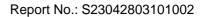


RADIO TEST REPORT FCC ID: A4E-ITABLE406B

Certificate #4298.01

Product:	Multifunctional table	
Trade Mark:	N/A	
Model No.:	iTable40624TRHLWA	
Family Model:	iTable406ARW,iTable406ARRWB, iTable406ATRWC-BL01, iTable406ATRWA,iTable406ATRWC, iTable406ARRLWA,iTable406TRWF, ITable406RRWG	
Report No.:	S23042803101002	
Issue Date:	Jun 12, 2023	

Prepared for


eMoMo Technology Co., Ltd

4th, Floor, Yong He Building , Tai Wan Industrial Park , Shi Yan Town ,Bao'an District, Shen Zhen, 518108, Guangdong,China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd. 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street Bao'an District, Shenzhen 518126 P.R. China Tel:400-800-6106,0755-2320 0050 / 2320 0090 Website: http://www.ntek.org.cn

TABLE OF CONTENTS

ACCREDITED Certificate #4298.01

ilac-MR

1	TES	ST RESULT CERTIFICATION	3
2	SUN	MMARY OF TEST RESULTS	4
3	FAC	CILITIES AND ACCREDITATIONS	5
	3.1 3.2 3.3	FACILITIES LABORATORY ACCREDITATIONS AND LISTINGS MEASUREMENT UNCERTAINTY	5
4	GE	NERAL DESCRIPTION OF EUT	6
5	DES	SCRIPTION OF TEST MODES	8
6	SET	TUP OF EQUIPMENT UNDER TEST	9
	6.1 6.2 6.3	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM SUPPORT EQUIPMENT EQUIPMENTS LIST FOR ALL TEST ITEMS	
7	TES	ST REQUIREMENTS	
	7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11	CONDUCTED EMISSIONS TEST RADIATED SPURIOUS EMISSION NUMBER OF HOPPING CHANNEL HOPPING CHANNEL SEPARATION MEASUREMENT AVERAGE TIME OF OCCUPANCY (DWELL TIME) 20DB BANDWIDTH TEST PEAK OUTPUT POWER CONDUCTED BAND EDGE MEASUREMENT. SPURIOUS RF CONDUCTED EMISSION ANTENNA APPLICATION FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS	16 25 26 27 29 30 31 31 32 33 34
8	TES	ST RESULTS	
	 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 	DWELL TIME MAXIMUM CONDUCTED OUTPUT POWER	

1 TEST RESULT CERTIFICATION

Applicant's name:	eMoMo Technology Co., Ltd	
Address:	4th, Floor, Yong He Building , Tai Wan Industrial Park , Shi Yan Town ,Bao'an District, Shen Zhen, 518108, Guangdong,China	
Manufacturer's Name	eMoMo Technology Co., Ltd	
Address:	4th, Floor, Yong He Building , Tai Wan Industrial Park , Shi Yan Town ,Bao'an District, Shen Zhen, 518108, Guangdong,China	
Product description		
Product name:	Multifunctional table	
Trade Mark:	N/A	
Model and/or type reference:	iTable40624TRHLWA	
Family Model:	iTable406ARW,iTable406ARRWB, iTable406ATRWC-BL01,iTable406ATRWA, iTable406ATRWC,iTable406ARRLWA , iTable406TRWF,ITable406RRWG	
Test Sample Number:	S230428031001	

Measurement Procedure Used:

APPLICABLE STANDARDS		
STANDARD/ TEST PROCEDURE	TEST RESULT	
FCC 47 CFR Part 2, Subpart J FCC 47 CFR Part 15, Subpart C ANSI C63.10-2013	Complied	

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Date of Test	: Apr 28, 2023 ~ Jun 12, 2023		
Prepared By	Gavan Zhang		
	Gavan Zhang (Project Engineer)		
Reviewed By	Aawn Cheng		
	Aaron Cheng (Supervisor)		
Approved By	Alex Li		
	Alex Li(Manager)		

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C					
Standard Section Test Item Verdict Remark					
15.207 Conducted Emission PASS					
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS			
15.247(a)(1)	Hopping Channel Separation	PASS			
15.247(b)(1)	Peak Output Power	PASS			
15.247(a)(iii)	Number of Hopping Frequency	PASS			
15.247(a)(iii)	Dwell Time	PASS			
15.247(a)(1)	Bandwidth	PASS			
15.247 (d)	Band Edge Emission	PASS			
15.247 (d)	Spurious RF Conducted Emission	PASS			
15.203	Antenna Requirement	PASS			

Remark:

1. "N/A" denotes test is not applicable in this Test Report.

2. All test items were verified and recorded according to the standards and without any deviation during the test.

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang Street, Bao'an District, Shenzhen 518126 P.R. China.

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description	
CNAS-Lab.	: The Certificate Registration Number is L5516.
IC-Registration	The Certificate Registration Number is 9270A.
	CAB identifier:CN0074
FCC- Accredited	Test Firm Registration Number: 463705.
	Designation Number: CN1184
A2LA-Lab.	The Certificate Registration Number is 4298.01
Name of Firm	: Shenzhen NTEK Testing Technology Co., Ltd.
Site Location	: 1/F, Building E, Fenda Science Park, Sanwei Community, Xixiang
	Street, Bao'an District, Shenzhen 518126 P.R. China.

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y\pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	±2.80dB
2	RF power, conducted	±0.16dB
3	Spurious emissions, conducted	±0.21dB
4	All emissions, radiated(30MHz~1GHz)	±2.64dB
5	All emissions, radiated(1GHz~6GHz)	±2.40dB
6	All emissions, radiated(>6GHz)	±2.52dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	Occupied bandwidth	±3.7dB

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification		
Equipment Multifunctional table		
Trade Mark N/A		
FCC ID	A4E-ITABLE406B	
Model No.	iTable40624TRHLWA	
Family Model	iTable406ARW,iTable406ARRWB,iTable406ATRWC-BL01,iTable406ATRWA, iTable406ATRWC,iTable406ARRLWA ,iTable406TRWF,ITable406RRWG	
Model Difference	All models are the same circuit and RF module, except the model name.	
Operating Frequency	2402MHz~2480MHz	
Modulation	GFSK, π/4-DQPSK, 8-DPSK	
Number of Channels	79 Channels	
Antenna Type	PCB Antenna	
Antenna Gain	3.38 dBi	
Adapter	N/A	
Battery	N/A	
Power supply	AC 120V/60Hz	
Hardware version	V:4.0	
Software version	V5.0	

Note 1: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Revision History

Report No.	Version	Description	Issued Date
S23042803101002	Rev.01	Initial issue of report	Jun 12, 2023

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (1Mbps for GFSK modulation; 2Mbps for π /4-DQPSK modulation; 3Mbps for 8-DPSK modulation) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement -X, Y, and Z-plane. The X-plane results were found as the worst case and were shown in this report.

Carrier Frequency and Channel list:

Channel	Frequency(MHz)
0	2402
1	2403
39	2441
40	2442
77	2479
78	2480

Note: fc=2402MHz+k×1MHz k=0 to 78

The following summary table is showing all test modes to demonstrate in compliance with the standard.

For AC Conducted Emission				
Final Test Mode	Description			
Mode 1 normal link mode				
Note: AO a superline Opendusted Enginetics upon texted upday mentioners autout a super				

Note: AC power line Conducted Emission was tested under maximum output power.

	For Radiated Test Cases				
Final Test Mode	Description				
Mode 1	normal link mode				
Mode 2	CH00(2402MHz)				
Mode 3	CH39(2441MHz)				
Mode 4	CH78(2480MHz)				

Note: For radiated test cases, the worst mode data rate 3Mbps was reported only, because this data rate has the highest RF output power at preliminary tests, and no other significantly frequencies found in conducted spurious emission.

For Conducted Test Cases				
Final Test Mode Description				
Mode 2	CH00(2402MHz)			
Mode 3	CH39(2441MHz)			
Mode 4	CH78(2480MHz)			
Mode 5	Hopping mode			
Note: The engineering	test program was provided and the EUT was programmed to be in continuous			

Note: The engineering test program was provided and the EUT was programmed to be in continuously transmitting mode.

6 SETUP OF EQUIPMENT UNDER TEST	
6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM For AC Conducted Emission Mode	
AC PLUG	
EUT	
For Radiated Test Cases	
AC PLUG	
EUT	
For Conducted Test Cases	
C-1	
Measurement EUT	
Note: 1. The temporary antenna connector is soldered on the PCB board in order to and this temporary antenna connector is listed in the equipment list.	perform conducted tests

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in [Length] column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

NTEK 北测

®

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

	Kind of			0	Last	Calibrated	Calibrati
	Equipment	Manufacturer	Type No. Serial No.		calibration	until	on period
1	Spectrum Analyzer	Aglient	E4440A	MY41000130	2023.03.27	2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2022.06.16	2023.06.15	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2022.06.16	2023.06.15	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.04.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.16	2024.03.16	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2020.05.11 2023.05.06	2023.05.10 2026.05.05	3 year
7	Horn Antenna	SCHWARZBE CK	BBHA 9120 D	2816	2023.01.12	2024.01.11	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2022.11.07	2023.11.06	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2022.06.17	2023.06.16	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2022.11.04	2023.11.03	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN 084	2022.06.16	2023.06.15	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2022.06.17	2025.06.16	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2022.06.17	2025.06.16	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2023.03.26	2026.03.25	3 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

70.00	AC Conduction Test equipment							
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period	
1	Test Receiver	R&S	ESCI	101160	2023.03.27	2024.03.26	1 year	
2	LISN	R&S	ENV216	101313	2023.03.27	2024.03.26	1 year	
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2023.03.27	2024.03.26	1 year	
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2020.05.11 2023.05.06	2023.05.10 2026.05.05	3 year	
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2020.05.11 2023.05.06	2023.05.10 2026.05.05	3 year	
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2020.05.11 2023.05.06	2023.05.10 2026.05.05	3 year	
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2020.05.11 2023.05.06	2023.05.10 2026.05.05	3 year	

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

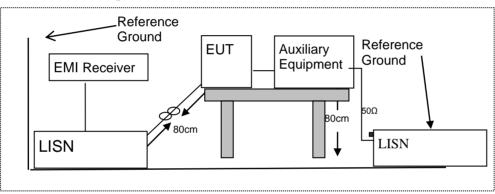
7 TEST REQUIREMENTS

7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit


	Conducted Emission Limit			
Frequency(MHz)	Quasi-peak	Average		
0.15-0.5	66-56*	56-46*		
0.5-5.0	56	46		
5.0-30.0	60	50		

Note: 1. *Decreases with the logarithm of the frequency

2. The lower limit shall apply at the transition frequencies

3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Test Configuration

7.1.4 Test Procedure

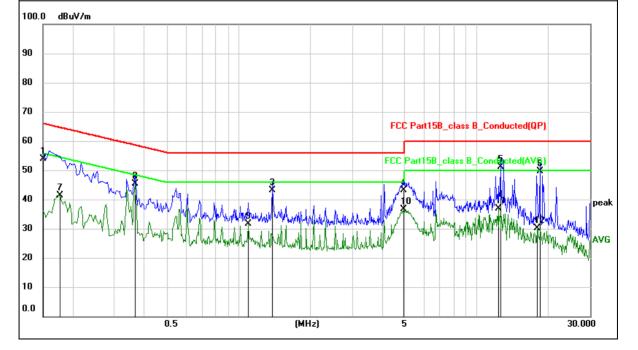
According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.8m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.5 Test Results

Pass

7.1.6 Test Results

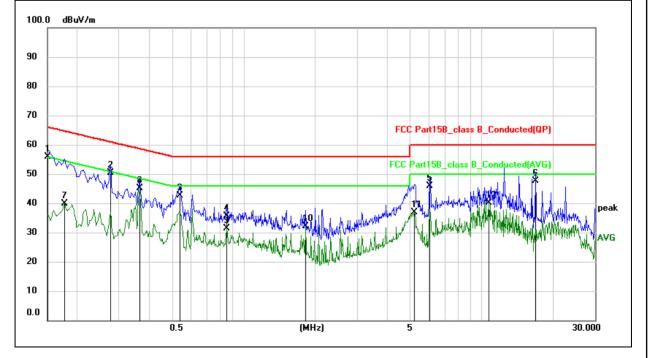

EUT:	Multifunctional table	Model Name :	iTable40624TRHLWA
Temperature:	22.1 ℃	Relative Humidity:	53%
Pressure:	1010hPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1500	43.92	9.84	53.76	66.00	-12.24	QP
0.3653	35.58	9.85	45.43	58.61	-13.18	QP
1.3810	33.31	9.89	43.20	56.00	-12.80	QP
4.9256	33.17	9.94	43.11	56.00	-12.89	QP
12.5821	41.20	10.02	51.22	60.00	-8.78	QP
18.4255	39.54	10.06	49.60	60.00	-10.40	QP
0.1768	31.51	9.82	41.33	54.63	-13.30	AVG
0.3653	35.42	9.85	45.27	48.61	-3.34	AVG
1.0939	21.68	9.88	31.56	46.00	-14.44	AVG
4.9256	26.59	9.94	36.53	46.00	-9.47	AVG
12.3180	26.78	10.01	36.79	50.00	-13.21	AVG
18.0393	20.05	10.06	30.11	50.00	-19.89	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.


EUT:	Multifunctional table	Model Name :	iTable40624TRH LWA
Temperature:	22.1 ℃	Relative Humidity:	53%
Pressure:	1010hPa	Phase :	N
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 1

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1500	45.94	9.84	55.78	66.00	-10.22	QP
0.2757	40.43	9.84	50.27	60.94	-10.67	QP
0.5404	32.70	9.86	42.56	56.00	-13.44	QP
0.8483	25.64	9.87	35.51	56.00	-20.49	QP
6.0562	35.83	9.95	45.78	60.00	-14.22	QP
16.8384	37.65	10.05	47.70	60.00	-12.30	QP
0.1768	30.12	9.82	39.94	54.63	-14.69	AVG
0.3653	35.37	9.85	45.22	48.61	-3.39	AVG
0.8483	21.56	9.87	31.43	46.00	-14.57	AVG
1.8189	22.15	9.90	32.05	46.00	-13.95	AVG
5.2213	27.01	9.94	36.95	50.00	-13.05	AVG
10.7330	30.18	10.00	40.18	50.00	-9.82	AVG

Remark:

1. All readings are Quasi-Peak and Average values.

2. Factor = Insertion Loss + Cable Loss.

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

7.0001 alling to 1 00 1 alt 10.20			
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	4.17725-4.17775 37.5-38.25		9.0-9.2
4.20725-4.20775	4.20725-4.20775 73-74.6		9.3-9.5
6.215-6.218	6.215-6.218 74.8-75.2		10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	8.291-8.294 149.9-150.05		15.35-16.2
8.362-8.366	8.362-8.366 156.52475-156.52525		17.7-21.4
8.37625-8.38675	8.37625-8.38675 156.7-156.9		22.01-23.12
8.41425-8.41475	8.41425-8.41475 162.0125-167.17		23.6-24.0
12.29-12.293	12.29-12.293 167.72-173.2		31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Restricted Frequency(MHz)	EIEIG Strength (IIV/m)		Measurement Distance
0.009~0.490	0.009~0.490 2400/F(KHz)		300
0.490~1.705	0.490~1.705 24000/F(KHz)		30
1.705~30.0	1.705~30.0 30		30
30-88	100	40	3
88-216	150	43.5	3
216-960	216-960 200		3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV/m) (at 3M)		
	PEAK	AVERAGE	
Above 1000	74	54	

Remark :1. Emission level in dBuV/m=20 log (uV/m)

2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.



7.2.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration

(a) For radiated emissions below 30MHz

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

ele ale felle wing opeen an analyzer bearing	5.
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1 MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz: Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g. For the actual test configuration, please refer to the related Item -EUT Test Photos.

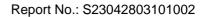
Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Frequency Band (MHz) Function		Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak Peak		1 MHz
Above 1000	Average	1 MHz	1 MHz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.


7.2.6 Test Results

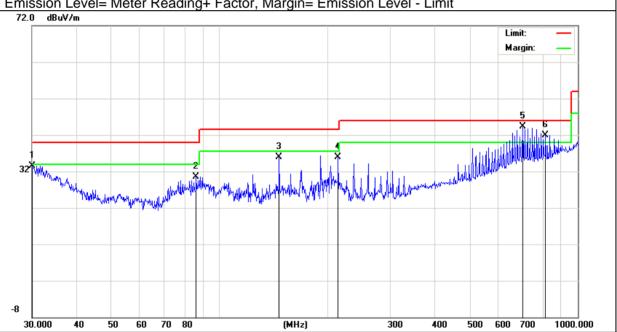
	Spurious	Emission	below	30MHz	(9KHz to 30MHz	z)
--	----------	----------	-------	-------	----------------	----

Temperature: 20 °C Relative Humidity: 48%	EUT:	Multifunctional table	Model No.:	iTable40624TRHLWA
	Temperature:	20 ℃	Relative Humidity:	48%
Test Mode: Mode2/Mode3/Mode4 Test By: Gavan Zhang	Test Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang

Freq.	Ant.Pol.	Emission Level(dBuV/m)		Limit 3	m(dBuV/m)	Ove	r(dB)
(MHz)	H/V	PK	AV	PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Certificate #4298.01


Spurious Emission below 1GHz (30MHz to 1GHz) All the modulation modes have been tested, and the worst result was report as below:

EUT:	Multifunctional table	Model Name :	iTable40624TRHLWA
Temperature:	25.4 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Test Mode:	Mode 1
Test Voltage :	AC 120V/60Hz		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	
V	30.0000	7.04	26.47	33.51	40.00	-6.49	QP
V	86.2001	14.31	16.23	30.54	40.00	-9.46	QP
V	146.8874	17.28	18.58	35.86	43.50	-7.64	QP
V	214.5141	19.04	16.79	35.83	43.50	-7.67	QP
V	701.7607	16.40	27.97	44.37	46.00	-1.63	QP
V	813.1114	12.16	29.69	41.85	46.00	-4.15	QP

Remark:

Emission Level= Meter Reading+ Factor, Margin= Emission Level - Limit

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
Н	30.4237	8.85	26.23	35.08	40.00	-4.92	QP	
Н	89.5899 18.53		16.69	35.22	43.50	-8.28	QP	
Н	146.8874	21.29	18.58	39.87	43.50	-3.63	QP	
Н	237.4757	23.65	17.89	41.54	46.00	-4.46	QP	
Н	677.5797	15.65	27.59	43.24	46.00	-2.76	QP	
Н	747.4825	14.29	28.76	43.05	46.00	-2.95	QP	
						Margin:		
32 32	Munight Manager Manager	and a start of the				S C X X		
-8								

EUT:	Multifu	unctiona	I table	Model	No.:	iTable	40624TF	RHLWA		
Temperature:	20 ℃			Relativ	e Humidity	r: 48%	48%			
Test Mode:	Mode	2/Mode3	3/Mode4	Test B	sy:	Gavar	n Zhang			
All the modulati	All the modulation modes have been tested					was report	t as belov	N:		
Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment	
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)			
Low Channel (2402 MHz)(GFSK)Above 1G										
4804	70.26	5.21	35.59	44.30	66.76	74.00	-7.24	Pk	Vertical	
4804	49.84	5.21	35.59	44.30	46.34	54.00	-7.66	AV	Vertical	
7206	68.15	6.48	36.27	44.60	66.30	74.00	-7.70	Pk	Vertical	
7206	46.54	6.48	36.27	44.60	44.69	54.00	-9.31	AV	Vertical	
4804	70.33	5.21	35.55	44.30	66.79	74.00	-7.21	Pk	Horizontal	
4804	49.4	5.21	35.55	44.30	45.86	54.00	-8.14	AV	Horizontal	
7206	70.27	6.48	36.27	44.52	68.50	74.00	-5.50	Pk	Horizontal	
7206	46.39	6.48	36.27	44.52	44.62	54.00	-9.38	AV	Horizontal	
			Mid Chann	el (2441 N	lHz)(GFSK)-	-Above 1G				
4882	68.79	5.21	35.66	44.20	65.46	74.00	-8.54	Pk	Vertical	
4882	45.37	5.21	35.66	44.20	42.04	54.00	-11.96	AV	Vertical	
7323	70.19	7.10	36.50	44.43	69.36	74.00	-4.64	Pk	Vertical	
7323	49.28	7.10	36.50	44.43	48.45	54.00	-5.55	AV	Vertical	
4882	68.93	5.21	35.66	44.20	65.60	74.00	-8.40	Pk	Horizontal	
4882	45.23	5.21	35.66	44.20	41.90	54.00	-12.10	AV	Horizontal	
7323	68.87	7.10	36.50	44.43	68.04	74.00	-5.96	Pk	Horizontal	
7323	48.45	7.10	36.50	44.43	47.62	54.00	-6.38	AV	Horizontal	
			High Chanr	el (2480 N	1Hz)(GFSK)-	- Above 1G				
4960	69.04	5.21	35.52	44.21	65.56	74.00	-8.44	Pk	Vertical	
4960	46.76	5.21	35.52	44.21	43.28	54.00	-10.72	AV	Vertical	
7440	70.38	7.10	36.53	44.60	69.41	74.00	-4.59	Pk	Vertical	
7440	45.35	7.10	36.53	44.60	44.38	54.00	-9.62	AV	Vertical	
4960	68.02	5.21	35.52	44.21	64.54	74.00	-9.46	Pk	Horizontal	
4960	48.66	5.21	35.52	44.21	45.18	54.00	-8.82	AV	Horizontal	
7440	70.27	7.10	36.53	44.60	69.30	74.00	-4.70	Pk	Horizontal	
7440	45	7.10	36.53	44.60	44.03	54.00	-9.97	AV	Horizontal	

Note:

(1) Emission Level= Antenna Factor + Cable Loss + Read Level - Preamp Factor (2)All other emissions more than 20dB below the limit.

Report No.: S23042803101002

Spurious	Multifuncti				90MHz and el No.:		able40624T				
Temperature:			ne		tive Humidit						
-						,	48%				
Test Mode:	Mode2/ M				By:		avan Zhang				
All the modul	All the modulation modes have been tested, and the worst result was report as below:										
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	s Margin	Detector	Comment		
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/ı	m) (dB)	Туре			
1Mbps(GFSK)- Non-hopping											
2310.00											
2310.00	50.29	2.97	27.80	43.80	37.26	54	-16.74	AV	Horizontal		
2310.00	70.96	2.97	27.80	43.80	57.93	74	-16.07	Pk	Vertical		
2310.00	50.80	2.97	27.80	43.80	37.77	54	-16.23	AV	Vertical		
2390.00	69.70	3.14	27.21	43.80	56.25	74	-17.75	Pk	Vertical		
2390.00	46.71	3.14	27.21	43.80	33.26	54	-20.74	AV	Vertical		
2390.00	70.59	3.14	27.21	43.80	57.14	74	-16.86	Pk	Horizontal		
2390.00	49.64	3.14	27.21	43.80	36.19	54	-17.81	AV	Horizontal		
2483.50	68.03	3.58	27.70	44.00	55.31	74	-18.69	Pk	Vertical		
2483.50	46.24	3.58	27.70	44.00	33.52	54	-20.48	AV	Vertical		
2483.50	69.66	3.58	27.70	44.00	56.94	74	-17.06	Pk	Horizontal		
2483.50	45.24	3.58	27.70	44.00	32.52	54	-21.48	AV	Horizontal		
	•		1	Mbps (G	FSK)- hopp	ing	•				
2310.00	70.32	2.97	27.80	43.80	57.29	74	-16.71	Pk	Horizontal		
2310.00	45.26	2.97	27.80	43.80	32.23	54	-21.77	AV	Horizontal		
2310.00	70.30	2.97	27.80	43.80	57.27	74	-16.73	Pk	Vertical		
2310.00	45.89	2.97	27.80	43.80	32.86	54	-21.14	AV	Vertical		
2390.00	68.18	3.14	27.21	43.80	54.73	74	-19.27	Pk	Vertical		
2390.00	45.68	3.14	27.21	43.80	32.23	54	-21.77	AV	Vertical		
2390.00	69.26	3.14	27.21	43.80	55.81	74	-18.19	Pk	Horizontal		
2390.00	49.91	3.14	27.21	43.80	36.46	54	-17.54	AV	Horizontal		
2483.50	69.39	3.58	27.70	44.00	56.67	74	-17.33	Pk	Vertical		
2483.50	48.34	3.58	27.70	44.00	35.62	54	-18.38	AV	Vertical		
2483.50	70.90	3.58	27.70	44.00	58.18	74	-15.82	Pk	Horizontal		
2483.50	46.67	3.58	27.70	44.00	33.95	54	-20.05	AV	Horizontal		

Note: (1) All other emissions more than 20dB below the limit.

NTEK 北测®	
----------	--

EUT:		Multifu	unctional	table	Model	No.:		iTable40624TRHLWA			
Temp	perature:	re: 20 °C Relative Humidity: 48%				%					
Test Mode: Mode2 / Mode3 / Mode4				Test B	y:		Gav	an Zhang	I		
All th	ne modula	ation mode	s have b	een testec	d, and the	worst res	ult wa	s rep	ort as be	low:	
F	Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Lim	iits	Margin	Detector	Comment
	(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµ	V/m)	(dB)	Туре	
	3260	68.11	4.04	29.57	44.70	57.02	74	4	-16.98	Pk	Vertical
	3260	48.61	4.04	29.57	44.70	37.52	54	4	-16.48	AV	Vertical
	3260	70.06	4.04	29.57	44.70	58.97	74	4	-15.03	Pk	Horizontal
	3260	49.85	4.04	29.57	44.70	38.76	54	4	-15.24	AV	Horizontal
	3332	68.05	4.26	29.87	44.40	57.78	74	4	-16.22	Pk	Vertical
	3332	50.99	4.26	29.87	44.40	40.72	54	4	-13.28	AV	Vertical
	3332	70.78	4.26	29.87	44.40	60.51	74	4	-13.49	Pk	Horizontal
	3332	47.75	4.26	29.87	44.40	37.48	54	4	-16.52	AV	Horizontal
Γ	17797	60.48	10.99	43.95	43.50	71.92	74	4	-2.08	Pk	Vertical
	17797	40.67	10.99	43.95	43.50	52.11	54	4	-1.89	AV	Vertical
	17788	53.01	11.81	43.69	44.60	63.91	74	4	-10.09	Pk	Horizontal
	17788	30.08	11.81	43.69	44.60	40.98	54	4	-13.02	AV	Horizontal

Certificate #4298.01

1501

Note: (1) All other emissions more than 20dB below the limit.

7.3 NUMBER OF HOPPING CHANNEL

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(1) (iii)and ANSI C63.10-2013

7.3.2 Conformance Limit

Frequency hopping systems in the 2400-2483.5MHz band shall use at least 15 channels.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.3 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = the frequency band of operation RBW : To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. VBW \geq RBW Sweep = auto

Detector function = peak Trace = max hold

7.3.6 Test Results

EUT:	Multifunctional table	Model No.:	iTable40624TRHLWA
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode 5(1Mbps)	Test By:	Gavan Zhang

7.4 HOPPING CHANNEL SEPARATION MEASUREMENT

7.4.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.4.2 Conformance Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band shall have hopping channel carrier frequencies that are separated by 25kHz or two-thirds of the 20dB bandwidth of the hopping channel, whichever is greater.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.2

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = Measurement Bandwidth or Channel Separation

RBW: Start with the RBW set to approximately 3% of the channel spacing; adjust as necessary to best identify the center of each individual channel.

VBW ≥ RBW

Sweep = auto

Detector function = peak

Trace = max hold

7.4.6 Test Results

EUT:	Multifunctional table	Model No.:	iTable40624TRHLWA
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang

7.5 AVERAGE TIME OF OCCUPANCY (DWELL TIME)

7.5.1 Applicable Standard

According to FCC Part 15.247(a)(1)(iii) and ANSI C63.10-2013

7.5.2 Conformance Limit

The average time of occupancy on any channel shall not be greater than 0.4s within a period of 0.4s multiplied by the number of hopping channels employed.

Certificate #4298.01

7.5.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.5.4 Test Setup

Please refer to Section 6.1 of this test report.

7.5.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.4 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel RBW \geq 1MHz VBW \geq RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector function = peak Trace = max hold Measure the maximum time duration of one single pulse. Set the EUT for DH5, DH3 and DH1 packet transmitting. Measure the maximum time duration of one single pulse.

7.5.6 Test Results

EUT:	Multifunctional table	Model No.:	iTable40624TRHLWA
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang

Test data reference attachment.

Note:

A Period Time = (channel number)*0.4

DH1 Dwell time: Reading * (1600/2)*31.6/(channel number) DH3 Dwell time: Reading * (1600/4)*31.6/(channel number) DH5 Dwell time: Reading * (1600/6)*31.6/(channel number)

For Example:

- 1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels. With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4×79) (s), Hops Over Occupancy Time comes to $(1600 / 6 / 79) \times (0.4 \times 79) = 106.67$ hops.
- In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels. With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s), Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
- 3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

7.6 20DB BANDWIDTH TEST

7.6.1 Applicable Standard

According to FCC Part 15.247(a)(1) and ANSI C63.10-2013

7.6.2 Conformance Limit

No limit requirement.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 6.9.2 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. The EUT was operating in controlled its channel. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW \geq 1% of the 20 dB bandwidth VBW \geq RBW Sweep = auto Detector function = peak Trace = max hold

7.6.6 Test Results

EUT:	Multifunctional table	Model No.:	iTable40624TRHLWA
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang

7.7 PEAK OUTPUT POWER

7.7.1 Applicable Standard

According to FCC Part 15.247(b)(1) and ANSI C63.10-2013

7.7.2 Conformance Limit

The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.5.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW \geq the 20 dB bandwidth of the emission being measured

 $\mathsf{VBW} \geq \mathsf{RBW}$

Sweep = auto

Detector function = peak Trace = max hold

7.7.6 Test Results

EUT:	Multifunctional table	Model No.:	iTable40624TRHLWA		
Temperature:	20 ℃	Relative Humidity:	48%		
Test Mode:	Mode2/Mode3/Mode4	Test By:	Gavan Zhang		

7.8 CONDUCTED BAND EDGE MEASUREMENT

7.8.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013

7.8.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.8.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.4 Test Setup

Please refer to Section 6.1 of this test report.

7.8.5 Test Procedure

The testing follows ANSI C63.10-2013 clause 7.8.6.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT must have its hopping function enabled.

Use the following spectrum analyzer settings:

Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel

RBW = 100KHz

VBW = 300KHz

Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

7.8.6 Test Results

EUT:	Multifunctional table	Model No.:	iTable40624TRHLWA
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	Mode2 /Mode4/ Mode 5	Test By:	Gavan Zhang

7.9 SPURIOUS RF CONDUCTED EMISSION

7.9.1 Applicable Standard

According to FCC Part 15.247(d) and ANSI C63.10-2013.

7.9.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

7.9.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.9.4 Test Setup

Please refer to Section 6.1 of this test report.

7.9.5 Test Procedure

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW \geq [3 × RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level. Then the limit shall be attenuated by at least 20 dB relative to the maximum amplitude level in 100 kHz.

7.9.6 Test Results

Remark: The measurement frequency range is from 30MHzHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

7.10 ANTENNA APPLICATION

7.10.1 Antenna Requirement

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.10.2 Result

The EUT antenna is permanent attached PCB antenna (Gain: 3.38 dBi). It comply with the standard requirement.

NTEK 北测

7.11 FREQUENCY HOPPING SYSTEM (FHSS) EQUIPMENT REQUIREMENTS 7.11.1 Standard Applicable

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals. (g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section. (h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.11.2 Frequency Hopping System

This transmitter device is frequency hopping device, and complies with FCC part 15.247 rule. This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each: centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock. Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

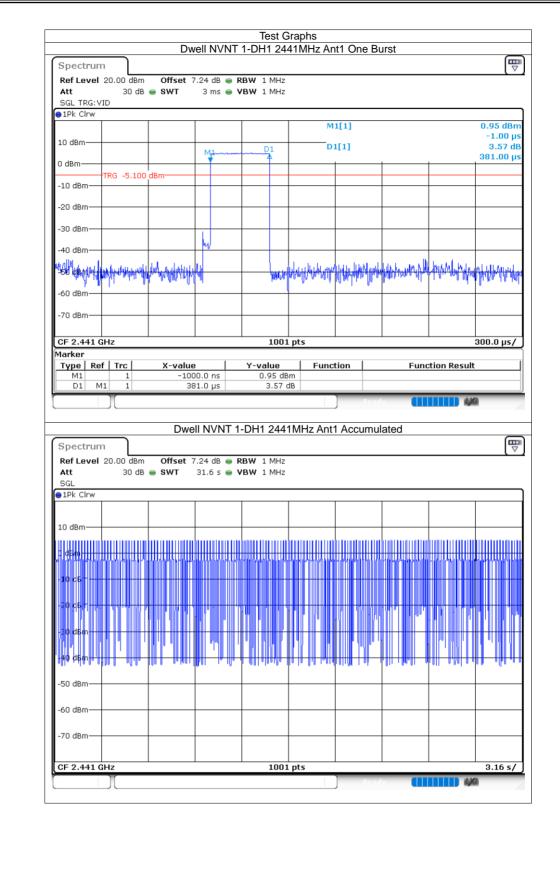
This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for FCC Part 15.247 rule.

7.11.3 EUT Pseudorandom Frequency Hopping Sequence

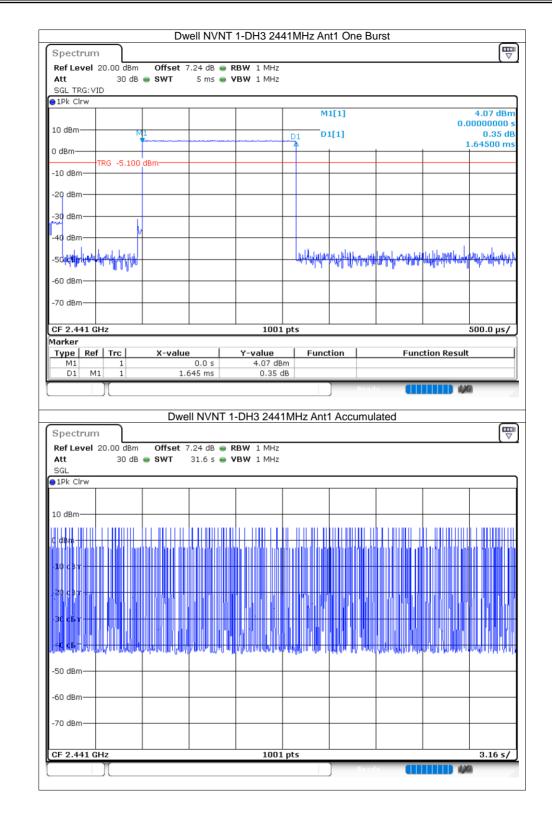
Pseudorandom Frequency Hopping Sequence Table as below: Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

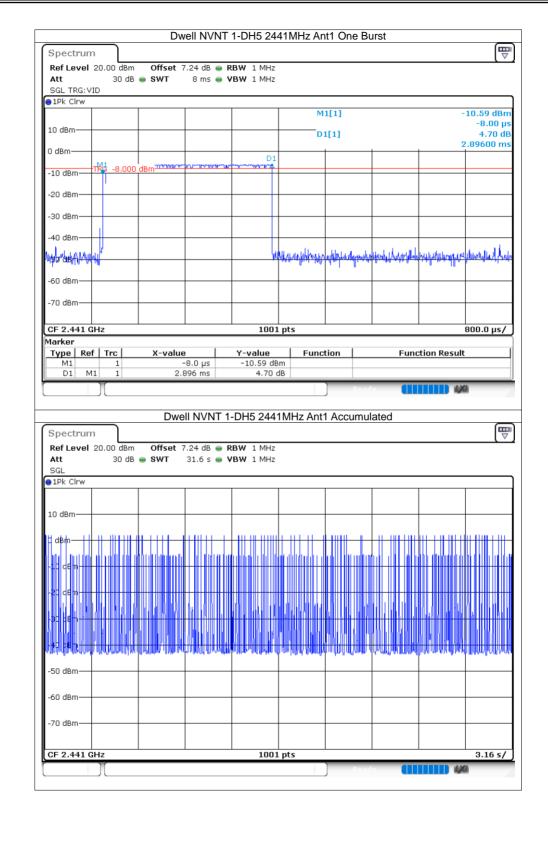
8 TEST RESULTS

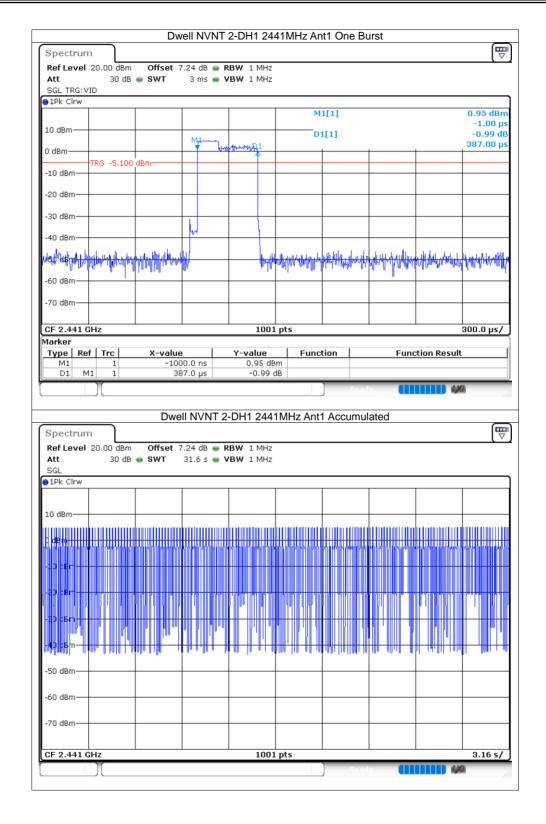

8.1 Dwell Time

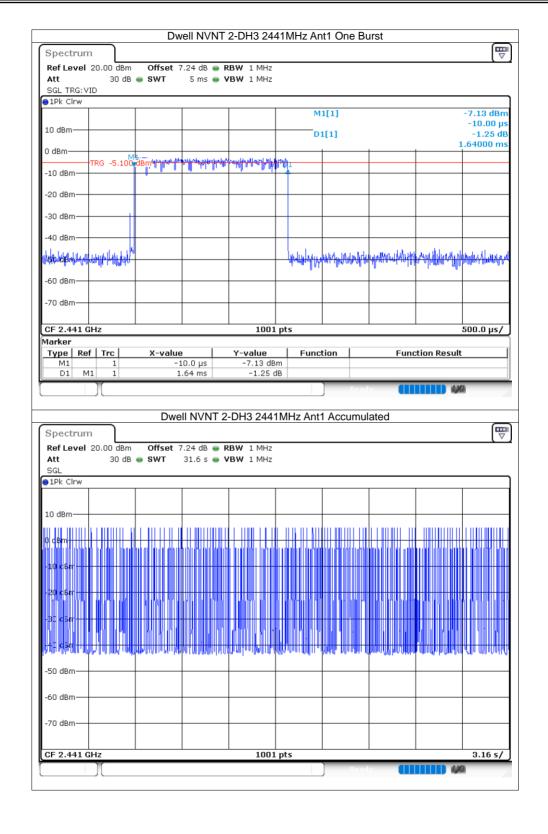
Condition	Mode	Frequency (MHz)	Antenna	Pulse Time (ms)	Total Dwell Time (ms)	Burst Count	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2441	Ant1	0.381	81.153	213	31600	400	Pass
NVNT	1-DH3	2441	Ant1	1.645	222.075	135	31600	400	Pass
NVNT	1-DH5	2441	Ant1	2.896	280.912	97	31600	400	Pass
NVNT	2-DH1	2441	Ant1	0.387	84.366	218	31600	400	Pass
NVNT	2-DH3	2441	Ant1	1.64	221.4	135	31600	400	Pass
NVNT	2-DH5	2441	Ant1	2.896	257.744	89	31600	400	Pass
NVNT	3-DH1	2441	Ant1	0.387	82.818	214	31600	400	Pass
NVNT	3-DH3	2441	Ant1	1.635	225.63	138	31600	400	Pass
NVNT	3-DH5	2441	Ant1	2.888	285.912	99	31600	400	Pass

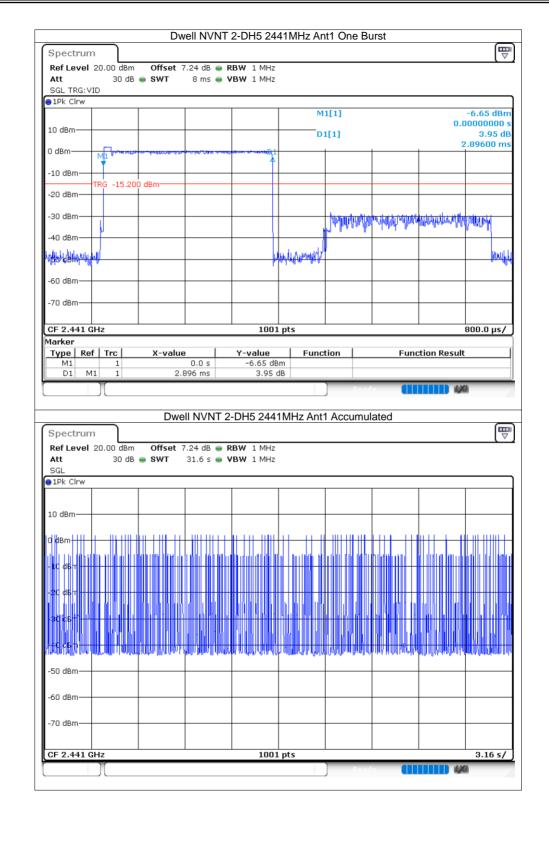


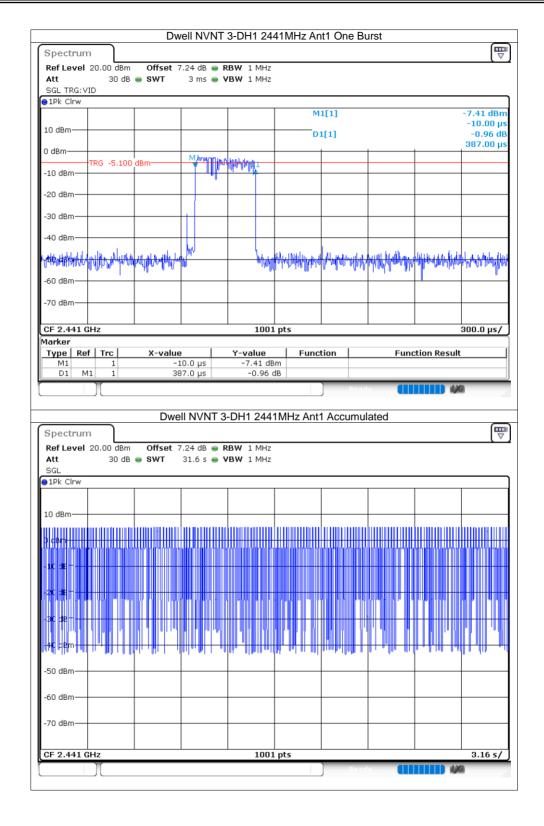
ACCREDITED Certificate #4298.01

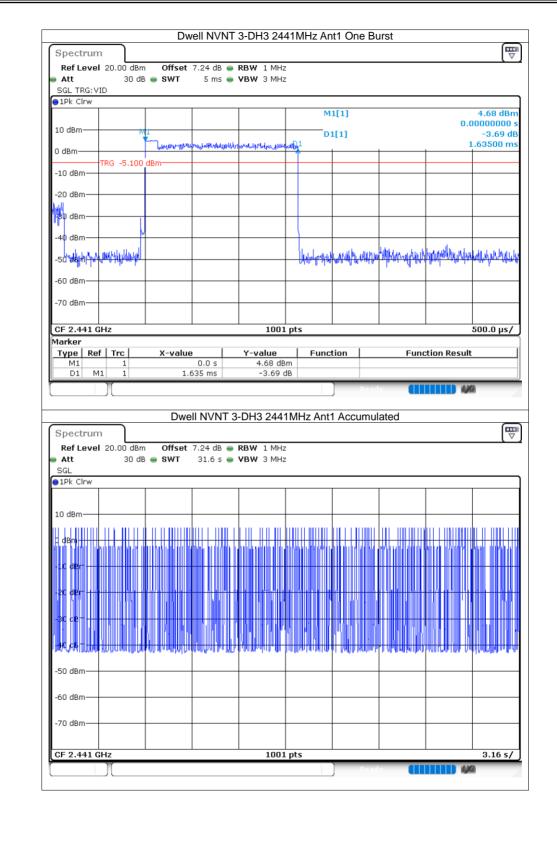

Report No.: S23042803101002

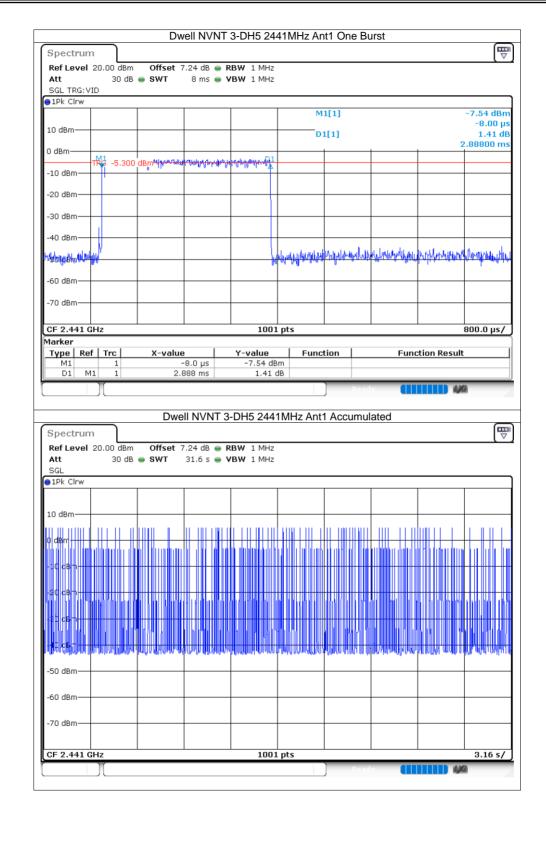












8.2 Maximum Conducted Output Power

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH5	2402	Ant1	2.72	21	Pass
NVNT	1-DH5	2441	Ant1	2.13	21	Pass
NVNT	1-DH5	2480	Ant1	3.26	21	Pass
NVNT	2-DH5	2402	Ant1	2.7	21	Pass
NVNT	2-DH5	2441	Ant1	2.12	21	Pass
NVNT	2-DH5	2480	Ant1	0.81	21	Pass
NVNT	3-DH5	2402	Ant1	2.74	21	Pass
NVNT	3-DH5	2441	Ant1	2.17	21	Pass
NVNT	3-DH5	2480	Ant1	3.26	21	Pass

	_		Power N	NVNT 1-D	Graphs H5 2402N	MHz Ant1			~
Spectrum									
Ref Level 20.0 Att SGL Count 100	30 dB 🛛	Offset 7. SWT	.07 dB 👄 RB 1 ms 👄 VI	BW 2 MHz BW 2 MHz	Mode Au	ito Sweep			
∋1Pk Max						41[1]			2.72 dB
10 dBm								2.40	177020 GH
10 0.0111				M1					
0 dBm									
-10.d8m									
-20 dBm									
-30 dBm									
-40 dBm									
-50 dBm									-
-60 dBm									
-70 dBm									
CF 2.402 GHz				100	L pts			Sn	an 5.0 MHz
01 2.102 dile									
Spectrum				NVNT 1-D		Road			
Ref Level 20.0 Att	30 dB 🛛		.24 dB 👄 RI	NVNT 1-D	H5 2441N				
Ref Level 20.0	30 dB 🛛	Offset 7.	.24 dB 👄 RI	NVNT 1-D BW 2 MHz	H5 2441N Mode Au	ito Sweep			•
Ref Level 20.0 Att SGL Count 100,	30 dB 🛛	Offset 7.	.24 dB 👄 RI	NVNT 1-D BW 2 MHz	H5 2441N Mode Au			2.44	2.13 dB
Ref Level 20.0 Att SGL Count 100,	30 dB 🛛	Offset 7.	.24 dB 👄 RI	NVNT 1-D BW 2 MHz	H5 2441N Mode Au	ito Sweep	-	2.44	2.13 dBi 110490 GF
Ref Level 20.0 Att SGL Count 100 1Pk Max	30 dB 🛛	Offset 7.	.24 dB 👄 RI	NVNT 1-D BW 2 MHz	H5 2441N Mode Au	ito Sweep		2.44	2.13 dB
Ref Level 20.0 Att SGL Count 100 IPk Max 10 dBm 0	30 dB 🛛	Offset 7.	.24 dB 👄 RI	NVNT 1-D BW 2 MHz	H5 2441N Mode Au	ito Sweep		2.44	2.13 dB
Ref Level 20.0 Att SGL Count 100 1Pk Max	30 dB 🛛	Offset 7.	.24 dB 👄 RI	NVNT 1-D BW 2 MHz	H5 2441N Mode Au	ito Sweep		2.44	2.13 dB
Ref Level 20.0 Att SGL Count 100 IPk Max 10 dBm 0	30 dB 🛛	Offset 7.	.24 dB 👄 RI	NVNT 1-D BW 2 MHz	H5 2441N Mode Au	ito Sweep		2.44	2.13 dB
Ref Level 20.0 Att SGL Count 100 > IPk Max 10 dBm 0 0 dBm -10 dBm1 -10	30 dB 🛛	Offset 7.	.24 dB 👄 RI	NVNT 1-D BW 2 MHz	H5 2441N Mode Au	ito Sweep		2.44	2.13 dB
Ref Level 20.0 Att SGL Count 100 > 1Pk Max 10 dBm 0 0 dBm - 0 -10 dBm - - -20 dBm - -	30 dB 🛛	Offset 7.	.24 dB 👄 RI	NVNT 1-D BW 2 MHz	H5 2441N Mode Au	ito Sweep		2.44	2.13 dB
Ref Level 20.0 Att SGL Count 100 IPk Max 10 dBm 0 0 dBm -10 dBm -20 dBm	30 dB 🛛	Offset 7.	.24 dB 👄 RI	NVNT 1-D BW 2 MHz	H5 2441N Mode Au	ito Sweep		2.44	2.13 dB
Ref Level 20.0 Att SGL Count 100 > 1Pk Max 10 dBm 0 0 dBm - 0 -10 dBm - - -20 dBm - -	30 dB 🛛	Offset 7.	.24 dB 👄 RI	NVNT 1-D BW 2 MHz	H5 2441N Mode Au	ito Sweep		2.44	2.13 dB
Ref Level 20.0 Att SGL Count 100 SGL Count 100 100 dBm 10 dBm 0 0 dBm -0 -20 dBm	30 dB 🛛	Offset 7.	.24 dB 👄 RI	NVNT 1-D BW 2 MHz	H5 2441N Mode Au	ito Sweep		2.44	2.13 dB
Ref Level 20.0 Att SGL Count 100 SGL Count 100 100 dBm 10 dBm 0 0 dBm - -10 dBm - -20 dBm - -30 dBm - -40 dBm -	30 dB 🛛	Offset 7.	.24 dB 👄 RI	NVNT 1-D BW 2 MHz	H5 2441N Mode Au	ito Sweep		2.44	2.13 dB
Ref Level 20.0 Att SGL Count 100 SGL Count 100 100 dBm 10 dBm 0 0 dBm -0 -20 dBm	30 dB 🛛	Offset 7.	.24 dB 👄 RI	NVNT 1-D BW 2 MHz	H5 2441N Mode Au	ito Sweep		2.44	2.13 dB
Ref Level 20.0 Att SGL Count 100 SGL Count 100 100 dBm 10 dBm 0 0 dBm - -10 dBm - -20 dBm - -30 dBm - -60 dBm - -70 dBm -	30 dB 🛛	Offset 7.	.24 dB 👄 RI	NVNT 1-D	H5 2441N Mode Au M1	ito Sweep			2.13 dB 110490 GF
Ref Level 20.0 Att SGL Count 100 SGL Count 100 100 dBm 10 dBm 0 0 dBm -00 dBm -20 dBm	30 dB 🛛	Offset 7.	.24 dB 👄 RI	NVNT 1-D BW 2 MHz	H5 2441N Mode Au M1	ito Sweep		Sp	2.13 dB/ 110490 GF

Ref Level 20.00 dB Att 30 SGL Count 100/100	dB SWT	.07 dB 👄 RBV 1 ms 👄 VBV		Mode Aut	to Sweep			
●1Pk Max				M	1[1]			3.26 dB
10 dBm					1	I	2.479	975520 GH
			M1					
0 dBm								
IO dBm	_							
-20 dBm								
-30 dBm	_							
-40 dBm	_							
-50 dBm								
-60 dBm								
-70 dBm								
							0	n 5.0 MH:
CF 2.48 GHz Spectrum Ref Level 20.00 dt Att 30	dB SWT	Power N\ .07 dB ● RB¥ 1 ms ● VB\	V 2 MHz			nd y		0
Spectrum Ref Level 20.00 df	dB SWT	.07 dB 👄 RBV	/NT 2-DI ₩ 2 MHz	H5 2402N		idy 🚺	5pe	0
Spectrum Ref Level 20.00 df Att 30 SGL Count 100/100	dB SWT	.07 dB 👄 RBV	/NT 2-DI ₩ 2 MHz	H5 2402M Mode Aut		rdv 👖		2.70 dB
Spectrum Ref Level 20.00 df Att 30 SGL Count 100/100	dB SWT	.07 dB 👄 RBV	/NT 2-DI	H5 2402M Mode Aut	to Sweep	rdy		2.70 dB
Spectrum Ref Level 20.00 dt Att 30 SGL Count 100/100 • 1Pk Max	dB SWT	.07 dB 👄 RBV	/NT 2-DI N 2 MHz N 2 MHz	H5 2402M Mode Aut	to Sweep			2.70 dB
Spectrum Ref Level 20.00 dE Att 30 SGL Count 100/100 ● 1Pk Max 10 dBm 0 dBm	dB SWT	.07 dB ● RBW 1 ms ● VBV	/NT 2-DI	H5 2402M Mode Aut	to Sweep	- Vorwannya		2.70 dB
Spectrum Ref Level 20.00 df Att 30 - SGL Count 100/100 • 1Pk Max 10 dBm -10 dBm -10 dBm	dB SWT	.07 dB ● RBW 1 ms ● VBV	/NT 2-DI	H5 2402M Mode Aut	to Sweep	the second secon		2.70 dB
Spectrum Ref Level 20.00 dE Att 30 SGL Count 100/100 ● 1Pk Max 10 dBm 0 dBm	dB SWT	.07 dB ● RBW 1 ms ● VBV	/NT 2-DI	H5 2402M Mode Aut	to Sweep			2.70 dB
Spectrum Ref Level 20.00 df Att 30 - SGL Count 100/100 • 1Pk Max 10 dBm -10 dBm -10 dBm	dB SWT	.07 dB ● RBW 1 ms ● VBV	/NT 2-DI	H5 2402M Mode Aut	to Sweep			2.70 dB
Spectrum Ref Level 20.00 df Att 30 SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	dB SWT	.07 dB ● RBW 1 ms ● VBV	/NT 2-DI	H5 2402M Mode Aut	to Sweep			2.70 dB
Spectrum Ref Level 20.00 df Att 30 - SGL Count 100/100 • 1Pk Max 10 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm	dB SWT	.07 dB ● RBW 1 ms ● VBV	/NT 2-DI	H5 2402M Mode Aut	to Sweep			2.70 dB
Spectrum Ref Level 20.00 df Att 30 SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm	dB SWT	.07 dB ● RBW 1 ms ● VBV	/NT 2-DI	H5 2402M Mode Aut	to Sweep			2.70 dB
Spectrum Ref Level 20.00 df Att 30 - SGL Count 100/100 • 1Pk Max 10 dBm - 10 dBm - 10 dBm - 20 dBm - 30 dBm - 40 dBm	dB SWT	.07 dB ● RBW 1 ms ● VBV	/NT 2-DI	H5 2402M Mode Aut	to Sweep			2.70 dB
Spectrum Ref Level 20.00 df Att 30 - SGL Count 100/100 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm	dB SWT	.07 dB ● RBW 1 ms ● VBV	/NT 2-DI	H5 2402M Mode Aut	to Sweep			2.70 dB
Spectrum Ref Level 20.00 df Att 30 SGL Count 100/100 IN Max IO dBm -10 dBm -10 dBm -20 dBm -30 dBm -50 dBm -60 dBm	dB SWT	.07 dB ● RBW 1 ms ● VBV	/NT 2-DI	H5 2402M Mode Aut	to Sweep			2.70 dB
Spectrum Ref Level 20.00 df Att 30 - SGL Count 100/100 1Pk Max 10 dBm -10 dBm -10 dBm -30 dBm -30 dBm -50 dBm -60 dBm	dB SWT	.07 dB ● RBW 1 ms ● VBV	/NT 2-DI	Mode Aut	to Sweep		2.40	2.70 dB 185060 GH

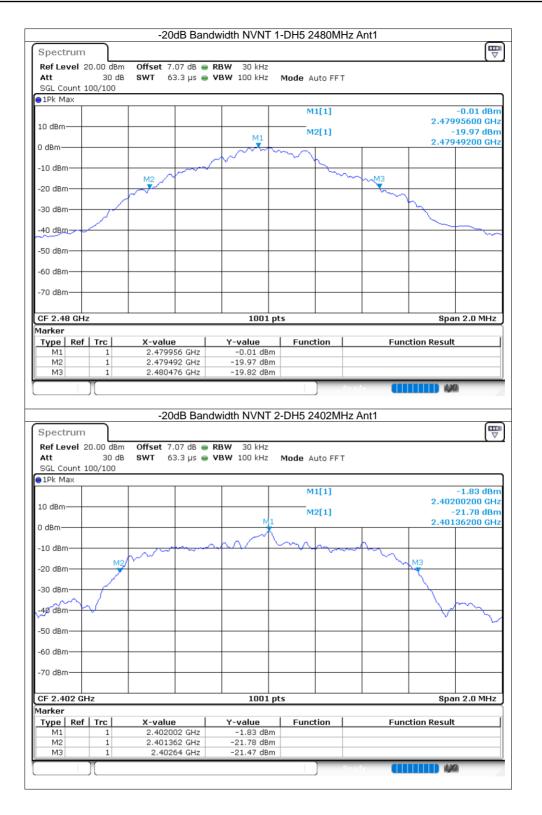
Att 30 SGL Count 100/100	dB SWT	24 dB 👄 RB 1 ms 👄 VB		Mode Au	to Sweep			
●1Pk Max				M	1[1]			2.12 dB
10 dBm					1		2.441	.01950 GH
10 dbiii			N	11				
0 dBm					Martin and Martin	Jan var		
-10 dBm						- Marken	W10 WWar	
-20_d8m							and the second	and and a second se
-20 08111								and show we
-30 dBm								
-40 dBm	_							
Fo dba								
-50 dBm								
-60 dBm								
-70 dBm								
CF 2.441 GHz			1001	l pts			Spa	n 6.5 MH:
Spectrum Ref Level 20.00 df Att 30	dB SWT	Power N D7 dB • RB 1 ms • VB	W 2 MHz	H5 2480M Mode Au		•		
Spectrum Ref Level 20.00 df	dB SWT	07 dB 👄 RB	W 2 MHz	Mode Au	to Sweep	× (11		Ę
Spectrum Ref Level 20.00 dt Att 30 SGL Count 100/100 1Pk Max	dB SWT	07 dB 👄 RB	W 2 MHz	Mode Au		· · · · · · · · · · · · · · · · · · ·		
Spectrum Ref Level 20.00 df Att 30 SGL Count 100/100	dB SWT	07 dB 👄 RB	W 2 MHz	Mode Au	to Sweep			- (Ę
Spectrum Ref Level 20.00 dt Att 30 SGL Count 100/100 1Pk Max	dB SWT	07 dB 🖷 RB 1 ms 🖷 VB	W 2 MHz	Mode Au	to Sweep			- (Ę
Spectrum Ref Level 20.00 dE Att 30 SGL Count 100/100 1Pk Max 10 dBm	dB SWT	07 dB 👄 RB	W 2 MHz	Mode Au	to Sweep			- (Ę
Spectrum Ref Level 20.00 df Att 30 - SGL Count 100/100 • 1Pk Max • 10 dBm • 0 dBm -10 dBm	dB SWT	07 dB 🖷 RB 1 ms 🖷 VB	W 2 MHz	Mode Au	to Sweep			- (Ę
Spectrum Ref Level 20.00 dE Att 30 SGL Count 100/100 1Pk Max 10 dBm 0 dBm	dB SWT	07 dB 🖷 RB 1 ms 🖷 VB	W 2 MHz	Mode Au	to Sweep	~		- (Ę
Spectrum Ref Level 20.00 df Att 30 - SGL Count 100/100 • 1Pk Max • 10 dBm • 0 dBm -10 dBm	dB SWT	07 dB • RB 1 ms • VB	W 2 MHz	Mode Au	to Sweep			- (Ę
Spectrum Ref Level 20.00 df Att 300 SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm	dB SWT	07 dB • RB 1 ms • VB	W 2 MHz	Mode Au	to Sweep			- (Ę
Spectrum Ref Level 20.00 df Att 30 - SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dB SWT	07 dB • RB 1 ms • VB	W 2 MHz	Mode Au	to Sweep			- (Ę
Spectrum Ref Level 20.00 dE Att 30 - SGL Count 100/100 • 1Pk Max • 10 dBm • 0 dBm • -10 dBm • -20 dBm • -30 dBm	dB SWT	07 dB • RB 1 ms • VB	W 2 MHz	Mode Au	to Sweep			- (Ę
Spectrum Ref Level 20.00 df Att 30 - SGL Count 100/100 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dB SWT	07 dB • RB 1 ms • VB	W 2 MHz	Mode Au	to Sweep			- (Ę
Spectrum Ref Level 20.00 df Att 30 - SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -60 dBm	dB SWT	07 dB • RB 1 ms • VB	W 2 MHz	Mode Au	to Sweep			- (Ę
Spectrum Ref Level 20.00 df Att 30 - SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	dB SWT	07 dB • RB 1 ms • VB	W 2 MHz	Mode Au	to Sweep			0.81 dB
Spectrum Ref Level 20.00 df Att 30 - SGL Count 100/100 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	dB SWT	07 dB • RB 1 ms • VB	W 2 MHz	Mode Au	to Sweep		2.480	0.81 dB 117530 GF

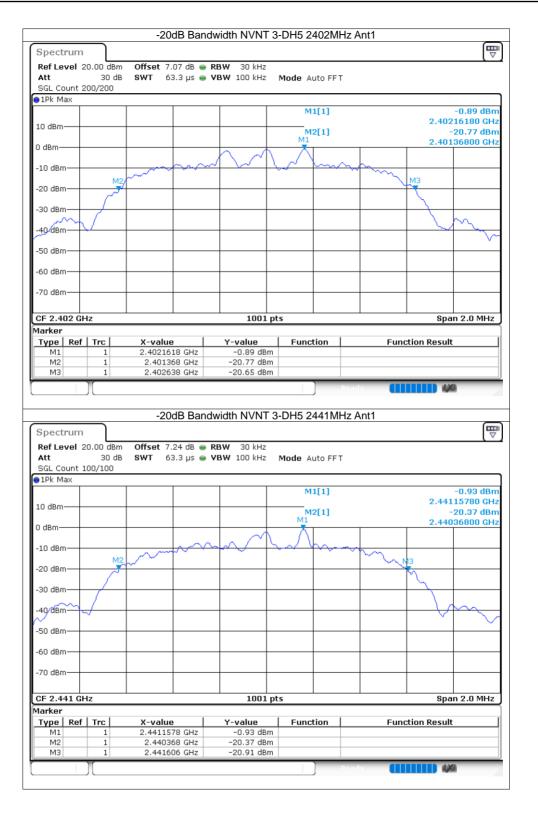
SGL Count 100/	30 dB SWT 100	1 ms 🛑 🗸	BW 2 MHz	Mode Auto Sw	еер		
1Pk Max				M1[1]			2.74 dB
10 dBm						2.40	185060 GF
			M1				
0 dBm	www	-v-n-man			man		
-10 dBm	- The state of the					- Contention	_
-20.dBm							
www.							- And
-30 dBm							
-40 dBm							_
50 dbm							
-50 dBm							
-60 dBm							
-70 dBm							
						0	DO C E MIL
SGL Count 100/	30 dB SWT	et 7.24 dB 👄 RI	BW 2 MHz	H5 2441MHz /		ар Социнальной Социналено Социналено Социналено Социналено Социналено Социналено Социналено Социналено Социналено	X
Spectrum Ref Level 20.00 Att	30 dB SWT	et 7.24 dB 👄 RI	NVNT 3-D BW 2 MHz	H5 2441MHz / Mode Auto Sw		арания Социальной Социально Социально Социально Социалено Социально Социально Социалено Социо Социо Социалено Социо Соци	M T
Spectrum Ref Level 20.00 Att SGL Count 100/ 1Pk Max	30 dB SWT	et 7.24 dB 👄 RI	NVNT 3-D BW 2 MHz	H5 2441MHz /			2.17 dB
Spectrum Ref Level 20.00 Att SGL Count 100/	30 dB SWT	et 7.24 dB 👄 RI	NVNT 3-D BW 2 MHz BW 2 MHz MHz	H5 2441MHz / Mode Auto Sw			2.17 dB)
Spectrum Ref Level 20.00 Att SGL Count 100/ 1Pk Max	30 dB SWT	et 7.24 dB 👄 RI	NVNT 3-D BW 2 MHz BW 2 MHz	H5 2441MHz / Mode Auto Sw			2.17 dB)
Spectrum Ref Level 20.00 Att SGL Count 100/ DIPk Max 10 dBm 0 dBm	30 dB SWT	et 7.24 dB 👄 RI	NVNT 3-D BW 2 MHz BW 2 MHz MHz	H5 2441MHz / Mode Auto Sw			2.17 dB)
Spectrum Ref Level 20.00 Att SGL Count 100/ 10 dBm -10 dBm -10 dBm	30 dB SWT	et 7.24 dB 👄 RI	NVNT 3-D BW 2 MHz BW 2 MHz MHz	H5 2441MHz / Mode Auto Sw			2.17 dBi
Spectrum Ref Level 20.00 Att SGL Count 100/ DIPk Max 10 dBm 0 dBm	30 dB SWT	et 7.24 dB 👄 RI	NVNT 3-D BW 2 MHz BW 2 MHz MHz	H5 2441MHz / Mode Auto Sw			2.17 dB)
Spectrum Ref Level 20.00 Att SGL Count 100/ 10 dBm -10 dBm -10 dBm	30 dB SWT	et 7.24 dB 👄 RI	NVNT 3-D BW 2 MHz BW 2 MHz MHz	H5 2441MHz / Mode Auto Sw			2.17 dB)
Spectrum Ref Level 20.00 Att SGL Count 100/ 10 dBm -10 dBm -20 dBm	30 dB SWT	et 7.24 dB 👄 RI	NVNT 3-D BW 2 MHz BW 2 MHz MHz	H5 2441MHz / Mode Auto Sw			2.17 dB
Spectrum Ref Level 20.00 Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	30 dB SWT	et 7.24 dB 👄 RI	NVNT 3-D BW 2 MHz BW 2 MHz MHz	H5 2441MHz / Mode Auto Sw			2.17 dB
Spectrum Ref Level 20.00 Att SGL Count 100/ 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	30 dB SWT	et 7.24 dB 👄 RI	NVNT 3-D BW 2 MHz BW 2 MHz MHz	H5 2441MHz / Mode Auto Sw			2.17 dB)
Spectrum Ref Level 20.00 Att SGL Count 100/ 1Pk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	30 dB SWT	et 7.24 dB 👄 RI	NVNT 3-D BW 2 MHz BW 2 MHz MHz	H5 2441MHz / Mode Auto Sw			2.17 dB
Spectrum Ref Level 20.00 Att SGL Count 100/ PIPk Max 10 dBm	30 dB SWT	et 7.24 dB 👄 RI	NVNT 3-D BW 2 MHz BW 2 MHz MHz	H5 2441MHz / Mode Auto Sw			2.17 dB
Spectrum Ref Level 20.00 Att SGL Count 100/ IPk Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -50 dBm -50 dBm	30 dB SWT	et 7.24 dB 👄 RI	NVNT 3-D BW 2 MHz BW 2 MHz MHz	H5 2441MHz / Mode Auto Sw			2.17 dB
Spectrum Ref Level 20.00 Att SGL Count 100/ PIPk Max 10 dBm	30 dB SWT	et 7.24 dB 👄 RI	NVNT 3-D BW 2 MHz BW 2 MHz MHz	H5 2441MHz / Mode Auto Sw M1[1]		2.44	2.17 dB

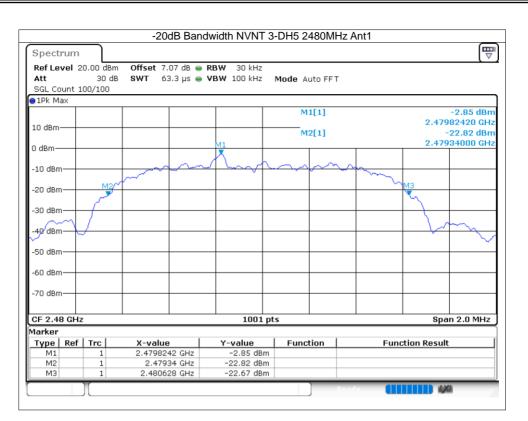
Certificate #4298.01

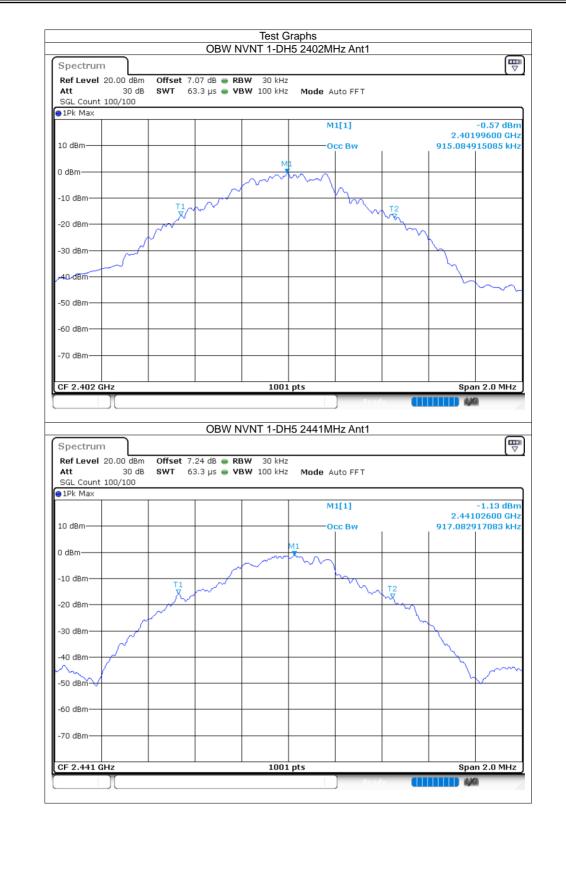
Spectrum)					E
SGL Count 100/	30 dB SWT	7.07 dB 👄 RBW 2 MHz 1 ms 👄 VBW 2 MHz	Mode Auto Sweep			
1Pk Max			M1[1]		2,480	3.26 dBn 18180 GH;
.0 dBm			M1			
dBm	and the start of the start of			hannes		
10 dBm	and the second s				and the second second	
20 dBm						- Jundowen Uh
30 dBm						
40 dBm						
50 dBm						
50 dBm						
70 dBm						
E 2 48 GHz		100	1 nts		gna	n 6.5 MHz
CF 2.48 GHz		100	1 pts	ady	Spa	n 6.5 M

8.3 -20dB Bandwidth


		_				
Condition	Mode	Frequency (MHz)	Antenna	-20 dB Bandwidth (MHz)	Limit -20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH5	2402	Ant1	1.034	0	Pass
NVNT	1-DH5	2441	Ant1	1.006	0	Pass
NVNT	1-DH5	2480	Ant1	0.984	0	Pass
NVNT	2-DH5	2402	Ant1	1.278	0	Pass
NVNT	2-DH5	2441	Ant1	1.25	0	Pass
NVNT	2-DH5	2480	Ant1	1.29	0	Pass
NVNT	3-DH5	2402	Ant1	1.27	0	Pass
NVNT	3-DH5	2441	Ant1	1.238	0	Pass
NVNT	3-DH5	2480	Ant1	1.288	0	Pass

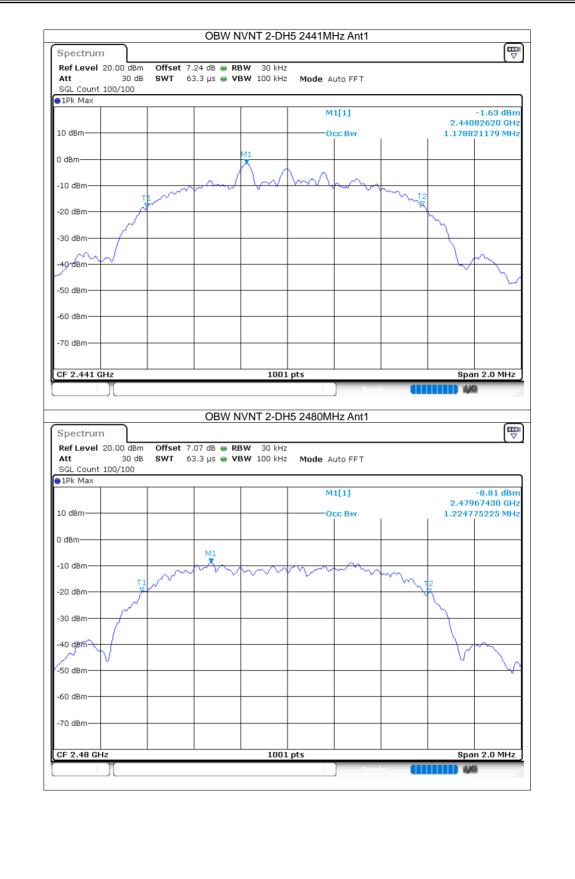


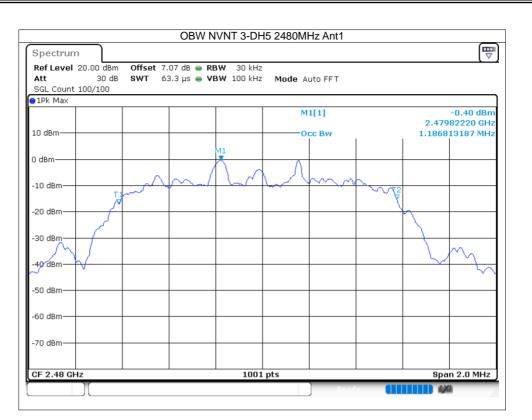




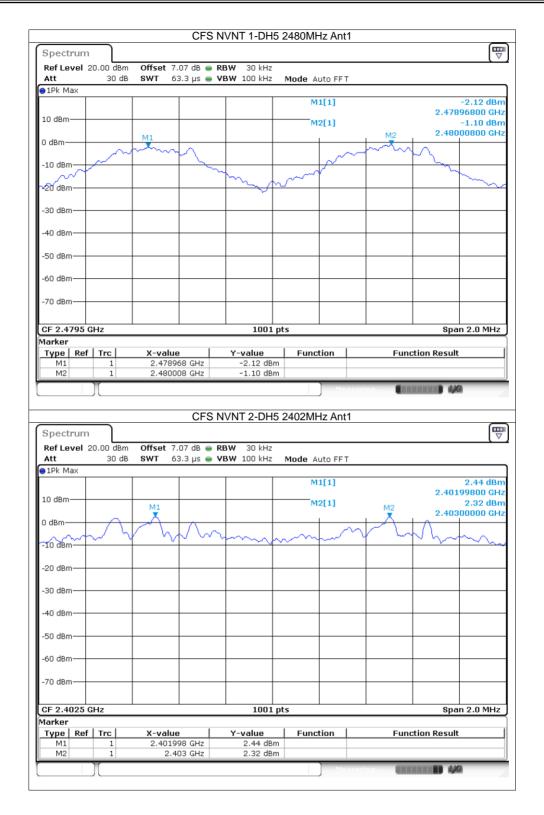
8.4 Occupied Channel Bandwidth

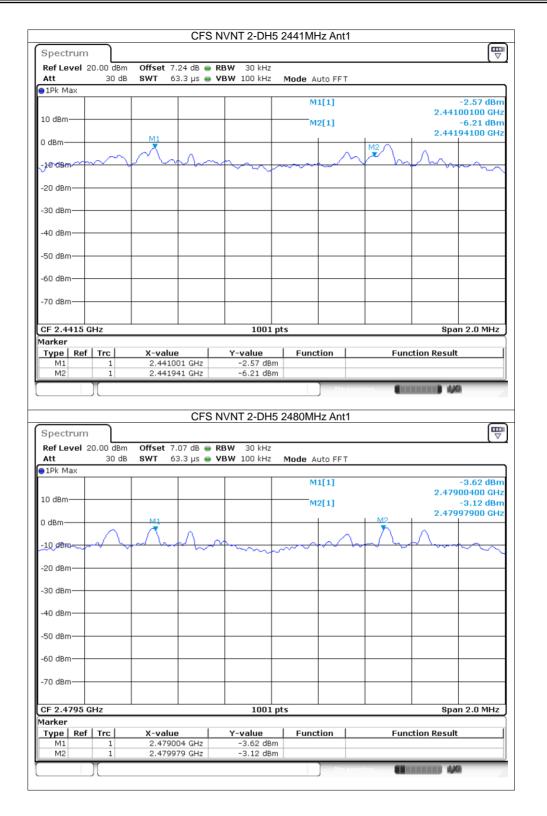
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	1-DH5	2402	Ant1	0.915
NVNT	1-DH5	2441	Ant1	0.917
NVNT	1-DH5	2480	Ant1	0.913
NVNT	2-DH5	2402	Ant1	1.191
NVNT	2-DH5	2441	Ant1	1.179
NVNT	2-DH5	2480	Ant1	1.225
NVNT	3-DH5	2402	Ant1	1.187
NVNT	3-DH5	2441	Ant1	1.169
NVNT	3-DH5	2480	Ant1	1.187

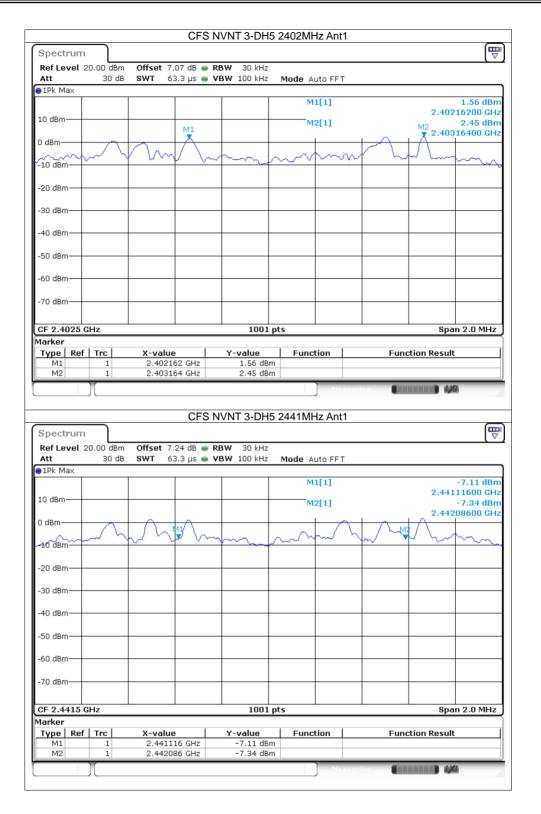


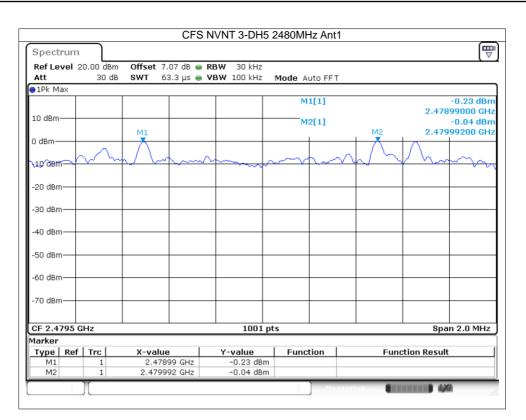


8.5 Carrier Frequencies Separation


8.5 Carrier	Frequer	ncies Sepai	ration				
Condition	Mode	Antenna	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	Ant1	2402.038	2403.002	0.964	0.689	Pass
NVNT	1-DH5	Ant1	2440.956	2442.006	1.05	0.671	Pass
NVNT	1-DH5	Ant1	2478.968	2480.008	1.04	0.656	Pass
NVNT	2-DH5	Ant1	2401.998	2403	1.002	0.852	Pass
NVNT	2-DH5	Ant1	2441.001	2441.941	0.94	0.833	Pass
NVNT	2-DH5	Ant1	2479.004	2479.979	0.975	0.86	Pass
NVNT	3-DH5	Ant1	2402.162	2403.164	1.002	0.847	Pass
NVNT	3-DH5	Ant1	2441.116	2442.086	0.97	0.825	Pass
NVNT	3-DH5	Ant1	2478.99	2479.992	1.002	0.859	Pass





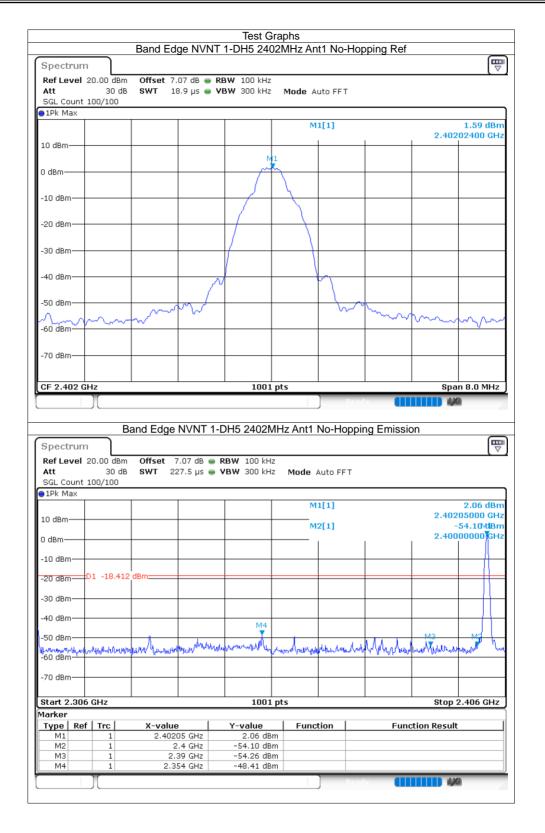


8.6 Number of Hopping Channel

Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH5	Ant1	79	15	Pass
NVNT	2-DH5	Ant1	79	15	Pass
NVNT	3-DH5	Ant1	79	15	Pass

Chaster			opping	No. NVNT 1	-DH5 240	i∠ivi⊓z Añ	11		Ē
Spectrun Ref Level	n 20.00 dBm	Offeet 7	07 de ค	RBW 100 kHz					
Att	30 dB	SWT		VBW 300 kHz		uto Sweep			
⊖1Pk Max									
					м	1[1]		2.40	2.20 dBm 018370 GHz
10 dBm M1			-		м	2[1]		2.40	0.44 dBm
0 28 48 44 44 44	0.0.0.0.N.H.A.A.	ndHdsdsn		odopabhidae	Hennedde		ынылыкка	2.48	802435/GHz
	MUANUKAN	UUUUUU	MAUR	2021202005	UNN KUR	DAAAAAAA	MARAM	MARAAA	TUNNU -
-19,98,44	<u> </u>	HANANAN	₩₩₩₩₩	₭₽₿₿₿₩₽₩₿₽₽ ₩	₩₩₩₩₩₩₩	₩¥₩Ÿ₩Ÿ₩Ÿ		┫╿Ϋ╢╿╢╿╢	ARRIVII.
					01 1.101		10000000	101-10101	
-20 dBm									
30 dBm									
-40 dBm									
50 dBm-			-						- With
-60 dBm			1						
-70 dBm									
Start 2.4 G	Hz	I		1001	pts			Stop 2	.4835 GHz
Marker									
Type Re M1	f Trc 1	<u>X-valu</u> 2,4018	e	<u>Y-value</u> 2.20 dB	Func m	tion	Fun	ction Resul	t
M2	1	2.48024		0.44 dB					
) (Measur	ing		0
)	_		
		ł	Hopping	No. NVNT 2	-DH5 240	2MHz An	t1		
Spectrun	n	ŀ	Hopping	No. NVNT 2	-DH5 240	2MHz An	t1		Ē
	n 20.00 dBm			No. NVNT 2 RBW 100 kHz		2MHz An	t1		
Ref Level Att			.07 dB 👄			2MHz An	t1		
Ref Level	20.00 dBm	Offset 7	.07 dB 👄	RBW 100 kHz	Mode A	uto Sweep	t1		
Ref Level Att 1Pk Max	20.00 dBm	Offset 7	.07 dB 👄	RBW 100 kHz	Mode A		t1	2.4(-0.66 dBm 018370 GHz
Ref Level Att 1Pk Max	20.00 dBm	Offset 7	.07 dB 👄	RBW 100 kHz	Mode A	uto Sweep	t1		-0.66 dBm 018370 GHz -5.26 dBm
Ref Level Att 1Pk Max 10 dBm-	20.00 dBm 30 dB	Offset 7 SWT	.07 dB • 1 ms •	RBW 100 kHz VBW 300 kHz	Mode A M	uto Sweep	t1		-0.66 dBm 018370 GHz
Ref Level Att 1Pk Max 10 dBm-	20.00 dBm 30 dB	Offset 7 SWT	.07 dB • 1 ms •	RBW 100 kHz	Mode A M	uto Sweep	t1		-0.66 dBm 018370 GHz -5.26 dBm
Ref Level Att 1Pk Max 10 dBm-	20.00 dBm 30 dB	Offset 7 SWT	.07 dB • 1 ms •	RBW 100 kHz VBW 300 kHz	Mode A M	uto Sweep			-0.66 dBm 018370 GHz -5.26 dBm
Ref Level Att 1Pk Max 10 dBm-	20.00 dBm 30 dB	Offset 7 SWT	.07 dB • 1 ms •	RBW 100 kHz VBW 300 kHz	Mode A M	uto Sweep			-0.66 dBm 018370 GHz -5.26 dBm
Ref Level Att 1Pk Max 10 dBm -10 dBm -20 dBm	20.00 dBm 30 dB	Offset 7 SWT	.07 dB • 1 ms •	RBW 100 kHz VBW 300 kHz	Mode A M	uto Sweep			-0.66 dBm 018370 GHz -5.26 dBm
Ref Level Att 10 dBm 10 dBm -10 dBm	20.00 dBm 30 dB	Offset 7 SWT	.07 dB • 1 ms •	RBW 100 kHz VBW 300 kHz	Mode A M	uto Sweep			-0.66 dBm 018370 GHz -5.26 dBm
Ref Level Att 1Pk Max 10 dBm -10 dBm -20 dBm	20.00 dBm 30 dB	Offset 7 SWT	.07 dB • 1 ms •	RBW 100 kHz VBW 300 kHz	Mode A M	uto Sweep			-0.66 dBm 018370 GHz -5.26 dBm
Ref Level Att 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB	Offset 7 SWT	.07 dB • 1 ms •	RBW 100 kHz VBW 300 kHz	Mode A M	uto Sweep			-0.66 dBm 018370 GHz -5.26 dBm
Ref Level Att 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm	20.00 dBm 30 dB	Offset 7 SWT	.07 dB • 1 ms •	RBW 100 kHz VBW 300 kHz	Mode A M	uto Sweep			-0.66 dBm 018370 GHz -5.26 dBm
Ref Level Att 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 30 dB	Offset 7 SWT	.07 dB • 1 ms •	RBW 100 kHz VBW 300 kHz	Mode A M	uto Sweep			-0.66 dBm 018370 GHz -5.26 dBm
Ref Level Att 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	20.00 dBm 30 dB	Offset 7 SWT	.07 dB • 1 ms •	RBW 100 kHz VBW 300 kHz	Mode A M	uto Sweep			-0.66 dBm 018370 GHz -5.26 dBm
Ref Level Att 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 30 dB	Offset 7 SWT	.07 dB • 1 ms •	RBW 100 kHz VBW 300 kHz	Mode A M	uto Sweep			-0.66 dBm 018370 GHz -5.26 dBm
Ref Level Att 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm	20.00 dBm 30 dB	Offset 7 SWT	.07 dB • 1 ms •	RBW 100 kHz VBW 300 kHz	Mode A M	uto Sweep			-0.66 dBm 018370 GHz -5.26 dBm
Ref Level Att 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 30 dB	Offset 7 SWT	.07 dB • 1 ms •	RBW 100 kHz VBW 300 kHz	Mode A	uto Sweep		2.44	-0.66 dBm 018370 GHz -5.26 dBm
Ref Level Att • 1Pk Max • 1Pk Max • 10 dBm • 20 dBm • 20 dBm • 30 dBm • 40 dBm • 50 dBm • 60 dBm • 70 dBm • 70 dBm • 80 dBm	20.00 dBm 30 dB	Offset 7 SWT	.07 dB • 1 ms •	RBW 100 kHz VBW 300 kHz	Mode A	uto Sweep		2.44	-0.66 dBm 018370 GHz -5.26 dBm 804105 GHz
Ref Level Att 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm	20.00 dBm 30 dB	Offset 7 SWT	.07 dB • 1 ms •	RBW 100 kHz VBW 300 kHz	Mode A	uto Sweep		2.44	-0.66 dBm 018370 GHz -5.26 dBm 804105 GHz
Ref Level Att • 1Pk Max • 1Pk Max 10 dBm • 10 dBm • 20 dBm • 20 dBm • 30 dBm • 40 dBm • 50 dBm • 60 dBm • 70 dBm	20.00 dBm 30 dB	Offset 7 SWT	.07 dB • 1 ms •	RBW 100 kHz VBW 300 kHz Image: state st	Mode A M M M M M M M M M M M M M M M M M M M	uto Sweep		2.44	-0.66 dBm 018370 GHz -5.26 dBm 804105 GHz

Spectrum									₿
Ref Level 2		Offset 7.	07 d0 🔿 🛛	BW 100 kHz					(v
Att	30 dB	SWT	_	BW 300 kHz	Mode &	uto Sweep	-		
1Pk Max		0		D11 000 MIL	HOUC A	10 0 000			
				1 1	M	1[1]			4.89 dBm
								2.40	20040 GHz
101dBm					M	2[1]			2.57 dBm
. Nakh lahin	d b h d n d d	ANTE NU ADA	HALLARD.	HUMAN	in KIMINA AN	NUL UN	A STAR MARKA	11.1.2.48	02435 GHz
᠈ᢞᡌᢂᢂᡀ᠕ᡃᠶᡟ	MAMAN	NAMANANA	WWWW	NATA A A A A A A A A A A A A A A A A A A	WWWW	WWW	WWWWW	MWWW	AMM.
-10 dBm	•				1			•••••	
-to ubili									
-20 dBm									
30 dBm-+									
-40 dBm									-
-50 dBm				<u> </u>					
-60 dBm									
-70 dBm									
Start 2.4 GH	lz			1001	pts			Stop 2	.4835 GHz
1arker									
Type Ref		X-value		Y-value	Funct	tion	Fund	tion Result	
M1 M2	1	2.40200		4.89 dBr 2.57 dBr					



8.7 Band Edge

0.7 Banu E	uge						
Condition	Mode	Frequency (MHz)	Antenna	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	1-DH5	2402	Ant1	No-Hopping	-49.99	-20	Pass
NVNT	1-DH5	2480	Ant1	No-Hopping	-54.5	-20	Pass
NVNT	2-DH5	2402	Ant1	No-Hopping	-51.5	-20	Pass
NVNT	2-DH5	2480	Ant1	No-Hopping	-53.6	-20	Pass
NVNT	3-DH5	2402	Ant1	No-Hopping	-52.2	-20	Pass
NVNT	3-DH5	2480	Ant1	No-Hopping	-53.57	-20	Pass

	20.00 dBm			3W 100 kHz					
Att SGL Count	30 dB 100/100	SWT 18	3.9 µs 👄 VI	BW 300 kHz	Mode A	uto FFT			
∋1Pk Max	100/100								
					М	1[1]			2.36 dBn
10 -10								2.479	96000 GH
10 dBm				MI					
0.10				, " ,	~				
0 dBm									
-10 dBm					1				
-10 ubiii				1	5				
-20 dBm									
-20 0011									
-30 dBm									
-30 abiii					1				
-40 dBm					1	4			
			∕∿			r \			
-50 dBm							<u>م</u>		
~~~ ~	-	h~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$  \vee \vee$				mm	A	1.1.
-60 dBm	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	· ~ ·						$\sim \sim \sim$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-70 dBm									
CF 2.48 GH	12			1001	prs	·		spa	n 8.0 MHz
Coattur		and Edge	NVNT 1-E	DH5 2480N	/Hz Ant1	No-Hoppir	ng Emissio	n	
	n 20.00 dBm	Offset 7	.07 dB 👄 R	<b>BW</b> 100 kHz	z		ng Emissio	n	
Ref Level Att	n 20.00 dBm 30 dB	Offset 7	.07 dB 👄 R		z		ng Emissic	n	
Ref Level Att SGL Count	n 20.00 dBm 30 dB	Offset 7	.07 dB 👄 R	<b>BW</b> 100 kHz	z		ng Emissic	on	Ţ
Ref Level Att SGL Count	n 20.00 dBm 30 dB	Offset 7	.07 dB 👄 R	<b>BW</b> 100 kHz	z z <b>Mode</b> .		ng Emissic		3.04 dBn
Ref Level Att SGL Count 1Pk Max	n 20.00 dBm 30 dB	Offset 7	.07 dB 👄 R	<b>BW</b> 100 kHz	z Z Mode . M	Auto FFT	ng Emissio	2.479	3.04 dBn 85000 GH
Ref Level Att SGL Count 1Pk Max	n 20.00 dBm 30 dB	Offset 7	.07 dB 👄 R	<b>BW</b> 100 kHz	z Z Mode . M	Auto FFT	ng Emissio	2.479	3.04 dBn 85000 GH 53.19 dBn
Ref Level Att SGL Count 1Pk Max	n 20.00 dBm 30 dB	Offset 7	.07 dB 👄 R	<b>BW</b> 100 kHz	z Z Mode . M	Auto FFT	ng Emissic	2.479	3.04 dBn 85000 GH
Ref Level Att SGL Count 1Pk Max	n 20.00 dBm 30 dB	Offset 7	.07 dB 👄 R	<b>BW</b> 100 kHz	z Z Mode . M	Auto FFT	ng Emissic	2.479	3.04 dBn 85000 GH 53.19 dBn
Ref Level Att SGL Count 1Pk Max 10,dBm	n 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	.07 dB 👄 R	<b>BW</b> 100 kHz	z Z Mode . M	Auto FFT		2.479	3.04 dBn 85000 GH 53.19 dBn
Ref Level Att SGL Count 1Pk Max 10,dBm	n 20.00 dBm 30 dB	Offset 7 SWT 22	.07 dB 👄 R	<b>BW</b> 100 kHz	z Z Mode . M	Auto FFT		2.479	3.04 dBn 85000 GH 53.19 dBn
Ref Level Att SGL Count 1Pk Max 10,dBm	n 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	.07 dB 👄 R	<b>BW</b> 100 kHz	z Z Mode . M	Auto FFT		2.479	3.04 dBn 85000 GH 53.19 dBn
Ref Level           Att           SGL Count           1Pk Max           10,dPm           0 dBm           -10 dBm           -20 dBm           -30 qBm	n 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	.07 dB 👄 R	<b>BW</b> 100 kHz	z Z Mode . M	Auto FFT		2.479	3.04 dBn 85000 GH 53.19 dBn
Ref Level Att           SGL Count           1Pk Max           10,dBm           0 dBm           -10 dBm           -20 dBm           -30 qBm           -40 dBm	n 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	.07 dB 👄 R	<b>BW</b> 100 kHz	z Z Mode . M	Auto FFT		2.479	3.04 dBn 85000 GH 53.19 dBn
Ref Level           Att           SGL Count           1Pk Max           10,dPm           0 dBm           -10 dBm           -20 dBm           -30 qBm	n 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	7.07 dB ● R ?7.5 μs ● V	28 100 kHz 78 300 kHz	z Mode . M M	Auto FFT  1[1]  2[1]		2.479 - 2.483	3.04 dBn 85000 GH 53.19 dBn 50000 GH
Ref Level           Att           SGL Count           1Pk Max           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	n 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	7.07 dB ● R ?7.5 μs ● V	28W 100 kHz 78W 300 kHz	z Mode . M M	Auto FFT		2.479 - 2.483	3.04 dBn 85000 GH 53.19 dBn 50000 GH
Ref Level Att           SGL Count           1Pk Max           10,dBm           0 dBm           -10 dBm           -20 dBm           -30 qBm           -40 dBm	n 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	7.07 dB ● R ?7.5 μs ● V	28 100 kHz 78 300 kHz	z Mode . M M	Auto FFT  1[1]  2[1]		2.479 - 2.483	3.04 dBn 85000 GH 53.19 dBn 50000 GH
Ref Level           Att           SGL Count           1Pk Max           1Pk Max           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	n 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	7.07 dB ● R ?7.5 μs ● V	28 100 kHz 78 300 kHz	z Mode . M M	Auto FFT  1[1]  2[1]		2.479 - 2.483	3.04 dBn 85000 GH 53.19 dBn 50000 GH
Ref Level Att           SGL Count           1Pk Max           10,dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -70 dBm	n 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	7.07 dB ● R ?7.5 μs ● V	28W 100 kHz 28W 300 kHz	2 Mode . M M M	Auto FFT  1[1]  2[1]		2.479 - 2.483 	3.04 dBn 85000 GH 53.19 dBn 50000 GH
Ref Level Att           SGL Count           1Pk Max           10,dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -70 dBm           -70 dBm	n 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	7.07 dB ● R ?7.5 μs ● V	28 100 kHz 78 300 kHz	2 Mode . M M M	Auto FFT  1[1]  2[1]		2.479 - 2.483 	3.04 dBn 85000 GH 53.19 dBn 50000 GH
Ref Level Att           SGL Count           IPk Max           10,dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm           Start 2.47/	0 20.00 dBm 30 dB 100/100 01 -17.637	Offset 7 SWT 22	27.5 μs ● <b>R</b> 27.5 μs ● <b>V</b>	2BW 100 kHz 7BW 300 kHz	2 Mode M M M	Auto FFT  1[1] 2[1]		2.479 - 2.483 	3.04 dBn 85000 GH 53.19 dBn 50000 GH %
Ref Level Att           SGL Count           IPk Max           10hdBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -70 dBm           Start 2.47           Marker           Type         Re	n 20.00 dBm 30 dB 100/100 101/100	Offset 7 SWT 22	2.07 dB ● R 27.5 μs ● V	BW 100 kH; BW 300 kH; אין אין אין אין אין אין אין אין אין אין	2 2 Mode M M M M	Auto FFT  1[1] 2[1]		2.479 - 2.483 	3.04 dBn 85000 GH 53.19 dBn 50000 GH %
Ref Level Att           SGL Count           IPk Max           10,dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm           Start 2.47/	0 20.00 dBm 30 dB 100/100 01 -17.637	Offset 7 SWT 22	27.5 μs ● <b>R</b> 27.5 μs ● <b>V</b>	2BW 100 kHz 7BW 300 kHz	2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5	Auto FFT  1[1] 2[1]		2.479 - 2.483 	3.04 dBn 85000 GH 53.19 dBn 50000 GH %
Ref Level Att           SGL Count           1Pk Max           10,dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -70 dBm           Start 2.470           Marker           Type           M1           M2           M3	6 GHz f Trc 1 1 1 1 1 1 1 1 1	Offset 7 SWT 22 dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm	27.5 μs • V 27.5 μs • V 5.5 μs • V 5.5 μs 6.5 GHz 5.5 GHz 5.5 GHz	ВW 100 kH2 ////////////////////////////////////	2 2 Mode M M M M M M M M M M M M M M M M M M M	Auto FFT  1[1] 2[1]		2.479 - 2.483 	3.04 dBn 85000 GH 53.19 dBn 50000 GH %
Ref Level Att           SGL Count           1Pk Max           10,dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -50 dBm           -50 dBm           -50 dBm           -70 dBm           Start 2.47           Marker           Type           M1           M2	20.00 dBm 30 dB 100/100	Offset 7 SWT 22 dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm	27.5 μs • V 27.5 μs • V 4	28W 100 kH2 28W 300 kH2 200 kH	2 2 Mode M M M M M M M M M M M M M M M M M M M	Auto FFT  1[1] 2[1]		2.479 - 2.483 	3.04 dBn 85000 GH 53.19 dBn 50000 GH %
Ref Level Att           SGL Count           1Pk Max           10,dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -70 dBm           Start 2.470           Marker           Type           M1           M2           M3	6 GHz f Trc 1 1 1 1 1 1 1 1 1	Offset 7 SWT 22 dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm	27.5 μs • V 27.5 μs • V 5.5 μs • V 5.5 μs 6.5 GHz 5.5 GHz 5.5 GHz	ВW 100 kH2 ////////////////////////////////////	2 2 Mode M M M M M M M M M M M M M M M M M M M	Auto FFT  1[1] 2[1]		2.479 - 2.483 	3.04 dBn 85000 GH 53.19 dBn 50000 GH %



0		Danu Lug		2-DH5 240			opping ite	1	E
Spectrun Bof Loual	n 20.00 dBm	Offcot 7.0		3W 100 kHz					
Att	30 dB			3W 300 kHz		uto FFT			
SGL Count	100/100								
●1Pk Max					м	1[1]			1.00 dBm
								2.40	202400 GHz
10 dBm									
				Μ	1				
0 dBm					M				
				m	N				
-10 dBm—									
-20 dBm									
-20 ubiii-				1					
-30 dBm									
			A and	ř I		har a			
-40 dBm			/ \ / *v			r V	<u> </u>		
							Λ		
-50 dBm									
	n m	and a					- Www	mm.	mon
-60 dBm—	V V-	· ·							
-70 dBm—									
CF 2.402 (	GHz			1001	pts			Spa	an 8.0 MHz
	n	and Edge I			/Hz Ant1	) no-Hop	ody 🚺	sion	
Att	n 20.00 dBm 30 dB	Offset 7.	.07 dB 👄 🛛	DH5 2402N BW 100 kH: BW 300 kH:	/Hz Ant1		oty	sion	Ø [₩
Ref Level	n 20.00 dBm 30 dB	Offset 7.	.07 dB 👄 🛛	<b>BW</b> 100 kH:	/Hz Ant1		oty 🚺	sion	
Ref Level Att SGL Count	n 20.00 dBm 30 dB	Offset 7.	.07 dB 👄 🛛	<b>BW</b> 100 kH:	/IHz Ant1 ^z ^z Mode /		odv	sion	(₩ ▼ 1.31 dBm
Ref Level Att SGL Count	n 20.00 dBm 30 dB	Offset 7.	.07 dB 👄 🛛	<b>BW</b> 100 kH:	/Hz Ant1 z z Mode /	Auto FFT 1[1]	adv	2.40	1.31 dBm 195000 GHz
Ref Level Att SGL Count 1Pk Max	n 20.00 dBm 30 dB	Offset 7.	.07 dB 👄 🛛	<b>BW</b> 100 kH:	/Hz Ant1 z z Mode /	Auto FFT	adv	2.40	1.31 dBm 195000 GHz -52.85vdBm
Ref Level Att SGL Count 1Pk Max	n 20.00 dBm 30 dB	Offset 7.	.07 dB 👄 🛛	<b>BW</b> 100 kH:	/Hz Ant1 z z Mode /	Auto FFT 1[1]	odv	2.40	1.31 dBm 195000 GHz
Ref Level Att SGL Count 1Pk Max	n 20.00 dBm 30 dB	Offset 7.	.07 dB 👄 🛛	<b>BW</b> 100 kH:	/Hz Ant1 z z Mode /	Auto FFT 1[1]	ping Emiss	2.40	1.31 dBm 195000 GHz -52.85vdBm
Ref Level Att SGL Count 1Pk Max 10 dBm	n 20.00 dBm 30 dB	Offset 7. SWT 22	.07 dB 👄 🛛	<b>BW</b> 100 kH:	/Hz Ant1 z z Mode /	Auto FFT 1[1]	ping Emiss	2.40	1.31 dBm 195000 GHz -52.85vdBm
Ref Level Att SGL Count 1Pk Max 10 dBm	n	Offset 7. SWT 22	.07 dB 👄 🛛	<b>BW</b> 100 kH:	/Hz Ant1 z z Mode /	Auto FFT 1[1]	odv	2.40	1.31 dBm 195000 GHz -52.85vdBm
Ref Level Att SGL Count 1Pk Max 10 dBm	n	Offset 7. SWT 22	.07 dB 👄 🛛	<b>BW</b> 100 kH:	/Hz Ant1 z z Mode /	Auto FFT 1[1]	odv	2.40	1.31 dBm 195000 GHz -52.85vdBm
Ref Level Att SGL Count 1Pk Max 10 dBm	n	Offset 7. SWT 22	.07 dB 👄 🛛	28W 100 kH 78W 300 kH	/Hz Ant1 z z Mode /	Auto FFT 1[1]	odv	2.40	1.31 dBm 195000 GHz -52.85vdBm
Ref Level           Att           SGL Count           ID dBm           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	n	Offset 7. SWT 22	.07 dB ● R 7.5 µs ● V	BW 100 kH; BW 300 kH;	/Hz Ant1	Auto FFT 1[1]		2.40 2.40	1.31 dBm 195000 GHz -52.85vdBm
Ref Level Att           SGL Count           IRK Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	n 20.00 dBm 30 dB 100/100	Offset 7. SWT 22	.07 dB ● R 7.5 µs ● V	28W 100 kH 78W 300 kH	/Hz Ant1	Auto FFT 1[1]		2.40 2.40	1.31 dBm 195000 GHz -52.85,qBm 000000 GHz
Ref Level Att           SGL Count           1Pk Max           10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm	n 20.00 dBm 30 dB 100/100	Offset 7. SWT 22	.07 dB ● R 7.5 µs ● V	BW 100 kH; BW 300 kH;	/Hz Ant1	Auto FF T 1[1] 2[1]		2.40 2.40	1.31 dBm 195000 GHz -52.85,qBm 000000 GHz
Ref Level Att           SGL Count           IRK Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm	n 20.00 dBm 30 dB 100/100	Offset 7. SWT 22	.07 dB ● R 7.5 µs ● V	BW 100 kH; BW 300 kH;	/Hz Ant1	Auto FF T 1[1] 2[1]		2.40 2.40	1.31 dBm 195000 GHz -52.85,qBm 000000 GHz
Ref Level Att           SGL Count           SGL Count           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -70 dBm	n 20.00 dBm 30 dB 100/100 ==	Offset 7. SWT 22	.07 dB ● R 7.5 µs ● V	100 kH איז איז איז איז איז איז איז איז איז איז	/Hz Ant1	Auto FF T 1[1] 2[1]		2.40 2.40	1.31 dBm 195000 GHz -52.85,qBm 000000 GHz
Ref Level Att           SGL Count           SGL Count           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -70 dBm           -70 dBm	n 20.00 dBm 30 dB 100/100 ==	Offset 7. SWT 22	.07 dB ● R 7.5 µs ● V	BW 100 kH; BW 300 kH;	/Hz Ant1	Auto FF T 1[1] 2[1]		2.40 2.40	1.31 dBm 195000 GHz -52.85,qBm 000000 GHz
Ref Level Att           SGL Count           SGL Count           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -70 dBm           -70 dBm           -70 dBm           -70 dBm	n 20.00 dBm 30 dB 100/100 = D1 -18.995 	Offset 7. SWT 22	.07 dB <b>• π</b> 7.5 μs <b>• ν</b>	100 kH 100 kH	/Hz Ant1	۵uto FF T 1[1] 2[1]		2.40 2.40	1.31 dBm 195000 GHz -52.85,rdBm 000000 GHz M2 M2 2.406 GHz
Ref Level Att           SGL Count           SGL Count           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -50 dBm           -70 dBm           -70 dBm           Start 2.30           Marker	n 20.00 dBm 30 dB 100/100 ==	Offset 7. SWT 22	.07 dB • R 7.5 μs • V	100 kH איז איז איז איז איז איז איז איז איז איז	/Hz Ant1	۵uto FF T 1[1] 2[1]		2.40 2.40	1.31 dBm 195000 GHz -52.85,rdBm 000000 GHz M2 M2 2.406 GHz
Ref Level Att           SGL Count           SGL Count           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -50 dBm           -50 dBm           -70 dBm           Start 2.30           Marker           Type         Re           M1           M2	n 20.00 dBm 30 dB 100/100 ===============================	Offset 7. SWT 22 dBm add (unally 2.4019 2.	.07 dB <b>е R</b> 7.5 µs <b>е V</b>	100 kH 200 kH	/Hz Ant1 z z Mode / M M M M m M	۵uto FF T 1[1] 2[1]		2.40 2.40	1.31 dBm 195000 GHz -52.85,rdBm 000000 GHz M2 M2 2.406 GHz
Ref Level Att           SGL Count           SGL Count           1Pk Max           10 dBm           -10 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -60 dBm           -70 dBm	n 20.00 dBm 30 dB 100/100 = = 01 -18.995 = = = = = = = = = = = = = = = = = =	Offset 7. SWT 22 dBm dBm anhu (unully compared X-value 2.4019 2. 2.3	.07 dB <b>• R</b> 7.5 μs <b>• ν</b>	28W 100 kH 28W 300 kH 28W 300 kH 28W 300 kH 29W 300 kH 200 kH 20	/Hz Ant1	۵uto FF T 1[1] 2[1]		2.40 2.40	1.31 dBm 195000 GHz -52.85,rdBm 000000 GHz M2 M2 2.406 GHz
Ref Level Att           SGL Count           SGL Count           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 2.30           Marker           Type           M1           M2           M3	n 20.00 dBm 30 dB 100/100 = = D1 -18.995 = = D1 -18.995 = = D1 -18.995 = = 0 1 -18.995 = = 0 1 -18.995 = = 0 1 -18.995 = = 0 1 -18.995 = = 100/100	Offset 7. SWT 22 dBm dBm anhu (unully compared X-value 2.4019 2. 2.3	07 dB <b>е R</b> 7.5 µs <b>е V</b> 7.5 µs <b>е V</b> 7.5 GHz 4 GHz 9 GHz	BW 100 kH: BW 300 kH: M4 y	/Hz Ant1	۵uto FF T 1[1] 2[1]		2.40 2.40	1.31 dBm 195000 GHz -52.85,rdBm 000000 GHz M2 M2 2.406 GHz



Spectrum				2-DH5 248					
	' 20.00 dBm	Offset 7	.07 dB 👄 RE	<b>3W</b> 100 kHz					ι.
Att	30 dB			<b>BW</b> 300 kHz		uto FFT			
SGL Count	100/100								
JIPK Max			1	<u>г</u>	м	1[1]			0.60 dBn
								2.479	81620 GH
10 dBm									
				M1					
0 dBm——				M	m				
-10 dBm									
-20 dBm									
-30 dBm—					{				
					ľ	h i			
-40 dBm			$h \wedge$			the s			
						$  \lor$			
-50 dBm									^
$\sim$	$\sim$						m	m	www
-60 dBm									
70 40									
-70 dBm									
CF 2.48 GF	17			1001	pts			Spa	n 8.0 MHz
GF 2.48 GF	1								24
Spectrum	)(B	and Edge	NVNT 2-E	DH5 2480N	/Hz Ant1	) No-Hoppin	ng Emissio	on	
Spectrum Ref Level Att	B n 20.00 dBm 30 dB	Offset	7.07 dB 👄 F	DH5 2480M RBW 100 kHz /BW 300 kHz	z		ng Emissio		
Spectrum Ref Level Att SGL Count	B n 20.00 dBm 30 dB	Offset	7.07 dB 👄 F	<b>RBW</b> 100 kHz	z		ng Emissio		
Spectrum Ref Level Att	B n 20.00 dBm 30 dB	Offset	7.07 dB 👄 F	<b>RBW</b> 100 kHz	z z <b>Mode</b> /		ng Emissio		
Spectrum Ref Level Att SGL Count	B n 20.00 dBm 30 dB	Offset	7.07 dB 👄 F	<b>RBW</b> 100 kHz	z Mode / Mode /	Auto FFT	ng Emissio	2.479	0.46 dBn 85000 GH
Spectrum Ref Level Att SGL Count IPk Max 10 dBm M1	B n 20.00 dBm 30 dB	Offset	7.07 dB 👄 F	<b>RBW</b> 100 kHz	z Mode / Mode /	Auto FFT	ng Emissio	2.479	0.46 dBn 85000 GH 55.85 dBn
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm—	B n 20.00 dBm 30 dB	Offset	7.07 dB 👄 F	<b>RBW</b> 100 kHz	z Mode / Mode /	Auto FFT	ng Emissio	2.479	0.46 dBn 85000 GH
Spectrum Ref Level Att SGL Count IPk Max 10 dBm M1	B n 20.00 dBm 30 dB	Offset	7.07 dB 👄 F	<b>RBW</b> 100 kHz	z Mode / Mode /	Auto FFT		2.479	0.46 dBn 85000 GH 55.85 dBn
Spectrum Ref Level Att SGL Count IPk Max 10 dBm M1 0 dBm -10 dBm	B 20.00 dBm 30 dB 100/100	Offset 5 SWT 2:	7.07 dB 👄 F	<b>RBW</b> 100 kHz	z Mode / Mode /	Auto FFT		2.479	0.46 dBn 85000 GH 55.85 dBn
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	B n 20.00 dBm 30 dB	Offset 5 SWT 2:	7.07 dB 👄 F	<b>RBW</b> 100 kHz	z Mode / Mode /	Auto FFT		2.479	0.46 dBn 85000 GH 55.85 dBn
Spectrum Ref Level Att SGL Count IPk Max 10 dBm M1 0 dBm -10 dBm	B 20.00 dBm 30 dB 100/100	Offset 5 SWT 2:	7.07 dB 👄 F	<b>RBW</b> 100 kHz	z Mode / Mode /	Auto FFT		2.479	0.46 dBn 85000 GH 55.85 dBn
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm	B 20.00 dBm 30 dB 100/100	Offset 5 SWT 2:	7.07 dB 👄 F	<b>RBW</b> 100 kHz	z Mode / Mode /	Auto FFT		2.479	0.46 dBn 85000 GH 55.85 dBn
Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 cBm -30 dBm -30 dBm	B 20.00 dBm 30 dB 100/100	Offset 5 SWT 2:	7.07 dB 👄 F	<b>RBW</b> 100 kHz	z Mode / Mode /	Auto FFT		2.479	0.46 dBn 85000 GH 55.85 dBn
Spectrum Ref Level Att SGL Count 10 dBm 10 dBm -10 dBm -20 cBm -30 dBm -90 dBm -20	B 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	7.07 dB ● F 27.5 μs ● V	XBW 100 kHz /BW 300 kHz	Z Mode / M M	Auto FFT  1[1]  2[1]		2.479 2.483	0.46 dBn 85000 GH 55.85 dBn 50000 GH
Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 cBm -30 dBm -30 dBm	B 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	7.07 dB 👄 F	XBW 100 kHz /BW 300 kHz	Z Mode / M M	Auto FFT  1[1]  2[1]		2.479	0.46 dBn 85000 GH 55.85 dBn 50000 GH
Spectrum Ref Level Att SGL Count 10 dBm- -10 dBm- -20 cBm- -20 cBm- -30 dBm- -40 dBm- -50 dBm- -50 dBm- -50 dBm-	B 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	7.07 dB ● F 27.5 μs ● V	XBW 100 kHz /BW 300 kHz	Z Mode / M M	Auto FFT  1[1]  2[1]		2.479 2.483	0.46 dBn 85000 GH 55.85 dBn 50000 GH
Spectrum Ref Level Att SGL Count 10 dBm -10 dBm -20 cBm -30 dBm -40 dBm -50 dBm	B 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	7.07 dB ● F 27.5 μs ● V	XBW 100 kHz /BW 300 kHz	Z Mode / M M	Auto FFT  1[1]  2[1]		2.479 2.483	0.46 dBn 85000 GH 55.85 dBn 50000 GH
Spectrum Ref Level Att SGL Count ID dBm -10 dBm -20 cBm -30 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm	D1 -19.396	Offset 7 SWT 22	7.07 dB ● F 27.5 μs ● V	RBW         100 kHz           //BW         300 kHz	2 Mode / M M	Auto FFT  1[1]  2[1]		2.479 2.483 2.483	0.46 dBn 85000 GH 55.85 dBn 50000 GH
Spectrum Ref Level Att SGL Count ID dBm 10 dBm -10 dBm -20 cBm -30 dBm -40 dBm -40 dBm -70 dBm -70 dBm -70 dBm	D1 -19.396	Offset 7 SWT 22	7.07 dB ● F 27.5 μs ● V	XBW 100 kHz /BW 300 kHz	2 Mode / M M	Auto FFT  1[1]  2[1]		2.479 2.483 2.483	0.46 dBn 85000 GH 55.85 dBn 50000 GH
Spectrum Ref Level Att SGL Count ID dBm -10 dBm -20 cBm -30 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm	B 20.00 dBm 30 dB 100/100 D1 -19.396	Offset 7 SWT 22	7.07 dB	RBW         100 kHz           //BW         300 kHz	2 Mode / M M	Auto FFT  1[1]  2[1]	ուսյուսերութեր	2.479 2.483 2.483	0.46 dBn 85000 GH 55.85 dBn 50000 GH
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 cBm -20 cBm -20 cBm -30 dBm -30 dBm -40 dBm -70 dBm	B 20.00 dBm 30 dB 100/100 	Offset SWT 2:	2.07 dB 27.5 μs	RBW         100 kHz           //BW         300 kHz	2 2 Mode / س M س M س M س M س M س M س M س M س M	Auto FFT  1[1]  2[1]	ուսյուսերութեր	2.479 2.483	0.46 dBn 85000 GH 55.85 dBn 50000 GH
Spectrum           Ref Level           Att           SGL Count           10 dBm           10 dBm           -10 dBm           -20 cBm           -30 dBm           -30 dBm           -50 dBm           -70 dBm           50 dBm           -70 dBm           50 dBm           -70 dBm           70 dBm           70 dBm           70 dBm           70 dBm           70 dBm           70 dBm	B 20.00 dBm 30 dB 100/100 D1 -19.396 D1 -19.396 G GHz G GHz f Trc 1 1	Offset 5 SWT 2: dBm	27.5 μs • V	RBW 100 kHz /BW 300 kHz ////////////////////////////////////	2 2 Mode / س میلاسی/میلاسا(ی) pts 	Auto FFT  1[1]  2[1]	ուսյուսերութեր	2.479 2.483	0.46 dBr 85000 GH 55.85 dBr 50000 GH
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -20 cBm -20 cBm -20 cBm -30 dBm -30 dBm -40 dBm -70 dBm	B 20.00 dBm 30 dB 100/100 	Offset 7 SWT 22 dBm- dBm- www.www.uku.uku www.www.uku.uku www.www.uku.uku www.www.uku.uku www.www.uku.uku www.www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku	2.07 dB 27.5 μs	RBW         100 kHz           //BW         300 kHz	2 2 Mode / M M M M M 	Auto FFT  1[1]  2[1]	ուսյուսերութեր	2.479 2.483	0.46 dBr 85000 GH 55.85 dBr 50000 GH
Spectrum Ref Level Att SGL Count 1Pk Max 10 dBm -10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -70 dBm	B 20.00 dBm 30 dB 100/100 D1 -19.396 b f Trc f Trc 1 1 1	Offset 7 SWT 22 dBm- dBm- www.www.uku.uku www.www.uku.uku www.www.uku.uku www.www.uku.uku www.www.uku.uku www.www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku www.uku	7.07 dB	RBW         100 kHz           /BW         300 kHz           /BU         1001           Y-value         0.46 dBr           -55.40 dBr         -55.40 dBr	2 2 Mode / M M M M M 	Auto FFT  1[1]  2[1]	ուսյուսերութեր	2.479 2.483	0.46 dBr 85000 GH 55.85 dBr 50000 GH



a :			0	3-DH5 240					Ē
Spectrum									
Ref Level 2 Att	30 dB			BW 100 kHz BW 300 kHz		uto FFT			
SGL Count 1	100/100								
∋1Pk Max			1		5.4	1[1]			2.48 dBn
						1[1]		2.401	182420 GH
10 dBm									
				M1	^				
0 dBm				Nr.	VI				
-10 dBm									
-20 dBm									
-30 dBm									
-40 dBm			n			$\sim$			
-50 dBm		/							
mh		$\sim$					www	m	man
-60 dBm	. <b>v</b>								
-70 dBm									
OF 0 100 01				1001	nts			Spa	n 8.0 MHz
	JBa	and Edge	NVNT 3-I	DH5 2402M		) Read	ng Emissio		
Spectrum Ref Level 2	Ba	Offset	7.07 dB 👄 🖡	DH5 2402M	/Hz Ant1		ng Emissio		
Spectrum Ref Level 2 Att SGL Count 3	Ba 20.00 dBm 30 dB	Offset	7.07 dB 👄 🖡	DH5 2402M	/Hz Ant1		ng Emissic		
Spectrum Ref Level 2 Att SGL Count 3	Ba 20.00 dBm 30 dB	Offset	7.07 dB 👄 🖡	DH5 2402M	/IHz Ant1 z z Mode ,	Auto FFT	ng Emissic		(IIII)
Spectrum Ref Level 2 Att SGL Count 3 1Pk Max	Ba 20.00 dBm 30 dB	Offset	7.07 dB 👄 🖡	DH5 2402M	/IHz Ant1 z z Mode ,		ng Emissic	on	(₩ ▼ 2.53 dBn
Spectrum Ref Level 2 Att SGL Count 3 1Pk Max	Ba 20.00 dBm 30 dB	Offset	7.07 dB 👄 🖡	DH5 2402M	/Hz Ant1 z z Mode /	Auto FFT	ng Emissic	2.402	2.53 dBn 215000 GH 52.21\∰Bn
Ref Level 2 Att	Ba 20.00 dBm 30 dB	Offset	7.07 dB 👄 🖡	DH5 2402M	/Hz Ant1 z z Mode /	Auto FFT	ng Emissic	2.402	2.53 dBr 215000 GH
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 10 dBm 0 dBm	Ba 20.00 dBm 30 dB	Offset	7.07 dB 👄 🖡	DH5 2402M	/Hz Ant1 z z Mode /	Auto FFT	ng Emissic	2.402	2.53 dBn 215000 GH 52.21\@Bn
Spectrum Ref Level 2 Att SGL Count 1 PIPk Max 10 dBm 0 dBm -10 dBm	Ba 20.00 dBm 30 dB 100/100	Offset SWT 2	7.07 dB 👄 🖡	DH5 2402M	/Hz Ant1 z z Mode /	Auto FFT		2.402	2.53 dBn 215000 GH 52.21\@Bn
Spectrum Ref Level 2 Att SGL Count 1 PIPk Max 10 dBm 0 dBm -10 dBm	Ba 20.00 dBm 30 dB	Offset SWT 2	7.07 dB 👄 🖡	DH5 2402M	/Hz Ant1 z z Mode /	Auto FFT		2.402	2.53 dBn 215000 GH 52.21\@Bn
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 10 dBm -10 dBm -20 dBm	Ba 20.00 dBm 30 dB 100/100	Offset SWT 2	7.07 dB 👄 🖡	DH5 2402M	/Hz Ant1 z z Mode /	Auto FFT		2.402	2.53 dBn 215000 GH 52.21\@Bn
Spectrum Ref Level 2 Att SGL Count 1 PIPk Max 10 dBm -10 dBm -20 dBm -30 dBm	Ba 20.00 dBm 30 dB 100/100	Offset SWT 2	7.07 dB 👄 🖡	DH5 2402M	/Hz Ant1 z z Mode /	Auto FFT		2.402	2.53 dBn 215000 GH 52.21\@Bn
Spectrum Ref Level 2 Att SGL Count 2 IPk Max 10 dBm -10 dBm -20 dBm -30 dBm -40 dBm	Ba 20.00 dBm 30 dB 100/100	Offset SWT 2	7.07 dB 👄 🖡	DH5 2402M	/Hz Ant1 z z Mode /	Auto FFT		2.402	2.53 dBn 215000 GH 52.21₩Bn 000000 GH
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm	Ba 20.00 dBm 30 dB 100/100	Offset SWT 2: dBm	7.07 dB ● F 27.5 μs ● V	DH5 2402M	/Hz Ant1	Auto FFT  1[1]  2[1]		2.402 2.400	2.53 dBn 215000 GH 52.21\tBn 000000 GH
Spectrum Ref Level 2 Att SGL Count 1 1Pk Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm	Ba 20.00 dBm 30 dB 100/100	Offset SWT 2: dBm	7.07 dB 👄 🖡	DH5 2402M	/Hz Ant1 z z Mode /	Auto FFT  1[1]  2[1]		2.402	2.53 dBn 215000 GH 52.21\tBn 000000 GH
Spectrum Ref Level 2 Att SGL Count 2 IPK Max 10 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -50 dBm	Ba 20.00 dBm 30 dB 100/100	Offset SWT 2: dBm	7.07 dB ● F 27.5 μs ● V	DH5 2402M	/Hz Ant1	Auto FFT  1[1]  2[1]		2.402 2.400	2.53 dBn 215000 GH 52.21\tBn 000000 GH
Spectrum Ref Level 2 Att SGL Count 1 PIPK Max 10 dBm -10 dBm -20 dBm -30 dBm -30 dBm -40 dBm -70 dBm -70 dBm -70 dBm -70 dBm	D1 -17.518	Offset SWT 2: dBm	7.07 dB ● F 27.5 μs ● V	DH5 2402M	/IHz Ant1	Auto FFT  1[1]  2[1]		2.402 2.402 2.400	2.53 dBn 215000 GH 52.21\tBn 000000 GH
Spectrum           Ref Level 2           Att           SGL Count 1           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -70 dBm           -70 dBm           Start 2.306	Br 20.00 dBm 30 dB 100/100 D1 -17.518	Offset SWT 2:	7.07 dB • Γ 27.5 μs • \	DH5 2402M	/IHz Ant1	Auto FF T		2.402 2.402 2.400	2.53 dBr 215000 GH 52.21%Br 000000 GH
Spectrum Ref Level 2 Att SGL Count 1 PK Max 10 dBm 0 dBm -10 dBm -20 dBm -30 dBm -50 dBm -50 dBm	Br 20.00 dBm 30 dB 100/100 D1 -17.518	Offset SWT 2:	7.07 dB • Γ 27.5 μs • \		۸Hz Ant1 2 Mode م ۲ Mode م ۲ M ۲ M ۲ M ۲ M ۲ M ۲ M ۲ M ۲ M	Auto FF T		2.402 2.402 2.400	2.53 dBr 215000 GH 52.21%Br 000000 GH
Spectrum           Ref Level 2           Att           SGL Count 1           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           -70 dBm           Start 2.306           Marker           Type           M1	Ba 20.00 dBm 30 dB 100/100 01 -17.518 01 -17.518 GHz GHz 1 1	Offset SWT 2: SWT 2: dBm M4 M4 X-value 2:402	7.07 dB 27.5 μs 127.5 μs 1 15 GHz 2.4 GHz	DH5 2402M	/IHz Ant1	Auto FF T		2.402 2.402 2.400	2.53 dBr 215000 GH 52.21%Br 000000 GH
Spectrum           Ref Level 2           Att           SGL Count 1           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -30 dBm           -70 dBm           Start 2.306           Marker           Type           Ref           M1           M2           M3	Ba 20.00 dBm 30 dB 100/100 01 -17.518 01 -17.518 GHz GHz 1 1 1	Offset 5 SWT 2: dBm 	7.07 dB • Γ 27.5 μs • \ 27.5 μs • \	DH5 2402M	/IHz Ant1	Auto FF T		2.402 2.402 2.400	2.53 dBr 215000 GH 52.21%Br 000000 GH
Spectrum           Ref Level 2           Att           SGL Count 1           IPk Max           10 dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           -70 dBm           Start 2.306           Marker           Type           M1	Ba 20.00 dBm 30 dB 100/100 01 -17.518 01 -17.518 GHz GHz 1 1	Offset 5 SWT 2: dBm 	7.07 dB 27.5 μs 127.5 μs 1 15 GHz 2.4 GHz	DH5 2402M	/IHz Ant1	Auto FF T		2.402 2.402 2.400	2.53 dBr 215000 GH 52.21%Br 000000 GH



Spectrum	ı ]								
	20.00 dBm 30 dB			3W 100 kHz					
Att SGL Count		SWI 18	8.9 µs 🔲 Vi	3W 300 kHz	Mode A	uto FFT			
∋1Pk Max	,								
					М	1[1]			1.99 dBn
10 dBm								2.480	00000 GH
20 0.0				M	1				
0 dBm				l X	(				
				mm	m				
-10 dBm—					-+				
					1				
-20 dBm				1					
-30 dBm									
00 abiii			$\wedge$	ľ I	(				
-40 dBm			$\square$			- har			
		/	Ť				Ν		
-50 dBm		$ \land$					h		
m	$\sim\sim\sim$	m					~~~	$\sim \sim \sim$	mr
-60 dBm									
-70 dBm									
-70 ubili									
CF 2.48 GF				1001	pts			ъра	n 8.0 MHz
Spectrum	)[B;			0H5 2480N		) Peer	ng Emissio	on	
Spectrum Ref Level Att	Bi 1 20.00 dBm 30 dB	Offset 7	.07 dB 🥌 R	DH5 2480M BW 100 kHz YBW 300 kHz	z		ng Emissio	on	¶ [₩ 
Spectrum Ref Level	Bi 1 20.00 dBm 30 dB	Offset 7	.07 dB 🥌 R	<b>BW</b> 100 kHz	z		ng Emissio	on	
Spectrum Ref Level Att SGL Count	Bi 1 20.00 dBm 30 dB	Offset 7	.07 dB 🥌 R	<b>BW</b> 100 kHz	z z <b>Mode</b> /		ng Emissio		₹ ⊽
Spectrum Ref Level Att SGL Count	Bi 1 20.00 dBm 30 dB	Offset 7	.07 dB 🥌 R	<b>BW</b> 100 kHz	z Z Mode / M	Auto FFT	ng Emissio	2.479	( ⊽ 3.14 dBn 85000 GH
Spectrum Ref Level Att SGL Count 1Pk Max	Bi 1 20.00 dBm 30 dB	Offset 7	.07 dB 🥌 R	<b>BW</b> 100 kHz	z Z Mode / M	Auto FFT	ng Emissio	2.479	₹ ⊽
Spectrum Ref Level Att SGL Count 1Pk Max 10, dBm	Bi 1 20.00 dBm 30 dB	Offset 7	.07 dB 🥌 R	<b>BW</b> 100 kHz	z Z Mode / M	Auto FFT	ng Emissio	2.479	3.14 dBn 85000 GH 53.35 dBn
Spectrum Ref Level Att SGL Count 1Pk Max 10,dBm 0 dBm -10 dBm	B: 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	.07 dB 🥌 R	<b>BW</b> 100 kHz	z Z Mode / M	Auto FFT		2.479	3.14 dBn 85000 GH 53.35 dBn
Spectrum Ref Level Att SGL Count 1Pk Max 10,dBm 0 dBm -10 dBm	Bi 1 20.00 dBm 30 dB	Offset 7 SWT 22	.07 dB 🥌 R	<b>BW</b> 100 kHz	z Z Mode / M	Auto FFT		2.479	3.14 dBn 85000 GH 53.35 dBn
Spectrum Ref Level Att SGL Count 1Pk Max 10,dBm	B: 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	.07 dB 🥌 R	<b>BW</b> 100 kHz	z Z Mode / M	Auto FFT		2.479	3.14 dBn 85000 GH 53.35 dBn
Spectrum Ref Level Att SGL Count 1Pk Max 10,dBm 0 dBm -10 dBm -20 dBm -30 dBm	B: 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	.07 dB 🥌 R	<b>BW</b> 100 kHz	z Z Mode / M	Auto FFT		2.479	3.14 dBn 85000 GH 53.35 dBn
Spectrum Ref Level Att SGL Count 1Pk Max 10,dBm	B: 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	.07 dB 🥌 R	<b>BW</b> 100 kHz	z Z Mode / M	Auto FFT		2.479	3.14 dBn 85000 GH 53.35 dBn
Spectrum Ref Level Att SGL Count 1Pk Max 10,dBm 0 dBm -10 dBm -20 dBm -30 dBm	D1 -18.009	Offset 7 SWT 22	7.07 dB ● R 7.5 μs ● V	28W 100 kHz 28W 300 kHz	2 Mode / M	Auto FFT  1[1] 2[1]		2.479 - 2.483	3.14 dBr 85000 GH 53.35 dBr 50000 GH
Spectrum Ref Level Att SGL Count 1Pk Max 10,dPm- 0 dBm- -10 dBm- -20 dBm- -30 dBm- -40 dBm-	B: 20.00 dBm 30 dB 100/100	Offset 7 SWT 22	.07 dB 🥌 R	<b>BW</b> 100 kHz	2 Mode / M	Auto FFT  1[1] 2[1]		2.479 - 2.483	3.14 dBr 85000 GH 53.35 dBr 50000 GH
Spectrum Ref Level Att SGL Count 10,dPm- 0 dBm- -10 dBm- -20 dBm- -20 dBm- -40 dBm- -50 dBm- -50 dBm- -60 dBm-	D1 -18.009	Offset 7 SWT 22	7.07 dB ● R 7.5 μs ● V	28W 100 kHz 28W 300 kHz	2 Mode / M	Auto FFT  1[1] 2[1]		2.479 - 2.483	3.14 dBr 85000 GH 53.35 dBr 50000 GH
Spectrum Ref Level Att SGL Count 1Pk Max 10,dBm 0 dBm -10 dBm -20 dBm -30 dBm -30 dBm -30 dBm	D1 -18.009	Offset 7 SWT 22	7.07 dB ● R 7.5 μs ● V	28W 100 kHz 28W 300 kHz	2 Mode / M	Auto FFT  1[1] 2[1]		2.479 - 2.483	3.14 dBr 85000 GH 53.35 dBr 50000 GH
Spectrum Ref Level Att SGL Count 10,dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm	D1 -18.009	Offset 7 SWT 22	7.07 dB ● R 7.5 μs ● V	28W 100 kHz 28W 300 kHz	2 2 Mode / 	Auto FFT  1[1] 2[1]		2.479 - 2.483 	3.14 dBn 85000 GH 53.35 dBn 50000 GH
Spectrum Ref Level Att SGL Count 10, dBm 0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -70 dBm -70 dBm -70 dBm	D1 -18.009	Offset 7 SWT 22	7.07 dB ● R 7.5 μs ● V	28W 100 kHz 28W 300 kHz	2 2 Mode / 	Auto FFT  1[1] 2[1]	erginite Ang Phangeling	2.479 - 2.483 	3.14 dBr 85000 GH 53.35 dBr 50000 GH
Spectrum Ref Level Att SGL Count 1Pk Max 10,dBm -10,dBm -20,dBm -20,dBm -20,dBm -30,dBm -30,dBm -50,dBm -50,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70,dBm -70	B: 20.00 dBm 30 dB 100/100 :D1 -18.009 :D1 -18.009 :D1 -18.009 :D1 -18.009	Offset 7 SWT 22 dBm dBm	1.07 dB <b>B R</b> 27.5 μs <b>V</b>	BW 100 kHz BW 300 kHz WWWWWWW WWWWWWW 1001	2 2 Mode / M M س M	Auto FFT  1[1]  2[1]	erginite Ang Phangeling	2.479 - 2.483 	3.14 dBr 85000 GH 53.35 dBr 50000 GH
Spectrum Ref Level Att SGL Count 1Pk Max 10, dBm -10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -70 dBm -70 dBm -70 dBm -70 dBm	B: 20.00 dBm 30 dB 100/100 D1 -18.009	Offset 7 SWT 22 dBm when the second se	1.07 dB <b>• R</b> 27.5 μs <b>• V</b>	100 kHz	2 2 Mode / س س pts 	Auto FFT  1[1]  2[1]	erginite Ang Phangeling	2.479 - 2.483 	3.14 dBr 85000 GH 53.35 dBr 50000 GH
Spectrum           Ref Level           Att           SGL Count           1Pk Max           10,dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -50 dBm           -50 dBm           -70 dBm           Start 2.470           Marker           Type           M1           M2           M3	B: 20.00 dBm 30 dB 100/100 D1 -18.009 	Offset 7 SWT 22 dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm	1.07 dB	BW 100 kHz BW 300 kHz BW 300 kHz BW 300 kHz BW 100 kHz BW 300	2 2 Mode / M M 	Auto FFT  1[1]  2[1]	erginite Ang Phangeling	2.479 - 2.483 	3.14 dBr 85000 GH 53.35 dBr 50000 GH
Spectrum           Ref Level           Att           SGL Count           1Pk Max           10,dBm           0 dBm           -10 dBm           -20 dBm           -30 dBm           -40 dBm           -50 dBm           -70 dBm           Start 2.476           Marker           Type         Ref           M1	B: 20.00 dBm 30 dB 100/100 D1 -18.009 	Offset 7 SWT 22 dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm dBm	27.5 μs • V	200 kHz 200	2 2 Mode / M M 	Auto FFT  1[1]  2[1]	erginite Ang Phangeling	2.479 - 2.483 	3.14 dBr 85000 GH 53.35 dBr 50000 GH