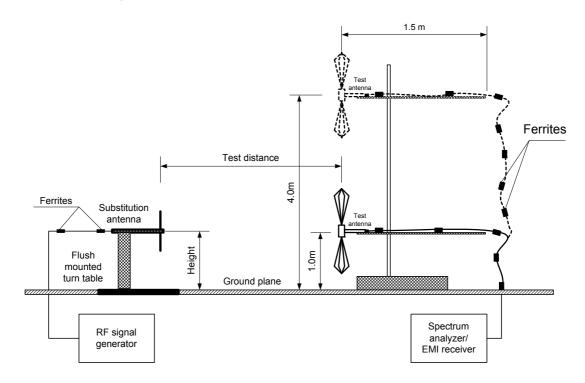
7.4.4 Test procedure for substitution ERP measurements of spurious

- **7.4.4.1** The test equipment was set up as shown in Figure 7.4.3 and energized.
- **7.4.4.2** RF signal generator was set to the frequency of investigated spurious emission and the RF output level was preliminary adjusted to produce the same field strength as it was measured from the EUT.
- **7.4.4.3** The test antenna height was swept from 1 to 4 m to find maximum emission from substitution antenna and RF signal generator output was fine adjusted to produce the same field strength as it was measured from the EUT.
- **7.4.4.4** The above procedure was performed in both, horizontal and vertical, polarizations of the test and substitution antennas.
- **7.4.4.5** The ERP of spurious emissions was calculated as a sum of signal generator output power in dBm and antenna gain in dBd reduced by cable loss in dB.
- **7.4.4.6** The above procedure was repeated at the rest of investigated frequencies.
- 7.4.4.7 The worst test results (the lowest margins) were recorded in Table 7.4.3 and shown in the associated plots.

Test specification:	Section 90.210, Radiated spurious emissions			
Test procedure:	47 CFR, Sections 2.1053 and 90.210(m); TIA/EIA-603-A, Section 2.2.12			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	7/23/2012	verdict:	FA33	
Temperature: 23.8 °C	Air Pressure: 1006 hPa	Relative Humidity: 42 %	Power Supply: 48 VDC	
Remarks:				

Figure 7.4.1 Setup for spurious emission field strength measurements in 9 kHz to 30 MHz band


Figure 7.4.2 Setup for spurious emission field strength measurements above 30 MHz

Test specification:	Section 90.210, Radiated spurious emissions			
Test procedure:	47 CFR, Sections 2.1053 and 90.210(m); TIA/EIA-603-A, Section 2.2.12			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	7/23/2012	verdict:	FA33	
Temperature: 23.8 °C	Air Pressure: 1006 hPa	Relative Humidity: 42 %	Power Supply: 48 VDC	
Remarks:			•	

Figure 7.4.3 Setup for substitution ERP measurements of spurious

Test specification:	Section 90.210, Radiated spurious emissions			
Test procedure:	47 CFR, Sections 2.1053 and	47 CFR, Sections 2.1053 and 90.210(m); TIA/EIA-603-A, Section 2.2.12		
Test mode:	Compliance	Verdict:	PASS	
Date(s):	7/23/2012	verdict:	FA33	
Temperature: 23.8 °C	Air Pressure: 1006 hPa	Relative Humidity: 42 %	Power Supply: 48 VDC	
Remarks:				

Table 7.4.2 Spurious emission field strength test results

TEST DISTANC TEST SITE: EUT HEIGHT: INVESTIGATED DETECTOR US VIDEO BANDW TEST ANTENN MODULATION: MODULATION: MODULATING BIT RATE:	D FREQUENCY RAN GED: YIDTH: A TYPE:	NGE:		3 m Semi aner 0.8 m 0.009 – 93 Peak > Resoluti Biconilog	ion bandwidth (30 MHz – 100 Iged guide (abd	,)
Frequency, MHz	Field strength, dB(μV/m)	Limit, dB(µV/m)	Margin, dB*	RBW, kHz	Antenna polarization	Antenna height, m	Turn-table position**, degrees
Low carrier free	quency MHz						
1841.571	1841.571 45.57 73.53 -27.96 1000 Vert 1.2 282					282	
2762.494 44.88 73.73 -28.85 1000 Vert 1.0 3					39		
High carrier fre	quency MHz						
1852.479	51.54	73.53	-21.99	1000	Vert	1.0	239
2778.631	43.08	73.73	-30.65	1000	Vert	1.0	36

*- Margin = Field strength of spurious – calculated field strength limit. **- EUT front panel refers to 0 degrees position of turntable.

Table 7.4.3 Substitution ERP of spurious test results

TEST SITE TEST DIST SUBSTITU DETECTO VIDEO BAI	ANCE: TION ANTEN R USED:	NA HEIG	GHT:	Semi ar 3 m 0.8 m Peak > Resol Tunable		amber				
Frequency, MHz	Field strength, dB(μV/m)	RBW, kHz	Antenna polarization	RF generator output, dBm	Ant gain, dBd	Cable loss, dB	ERP, dBm	Limit, dBc	Margin, dB*	Verdict
Low carrier	Low carrier frequency									
1841.571	45.57	1000	Vert	-51.44	2.04	1.26	-50.66	-21.69	-28.97	Pass
2762.494	44.88	1000	Vert	-53.66	4.99	1.58	-50.25	-21.52	-28.73	Pass
High carrier	frequency									

*- Margin = Spurious emission – specification limit.

1000

1000

Vert

Vert

Reference numbers of test equipment used

HL 0446	HL 0521	HL 0604	HL 1984	HL 2909	HL 4352	HL 4353	
		-	-	-	-	-	-

2.10

5.04

1.26

1.58

-44.65

-52.23

-21.69

-21.52

-22.96

-30.71

Pass

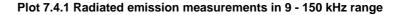
Pass

-45.49

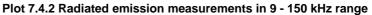
-55.69

Full description is given in Appendix A.

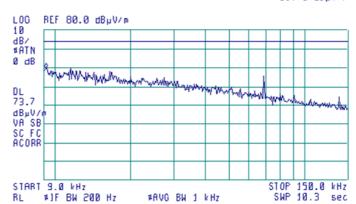
51.54


43.08

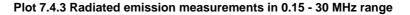
1852.479


2778.631

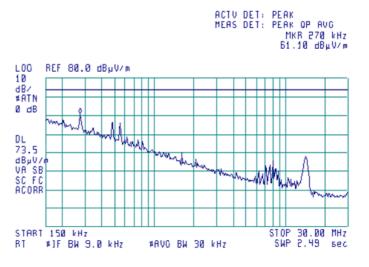
Test specification:	Section 90.210, Radiated spurious emissions			
Test procedure:	47 CFR, Sections 2.1053 an	47 CFR, Sections 2.1053 and 90.210(m); TIA/EIA-603-A, Section 2.2.12		
Test mode:	Compliance	Verdict:	PASS	
Date(s):	7/23/2012	verdict:	FA33	
Temperature: 23.8 °C	Air Pressure: 1006 hPa	Relative Humidity: 42 %	Power Supply: 48 VDC	
Remarks:		•	-	

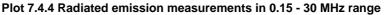


TEST SITE: CARRIER FREQUENCY: ANTENNA POLARIZATION: TEST DISTANCE: Semi anechoic chamber High Vertical and Horizontal 3 m



ACTU DET: PEAK Meas det: Peak op aug MKR 9.2 kHz 61.75 dBµV/m

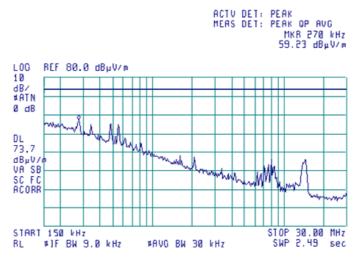

Test specification:	Section 90.210, Radiated spurious emissions			
Test procedure:	47 CFR, Sections 2.1053 an	47 CFR, Sections 2.1053 and 90.210(m); TIA/EIA-603-A, Section 2.2.12		
Test mode:	Compliance	Verdict:	PASS	
Date(s):	7/23/2012	verdict:	FA33	
Temperature: 23.8 °C	Air Pressure: 1006 hPa	Relative Humidity: 42 %	Power Supply: 48 VDC	
Remarks:		•	-	



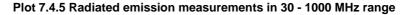
TEST SITE: CARRIER FREQUENCY: ANTENNA POLARIZATION: TEST DISTANCE:

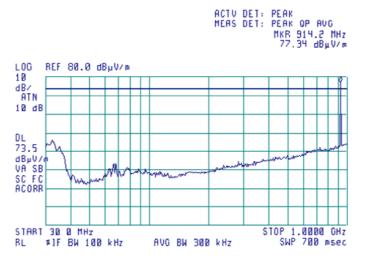
Semi anechoic chamber Low Vertical and Horizontal 3 m

Ø



TEST SITE: CARRIER FREQUENCY: ANTENNA POLARIZATION: TEST DISTANCE:

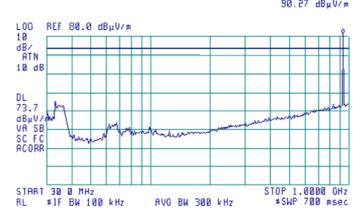

Semi anechoic chamber High Vertical and Horizontal 3 m



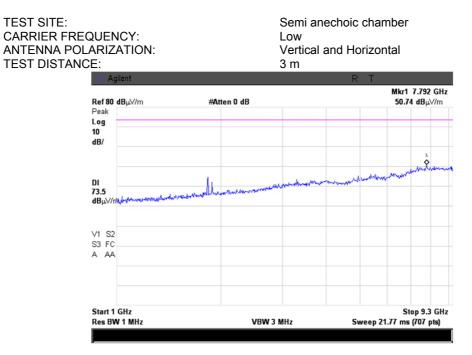
Test specification:	Section 90.210, Radiated spurious emissions			
Test procedure:	47 CFR, Sections 2.1053 an	47 CFR, Sections 2.1053 and 90.210(m); TIA/EIA-603-A, Section 2.2.12		
Test mode:	Compliance	Verdict:	PASS	
Date(s):	7/23/2012	verdict:	FA33	
Temperature: 23.8 °C	Air Pressure: 1006 hPa	Relative Humidity: 42 %	Power Supply: 48 VDC	
Remarks:		•	-	

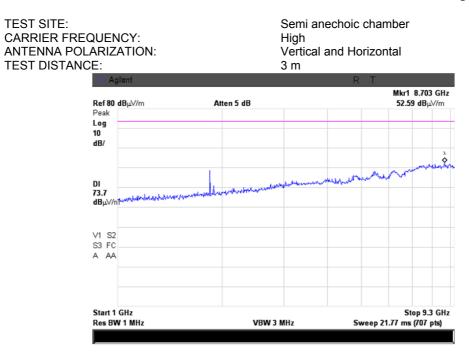
TEST SITE: CARRIER FREQUENCY: ANTENNA POLARIZATION: TEST DISTANCE: Semi anechoic chamber Low Vertical and Horizontal 3 m

6

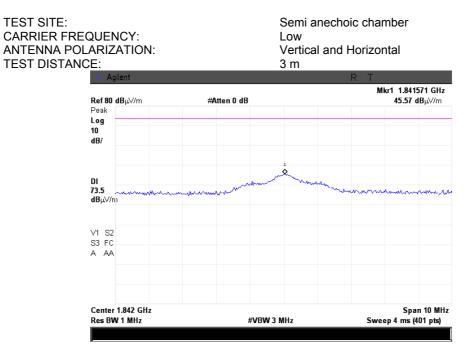


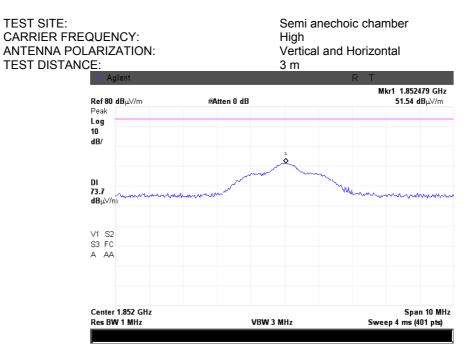
TEST SITE: CARRIER FREQUENCY: ANTENNA POLARIZATION: TEST DISTANCE: Semi anechoic chamber High Vertical and Horizontal 3 m


ACTU DET: PEAK MEAS DET: PEAK OP AVG MKR 923.7 MHz 90.27 dBµV/m



Test specification:	Section 90.210, Radiated spurious emissions			
Test procedure:	47 CFR, Sections 2.1053 and 90.210(m); TIA/EIA-603-A, Section 2.2.12			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	7/23/2012	verdict:	FA33	
Temperature: 23.8 °C	Air Pressure: 1006 hPa	Relative Humidity: 42 %	Power Supply: 48 VDC	
Remarks:				

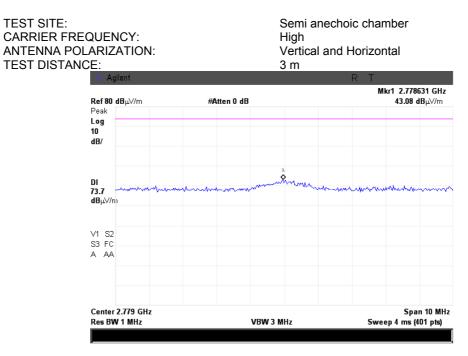

Plot 7.4.8 Radiated emission measurements in 1000 – 9300 MHz range



Test specification:	Section 90.210, Radiated	Section 90.210, Radiated spurious emissions			
Test procedure:	47 CFR, Sections 2.1053 and	47 CFR, Sections 2.1053 and 90.210(m); TIA/EIA-603-A, Section 2.2.12			
Test mode:	Compliance	Verdict:	PASS		
Date(s):	7/23/2012	verdict.	FA33		
Temperature: 23.8 °C	Air Pressure: 1006 hPa	Relative Humidity: 42 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.4.9 Radiated emission measurements at the 2nd harmonic

Plot 7.4.10 Radiated emission measurements at the 2nd harmonic



Test specification:	Section 90.210, Radiated	Section 90.210, Radiated spurious emissions			
Test procedure:	47 CFR, Sections 2.1053 and	47 CFR, Sections 2.1053 and 90.210(m); TIA/EIA-603-A, Section 2.2.12			
Test mode:	Compliance	Verdict:	PASS		
Date(s):	7/23/2012	verdict.	FA33		
Temperature: 23.8 °C	Air Pressure: 1006 hPa	Relative Humidity: 42 %	Power Supply: 48 VDC		
Remarks:					

Plot 7.4.11 Radiated emission measurements at the 3rd harmonic

Plot 7.4.12 Radiated emission measurements at the 3rd harmonic

Test specification:	Section 90.210, Conducted spurious emissions			
Test procedure:	47 CFR, Sections 2.1051 and	47 CFR, Sections 2.1051 and 90.210(m); TIA/EIA-603-A, Section 2.2.13		
Test mode:	Compliance	Verdict:	PASS	
Date(s):	7/23/2012	verdict.	FA33	
Temperature: 24.1 °C	Air Pressure: 1006 hPa	Relative Humidity: 43 %	Power Supply: 48 VDC	
Remarks:				

7.5 Spurious emissions at RF antenna connector test

7.5.1 General

This test was performed to measure spurious emissions at RF antenna connector. Specification test limits are given in Table 7.5.1.

Table 7	.5.1 Spt	irious en	nission	limits
			11001011	

Frequency, MHz	Attenuation below carrier, dBc	ERP of spurious, dBm
0.009 – 10th harmonic*	66.0	The limit shall be taken from FCC part 90.210 Emission mask K1

* - spurious emission limits do not apply to the in band emission within ± 250 % of the authorized bandwidth from the carrier; investigated in course of emission mask testing

** - P is transmitter output power in Watts

7.5.2 Test procedure

- **7.5.2.1** The EUT was set up as shown in Figure 7.5.1, energized and its proper operation was checked.
- 7.5.2.2 The EUT was adjusted to produce maximum available for end user RF output power.
- 7.5.2.3 The spurious emission was measured with spectrum analyzer as provided in Table 7.5.2 and the associated plots.

Figure 7.5.1 Spurious emission test setup

Test specification:	Section 90.210, Conducted spurious emissions			
Test procedure:	47 CFR, Sections 2.1051 an	47 CFR, Sections 2.1051 and 90.210(m); TIA/EIA-603-A, Section 2.2.13		
Test mode:	Compliance	Verdict:	PASS	
Date(s):	7/23/2012	verdict:	FA33	
Temperature: 24.1 °C	Air Pressure: 1006 hPa	Relative Humidity: 43 %	Power Supply: 48 VDC	
Remarks:			-	

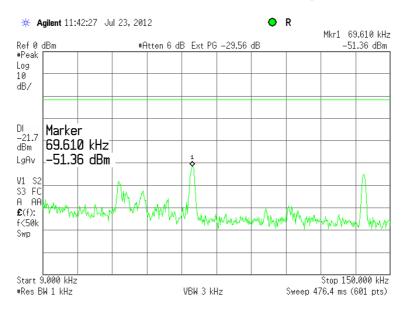
Table 7.5.2 Spurious emission test results

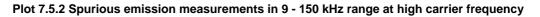
DETECTOR VIDEO BANE MODULATIO MODULATIN BIT RATE:	ED FREQUEI USED: WIDTH: N:	NCY RANGE:		0.009 – 93 Peak	on bandwidth				
Frequency, MHz	SA reading, dBm	Attenuator, dB	Cable loss, dB	RBW, kHz	Spurious emission, dBm	Attenuation below carrier, dBc	Limit, dBc	Margin, dB*	Verdict
	dBm				emission,	below carrier,		• •	Verdict
MHz	dBm				emission,	below carrier,		• •	Verdict Pass
MHz Low carrier f	dBm requency	dB	dB	kHz	emission, dBm	below carrier, dBc	dBc	dB*	
MHz Low carrier f 1841.546	dBm requency -39.38 -45.10	dB	dB	kHz	emission, dBm -39.38	below carrier, dBc 83.69	dBc 66.0	dB *	Pass
MHz Low carrier f 1841.546 2762.352	dBm requency -39.38 -45.10	dB	dB	kHz	emission, dBm -39.38	below carrier, dBc 83.69	dBc 66.0	dB *	Pass

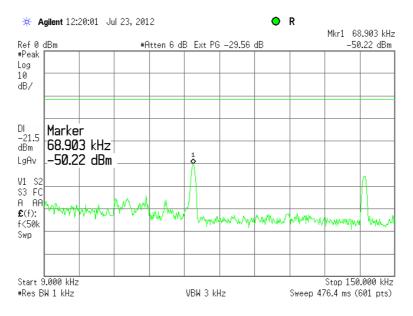
 2778.164
 ->1.>o

 *- Margin = Attenuation below carrier – specification limit.

Reference numbers of test equipment used

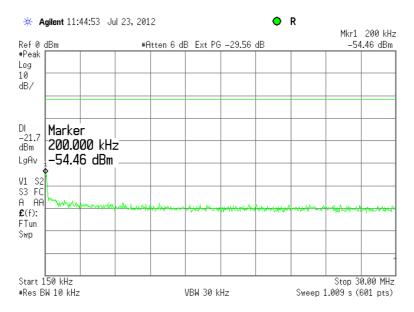

HL 1876		LIL 2760	HL 3776	HL 3818		
	TL 2991	HL 3768				

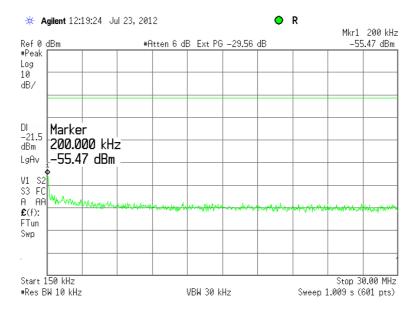

Full description is given in Appendix A.



Test specification:	Section 90.210, Conducted spurious emissions			
Test procedure:	47 CFR, Sections 2.1051 and	47 CFR, Sections 2.1051 and 90.210(m); TIA/EIA-603-A, Section 2.2.13		
Test mode:	Compliance	Verdict:	PASS	
Date(s):	7/23/2012	verdict:	FA33	
Temperature: 24.1 °C	Air Pressure: 1006 hPa	Relative Humidity: 43 %	Power Supply: 48 VDC	
Remarks:				

Plot 7.5.1 Spurious emission measurements in 9 - 150 kHz range at low carrier frequency





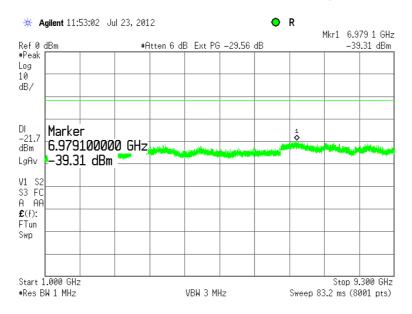
Test specification:	Section 90.210, Conducted spurious emissions			
Test procedure:	47 CFR, Sections 2.1051 and	47 CFR, Sections 2.1051 and 90.210(m); TIA/EIA-603-A, Section 2.2.13		
Test mode:	Compliance	Verdict:	PASS	
Date(s):	7/23/2012	verdict:	FA33	
Temperature: 24.1 °C	Air Pressure: 1006 hPa	Relative Humidity: 43 %	Power Supply: 48 VDC	
Remarks:				

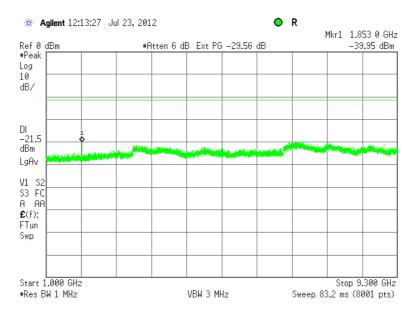
Plot 7.5.3 Spurious emission measurements in 0.150 - 30.0 MHz range at low carrier frequency

Plot 7.5.4 Spurious emission measurements in 0.150 - 30.0 MHz range at high carrier frequency

Test specification:	Section 90.210, Conducted spurious emissions			
Test procedure:	47 CFR, Sections 2.1051 and	47 CFR, Sections 2.1051 and 90.210(m); TIA/EIA-603-A, Section 2.2.13		
Test mode:	Compliance	Verdict:	PASS	
Date(s):	7/23/2012	verdict:	FA33	
Temperature: 24.1 °C	Air Pressure: 1006 hPa	Relative Humidity: 43 %	Power Supply: 48 VDC	
Remarks:				

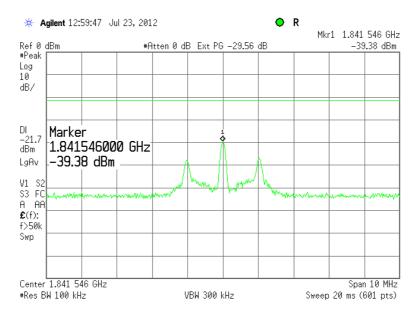
Plot 7.5.5 Spurious emission measurements in 30.0 - 1000 MHz range at low carrier frequency

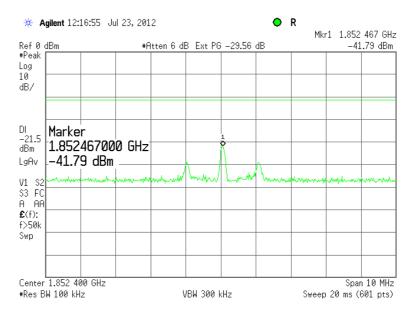

Plot 7.5.6 Spurious emission measurements in 30.0 - 1000 MHz range at high carrier frequency



Test specification:	Section 90.210, Conducted spurious emissions			
Test procedure:	47 CFR, Sections 2.1051 and 90.210(m); TIA/EIA-603-A, Section 2.2.13			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	7/23/2012	verdict:	PA33	
Temperature: 24.1 °C	Air Pressure: 1006 hPa	Relative Humidity: 43 %	Power Supply: 48 VDC	
Remarks:				

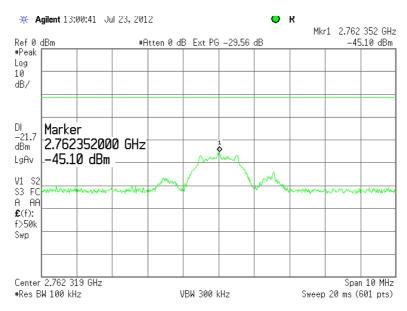
Plot 7.5.7 Spurious emission measurements in 1000 - 9300 MHz range at low carrier frequency

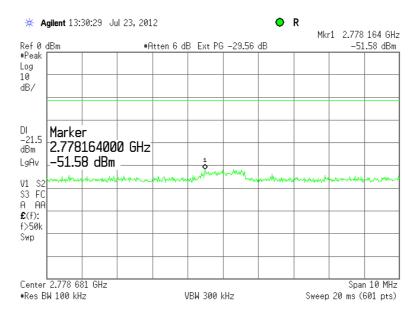

Plot 7.5.8 Spurious emission measurements in 1000 - 9300 MHz at high carrier frequency



Test specification:	Section 90.210, Conducted spurious emissions			
Test procedure:	47 CFR, Sections 2.1051 an	47 CFR, Sections 2.1051 and 90.210(m); TIA/EIA-603-A, Section 2.2.13		
Test mode:	Compliance	Verdict:	PASS	
Date(s):	7/23/2012	verdict:	FA33	
Temperature: 24.1 °C	Air Pressure: 1006 hPa	Relative Humidity: 43 %	Power Supply: 48 VDC	
Remarks:				

Plot 7.5.9 Conducted spurious emission measurements at the 2nd harmonic of low carrier frequency


Plot 7.5.10 Conducted spurious emission measurements at the 2nd harmonic of high carrier frequency



Test specification:	Section 90.210, Conducted spurious emissions			
Test procedure:	47 CFR, Sections 2.1051 and 90.210(m); TIA/EIA-603-A, Section 2.2.13			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	7/23/2012	verdict:	FA33	
Temperature: 24.1 °C	Air Pressure: 1006 hPa	Relative Humidity: 43 %	Power Supply: 48 VDC	
Remarks:				

Plot 7.5.11 Conducted spurious emission measurements at the 3rd harmonic of low carrier frequency

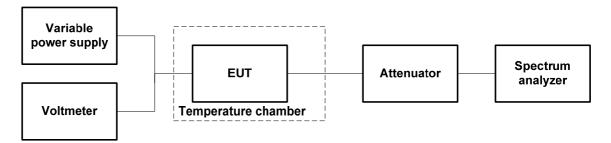
Plot 7.5.12 Conducted spurious emission measurements at the 3rd harmonic of high carrier frequency

Test specification:	Section 90.213, Frequency stability		
Test procedure:	47 CFR, Section 2.1055; TIA/EIA-603-A Section 2.2.2		
Test mode:	Compliance	Verdict:	Verdict: PASS
Date(s):	7/25/2012	verdict.	FA33
Temperature: 24.3 °C	Air Pressure: 1005 hPa	Relative Humidity: 40 %	Power Supply: 48VDC
Remarks:			

7.6 Frequency stability test

7.6.1 General

This test was performed to measure frequency stability of transmitter RF carrier. Specification test limits are given in Table 7.6.1.


Table 7.6.1 Frequency stability limits

Assigned frequency MHz	Maximum allowed frequency displacement		
Assigned frequency, MHz	ppm	Hz	
920.773	2.5	2502	
926.227		2513	

7.6.2 Test procedure

- 7.6.2.1 The EUT was set up as shown in Figure 7.6.1, energized and its proper operation was checked.
- **7.6.2.2** The EUT power was turned off. Temperature within test chamber was set to +30°C and a period of time sufficient to stabilize all of the oscillator circuit components was allowed.
- **7.6.2.3** The EUT was powered on and carrier frequency was measured at start up moment and then every minute until frequency had been stabilized or 10 minutes elapsed whichever reached the last. The EUT was powered off.
- 7.6.2.4 The above procedure was repeated at 0°C and at the lowest test temperature.
- **7.6.2.5** The EUT was powered on and carrier frequency was measured at start up moment and at the end of stabilization period at the rest of test temperatures and voltages. The EUT was powered off.
- 7.6.2.6 Frequency displacement was calculated and compared with the limit as provided in Table 7.6.2.

Figure 7.6.1 Frequency stability test setup

Test specification:	Section 90.213, Frequer	Section 90.213, Frequency stability				
Test procedure:	47 CFR, Section 2.1055; TIA	47 CFR, Section 2.1055; TIA/EIA-603-A Section 2.2.2				
Test mode:	Compliance	Verdict: PASS				
Date(s):	7/25/2012	verdict:	FA33			
Temperature: 24.3 °C	Air Pressure: 1005 hPa	Relative Humidity: 40 %	Power Supply: 48VDC			
Remarks:		•	-			

Table 7.6.2 Frequency stability test results

OPERATING FREQUENCY:919.75 – 927.25 MHzNOMINAL POWER VOLTAGE:48 VTEMPERATURE STABILIZATION PERIOD:20 minPOWER DURING TEMPERATURE TRANSITION:OffSPECTRUM ANALYZER MODE:CounterRESOLUTION BANDWIDTH:1 kHzVIDEO BANDWIDTH:3 kHzMODULATION:Unmodulated													
т. ⁰С	Voltage,			Fre	quency, N	ЛНz				quency t. Hz	Limit,	Margin,	Verdict
1, 0	v	Start up	1 st min	2 nd min	3 rd min	4 th min	5 th min	10 th min		Negative	Hz	Hz	veruict
Low f	requency	Start up	1 111111	2 11111	5 11111	4 11111	5 11111		FUSILIVE	iveyalive			
-30	nominal	920.772987	920.772978	020 772086	920.772953	920 772996	020 772008	920.773036	33	-50		-2252	Pass
-30		920.772993	NA	NA	NA	NA	NA	920.772946	0	-50		-2245	Pass
-10	nominal	920.772993	NA	NA	NA	NA	NA	920.772979	0	-24		-2278	Pass
0	nominal	920.773042	920.772966	920.772996	920.773019	920.772990	920.773052	920.773003	49	-37		-2253	Pass
10	nominal	920.773059	NA	NA	NA	NA	NA	920.772912	56	-91		-2211	Pass
20	+15%	920.772906	NA	NA	NA	NA	NA	920.772941	0	-97	2502	-2205	Pass
20	nominal	920.772993	NA	NA	NA	NA	NA	920.773003	0	-10		-2292	Pass
20	-15%	920.772993	NA	NA	NA	NA	NA	920.772977	0	-26		-2276	Pass
30	nominal	920.772993	920.772993	920.772964	920.772939	920.772957	920.772962	920.772994	0	-64		-2238	Pass
40	nominal	920.772993	NA	NA	NA	NA	NA	920.772933	0	-70		-2232	Pass
50	nominal	920.772993	NA	NA	NA	NA	NA	920.772916	0	-87		-2215	Pass
High f	requency	1											
-30	nominal	926.226956	926.226948	926.226933	926.226957	926.226920	926.226894	926.226967	0	-85		-2230	Pass
-20	nominal	926.226972	NA	NA	NA	NA	NA	926.227030	51	-7		-2264	Pass
-10	nominal	926.226933	NA	NA	NA	NA	NA	926.227008	29	-46		-2269	Pass
0	nominal	926.226994	926.226944	926.226954	926.226965	926.226963	926.226970	926.226963	15	-35		-2280	Pass
10	nominal	926.226982	NA	NA	NA	NA	NA	926.226982	3	0		-2312	Pass
20	+15%	926.226991	NA	NA	NA	NA	NA	926.226965	12	-14	2315	-2301	Pass
20	nominal	926.226993	NA	NA	NA	NA	NA	926.226979	14	0		-2301	Pass
20	-15%	926.226968	NA	NA	NA	NA	NA	926.226998	19	-11		-2296	Pass
30	nominal	926.226993	926.226972	926.226921	926.226977	926.226975	926.226995	926.227030	51	-58		-2257	Pass
40	nominal	926.226993	NA	NA	NA	NA	NA	926.226945	14	-34		-2281	Pass
50	nominal	926.226969	NA	NA	NA	NA	NA	926.227006	27	-10		-2288	Pass

* - Reference frequency

Reference numbers of test equipment used

	Γ	HL 1876	HL 2991	HL 3768	HL 3776	HL 3818			
--	---	---------	---------	---------	---------	---------	--	--	--

Full description is given in Appendix A.

Test specification:	Section 15.107, Conducted emission at AC power port				
Test procedure:	ANSI C63.4, Sections 11.5 a	ANSI C63.4, Sections 11.5 and 12.1.3			
Test mode:	Compliance	Verdict:	PASS		
Date(s):	9/5/2012	verdict.	FA33		
Temperature: 24 °C	Air Pressure: 1007 hPa	Relative Humidity: 38 %	Power Supply: 120 VAC		
Remarks:					

8 Emissions tests according to 47CFR part 15 subpart B requirements

8.1 Conducted emissions

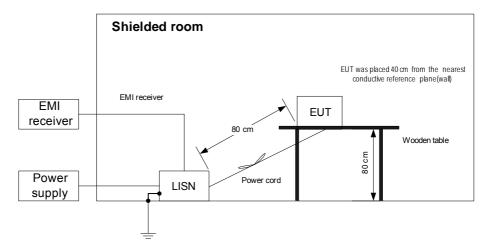
8.1.1 General

This test was performed to measure common mode conducted emissions at the mains power port. Specification test limits are given in Table 8.1.1.

Frequency, MHz	Class B limit, dB(μV)		Class / dB(A limit, /μV)
MHZ	QP	AVRG	QP	AVRG
0.15 - 0.5	66 - 56*	56 - 46*	79	66
0.5 - 5.0	56	46	73	60
5.0 - 30	60	50	73	60

Table 8.1.1 Limits for conducted emissions

* The limit decreases linearly with the logarithm of frequency.


8.1.2 Test procedure

- **8.1.2.1** The EUT was set up as shown in Figure 8.1.1 and associated photographs, energized and the performance check was conducted.
- **8.1.2.2** The measurements were performed at power terminals with the LISN, connected to a spectrum analyzer in the frequency range referred to in Table 8.1.2. Unused coaxial connector of the LISN was terminated with 50 Ohm. Quasi-peak and average detectors were used throughout the testing.
- **8.1.2.3** The position of the device cables was varied to determine maximum emission level.
- 8.1.2.4 The worst test results (the lowest margins) were recorded in Table 8.1.2 and shown in the associated plots.

Test specification:	Section 15.107, Conducted emission at AC power port					
Test procedure:	ANSI C63.4, Sections 11.5 a	ANSI C63.4, Sections 11.5 and 12.1.3				
Test mode:	Compliance	Verdiet	PASS			
Date(s):	9/5/2012	Verdict:	PA33			
Temperature: 24 °C	Air Pressure: 1007 hPa	Relative Humidity: 38 %	Power Supply: 120 VAC			
Remarks:			· • • •			

Photograph 8.1.1 Setup for conducted emission measurements

Test specification:	Section 15.107, Conducted emission at AC power port				
Test procedure:	ANSI C63.4, Sections 11.5 a	ANSI C63.4, Sections 11.5 and 12.1.3			
Test mode:	Compliance	Verdict:	PASS		
Date(s):	9/5/2012	verdict:	FA33		
Temperature: 24 °C	Air Pressure: 1007 hPa	Relative Humidity: 38 %	Power Supply: 120 VAC		
Remarks:		-			

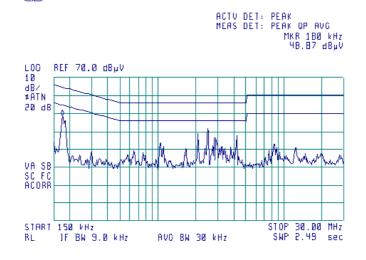
Table 8.1.2 Conducted emission test results

LINE: LIMIT: EUT OPERATIN EUT SET UP: TEST SITE: DETECTORS U FREQUENCY F RESOLUTION E	ISED: RANGE:			C F T S F 1	AC mains Class B Receive / Star ABLE-TOP SHIELDED RC PEAK / QUAS 50 kHz - 30 M) OOM I-PEAK / A	VERAGE		
	Peak	Q	uasi-peak			Average			
Frequency, MHz	emission, dB(μV)	Measured emission, dB(μV)	Limit, dB(μV)	Margin, dB*	Measured emission, dB(μV)	Limit, dB(μV)	Margin, dB*	Line ID	Verdict
0.182160	62.16	53.57	64.43	-10.86	37.06	54.43	-17.37		
2.077270	40.85	38.36	56.00	-17.64	37.43	46.00	-8.57		
2.492895	42.83	41.73	56.00	-14.27	41.31	46.00	-4.69	L1	Pass
2.541895	40.70	39.58	56.00	-16.42	38.95	46.00	-7.05	LI	Fa55
2.908050	39.53	36.77	56.00	-19.23	35.82	46.00	-10.18		
4.237925	36.96	36.24	56.00	-19.76	33.57	46.00	-12.43		
0.181137	60.03	50.17	64.48	-14.31	36.95	54.48	-17.53		
2.077500	40.35	38.50	56.00	-17.50	37.76	46.00	-8.24		
2.492475	40.57	39.02	56.00	-16.98	38.03	46.00	-7.97	L2	Pass
2.806550	38.27	35.68	56.00	-20.32	33.61	46.00	-12.39		
8.477800	38.99	34.77	60.00	-25.23	32.05	50.00	-17.95		

*- Margin = Measured emission - specification limit.

Reference numbers of test equipment used

HL 0787	HL 1425	HL 1513	HL 2563	HL 2924	HL 3612		


Full description is given in Appendix A.

Test specification:	Section 15.107, Conducted emission at AC power port					
Test procedure:	ANSI C63.4, Sections 11.5 a	ANSI C63.4, Sections 11.5 and 12.1.3				
Test mode:	Compliance	Vardiate	PASS			
Date(s):	9/5/2012	Verdict:	PA33			
Temperature: 24 °C	Air Pressure: 1007 hPa	Relative Humidity: 38 %	Power Supply: 120 VAC			
Remarks:						

Plot 8.1.1 Conducted emission measurements

LINE:	L1
LIMIT:	Class B
EUT OPERATING MODE:	Stand-by
LIMIT:	QUASI-PEAK, AVERAGE
DETECTOR:	PEAK
()	

Plot 8.1.2 Conducted emission measurements

LINE:	L2
LIMIT:	Class B
EUT OPERATING MODE:	Stand-by
LIMIT:	QUASI-PEAK, AVERAGE
DETECTOR:	PEAK

Ð

ACTU DET: PEAK Meas det: Peak op avg Mkr 160 kHz 49.76 dByv LOC 10 dB∕ ≉ATN 20 dB REF 70.0 dBµV MW MAAnt ٩I лN VA SB SC FC ACORR M٩ START 150 kHz RL JF BW 9.0 kHz STOP 30.00 MHz SWP 2.49 sec AVO BW 30 kHz

Test specification:	Section 15.109, Radiated	Section 15.109, Radiated emission				
Test procedure:	ANSI C63.4, Sections 11.6 a	ANSI C63.4, Sections 11.6 and 12.1.4				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	7/23/2012	verdict.	FA33			
Temperature: 25.7 °C	Air Pressure: 1004 hPa	Relative Humidity: 46 %	Power Supply: 48VDC			
Remarks:						

8.2 Radiated emission measurements

8.2.1 General

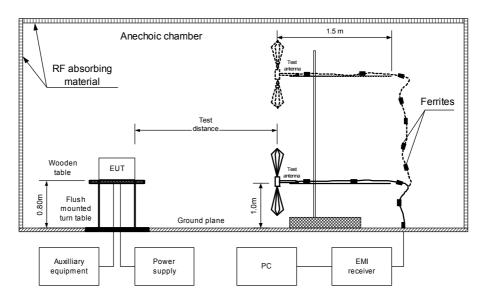
This test was performed to measure radiated emissions from the EUT enclosure. Specification test limits are given in Table 8.2.1.

Frequency, MHz	Class B limit, dB(μV/m)		Class A limit, dB(μV/m)		
WITZ	10 m distance	3 m distance	10 m distance	3 m distance	
30 - 88	29.5*	40.0	39.0	49.5*	
88 - 216	33.0*	43.5	43.5	54.0*	
216 - 960	35.5*	46.0	46.4	56.9*	
Above 960	43.5*	54.0	49.5	60.0*	

Table 8.2.1 Radiated emission test limits

* The limit for test distance other than specified was calculated using the inverse linear distance extrapolation factor as follows: $\lim_{S_2} = \lim_{S_1} + 20 \log (S_1/S_2)$,

where S_1 and S_2 – standard defined and test distance respectively in meters.


8.2.2 Test procedure for measurements in semi-anechoic chamber

- **8.2.2.1** The EUT was set up as shown in Figure 8.2.1 and associated photograph/s, energized and the performance check was conducted.
- **8.2.2.2** The specified frequency range was investigated with biconilog antenna connected to EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal and the EUT cables position was varied.
- 8.2.2.3 The worst test results (the lowest margins) were recorded in Table 8.2.2 and shown in the associated plots.

Test specification:	Section 15.109, Radiated emission					
Test procedure:	ANSI C63.4, Sections 11.6 and 12.1.4					
Test mode:	Compliance	Vardiate	PASS			
Date(s):	7/23/2012	Verdict:	PASS			
Temperature: 25.7 °C	Air Pressure: 1004 hPa	Relative Humidity: 46 %	Power Supply: 48VDC			
Remarks:			· · · · ·			

Figure 8.2.1 Setup for radiated emission measurements in anechoic chamber, table-top equipment

Photograph 8.2.1 Setup for radiated emission measurements

Test specification:	Section 15.109, Radiated emission					
Test procedure:	ANSI C63.4, Sections 11.6 ar	ANSI C63.4, Sections 11.6 and 12.1.4				
Test mode:	Compliance	Verdict:	PASS			
Date(s):	7/23/2012	verdict:	FA33			
Temperature: 25.7 °C	Air Pressure: 1004 hPa	Relative Humidity: 46 %	Power Supply: 48VDC			
Remarks:						

Photograph 8.2.2 Setup for radiated emission measurements

Test specification:	Section 15.109, Radiated	Section 15.109, Radiated emission					
Test procedure:	ANSI C63.4, Sections 11.6 a	ANSI C63.4, Sections 11.6 and 12.1.4					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	7/23/2012	verdict:	FA33				
Temperature: 25.7 °C	Air Pressure: 1004 hPa	Relative Humidity: 46 %	Power Supply: 48VDC				
Remarks:		-	-				

Table 8.2.2 Radiated emission test results

TEST SITE: TEST DISTANCE: DETECTORS USED: FREQUENCY RANGE:	SEMI ANECHOIC CHAMBER 3 m PEAK / QUASI-PEAK 30 MHz – 1000 MHz						
RESOLUTION BANDWIDTH:			120) kHz			
_ Peak	(Quasi-peak					
Frequency, MHz dB(μV/m)	Measured emission, dB(µV/m)	Limit, dB(µV/m)	Margin, dB*	Antenna polarization	Antenna height, m	Turn-table position**, degrees	Verdict

		αΒ(μν/m)	dB(μV/m)	α Β (μν/m)	uБ		m	degrees	
ľ	30.648500	40.28	34.98	40.50	-5.52	Vert	1.0	80	
	32.611000	37.36	32.51	40.50	-7.99	Vert	1.0	205	
	35.353000	32.64	27.61	40.50	-12.89	Vert	1.0	350	Pass
	72.395500	23.71	17.90	40.50	-22.60	Vert	1.0	45	F 855
	77.549000	25.96	19.52	40.50	-20.98	Vert	1.0	99	
	106.726500	25.93	20.57	40.50	-19.93	Vert	1.0	170	

TEST SITE: TEST DISTANCE: DETECTORS USED: FREQUENCY RANGE: RESOLUTION BANDWIDTH:

SEMI ANECHOIC CHAMBER 3 m PEAK / AVERAGE 1000 MHz -1000 kHz

Frequency		Peak			Average		Antonno		Turn tabla	
Frequency,	Measured	Limit,	Margin,	Measured	Limit,	Margin,	Antenna		Turn-table position**.	
MHz	emission,			emission,			polarization	J .,		verdict
IVITIZ	dB(μV/m)	dB(μV/m)	dB*	dB(μV/m)	dB(μV/m)	dB*		m	degrees	
No emissions were found								Pass		

*- Margin = Measured emission - specification limit.

**- EUT front panel refer to 0 degrees position of turntable.

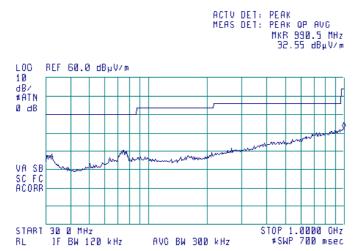
Reference numbers of test equipment used

					-	
HL 0521	HL 0604	HL 1984	HL 4352	HL 4353		
-		•			-	

Full description is given in Appendix A.

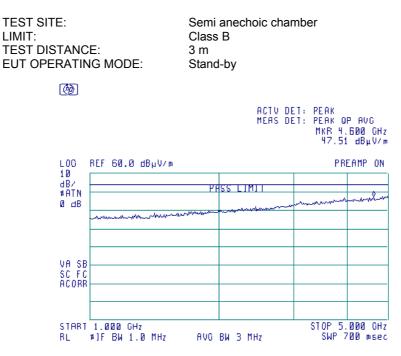
Test specification:	Section 15.109, Radiate	Section 15.109, Radiated emission					
Test procedure:	ANSI C63.4, Sections 11.6 a	ANSI C63.4, Sections 11.6 and 12.1.4					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	7/23/2012	verdict:	FA33				
Temperature: 25.7 °C	Air Pressure: 1004 hPa	Relative Humidity: 46 %	Power Supply: 48VDC				
Remarks:			•				

Plot 8.2.1 Radiated emission measurements in 30 - 1000 MHz range, vertical antenna polarization

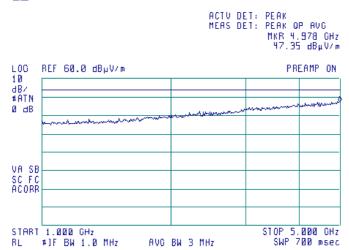

TEST SITE: LIMIT: TEST DISTANCE: EUT OPERATING MODE:	Semi anechoic chamber Class B 3 m Stand-by
(@)	ACTU DET: PEAK
	МЕАŠ DET: РЕАК ОР АVC МКВ 30.3 Мн 37.60 аврул

Plot 8.2.2 Radiated emission measurements in 30 - 1000 MHz range, horizontal antenna polarization

TEST SITE: LIMIT: TEST DISTANCE: EUT OPERATING MODE: Semi anechoic chamber Class B 3 m Stand-by


Ø

Test specification:	Section 15.109, Radiated emission						
Test procedure:	ANSI C63.4, Sections 11.6 a	ANSI C63.4, Sections 11.6 and 12.1.4					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	7/23/2012	verdict:	FA33				
Temperature: 25.7 °C	Air Pressure: 1004 hPa	Relative Humidity: 46 %	Power Supply: 48VDC				
Remarks:							


Plot 8.2.3 Radiated emission measurements above 1000 MHz, vertical antenna polarization

Plot 8.2.4 Radiated emission measurements above 1000 MHz, horizontal antenna polarization

TEST SITE: LIMIT: TEST DISTANCE: EUT OPERATING MODE: Semi anechoic chamber Class B 3 m Stand-by

Ø

9 APPENDIX A Test equipment and ancillaries used for tests

HL	Description	Manufacturer	Model	Ser. No.	Last Cal./	Due Cal./
No					Check	Check
0446	Antenna, Loop, Active, 10 kHz - 30 MHz	EMCO	6502	2857	03-Jul-12	03-Jul-13
0521	EMI Receiver (Spectrum Analyzer) with	Hewlett	8546A	3617A	29-Aug-11	29-Sep-12
	RF filter section 9 kHz-6.5 GHz	Packard		00319,		
				3448A002		
				53		
0604	Antenna BiconiLog Log-Periodic/T Bow- TIE, 26 - 2000 MHz	EMCO	3141	9611-1011	20-May-12	20-May-14
0787	Transient Limiter 9 kHz-200 MHz	Hewlett	11947A	3107A018	18-Oct-11	18-Oct-12
		Packard		77		
1425	EMI Receiver, 9 kHz - 2.9 GHz, System:	Agilent	8542E	3710A002	26-Aug-12	26-Aug-13
	HL1426, HL1427	Technologies		22,		
				3705A002		
4540		Daldan	M47/407	04	02.000.12	02.000 12
1513	Cable RF, 8 m, BNC/BNC	Belden	M17/167 MIL-C-17	1513	02-Sep-12	02-Sep-13
1876	Attenuator, 50 Ohm, 100 W, 20 dB	Bird Electronic	8343-200	2200	01-Feb-12	01-Feb-13
		Corp.				
1984	Antenna, Double-Ridged Waveguide	EMC Test	3115	9911-5964	25-Nov-11	25-Nov-12
	Horn, 1-18 GHz, 300 W	Systems				
2563	Load Termination, BNC, 50 Ohm	Hermon Laboratories	TBNC-50	2563	17-Nov-11	17-Nov-12
2909	Spectrum analyzer, ESA-E, 100 Hz to	Agilent	E4407B	MY414447	08-May-12	08-May-13
	26.5 GHz	Technologies		62		
2924	Line Impedance Stabilization Network	Electro-Metrics	FCC VDE	1178	01-Jul-12	01-Jul-13
	(LISN), 500hm/50 µH+50hm, 25 A,		25-2			
0004	2 lines,STD: MIL-461E,CISPR 16-1	11	50010		00.0	00.0
2991	Cable RF 1.0 m N type-N type	Hermon	RG213	NA	02-Sep-12	02-Sep-13
2612	Coble DE 17.5 m. Niture Niture	Laboratories Teldor	RG-214/U	NA	01-Dec-11	01-Dec-12
3612 3768	Cable RF, 17.5 m, N type-N type Attenuator, N-type, 20 dB, DC to 18 GHz,		BW-	NA		
3700	5 W	Mini-Circuits	ыл. N20W5+		22-Aug-12	22-Aug-13
3776	Attenuator, N-type, 10 dB, DC to 18 GHz,	Mini-Circuits	BW-	NA	22-Aug-12	22-Oct-12
5110	5 W		N10W5+		22 / Wy-12	22 001-12
3818	PSA Series Spectrum Analyzer,	Agilent	E4446A	MY482502	16-Feb-12	16-Feb-13
	3 Hz- 44 GHz	Technologies		88		
3839	Load Termination, BNC Male, 50 Ohm,	Hermon	TBNC-50	NA	17-Nov-11	17-Nov-12
	0.5 W, DC - 500 MHz	Laboratories				
3903	Microwave Cable Assembly, 40.0 GHz,	Huber-Suhner	SUCOFLE	1226/2A	08-Feb-12	08-Feb-13
	1.5 m, SMA/SMA		X 102A			
4352	Low Loss Armored Test Cable,	MegaPhase	NC29-	12025101	06-Jun-12	06-Mar-13
	DC - 18 GHz, 6.2 m, N type-M/N type-M		N1N1-244	002		
4353	Low Loss Armored Test Cable,	MegaPhase	NC29-	12025101	06-Jun-12	06-Mar-13
	DC - 18 GHz, 6.2 m, N type-M/N type-M		N1N1-244	003		

10 APPENDIX B Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty				
Transmitter tests					
Carrier power conducted at antenna connector	± 1.7 dB				
Carrier power radiated (substitution method)	± 4.5 dB				
Occupied bandwidth	±8%				
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB				
	2.9 GHz to 6.46 GHz: ± 3.5 dB				
	6.46 GHz to 13.2 GHz: ± 4.3 dB				
	13.2 GHz to 22.0 GHz: ± 5.0 dB				
	22.0 GHz to 26.8 GHz: ± 5.5 dB				
	26.8 GHz to 40.0 GHz: ± 4.8 dB				
Spurious emissions radiated 30 MHz – 40 GHz (substitution method)	± 4.5 dB				
Frequency error	30 – 300 MHz: ± 50.5 Hz (1.68 ppm)				
	300 – 1000 MHz: ± 168 Hz (0.56 ppm)				
Transient frequency behaviour	187 Hz				
	± 13.9 %				
Duty cycle, timing (Tx ON / OFF) and average factor measurements	± 1.0 %				
Unintentional radiator tests					
Conducted emissions with LISN	9 kHz to 150 kHz: ± 3.9 dB				
	150 kHz to 30 MHz: ± 3.8 dB				
Radiated emissions at 3 m measuring distance					
Horizontal polarization	Biconilog antenna: ± 5.3 dB				
	Biconical antenna: ± 5.0 dB				
	Log periodic antenna: ± 5.3 dB				
	Double ridged horn antenna: ± 5.3 dB				
Vertical polarization	Biconilog antenna: ± 6.0 dB				
	Biconical antenna: ± 5.7 dB				
	Log periodic antenna: ± 6.0 dB				
	Double ridged horn antenna: ± 6.0 dB				

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

11 APPENDIX C Test laboratory description

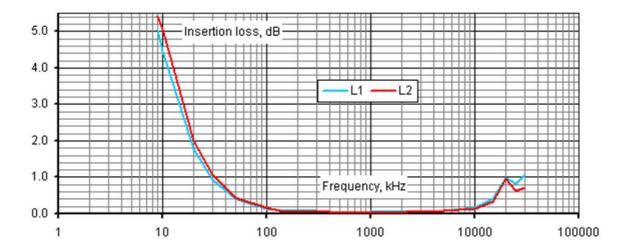
Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, safety, environmental and telecommunication testing facility.

Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47), Registration Numbers 90624 for OATS and 90623 for the anechoic chamber; by Industry Canada for electromagnetic emissions (file numbers IC 2186A-1 for OATS, IC 2186A-2 for anechoic chamber, IC 2186A-3 for full-anechoic chamber for RE measurements above 1 GHz), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, G-27 for full-anechoic chamber for RE measurements above 1 GHz, c-845 for conducted emissions site, T-1606 for conducted emissions at telecommunication ports), has a status of a Telefication - Listed Testing Laboratory, Certificate No. L138/00. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing and environmental simulation (for exact scope please refer to Certificate No. 839.01). The FCC Designation Number is US1003.

Address:	P.O. Box 23, Binyamina 30500, Israel.
Telephone:	+972 4628 8001
Fax:	+972 4628 8277
e-mail:	mail@hermonlabs.com
website:	www.hermonlabs.com

Person for contact: Mr. Alex Usoskin, CEO.

12 APPENDIX D Specification references


FCC 47CFR part 90: 2011	Private land mobile radio services
FCC 47CFR part 15: 2011	Radio frequency devices
ANSI C63.2: 1996	American National Standard for Instrumentation-Electromagnetic Noise and Field Strength, 10 kHz to 40 GHz-Specifications.
ANSI C63.4: 2003	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.
ANSI/TIA/EIA-603-C:2004	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards

13 APPENDIX E Test equipment correction factors

Correction factor Line impedance stabilization network Model FCC VDE 25-2, Electro-Metrics, HL 2924

	Insertion	Measurement	
Frequency, kHz	L1	L2	uncertainty, dB
9	5.03	5.43	
10	4.47	5.07	
20	1.77	2.00	
30	0.93	1.07	
50	0.41	0.45	
100	0.14	0.16	
150	0.09	0.06	
200	0.07	0.07	
300	0.07	0.05	0.6
400	0.05	0.05	0.6
500	0.02	0.03	
1000	0.05	0.02	
5000	0.07	0.08	
10000	0.17	0.15	
15000	0.42	0.32	
20000	0.99	0.97	
25000	0.83	0.63]
30000	1.07	0.71	

Antenna factor Active loop antenna Model 6502, S/N 2857, HL 0446

Frequency, MHz	Magnetic antenna factor, dB	Electric antenna factor, dB
0.009	-32.8	18.7
0.010	-33.8	17.7
0.020	-38.3	13.2
0.050	-41.1	10.4
0.075	-41.3	10.2
0.100	-41.6	9.9
0.150	-41.7	9.8
0.250	-41.6	9.9
0.500	-41.8	9.8
0.750	-41.9	9.7
1.000	-41.4	10.1
2.000	-41.5	10.0
3.000	-41.4	10.2
4.000	-41.4	10.1
5.000	-41.5	10.1
10.000	-41.9	9.6
15.000	-41.9	9.6
20.000	-42.2	9.3
25.000	-42.8	8.7
30.000	-44.0	7.5

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field intensity in dB(μ V/m).

Antenna factor Biconilog antenna EMCO Model 3141 Ser.No.1011, HL 0604

Frequency, MHz	Antenna factor, dB(1/m)	Frequency, MHz	Antenna factor, dB(1/m)	Frequency, MHz	Antenna factor, dB(1/m)
26	7.8	580	20.6	1320	27.8
28	7.8	600	21.3	1340	28.3
30	7.8	620	21.5	1360	28.2
40	7.2	640	21.2	1380	27.9
60	7.1	660	21.4	1400	27.9
70	8.5	680	21.9	1420	27.9
80	9.4	700	22.2	1440	27.8
90	9.8	720	22.2	1460	27.8
100	9.7	740	22.1	1480	28.0
110	9.3	760	22.3	1500	28.5
120	8.8	780	22.6	1520	28.9
130	8.7	800	22.7	1540	29.6
140	9.2	820	22.9	1560	29.8
150	9.8	840	23.1	1580	29.6
160	10.2	860	23.4	1600	29.5
170	10.4	880	23.8	1620	29.3
180	10.4	900	24.1	1640	29.2
190	10.3	920	24.1	1660	29.4
200	10.6	940	24.0	1680	29.6
220	11.6	960	24.1	1700	29.8
240	12.4	980	24.5	1720	30.3
260	12.8	1000	24.9	1740	30.8
280	13.7	1020	25.0	1760	31.1
300	14.7	1040	25.2	1780	31.0
320	15.2	1060	25.4	1800	30.9
340	15.4	1080	25.6	1820	30.7
360	16.1	1100	25.7	1840	30.6
380	16.4	1120	26.0	1860	30.6
400	16.6	1140	26.4	1880	30.6
420	16.7	1160	27.0	1900	30.6
440	17.0	1180	27.0	1920	30.7
460	17.7	1200	26.7	1940	30.9
480	18.1	1220	26.5	1960	31.2
500	18.5	1240	26.5	1980	31.6
520	19.1	1260	26.5	2000	32.0
540	19.5	1280	26.6		
560	19.8	1300	27.0		

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field strength in dB(μ V/m).

Antenna factor Double-ridged wave guide horn antenna Model 3115, S/N 9911-5964, HL1984

Frequency, MHz	Antenna factor, dB(1/m)	
1000.0	24.7	
1500.0	25.7	
2000.0	27.6	
2500.0	28.9	
3000.0	31.2	
3500.0	32.0	
4000.0	32.5	
4500.0	32.7	
5000.0	33.6	
5500.0	35.1	
6000.0	35.4	
6500.0	34.9	
7000.0	36.1	
7500.0	37.8	
8000.0	38.0	
8500.0	38.1	
9000.0	39.1	
9500.0	38.3	
10000.0	38.6	
10500.0	38.2	
11000.0	38.7	
11500.0	39.5	
12000.0	40.0	
12500.0	40.4	
13000.0	40.5	
13500.0	41.1	
14000.0	41.6	
14500.0	41.7	
15000.0	38.7	
15500.0	38.2	
16000.0	38.8	
16500.0	40.5	
17000.0	42.5	
17500.0	45.9	
18000.0	49.4	

Antenna factor in dB(1/m) is to be added to receiver meter reading in dB(μ V) to convert it into field strength in dB(μ V/m).

Frequency, MHz	Cable loss, dB
0.1	0.05
0.5	0.07
1	0.10
3	0.22
5	0.29
10	0.39
30	0.68
50	0.90
100	1.27
150	1.58
200	1.80
250	2.12
300	2.36
350	2.60
400	2.82
450	2.99
500	3.23
550	3.40
600	3.56
650	3.71
700	3.90
750	4.04
800	4.23
850	4.39
900	4.55
950	4.65
1000	4.79

Cable loss Cable coaxial, RG-214/U, N type-N type, 17 m Teldor, HL 3612

Cable loss				
Microwave Cable Assembly, Huber-Suhner, 40 GHz, 1.5 m, SMA-SMA, S/N 1226/2A				
HL 3903				

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	-0.02	9500	1.84	21000	2.98
100	0.15	10000	1.86	22000	3.07
500	0.38	10500	1.93	23000	3.13
1000	0.56	11000	1.99	24000	3.21
1500	0.69	11500	2.04	25000	3.26
2000	0.82	12000	2.10	26000	3.48
2500	0.90	12500	2.15	27000	3.44
3000	0.98	13000	2.21	28000	3.53
3500	1.06	13500	2.25	29000	3.59
4000	1.11	14000	2.29	30000	3.66
4500	1.17	14500	2.34	31000	3.70
5000	1.24	15000	2.36	32000	3.79
5500	1.32	15500	2.40	33000	3.88
6000	1.40	16000	2.45	34000	3.94
6500	1.50	16500	2.48	35000	3.91
7000	1.56	17000	2.56	36000	4.05
7500	1.62	17500	2.58	37000	4.22
8000	1.68	18000	2.60	38000	4.25
8500	1.74	19000	2.84	39000	4.27
9000	1.78	20000	2.88	40000	4.33

Cable loss Low Loss Armored Test Cable, MegaPhase, 18 GHz, 6.2 m, N type-M/N type-M, NC29-N1N1-244S/N 12025101 002, HL 4352

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
50	0.20	9000	2.81
100	0.28	9500	2.89
300	0.49	10000	3.00
500	0.63	10500	3.07
1000	0.90	11000	3.15
1500	1.10	11500	3.23
2000	1.28	12000	3.30
2500	1.44	12500	3.38
3000	1.57	13000	3.47
3500	1.71	13500	3.55
4000	1.85	14000	3.61
4500	1.95	14500	3.68
5000	2.05	15000	3.76
5500	2.14	15500	3.86
6000	2.27	16000	3.92
6500	2.38	16500	3.97
7000	2.47	17000	4.03
7500	2.58	17500	4.10
8000	2.65	18000	4.18
8500	2.74		

Cable loss Low Loss Armored Test Cable, MegaPhase, 18 GHz, 6.2 m, N type-M/N type-M, NC29-N1N1-244S/N 12025101 003, HL 4353

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
50	0.20	9000	2.71
100	0.27	9500	2.81
300	0.47	10000	2.90
500	0.61	10500	2.97
1000	0.87	11000	3.06
1500	1.07	11500	3.13
2000	1.24	12000	3.20
2500	1.39	12500	3.26
3000	1.53	13000	3.34
3500	1.65	13500	3.39
4000	1.77	14000	3.47
4500	1.89	14500	3.54
5000	1.99	15000	3.62
5500	2.07	15500	3.69
6000	2.20	16000	3.76
6500	2.30	16500	3.83
7000	2.39	17000	3.86
7500	2.51	17500	3.94
8000	2.58	18000	4.02
8500	2.65		

14 APPENDIX F Abbreviations and acronyms

ACalternating currentA/mampere per meterAMamplitude modulationAVRGaverage (detector)cmcentimeterdBdecibeldBmdecibel referred to one miliwattdB(μ V)decibel referred to one microvolt per meterdB(μ V)decibel referred to one microvolt per meterdB(μ V)decibel referred to one microwolt per meterdB(μ A)decibel referred to one microwoltGNDgroundhetHheightHLHermon laboratoriesHzhetzkkilokkiloK	А	ampere
AMamplitude modulationAVRGaverage (detector)cmcentimeterdBdecibeldBmdecibel referred to one miliwattdB(μV)decibel referred to one microvolt per meterdB(μV)decibel referred to one microvolt per meterdB(μA)decibel referred to one microampereDCdirect currentEIRPequivalent isotropically radiated powerERPeffective radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkiloKHzkilohertzLOlocal oscillatormmeterMHzmegahertzminmillimetermsmillimetermsmillisecondµsnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁶)QPquasi-peakREradiated emissionRFradiated emissionRFra	AC	alternating current
AVRGaverage (detector)cmcentimeterdBdecibeldBmdecibel referred to one milliwattdB(μ V)decibel referred to one microvolt per meterdB(μ V/m)decibel referred to one microvolt per meterdB(μ A)decibel referred to one microwlperDCdirect currentEIRPequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkilohertzLOlocal oscillatormmeterMHzmegahertzminmillisecond μ smilcrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradiated		
cmcentimeterdBdecibeldBmdecibel referred to one milliwattdB(μ V)decibel referred to one microvoltdB(μ V/m)decibel referred to one microvolt per meterdB(μ V)decibel referred to one microampereDCdirect currentEIRPequivalent isotropically radiated powerEVTequipment under testFfrequencyGNDgroundHheightHLHermon laboratoriesHzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminmillimetermsmillisecondµsnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpat per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradiated emissionRFradi		•
dBdecibeldBmdecibel referred to one milliwattdB(μ V)decibel referred to one microvoltdB(μ V)m)decibel referred to one microvolt per meterdB(μ A)decibel referred to one microampereDCdirect currentEIRPequivalent isotropically radiated powerERPeffective radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkiloKHzkilohertzLOlocal oscillatormmeterMHzmegahertzminmillimetermsmillisecondµsnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpat per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradiated emissionRF		
dEmdecibel referred to one milliwattdB(μ V)decibel referred to one microvoltdB(μ V/m)decibel referred to one microvolt per meterdB(μ A)decibel referred to one microampereDCdirect currentEIRPequivalent isotropically radiated powerERPeffective radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkiloKHzkilohertzLOlocal oscillatormmeterMHzmegahertzminmillimetermsmillisecondµsmicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradiated emissionRF <td>••••</td> <td></td>	••••	
dB(μV)decibel referred to one microvoltdB(μV/m)decibel referred to one microvolt per meterdB(μA)decibel referred to one microampereDCdirect currentEIRPequivalent isotropically radiated powerERPeffective radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminmillisecondμsmicrosecondNAnot applicableNBnarrow bandOATSopen area test siteΩOhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt		
dB(μ V/m)decibel referred to one microvolt per meterdB(μ A)decibel referred to one microampereDCdirect currentEIRPequivalent isotropically radiated powerERPeffective radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkiloKHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemsmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradiated emission		
dB(μ A)decibel referred to one microampereDCdirect currentEIRPequivalent isotropically radiated powerERPeffective radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkiloKHzkilohertzLOlocal oscillatormmeterMHzmegahertzminmillisecond μ smillisecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradiated emissionRFvolt <td></td> <td></td>		
DCdirect currentEIRPequivalent isotropically radiated powerERPeffective radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkiloKHzkilohertzLOlocal oscillatormmeterMHzmegahertzminmillimetermsmillisecondμsmicrosecondNAnot applicableNBnarrow bandOATSopen area test siteΩOhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradiated emissionRFvot mean squareXvot		•
ERPeffective radiated powerEUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkiloKHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemsmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradiated emissionRTtemperatureTxtransmitVvolt		•
EUTequipment under testFfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkiloKHzkilohertzLOlocal oscillatormmeterMHzmegahertzminmilisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradiated emissionRFradiated remencyrmsrot mean squareRxreceivessecondTtemperatureTxtransmitVvolt	EIRP	equivalent isotropically radiated power
FfrequencyGHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkiloHzhertzkkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradiated emissionRFradiated emissionRFradiated emissionRFradiated emissionRFradiated emissionRFradiated emissionRFradiated emissionRTtemperatureTxtransmitVvolt		
GHzgigahertzGNDgroundHheightHLHermon laboratoriesHzhertzkkiloKHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemsmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt	-	
GNDgroundHheightHLHermon laboratoriesHzhertzkkiloHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemsmillimetermsmillisecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt		1 5
HheightHLHermon laboratoriesHzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradiated emissionRXreceivessecondTtemperatureTxtransmitVvolt		
HLHermon laboratoriesHzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradiated emissionRXreceivessecondTtemperatureTxtransmitVvolt	-	5
HzhertzkkilokHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillimetermsmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt		0
kHzkilohertzLOlocal oscillatormmeterMHzmegahertzminminutemmmillimetermsmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt		
LOlocal oscillatormmeterMHzmegahertzminminutemmmillimetermsmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt	k	kilo
mmeterMHzmegahertzminminutemmmillimetermsmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt	kHz	kilohertz
MHzmegahertzminminutemmmillimetermsmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt	LO	local oscillator
minminutemmmillimetermsmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		•
msmillisecond μ smicrosecondNAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt		
$\begin{array}{llllllllllllllllllllllllllllllllllll$		
NAnot applicableNBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt	-	
NBnarrow bandOATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt	•	
OATSopen area test site Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt		• •
Ω OhmPMpulse modulationPSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt		
PSpower supplyppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt	Ω	-
ppmpart per million (10 ⁻⁶)QPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt	PM	pulse modulation
QPquasi-peakREradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt	PS	
REradiated emissionRFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt		part per million (10 ⁻)
RFradio frequencyrmsroot mean squareRxreceivessecondTtemperatureTxtransmitVvolt		• •
rms root mean square Rx receive s second T temperature Tx transmit V volt		
RxreceivessecondTtemperatureTxtransmitVvolt		
s second T temperature Tx transmit V volt	-	•
TtemperatureTxtransmitVvolt		
Tx transmit V volt	-	
	Тх	•
WB wideband	•	
	WB	wideband

END OF DOCUMENT