DDM Brands LLC

GSM Mobile Phone

Main Model: A4 Serial Model: AC4

May 31, 2013

Report No.: 13070139-FCC-R1

Modifications made to the product: None

Chris You

Chris You

Chris You

Test Engineer

Alex Liu

Test Engineer

Technical Manager

This test report may be reproduced in full only.

Test result presented in this test report is applicable to the representative sample only.

IEMIC, INC.
Accessing global market

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 2 of 64 www.siemic.com.ci

Laboratory Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to <u>testing</u> and <u>certification</u>, SIEMIC provides initial design reviews and <u>compliance</u> <u>management</u> through out a project. Our extensive experience with <u>China</u>, <u>Asia Pacific</u>, <u>North America</u>, <u>European</u>, <u>and international</u> compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the <u>global markets</u>.

Accreditations for Conformity Assessment

Country/Region	Accreditation Body	Scope
USA	FCC, A2LA	EMC, RF/Wireless, Telecom
Canada	IC, A2LA, NIST	EMC, RF/Wireless, Telecom
Taiwan	BSMI , NCC , NIST	EMC, RF, Telecom, Safety
Hong Kong	OFTA , NIST	RF/Wireless ,Telecom
Australia	NATA, NIST	EMC, RF, Telecom, Safety
Korea	KCC/RRA, NIST	EMI, EMS, RF, Telecom, Safety
Japan	VCCI, JATE, TELEC, RFT	EMI, RF/Wireless, Telecom
Mexico	NOM, COFETEL, Caniety	Safety, EMC, RF/Wireless, Telecom
Europe	A2LA, NIST	EMC, RF, Telecom, Safety

Accreditations for Product Certifications

Country/Region	Accreditation Body	Scope
USA	FCC TCB, NIST	EMC, RF, Telecom
Canada	IC FCB , NIST	EMC, RF, Telecom
Singapore	iDA, NIST	EMC, RF, Telecom
EU	NB	EMC & R&TTE Directive
Japan	MIC, (RCB 208)	RF, Telecom
Hong Kong	OFTA (US002)	RF, Telecom

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 3 of 64 www.siemic.com.cn

This page has been left blank intentionally.

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 4 of 64 www.siemic.com.cn

CONTENTS

1.	EXECUTIVE SUMMARY & EUT INFORMATION	5
2.	TECHNICAL DETAILS	6
3.	MODIFICATION	7
4.	TEST SUMMARY	8
5.	MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	9
ANI	NEX A. TEST INSTRUMENT & METHOD	45
ANI	NEX B. EUT AND TEST SETUP PHOTOGRAPHS	48
ANI	NEX C. TEST SETUP AND SUPPORTING EQUIPMENT	60
ANI	NEX D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST	63
ANI	NEX E. DECLARATION OF SIMILARITY	64

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 5 of 64 www.siemic.com.cn

1. EXECUTIVE SUMMARY & EUT INFORMATION

The purpose of this test programmed was to demonstrate compliance of the DDM Brands LLC, GSM Mobile Phone and model: A4 against the current Stipulated Standards. The GSM Mobile Phone has demonstrated compliance with the FCC Part 22(H) & FCC Part 24(E): 2012.

EUT Information

EUT

Description : **GSM Mobile Phone**

Main Model : A4 Serial Model AC4

> UMTS-FDD Band V/GSM850: -2.5 dBi UMTS-FDD Band II/PCS1900: -2 dBi

Antenna Gain : Bluetooth: -3 dBi

WIFI: -3 dBi

Adapter

Model: YW10

Input: 100-240V 50/60Hz 150mA

Output: 5.0VDC 1000mA

Input Power : Battery

Li-ion Rechargeable Battery

Model: YB113

Capacity: 1400mAh/5.18Wh Nominal Voltage: 3.7V

Charging Voltage Limit: 4.2V

GSM850: 32.87 dBm PCS1900: 28.82 dBm

Conducted
AV Power to
Antenna

UMTS-FDD Band V: 22.84 dBm
UMTS-FDD Band II: 21.80 dBm

GSM850: 31.41 dBm / ERP PCS1900:28.65 dBm / EIRP

Radiated : UMTS-FDD Band V : 24.75dBm / ERP ERP/EIRP UMTS-FDD Band II : 23.79 dBm / EIRP

Classification

Maximum

Maximum

Per Stipulated : FCC Part 22(H) & FCC Part 24(E): 2012

Test Standard

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 6 of 64 www.siemic.com.cn

	2. TECHNICAL DETAILS
Purpose	Compliance testing of GSM Mobile Phone with stipulated standard
Applicant / Client	DDM Brands LLC 1612 NW, 84TH Ave. Miami, Florida, U.S.A 33126
Manufacturer	DDM Brands LLC B-602,HengYu Center, NanShan, ShenZhen, China518054
Laboratory performing the tests	SIEMIC Shenzhen (China) Laboratories Zone A,Floor 1,Building 2,Wan Ye Long Technology, Park, South Side of Zhoushi Road, Bao'an District, Shenzhen, 518108 China Tel: +86-0755-2601 4629 / 2601 4953 Fax: +86-0755-2601 4953-810 Email: info@siemic.com
Test report reference number	13070139-FCC-R1
Date EUT received	May 12, 2013
Standard applied	FCC Part 22(H) & FCC Part 24(E): 2012
Dates of test	May 29, 2013
No of Units	#1
Equipment Category	PCE
Trade Name	YEZZ
RF Operating Frequency (ies)	GSM850 TX: 824.2 ~ 848.8 MHz; RX: 869.2 ~ 893.8 MHz PCS1900 TX: 1850.2 ~ 1909.8 MHz; RX: 1930.2 ~ 1989.8 MHz UMTS-FDD Band V TX: 826.4 ~ 846.6 MHz; RX: 871.4 ~ 891.6 MHz UMTS-FDD Band II TX: 1852.4 ~ 1907.6 MHz; RX: 1932.4 ~ 1987.6 MHz 802.11b/g/n: 2412-2462 MHz Bluetooth: 2402-2480 MHz
Number of Channels	299CH (PCS1900) and 124CH (GSM850) UMTS-FDD Band V: 102CH UMTS-FDD Band II: 277CH Bluetooth: 79CH 802.11b/g/n: 11CH
Modulation	GSM / GPRS: GMSK UMTS-FDD: QPSK 802.11b/g/n: CCK, OFDM Bluetooth: GFSK/8DPSK/ π /4-DQPSK
GPRS Multi-slot class	8/10/12
FCC ID	A4JANDYA4

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 7 of 64 www.siemic.com.cn

3. MODIFICATION

NONE

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 8 of 64 www.siemic.com.cn

4. TEST SUMMARY

The product was tested in accordance with the following specifications. All testing has been performed according to below product classification:

PCE

Test Results Summary

Test Standard	Description	Product Class	Pass / Fail
§ 1.1307, § 2.1093	RF Exposure (SAR)	See Above	Pass
\$2.1046; \$ 22.913 (a); \$ 24.232 (c)	RF Output Power	See Above	Pass
§ 2.1047	Modulation Characteristics	See Above	N/A
§ 2.1049; § 22.905 § 22.917; § 24.238	99% & -26 dB Occupied Bandwidth	See Above	Pass
§ 2.1051, § 22.917 (a); § 24.238 (a)	Spurious Emissions at Antenna Terminal	See Above	Pass
§ 2.1053 § 22.917 (a); § 24.238 (a)	Field Strength of Spurious Radiation	See Above	Pass
§ 22.917 (a); § 24.238 (a)	Out of band emission, Band Edge	See Above	Pass
§ 2.1055 § 22.355; § 24.235	Frequency stability vs. temperature Frequency stability vs. voltage	See Above	Pass

Note: Testing was performed by configuring EUT to maximum output power status, the declared output power class for different.

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 9 of 64 www.siemic.com.cn

5. <u>MEASUREMENTS, EXAMINATION AND DERIVED</u> <u>RESULTS</u>

5.1 §1.1307, §2.1093- RF Exposure (SAR)

Test Result: Pass

The EUT is a portable device, thus requires SAR evaluation; please refer to SIEMIC SAR Report: 13070139-FCC-H

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 10 of 64 www.siemic.com.cn

5.2 §2.1046 ;§22.913 (a); §24.232 (c)- RF Output Power

Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

3. Environmental Conditions Temperature 23°C

Relative Humidity 50% Atmospheric Pressure 1019mbar

4. Test date: May 29, 2013 Tested By: Chris You

Procedures:

For Conducted Power:

- 1. The transmitter output port was connected to base station.
- 2. Set EUT at maximum power through base station.
- 3. Select lowest, middle, and highest channels for each band and different test mode.

For ERP/EIRP:

- 1. The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load which was also placed on the turntable.
- 2. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.
- 3. The frequency range up to tenth harmonic of the fundamental frequency was investigated.
- 4. Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in $dB = 10 \lg (TX \text{ pwr in Watts}/0.001)$ – the absolute level

Spurious attenuation limit in $dB = 43 + 10 \text{ Log}_{10}$ (power out in Watts)

Test Result: Pass

Remark: Conducted Burst Average power for reporting purposes only

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 11 of 64 www.siemic.com.cn

Conducted Power

GSM Mode:

Burst Average Power (dBm);								
Band		GSN	1 850			GSN	11900	
Channel	128	190	251	Tune up Power tolerant	512	661	810	Tune up Power tolerant
Frequency (MHz)	824.2	836.6	848.8	/	1850.2	1880	1909.8	/
GSM Voice (1 uplink),GMSK	32.78	32.85	32.87	32±1	28.22	28.68	28.82	29±1
GPRS Multi-Slot Class 8 (1 uplink),GMSK	32.78	32.86	32.87	32±1	28.23	28.67	28.76	29±1
GPRS Multi-Slot Class 10 (2 uplink),GMSK	31.54	31.62	31.67	31±1	27.65	28.24	28.48	28±1
GPRS Multi-Slot Class 12 (4 uplink),GMSK	28.70	28.80	28.94	29±1	24.99	25.56	25.93	25±1

Remark:

GPRS, CS1 coding scheme.

Multi-Slot Class 8 , Support Max 4 downlink, 1 uplink , 5 working link

Multi-Slot Class 10, Support Max 4 downlink, 2 uplink, 5 working link

Multi-Slot Class 12, Support Max 4 downlink, 4 uplink, 5 working link

Note: Since GSM mode has higher power, so the test items below were not performed to GPRS mode.

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 12 of 64 www.siemic.com.cn

UMTS Mode:

UMTS-FDD Band V

Band/ Time Slot configuration	Channel	Frequency	Average power (dBm)	Tune up Power tolerant
	4132	826.4	22.84	22+1/-1dBm
RMC	4175	835	22.80	22+1/-1dBm
12.2kbps	4232	846.4	22.72	22+1/-1dBm
HGDD.	4133	826.4	22.48	22+1/-1dBm
HSDPA	4175	835	22.43	22+1/-1dBm
Subtest1	4232	846.4	22.50	22+1/-1dBm
HCDDA	4133	826.4	22.30	22+1/-1dBm
HSDPA	4175	835	22.31	22+1/-1dBm
Subtest2	4232	846.4	22.32	22+1/-1dBm
HCDDA	4133	826.4	22.27	22+1/-1dBm
HSDPA Subtest3	4175	835	22.29	22+1/-1dBm
Sublests	4232	846.4	22.28	22+1/-1dBm
HCDDA	4133	826.4	22.40	22+1/-1dBm
HSDPA Subtest4	4175	835	22.45	22+1/-1dBm
Sublest4	4232	846.4	22.35	22+1/-1dBm
HSUPA	4133	826.4	22.32	22+1/-1dBm
Subtest 1	4175	835	22.29	22+1/-1dBm
Sublesti	4232	846.4	22.31	22+1/-1dBm
HCHDA	4133	826.4	22.29	22+1/-1dBm
HSUPA Subtest2	4175	835	22.44	22+1/-1dBm
Sublest2	4232	846.4	22.33	22+1/-1dBm
HCHDA	4133	826.4	22.34	22+1/-1dBm
HSUPA Subtest3	4175	835	22.43	22+1/-1dBm
Sublests	4232	846.4	22.36	22+1/-1dBm
HCHDA	4133	826.4	22.38	22+1/-1dBm
HSUPA Subtest4	4175	835	22.40	22+1/-1dBm
Sublest4	4232	846.4	22.37	22+1/-1dBm
HCHDA	4133	826.4	22.44	22+1/-1dBm
HSUPA Subtest5	4175	835	22.29	22+1/-1dBm
Sublests	4232	846.4	22.41	22+1/-1dBm

UMTS-FDD Band II

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 13 of 64 www.siemic.com.cn

OWIS-FDD Band II										
Band/ Time Slot	Channel	Frequency	Average power	Tune up						
configuration	Chamici	Trequency	(dBm)	Power tolerant						
RMC	9262	1852.4	21.80	21.5+1/-1dBm						
12.2kbps	9400	1880.0	21.16	21.5+1/-1dBm						
12.2KUps	9538	1907.6	20.97	21.5+1/-1dBm						
HSDPA	9262	1852.4	21.67	21.5+1/-1dBm						
Subtest 1	9400	1880.0	21.15	21.5+1/-1dBm						
Subtest1	9538	1907.6	20.95	21.5+1/-1dBm						
HSDPA	9262	1852.4	21.60	21.5+1/-1dBm						
Subtest2	9400	1880.0	21.10	21.5+1/-1dBm						
Sublest2	9538	1907.6	20.89	21.5+1/-1dBm						
HSDPA	9262	1852.4	21.58	21.5+1/-1dBm						
Subtest3	9400	1880.0	21.05	21.5+1/-1dBm						
Sublests	9538	1907.6	20.80	21.5+1/-1dBm						
HSDPA	9262	1852.4	21.55	21.5+1/-1dBm						
Subtest4	9400	1880.0	21.03	21.5+1/-1dBm						
Sublest4	9538	1907.6	20.71	21.5+1/-1dBm						
HSUPA	9262	1852.4	21.79	21.5+1/-1dBm						
Subtest 1	9400	1880.0	21.15	21.5+1/-1dBm						
Subtest1	9538	1907.6	20.96	21.5+1/-1dBm						
HSUPA	9262	1852.4	21.66	21.5+1/-1dBm						
Subtest2	9400	1880.0	21.14	21.5+1/-1dBm						
Sublest2	9538	1907.6	20.90	21.5+1/-1dBm						
HSUPA	9262	1852.4	21.61	21.5+1/-1dBm						
Subtest3	9400	1880.0	21.12	21.5+1/-1dBm						
Sublests	9538	1907.6	20.81	21.5+1/-1dBm						
HIGHDA	9262	1852.4	21.50	21.5+1/-1dBm						
HSUPA Subtest4	9400	1880.0	21.01	21.5+1/-1dBm						
54010814	9538	1907.6	20.77	21.5+1/-1dBm						
HCHDA	9262	1852.4	21.50	21.5+1/-1dBm						
HSUPA Subtest5	9400	1880.0	21.01	21.5+1/-1dBm						
Sublesis	9538	1907.6	20.66	21.5+1/-1dBm						

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 14 of 64 www.siemic.com.cn

ERP & EIRP (worst case) ERP for Cellular Band (Part 22H)

Frequency (MHz)	Substituted level (dBm)	Antenna Polarization	Antenna Gain correction (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)
824.20	25.78	V	6.2	1.07	30.91	38.45
824.20	25.87	Н	6.2	1.07	31.00	38.45
836.60	26.01	V	6.2	1.07	31.14	38.45
836.60	26.12	Н	6.2	1.07	31.25	38.45
848.80	26.09	V	6.3	1.07	31.22	38.45
848.80	26.18	Н	6.3	1.07	31.41	38.45

EIRP for PCS Band (Part 24E)

Frequency (MHz)	Substituted level (dBm)	Antenna Polarization	Antenna Gain correction (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)
1850.20	22.12	V	8.6	2.46	28.26	33
1850.20	22.39	Н	8.6	2.46	28.53	33
1880.00	22.26	V	8.6	2.54	28.4	33
1880.00	22.51	Н	8.6	2.54	28.65	33
1909.80	22.22	V	8.6	2.67	28.36	33
1909.80	22.56	Н	8.6	2.67	28.49	33

ERP for UMTS-FDD Band V (Part 22H)

Frequency (MHz)	Substituted level (dBm)	Antenna Polarization	Antenna Gain correction (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)
826.40	19.62	V	6.2	1.07	24.75	38.45
826.40	19.05	Н	6.2	1.07	24.18	38.45
835.00	19.11	V	6.2	1.07	24.24	38.45
835.00	19.05	Н	6.2	1.07	24.18	38.45
846.60	19.36	V	6.3	1.07	24.55	38.45
846.60	18.89	Н	6.3	1.07	24.12	38.45

EIRP for UMTS-FDD Band II (Part 24E)

Frequency (MHz)	Substituted level (dBm)	Antenna Polarization	Antenna Gain correction (dBi)	Cable Loss (dB)	Absolute Level (dBm)	Limit (dBm)
1852.40	17.65	V	8.6	2.46	23.79	33
1852.40	17.32	Н	8.6	2.46	23.46	33
1880.00	17.39	V	8.6	2.54	23.53	33
1880.00	17.25	Н	8.6	2.54	23.39	33
1907.60	17.25	V	8.6	2.67	23.39	33
1907.60	17.14	Н	8.6	2.67	23.28	33

Note: Factors= Antenna Gain Correction-Cable Loss

5.3 §2.1047 - Modulation Characteristic

According to FCC § 2.1047(d), Part 22H & 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 16 of 64 www.siemic.com.cn

5.4 §2.1049, §22.917, §22.905 & §24.238 - Occupied Bandwidth

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyser was connected to the antenna terminal.

2. Environmental Conditions Temperature 23°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

3. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor

of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

4. Test date: May 29, 2013 Tested By: Chris You

Procedures:

1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.

2. The 99% and 26 dB occupied bandwidth (BW) of the middle channel for the highest RF powers.

Test Results: Pass

Cellular Band (Part 22H)

Channel	Frequency (MHz)	99% Occupied Bandwidth (kHz)	26 dB Bandwidth (kHz)
128	824.2	245.3631	317.998
190	836.6	246.7660	317.602
251	848.8	249.8380	325.014

PCS Band (Part 24E)

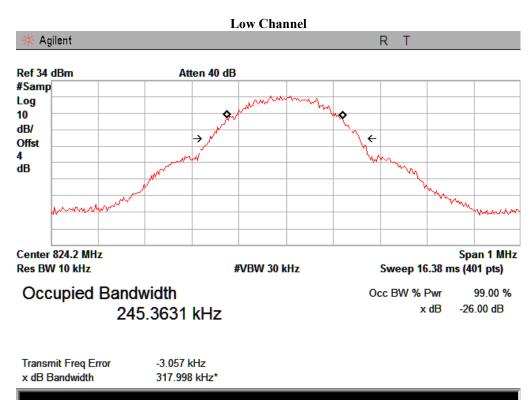
Channel	Frequency (MHz)	99% Occupied Bandwidth (kHz)	26 dB Bandwidth (kHz)
512	1850.2	245.4947	317.329
661	1880.0	246.3420	320.460
810	1909.8	251.0908	318.727

UMTS-FDD Band V (Part 22H)

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 17 of 64

www.siemic.com.cn

Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	26 dB Bandwidth (MHz)
4132	826.4	4.1579	4.656
4175	835.0	4.1760	4.662
4233	846.6	4.1674	4.686

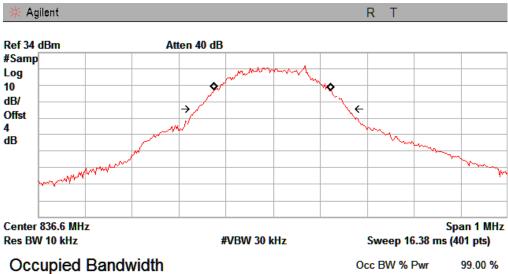

UMTS-FDD Band II (Part 24E)

Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	26 dB Bandwidth (MHz)
9262	1852.4	4.1761	4.699
9400	1880.0	4.1814	4.645
9538	1907.6	4.2073	4.845

Please refer to the following plots.

Cellular Band (Part 22H)

99% &26 dB Occupied Bandwidth

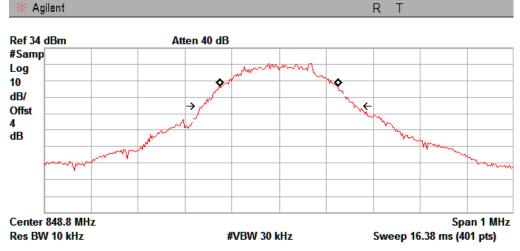


SIEMIC, INC. Title: RF Test Report for GSM Mobile Phone Main Model: A4 Serial Model: AC4 To: FCC Part 22(H) & FCC Part 24(E): 2012

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 18 of 64

www.siemic.com.cn

Middle Channel



246.7660 kHz

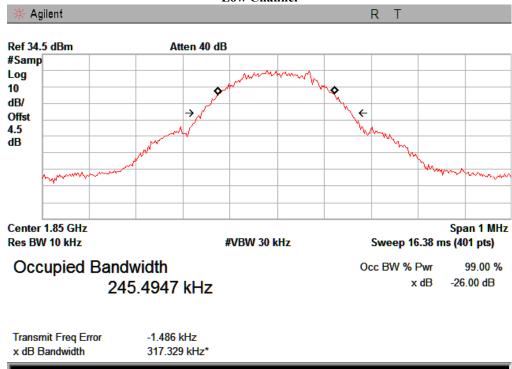
x dB -26.00 dB

Transmit Freq Error -674.888 Hz x dB Bandwidth 317.602 kHz*

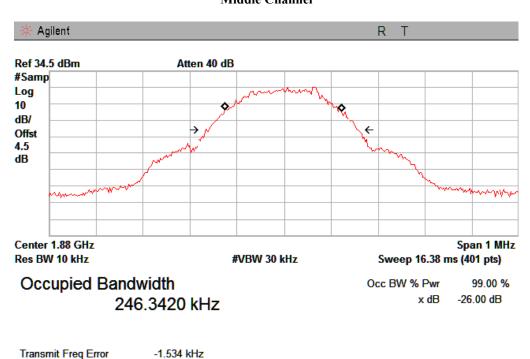
High Channel

Occupied Bandwidth 249.8380 kHz Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -486.026 Hz x dB Bandwidth 325.014 kHz*

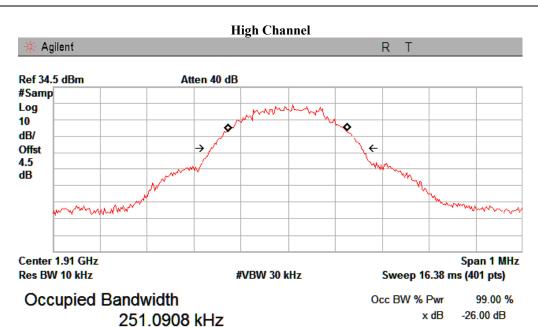


Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 19 of 64 www.siemic.com.cn

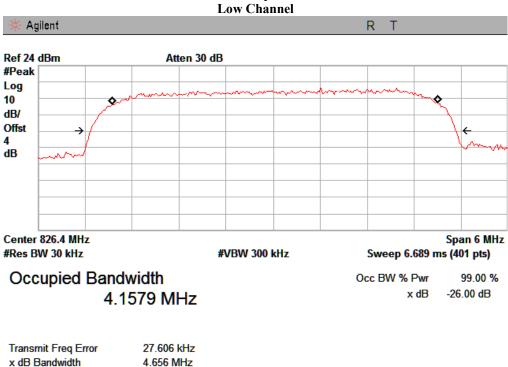

PCS Band (Part 24E)

x dB Bandwidth

99% & 26dB Occupied Bandwidth Low Channel

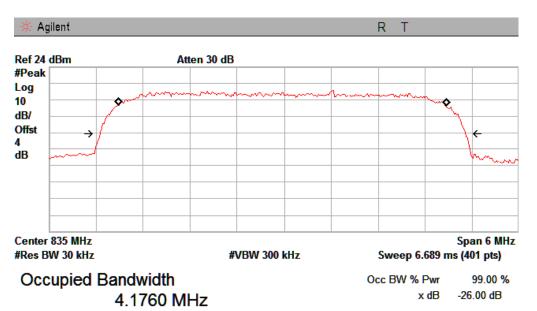

Middle Channel

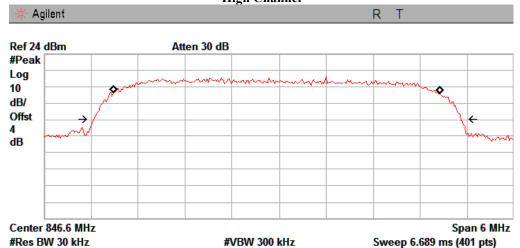
320.460 kHz*


Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 20 of 64 www.siemic.com.cn

Transmit Freq Error -1.793 kHz x dB Bandwidth 318.727 kHz*

UMTS-FDD Band V (Part 22H)


99% & 26dB Occupied Bandwidth


Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 21 of 64 www.siemic.com.cn

Middle Channel

Transmit Freq Error -23.169 kHz x dB Bandwidth 4.662 MHz

High Channel

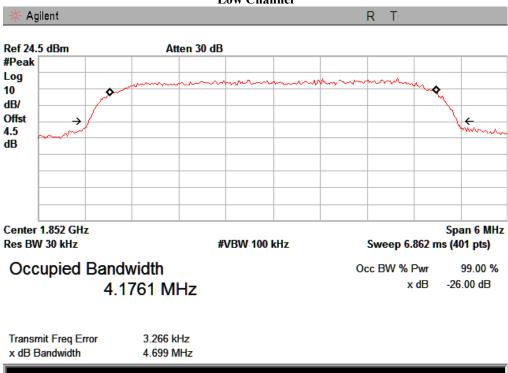
#VBW 300 kHz

Occupied Bandwidth 4.1674 MHz

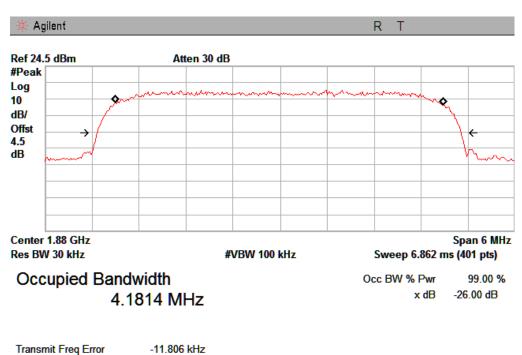
Occ BW % Pwr 99.00 % -26.00 dB x dB

Sweep 6.689 ms (401 pts)

Transmit Freq Error -28.173 kHz x dB Bandwidth 4.686 MHz

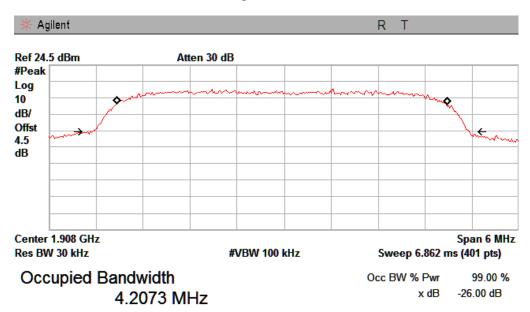

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 22 of 64 www.siemic.com.cn

UMTS-FDD Band II (Part 24E)


x dB Bandwidth

4.645 MHz

99% & 26dB Occupied Bandwidth Low Channel


Middle Channel

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 23 of 64 www.siemic.com.cn

High Channel

Transmit Freq Error -25.565 kHz x dB Bandwidth 4.845 MHz

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 24 of 64 www.siemic.com.cn

23°C

<u>5.5 §2.1051, §22.917(a) & §24.238(a) - Spurious Emissions at Antenna Terminals</u>

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

3. Environmental Conditions Temperature

Relative Humidity 50%

Atmospheric Pressure 1019mbar

4. Test date: May 29, 2013 Tested By: Chris You

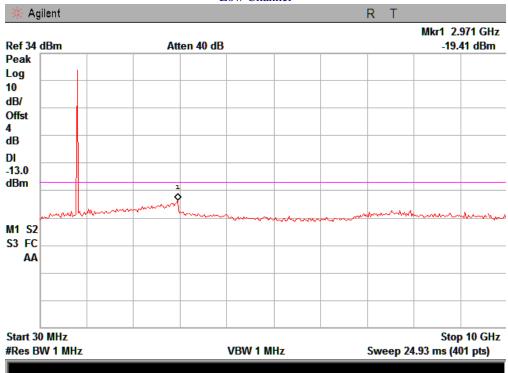
Standard Requirement:

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$.

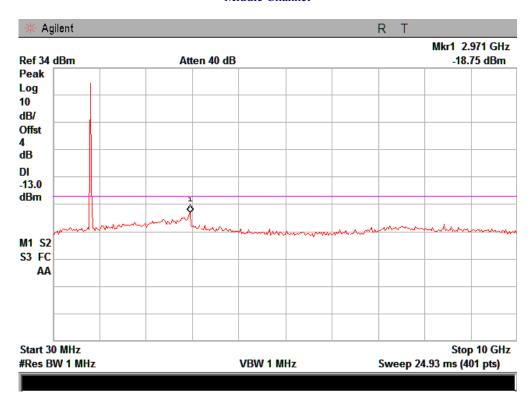
Procedures:

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. The Band Edges of low and high channels for the highest RF powers were measured. Setting RBW as roughly BW/100.

Test Result: Pass

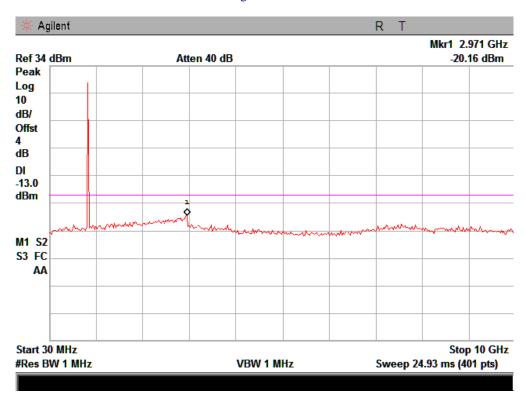

Refer to the attached plots.

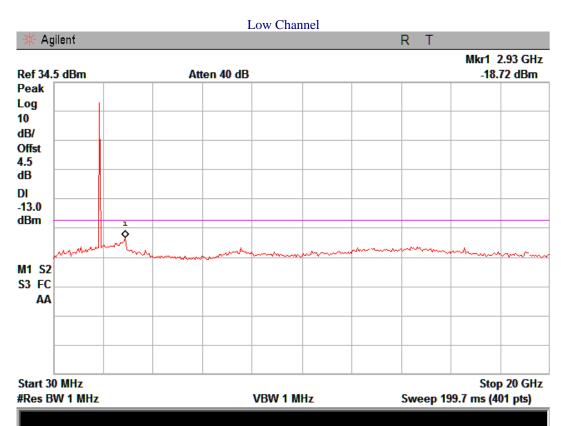
Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 25 of 64 www.siemic.com.cn


Cellular Band (Part 22H)

30MHz-10G-GSM850

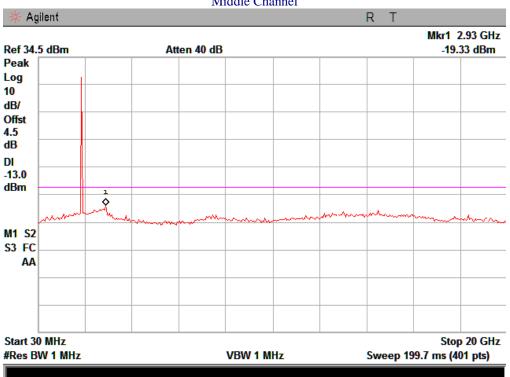
Low Channel

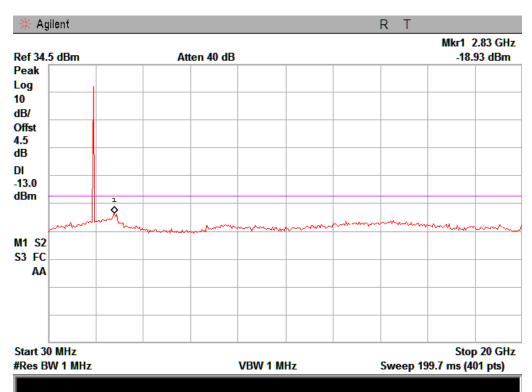

Middle Channel


Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 26 of 64 www.siemic.com.cn

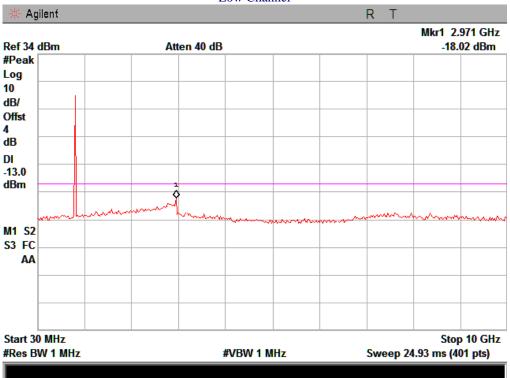
High Channel

PCS Band (Part24E)

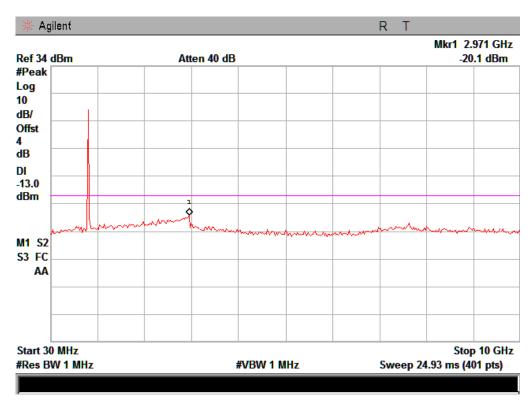

30MHz-20G - PCS1900



Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 27 of 64 www.siemic.com.cn

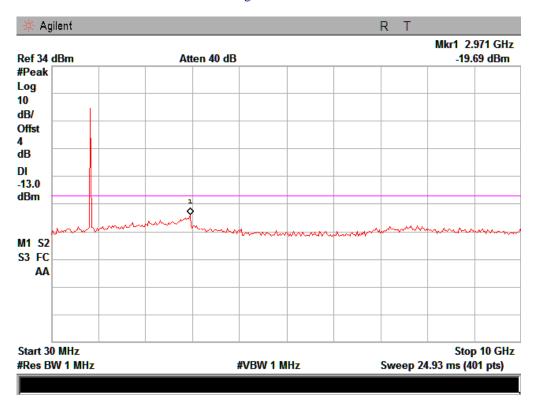


Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 28 of 64 www.siemic.com.cn


UMTS-FDD Band V (Part 22H)

30MHz-10G - WCDMA 850

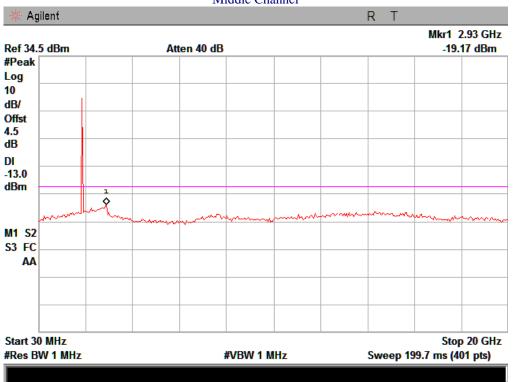
Low Channel

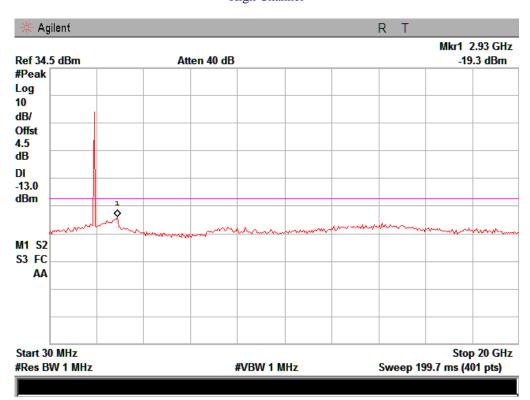

Middle Channel

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 29 of 64 www.siemic.com.cn

High Channel

UMTS-FDD Band II (Part24E)


30MHz-25G - WCDMA1900



Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 30 of 64 www.siemic.com.cn

Page:

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013

31 of 64 www.siemic.com.cn

1. All possible modes of operation were investigated. Only the 6 worst case emissions measured, using the correct CISPR detectors, are reported. All other emissions were relatively insignificant.

5.6 §2.1053, §22.917 & §24.238 - Spurious Radiated Emissions

- 2. A "-ve" margin indicates a PASS as it refers to the margin present below the limit line at the particular frequency.
- 3. Radiated Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 1 GHz - 40 GH is $\pm 6.0 \text{dB}$ (for EUTs $< 0.5 \text{m} \times 0.5 \text{m} \times 0.5 \text{m}$).

4. Environmental Conditions Temperature 23°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

5. Test date: May 29, 2013 Tested By: Chris You

Standard Requirement:

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$. The spectrum is scanned from 30 MHz up to a frequency including its 10^{th} harmonic.

Procedures:

Equipment was setup in a semi-anechoic chamber. For measurements above 1 GHz an average measurement was taken with a 10Hz video bandwidth. The EUT was tested at low, mid and high with the highest output power. An emission was scan up to 10^{th} harmonic of the operating frequency.

Sample Calculation:

 $EUT \ Field \ Strength = Raw \ Amplitude \ (dB\mu V/m) - Amplifier \ Gain \ (dB) + Antenna \ Factor \ (dB) + Cable \ Loss \ (dB) + Filter \ Attenuation \ (dB, if used)$

Test Result: Pass

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 32 of 64 www.siemic.com.cn

Cellular Band (Part 22H)

Low channel

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (cm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
1648.4	-29.39	153	120	V	6.6	2.2	0	-24.99	-13	-11.99
1648.4	-31.45	155	150	Н	6.6	2.2	0	-27.05	-13	-14.05
288.5	-38.25	322	110	V	5.3	1.17	0	-34.12	-13	-21.12
482.05	-40.63	99	199	Н	5.9	1.34	0	-36.07	-13	-23.07

Middle channel

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (cm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
1673.2	-28.08	155	118	V	6.3	2.2	0	-23.98	-13	-10.98
1673.2	-29.48	156	200	Н	6.3	2.2	0	-25.38	-13	-12.38
216.35	-36.91	312	100	V	5.7	1	0	-42.21	-13	-29.21
288.5	-37.92	100	210	Н	5.3	1.17	0	-43.79	-13	-30.79

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (cm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
1697.6	-30.21	153	101	V	6.3	2.3	0	-26.21	-13	-13.21
1697.6	-31.44	155	201	Н	6.3	2.3	0	-27.44	-13	-14.44
33.25	-45.33	302	110	V	-17.1	0.5	0	-62.93	-13	-49.93
216.36	-44.36	101	109	Н	5.7	1	0	-39.66	-13	-26.66

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 33 of 64 www.siemic.com.cn

PCS Band (Part 24E)

Low channel

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (cm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
3700.4	-26.02	151	120	V	5.6	3.1	0	-23.52	-13	-10.52
3700.4	-27.55	159	210	Н	5.6	3.1	0	-25.05	-13	-12.05
85.32	-49.35	322	102	V	0.4	0.67	0	-49.62	-13	-36.62
98.33	-51.25	359	211	Н	-0.1	0.67	0	-52.02	-13	-39.02

Middle channel

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (cm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
3760	-24.15	149	108	V	5.4	3.2	0	-21.95	-13	-8.95
3760	-26.72	150	129	Н	5.4	3.2	0	-24.52	-13	-11.52
38.65	-47.14	222	110	V	-12.2	0.5	0	-59.84	-13	-46.84
99.24	-53.21	299	200	Н	-0.1	0.67	0	-53.98	-13	-40.98

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (cm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
3819.6	-28.01	151	110	V	5.4	3.3	0	-25.91	-13	-12.91
3819.6	-31.05	156	210	Н	5.4	3.3	0	-28.95	-13	-15.95
42.00	-46.31	199	132	V	-12.2	0.5	0	-59.08	-13	-46.01
98.36	-49.20	144	218	Н	-0.1	0.67	0	-49.99	-13	-36.97

UMTS-FDD Band V (Part 22H)

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 34 of 64 www.siemic.com.cn

Low channel

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (cm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
1652.8	-25.60	150	110	V	6.6	2.2	0	-21.20	-13	-8.20
1652.8	-30.21	155	200	Н	6.6	2.2	0	-30.81	-13	-12.81
226.35	-41.31	149	111	V	5.7	1	0	-39.61	-13	-26.61
588.04	-47.92	233	201	Н	5.9	1.34	0	-43.33	-13	-30.33

Middle channel

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (cm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
1670	-25.23	146	121	V	6.3	2.2	0	-21.03	-13	-8.03
1670	-27.15	188	199	Н	6.3	2.2	0	-23.05	-13	-10.05
133.14	-43.32	285	118	V	-17.2	0.5	0	-61.02	-13	-48.02
206.19	-49.32	213	202	Н	5.7	1	0	-44.62	-13	-31.62

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (cm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
1693.2	-26.15	91	110	V	6.3	2.3	0	-22.15	-13	-9.15
1693.2	-27.39	329	220	Н	6.3	2.3	0	-23.39	-13	-10.39
88.65	-47.11	149	108	V	1.4	0.67	0	-46.38	-13	-33.38
388.32	-49.31	231	180	Н	5.9	1.34	0	-44.76	-13	-31.75

UMTS-FDD Band II (Part 24E)

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 35 of 64 www.siemic.com.cn

Low channel

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (cm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
3704.8	-25.22	156	130	V	5.6	3.1	0	-22.72	-13	-9.72
3704.8	-23.48	119	200	Н	5.6	3.1	0	-20.98	-13	-7.98
83.65	-51.25	199	100	V	0.4	0.67	0	-51.52	-13	-38.52
99.81	-55.13	266	201	Н	-0.1	0.67	0	-55.90	-13	-42.90

Middle channel

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (cm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
3760	-24.60	122	121	V	5.4	3.2	0	-22.40	-13	-9.40
3760	-25.25	155	211	Н	5.4	3.2	0	-25.05	-13	-10.05
35.65	-48.53	145	105	V	-12.2	0.5	0	-60.83	-13	-47.83
98.14	-50.32	211	180	Н	-0.1	0.67	0	-51.09	-13	-38.09

Frequency (MHz)	Substituted level (dBm)	Direction (degree)	Height (cm)	Polarity (H/V)	Antenna Gain Correction (dB)	Cable Loss (dB)	Amplifier (dB)	Corrected Reading (dBm)	Limit (dBm)	Margin (dB)
3815.2	-25.39	360	100	V	5.4	3.3	0	-23.29	-13	-10.29
3815.2	-26.14	144	200	Н	5.4	3.3	0	-24.04	-13	-11.04
39.65	-49.65	211	110	V	-12.2	0.5	0	-62.35	-13	-49.35
98.36	-52.38	0	200	Н	-0.1	0.67	0	-53.15	-13	-40.15

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 36 of 64 www.siemic.com.cn

5.7 §22.917(a) & §24.238(a) - Band Edge

1. Conducted Measurement

EUT was set for low, mid, high channel with modulated mode and highest RF output power.

The spectrum analyzer was connected to the antenna terminal.

2. Conducted Emissions Measurement Uncertainty

All test measurements carried out are traceable to national standards. The uncertainty of the measurement at a confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2, in the range 30MHz - 40GHz is $\pm 1.5dB$.

3. Environmental Conditions

Temperature 23°C
Relative Humidity 50%
Atmospheric Pressure 1019mbar

4. Test date: May 29, 2013 Tested By: Chris You

Standard Requirement:

The power of any emission outside of the authorized operating frequency ranges must be lower than the transmitter power (P) by a factor of at least $43 + 10 \log (P) dB$.

Procedures:

- 1. The EUT was connected to Spectrum Analyzer and Base Station via power divider.
- 2. The Band Edges of low and high channels for the highest RF powers were measured. Setting RBW as roughly BW/100.

Test Result: Pass

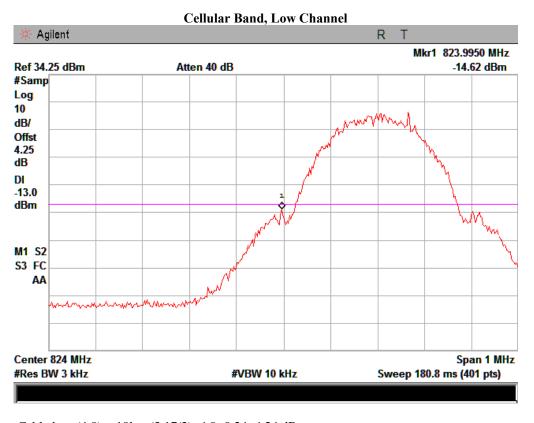
Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 37 of 64 www.siemic.com.cn

Refer to the attached plots.

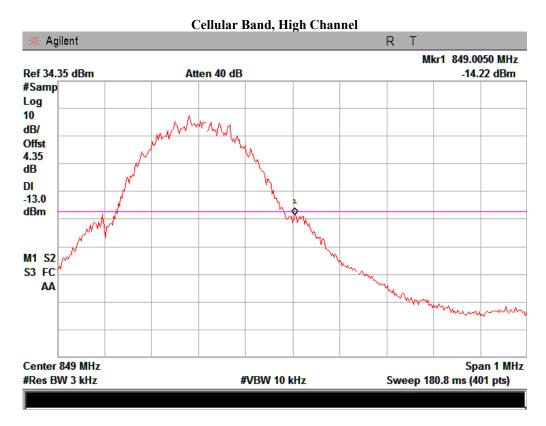
Cellular Band (Part 22H)

Frequency (MHz)	Emission (dBm)	Limit (dBm)
823.9825	-14.62	-13
849.0200	-14.22	-13

PCS Band (Part 24E)

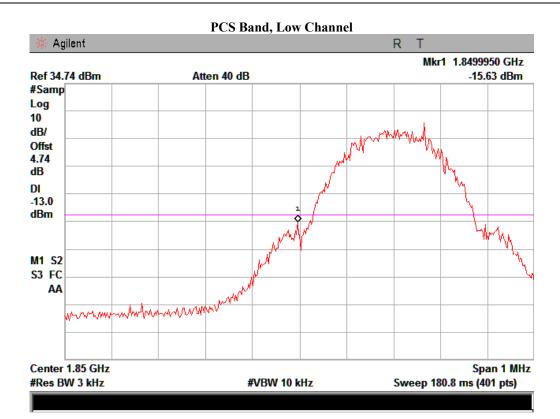

Frequency (MHz)	Emission (dBm)	Limit (dBm)
1849.9950	-15.63	-13
1910.0025	-17.39	-13

UMTS-FDD Band V (Part 22H)

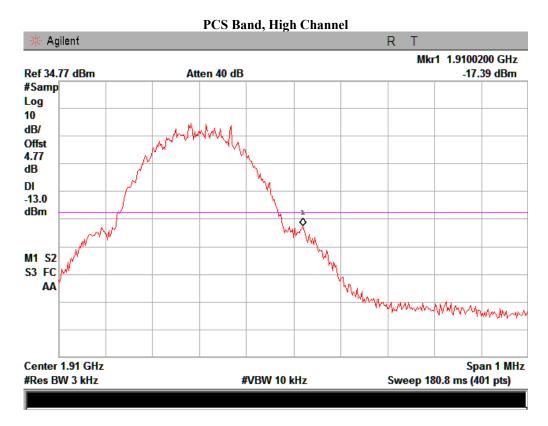

Frequency (MHz)	Emission (dBm)	Limit (dBm)
824.000	-20.97	-13
849.100	-19.48	-13

UMTS-FDD Band II (Part 24E)

Frequency (MHz)	Emission (dBm)	Limit (dBm)
1850.000	-14.74	-13
1910.000	-15.48	-13

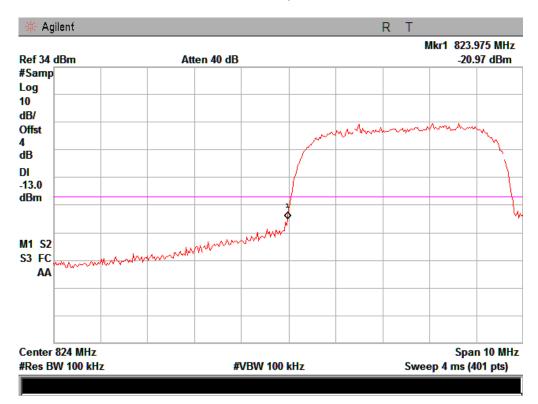


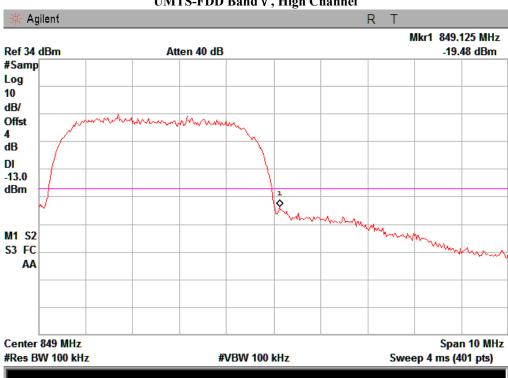
Note: Offset=Cable loss $(4.0) + 10\log (3.17/3)=4.0+0.24=4.24 dB$



Note: Offset=Cable loss $(4.0) + 10\log (3.25/3)=4.0+0.35=4.35 dB$

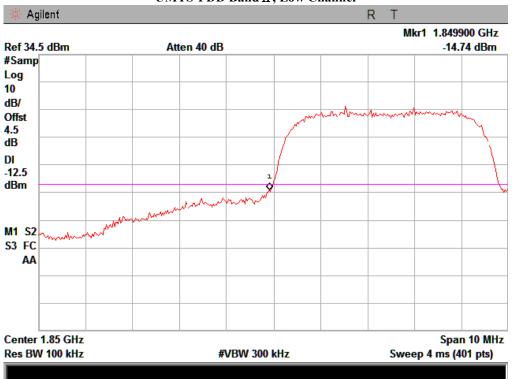
Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 39 of 64 www.siemic.com.cn

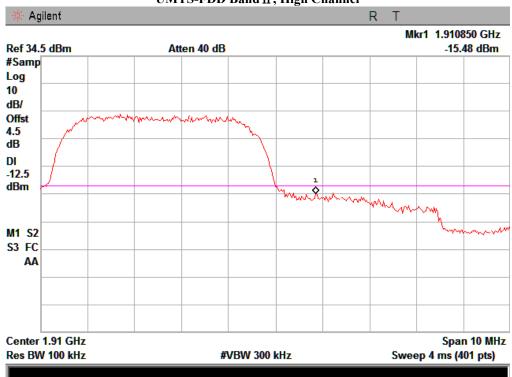

Note: Offset=Cable loss $(4.5) + 10\log (3.17/3)=4.5+0.24=4.74 dB$


Note: Offset=Cable loss $(4.5) + 10\log (3.19/3)=4.5+0.27=4.77 \text{ dB}$

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 40 of 64 www.siemic.com.cn

UMTS-FDD Band V, Low Channel


UMTS-FDD Band V, High Channel



Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 41 of 64 www.siemic.com.cn

UMTS-FDD Band II, Low Channel

UMTS-FDD Band II, High Channel

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 42 of 64 www.siemic.com.cn

5.8 §2.1055, §22.355 & §24.235 - Frequency Stability

1. Environmental Conditions Temperature 23°C Relative Humidity 50%

Atmospheric Pressure 1019mbar

2. Test date: May 29, 2013 Tested By: Chris You

Standard Requirement:

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table below:

Frequency Tolerance for Transmitters in the Public Mobile Services

Frequency Range (MHz)	Base, fixed (ppm)	Mobile ≤3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929.	5.0	N/A	N/A
929 to 960.	1.5	N/A	N/A
2110 to 2220	10.0	N/A	N/A

According to §24.235, the frequency stability shall be sufficient to ensure that the fundamental emissions stay within the authorized frequency block.

Procedures:

A communication link was established between EUT and base station. The frequency error was monitored and measured by base station under variation of ambient temperature and variation of primary supply voltage.

Limit: The frequency stability of the transmitter shall be maintained within $\pm 0.00025\%$ (± 2.5 ppm) of the center frequency.

Test Results: Pass

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 43 of 64 www.siemic.com.cn

Frequency Stability versus Temperature: The Frequency tolerance of the carrier signal shall be maintained within 2.5ppm of the operating frequency over a temperature variation of -10°C to +55°C at normal supply voltage.

Cellular Band (Part 22H)

	Middle Channel, f _o = 836.6 MHz					
Temperature (°C)	Power Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)		
-10		16	0.0191	2.5		
0		18	0.0215	2.5		
10		22	0.0262	2.5		
20	3.7	20	0.0239	2.5		
30		21	0.0251	2.5		
40		26	0.0310	2.5		
50		33	0.0394	2.5		
55		37	0.0442	2.5		
25	4.2	21	0.0251	2.5		
25	3.5	26	0.0310	2.5		

PCS Band (Part 24E)

	Middle Channel, f _o = 1880 MHz					
Temperature (°C)	Power Supplied (V_{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)		
-10		19	0.0101	2.5		
0		25	0.0133	2.5		
10	3.7	32	0.0170	2.5		
20		27	0.0143	2.5		
30		30	0.0159	2.5		
40		32	0.0170	2.5		
50		19	0.0101	2.5		
55		18	0.0096	2.5		
25	4.2	22	0.0117	2.5		
23	3.5	23	0.0122	2.5		

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 44 of 64 www.siemic.com.cn

$UMTS\text{-}FDD \; Band \; V \; \text{(Part 22H)}$

	Middle Channel, f _o = 835 MHz					
Temperature (°C)	Power Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)		
-10		13	0.0156	2.5		
0		12	0.0144	2.5		
10	3.7	15	0.0079	2.5		
20		16	0.0192	2.5		
30		11	0.0058	2.5		
40		22	0.0263	2.5		
50		16	0.0191	2.5		
55		18	0.0216	2.5		
25	4.2	19	0.0228	2.5		
25	3.5	16	0.0192	2.5		

UMTS-FDD Band II (Part 24E)

	Middle Channel, f ₀ = 1880 MHz					
Temperature (°C)	Power Supplied (V _{DC})	Frequency Error (Hz)	Frequency Error (ppm)	Limit (ppm)		
-10		6	0.0032	2.5		
0		-2	-0.0011	2.5		
10	3.7	8	0.0043	2.5		
20		-5	-0.0027	2.5		
30		10	0.0053	2.5		
40		9	0.0048	2.5		
50		6	0.0032	2.5		
55		11	0.0059	2.5		
25	4.2	8	0.0043	2.5		
23	3.5	-3	-0.0016	2.5		

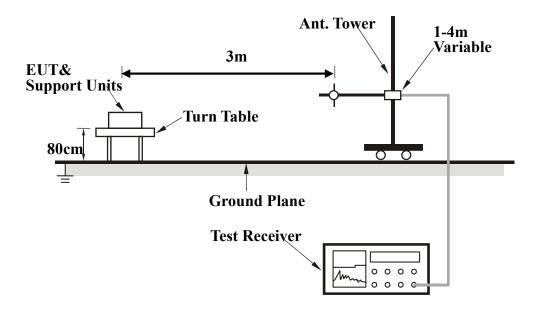
Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 45 of 64 www.siemic.com.cn

Annex A. TEST INSTRUMENT & METHOD

Annex A.i. TEST INSTRUMENTATION & GENERAL PROCEDURES

Instrument	Model	Serial #	Calibratio n Date	Calibration Due Date
RF conducted test				
Agilent ESA-E SERIES SPECTRUM ANALYZER	E4407B	CFG038	10/25/2012	10/24/2013
Power Splitter	1#	1#	02/02/2013	02/01/2014
Universal Radio Communication Tester	CMU200	121393	02/21/2013	02/20/2014
Temperature/Humidity Chamber	1007H	N/A	01/07/2013	01/06/2014
DC Power Supply	E3640A	MY40004013	03/22/2013	03/21/2014
Radiated Emissions				
EMI test receiver	ESL6	100262	11/19/2012	11/19/2013
Positioning Controller	UC3000	MF780208282	11/19/2012	11/19/2013
OPT 010 AMPLIFIER(0.1- 1300MHz)	8447E	2727A02430	11/19/2012	11/19/2013
Microwave Preamplifier($0.5 \sim$ 18GHz)	PAM-118	443008	11/08/2012	11/07/2013
Bilog Antenna (30MHz~6GHz)	JB6	A110712	01/27/2013	01/26/2014
Bilog Antenna (30MHz~2GHz)	JB1	A112107	02/09/2013	02/09/2014
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	071259	11/20/2012	11/19/2013
Double Ridge Horn Antenna (1 ~18GHz)	AH-118	071283	11/20/2012	11/19/2013
SYNTHESIZED SIGNAL GENERATOR	8665B	3744A01293	04/22/2013	04/22/2014
Tunable Notch Filter	3NF- 800/1000-S	AA4	12/14/2012	12/13/2013
Tunable Notch Filter	3NF- 1000/2000-S	AM 4	03/01/2013	02/28/2014
Universal Radio Communication Tester	CMU200	121393	02/21/2013	02/20/2014

Annex A. ii. RADIATED EMISSIONS TEST DESCRIPTION


EUT Characterisation

EUT characterisation, over the frequency range from 30MHz to 1GHz (for FCC tests, until the 10^{th} harmonic for operating frequencies ≥ 108 MHz),, was done in order to minimise radiated emissions testing time while still maintaining high confidence in the test results.

The EUT was placed in the chamber, at a height of about 0.8m on a turntable. Its radiated emissions frequency profile was observed, using a spectrum analyzer /receiver with the appropriate broadband antenna placed 3m or 10m away from the EUT. Radiated emissions from the EUT were maximised by rotating the turntable manually, changing the antenna polarisation and manipulating the EUT cables while observing the frequency profile on the spectrum analyzer / receiver. Frequency points at which maximum emissions occurred, clock frequencies and operating frequencies were then noted for the formal radiated emissions test at the Open Area Test Site (OATS) or EMC 3m chamber.

Test Set-up

- 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m X 1.0m X 0.8m high, non-metallic table.
- 2. The filtered power supply for the EUT and supporting equipment were tapped from the appropriate power sockets located on the turntable.
- 3. The relevant broadband antenna was set at the required test distance away from the EUT and supporting equipment boundary.

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 47 of 64 www.siemic.com.cn

Test Method

The following procedure was performed to determine the maximum emission axis of EUT:

- 1. With the receiving antenna is H polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 2. With the receiving antenna is V polarization, rotate the EUT in turns with three orthogonal axes to determine the axis of maximum emission.
- 3. Compare the results derived from above two steps. So, the axis of maximum emission from EUT was determined and the configuration was used to perform the final measurement.

Final Radiated Emission Measurement

- 1. Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function.
- 2. For emission frequencies measured below 1 GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site or EMC 10m chamber. As the same purpose, for emission frequencies measured above 1 GHz, a pre-scan also be performed with a 1 meter measuring distance before final test.
- 3. For emission frequencies measured below and above 1 GHz, set the spectrum analyzer on a 100 kHz and 1 MHz resolution bandwidth respectively for each frequency measured in step 2.
- 4. The search antenna is to be raised and lowered over a range from 1 to 4 meters in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, then change the orientation of EUT on test table over a range from $0 \circ to 360 \circ with a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer. Vary the antenna position again and record the highest value as a final reading.$
- 5. Repeat step 4 until all frequencies need to be measured were complete.
- 6. Repeat step 5 with search antenna in vertical polarized orientations.

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band	Function	Resolution bandwidth	Video Bandwidth
(MHz)			
30 to 1000	Peak	100 kHz	100 kHz
A hove 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Description of Radiated Emission Program

This EMC Measurement software run LabView automation software and offers a common user interface for electromagnetic interference (EMI) measurements. This software is a modern and powerful tool for controlling and monitoring EMI test receivers and EMC test systems. It guarantees reliable collection, evaluation, and documentation of measurement results. Basically, this program will run a pre-scan measurement before it proceeds with the final measurement. The pre-scan routine will run the scan on four different antenna heights, 2 antenna polarity, and 360 degrees table rotation. For example, the program was set to run 30 MHz to 1 GHz scan; the program will first start from a meter antenna height and divide the 30 MHz to 1 GHz into 10 separate parts of maximum hold sweeps. Each parts of maximum hold sweep, the program will collect the data from 0 degree to 360 degrees table rotation. After the program complete the 1m scan, the antenna continues to rise to 2m and continue the scan. The step will repeated for all specified antenna height and polarity. This program will perform the Quasi Peak measurement after the signal maximization process and pre-scan routine. The final measurement will be base on the pre-scan data reduction result.

Sample Calculation Example

The field strength is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain (if any) from the measured reading. For the limit is employed average value, therefore the peak value can be transferred to average value by subtracting the duty factor. The basic equation with a sample calculation is as follows:

Peak = Reading + Corrected Factor

where

Corr. Factor = Antenna Factor + Cable Factor - Amplifier Gain (if any) And the average value is

> Average = Peak Value + Duty Factor or Set RBW = 1MHz, VBW = 10Hz.

Note

If the measured frequencies are fall in the restricted frequency band, the limit employed must be quasi peak value when frequencies are below or equal to 1 GHz. And the measuring instrument is set to quasi peak detector function.

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 48 of 64 www.siemic.com.cn

Annex B. EUT AND TEST SETUP PHOTOGRAPHS

Annex B.i. Photograph 1: EUT External Photo

Whole Package - Top View

Adapter-Front View

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 49 of 64 www.siemic.com.cn

EUT - Front View

EUT - Rear View

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 50 of 64 www.siemic.com.cn

EUT - Top View

EUT - Bottom View

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 51 of 64 www.siemic.com.cn

EUT - Left View

EUT - Right View

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 52 of 64 www.siemic.com.cn

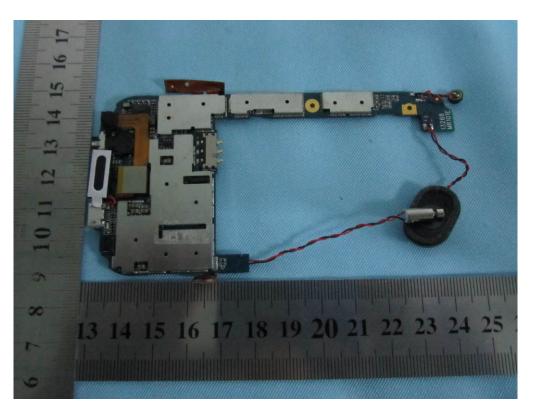
Annex B.ii. Photograph 2: EUT Internal Photo

Cover Off - Top View (A4)

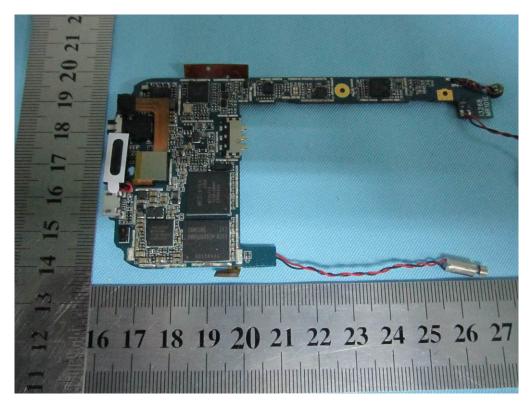
Cover Off - Top View (AC4)

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 53 of 64 www.siemic.com.cn

Cover Off View 1

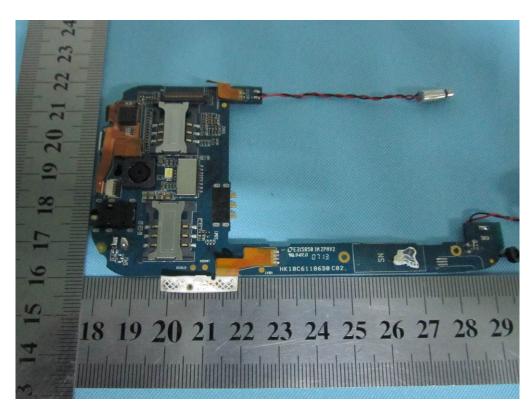

Cover Off View 2

SIEMIC, INC.


Title: RF Test Report for GSM Mobile Phone Main Model: A4 Serial Model: AC4 To: FCC Part 22(H) & FCC Part 24(E): 2012

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 54 of 64

www.siemic.com.cn

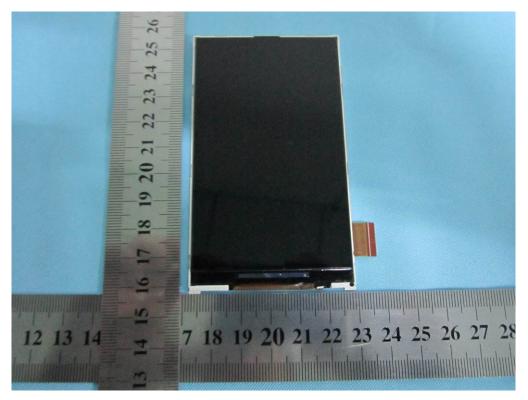


PCB - Front View

Uncover Without Shielding - Top View PCB 1

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 55 of 64 www.siemic.com.cn

PCB - Rear View



Battery - Top View

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 56 of 64 www.siemic.com.cn

Battery - Bottom View

LCD - Top View

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 57 of 64 www.siemic.com.cn

LCD - Bottom View

Anrenna View 1

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 58 of 64 www.siemic.com.cn

Anrenna View 2

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 59 of 64 www.siemic.com.cn

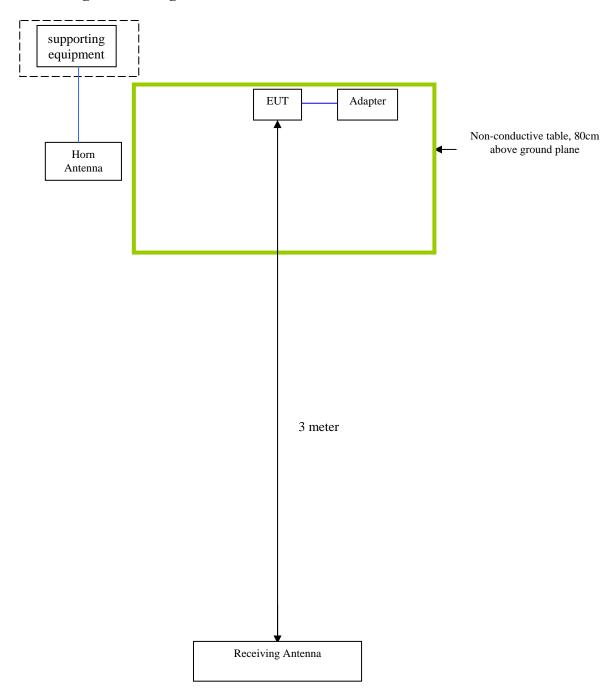
Annex B.iii. Photograph 3: Test Setup Photo

Radiated Spurious Emissions Test Setup Below 1GHz - Front View

Radiated Spurious Emissions Test Setup Above 1GHz -Front View

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 60 of 64 www.siemic.com.cn

Annex C. TEST SETUP AND SUPPORTING EQUIPMENT


EUT TEST CONDITIONS

Annex C. i. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Manufacturer	Equipment Description (Including Brand Name)	Model	Calibration Date	Calibration Due Date
A-INFOMW	Horn Antenna	JXTXLB-10180	06/25/2012	06/24/2013
Rohde & Schwarz	Universal Radio Communication Tester	CMU200	10/27/2012	10/26/2013

Block Configuration Diagram for Radiated Emissions

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 62 of 64 www.siemic.com.cn

Annex C.ii. EUT OPERATING CONDITIONS

The following is the description of how the EUT is exercised during testing.

<u> </u>		
Test	Description Of Operation	
Emissions Testing	The EUT was communicating with base station and set to work at maximum output power.	
Others Testing	The EUT was communicating with base station and set to work at maximum output power.	

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 63 of 64 www.siemic.com.cn

Annex D. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PART LIST

Please see attachment

Report No: 13070139-FCC-R1 Issue Date: May 31, 2013 Page: 64 of 64

www.siemic.com.cn

DECLARATION OF SIMILARITY Annex E.

To: 775 Montague Expressway Mloitas, CA 95035, USA

Declaration Letter

For our business issue and marketing requirement, we would like to list 2 model numbers on The FCC reports, as following:

Model No.: A4,AC4

We declare that A4,AC4 the difference of these is listed as below:

Main Model No	Serial Model No	Difference
,,4	AC4	PCB. Antenna and Appearance
		shape are the same .
		Different : A4 has two Sim pard
		slots ,AC4 has one Similard slot .

Thank you!

Sincerety,

Client's signature

Client's name / thle Luis Sosa/CEO

Contact information / address : 1612 NW, 84TH Ave. Miami, Florida, U.S.A 33126