

Anbolek

Anbotek

Anbotek

Report No.:1812C40026112501-M1 FCC ID: A4C91008B

FCC SAR Test Report

Anboick

Applicant : RM Acquisition LLC.

Address 1100 West Idaho Street SUITE 310 Boise

Idaho United States 83702

Product Name : Bluetooth ANC Headset

Report Date : Oct. 25, 2024

Shenzhen Anbotek Compliance Laboratory Limited

Anbotek

Report No.:1812C40026112501-M1 FCC ID: A4C91008B

Contents

Ville FOK "Upo	4.	No.	20,	by.		1/61.
Statement of Compliance General Information		160 0 18 m	VUP.	e	ie _k	Anbound
2. General Information		Aupotek Au	Vupo			kopoje
2.1. Client Information 2.2. Description of Equipment Under Test 2.3. Device Category and SAR Limits 2.4. Applied Standard	dn.dn.4			Oler b		
2.2. Description of Equipment Under Test	(EUT)	V _{UD}		bolek	Anbor	··············
2.3. Device Category and SAR Limits		dr _A	o,		1000	{
2.4. Applied Standard			holow.	Wan Table		3 ⁴⁹ 10 ₀ ,
VI. VI.						
2.4. Applied Standard	"Polek	Aupore.		do ₃	Ofer	
3. Specific Absorption Rate (SAR)		kbokek	VUD		.,601ek	Anbor
2.5. Environment of Test Site 2.6. Test Configuration 3. Specific Absorption Rate (SAR) 3.1. Introduction 3.2. SAR Definition 4. SAR Measurement System 4.1. E-Field Probe 4.2. Data Acquisition Electronics (DAE) 4.3. Robot 4.4. Measurement Server 4.5. Phantom	Vupo,		74	Pole	··············////////////////////////	
3.2. SAR Definition	Vupoje.	P.L.		"opoler	VUD	9
4. SAR Measurement System	10dg	SK VU		otek.	Anbo	10
4.1. E-Field Probe		wolok	Anboro		٧	1 1
4.2. Data Acquisition Electronics (DAE)	Ne. Vi		kbolek	Anb.		
4.3. Robot	"polek	Anbo		iek Au	, o _{to}	12
4.4. Measurement Server		Anbore.	V.		, abolek	12
4.5. Phantom	Vur.	10des	O _K		491001	
4.6. Device Holder	Anbo.		,,otok	Aupore	W	14اعد
4.7. Data Storage and Evaluation	k Anbo	ie. V		kopołek	VUD.	14
5. Test Equipment List		opolek	Aupo,	100	8 _K	Anbore 17
4.5. Phantom		, otek	Aupole	VII.	401	18
7. System Verification Procedures	Aupole.	Vu.,	000	Her Vi	/o_	19
8. EUT Testing Position	polek	Anbo		, orek	Aupolo	21
8.1. Head Position		Anbo		······································	, abote	2 ⁾
8.1. Head Position 9. Measurement Procedures 9.1. Spatial Peak SAR Evaluation 9.2. Power Reference Measurement	Ann		nbotek	Anbo		,o ^{tek} 22
9.1. Spatial Peak SAR Evaluation	Yup,		, olek	Anbore	P	22
9.2. Power Reference Measurement	olek I	Vupo _{le} .		0000	lo _k	Anb 2
9.3. Area Scan Procedures		botek	Anbo	····i)f•·········	to tek	Anbore
9.4. Zoom Scan Procedures	Aupo	L COLEK	. Ant	ore b		24
9.5. Volume Scan Procedures	Aupole.	Vun	194,	rupo _{lek}	Anb	2
9.6. Power Drift Monitoring	obo'te'	k Aup,		otek	Aupor	2
10. Conducted Power	λ	otek .	Vupose.	VII	·	⁵⁰¹⁰¹ 26
11. Antenna Location	e. Vu.	Ve/r	, spokek	Anbe		
12. SAR Test Results Summary	ipotek	Vupo		k Aup		28
12.1. SAR Results	motek	Aupote.	Vur		"upo _{lek}	28
13. Simultaneous Transmission Analys	isis	olodaz	k An	o	polek	29
Simultaneous TX SAR Considerations	Aupo.	ýř lo.,	otek.	Aupole.		<u></u>
9.3. Area Scan Procedures	Anborr	o. A _{III}		* apolek	Anbo	30
Appendix A. EUT Photos and Test Setu	up Photos	potek	Vupo.	bole.	e P.	nbor 32
, 4P) -a		10,0	V 112		-76.

Anbolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Report No.:1812C40026112501-M1 FCC ID: A4C91008B

Anbolek

Anbotek

Anbolek

Anbolek

Anborek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Page 3 of 59

Anbolek

Anbotek

Anbolek

Anbolek

Anbolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

Anbolek

Anbolek

Anbotek

Aupolek

Anbotek

Anbolek

Anbolek

Anbolek

Anbolek

Anbolek

Anbolek

Anbolek

Anboiek

Anbotek

Appendix B. Plots of SAR System Check	Vup.	otek.	Aupora	33
Appendix C. Plots of SAR Test Data	VUPOIGH.	Vu _D	Spotek	Anbou 34
Appendix D. DASY System Calibration Cert	ificate wo ^{tek}	Aupor	N. Otek	Anbole 35

Anbolek

Anbotek

Anbolek

Anbolek

Anbolek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Shenzhen Anbotek Compliance Laboratory Limited

Anboiek

TEST REPORT

Applicant : RM Acquisition LLC.

Manufacturer : RM Acquisition LLC.

Product Name : Bluetooth ANC Headset

Model No. : ClearDryve 220S, CD220, CD180, CD210, CD300

Trade Mark : Rand McNally

Rating(s) : DC 3.7V battery inside

Test Standard(s) : IEEE Std 1528-2013; FCC 47 CFR Part 2.1093;

ANSI/IEEE C95.1:2005; Reference FCC KDB 447498 D01 v06;

KDB 868664 D01 v01r04; KDB 865664 D02 v01r02

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the IEEE Std 1528-2013, FCC 47 CFR Part 2.1093, ANSI/IEEE C95.1:2005 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt	Aug. 14, 2024
Date of Test Anbotek Anbotek Anbotek	Aug. 22, 2024
Aupotek Vipotek Vipotek	Ella Isiang
Prepared By	Anbout Aborek JAnbore Am notek
otek Aupotek Aupotek Aupotek	K Anbotek (Ella Liang) Anbotek Anbot
Test Engineer	Foles Huang
Anborek Anbor lek Anborek	(Joker Huang)
K Aupotek Aupo	(ingkong)in
Approved & Authorized Signer	All niet Ander And
Potek Auport All Otek Vipor	(KingKong Jin)

Version

	Version No.		Date		Desc	ription
ok.	Anbole ROO Anb	-holek	Sept. 26, 2024	Otek P	Anbotek Orig	ginal
hoiek	NOT ROT	All upolek	Oct. 25, 2024	hotek .	Referen	ce Note 1
Aupolek	Wupo, Otek	Aupolok	Auporgan	Aus upotek	Anbolek	Anborok

Note 1:

AUD

Anbotek

The test report 1812C40026112501-M1 supersedes the test report 1812C40026112501 which is withdrawn. The difference between the original device and current one described as following:

- 1. Change the product name to: Bluetooth ANC Headset.
- 2. Change the model mane to: ClearDryve 220S, CD220, CD180, CD210, CD300.
- 3. Change the trade mark to: Rand McNally.

The changes will not affect the related test result, the tests will retain the original test results.

1. Statement of Compliance

<Highest SAR Summary>

This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013. The maximum results of Specific Absorption Rate (SAR) found during testing are as follows.

<Highest SAR Summary>

Erogueney Band	Highest Reported 1g-SAR(W/Kg)	SAR Test Limit	
Frequency Band	Head	(W/Kg)	
ANBT	notek Anbou.382 And	Anbotek 1.6 Anbo	
Test Result	PASS PASS	abotek Anbote	

1. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2.1093 and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEC/IEEE IEEE Std 1528-2013.

General Information

2.1. Client Information

V			760.	VIII	-0/	- 40 -
Applicant	:	RM Acquisition LLC.	Anbo	Anbolek	Anbors	b
Address		1100 West Idaho Street SUI	ΓE 310 Boise	ldaho United St	ates 83702	
Manufacturer	:	RM Acquisition LLC.	otek Anh	otek Anbor	er Aug	otek
Address	:	1100 West Idaho Street SUI	ΓE 310 Boise	ldaho United St	ates 83702	, nbotek

2.2. Description of Equipment Under Test (EUT)

2.2. Description of	Εq	uipment Under Test (EUT)
Product Name	:	Bluetooth ANC Headset
Model No.	:	ClearDryve 220S, CD220, CD180, CD210, CD300 (Note: All above models are identical in the same PCB layout, interior structure and electrical circuits. The differences are model name for commercial purpose.)
Trade Mark	:	Rand McNally
Test Power Supply	:	DC 3.7V battery inside
Test Sample No.	:	1-2-1(Engineering Sample)
Tx Frequency	:	BT: 2402-2480MHz
Type of Modulation	:	BT: GFSK, π/4-DQPSK, 8-DPSK
Category of device	:	Portable device

Remark:

The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

2.3. Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

2.4. Applied Standard

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards:

- IEEE Std 1528-2013
- ANSI/IEEE C95.1:2005
- FCC 47 CFR Part 2.1093

Reference FCC KDB 447498 D01 v06; KDB 868664 D01 v01r04; KDB 865664 D02 v01r02

2.5. Environment of Test Site

Items	Required	Actual	
Temperature (℃)	18-25	22~23	
Humidity (%RH)	30-70	55~65	

2.6. Test Configuration

Anbolek

For WIFI and Bluetooth SAR testing, engineering testing software installed on the EUT can provide continuous transmitting RF signal.

3. Specific Absorption Rate (SAR)

3.1. Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

3.2. SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

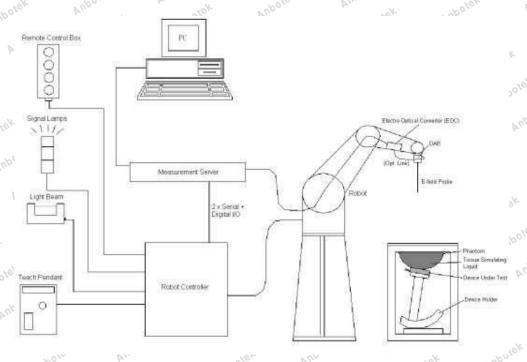
SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$SAR = C\left(\frac{\delta T}{\delta t}\right)$$

Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by

$$SAR = \frac{\sigma |E|^2}{\rho}$$


Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

4. SAR Measurement System

DASY System Configurations

The DASYsystem for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- > A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (EOC) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- A device holder
- Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

components are described in details in the following sub-sections.

4.1. E-Field Probe

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

> E-Field Probe Specification

<EX3DV4 Probe>

Construction	Symmetrical design with triangular core
	rak abora k
	Built-in shielding against static charges
	PEEK enclosure material (resistant to
	organic solvents, e.g., DGBE)
Frequency	10 MHz to 6 GHz; Linearity: ± 0.2 dB
Directivity	± 0.3 dB in HSL (rotation around probe
	axis) know
	± 0.5 dB in tissue material (rotation
	normal to probe axis)
Dynamic Range	10 μW/g to 100 W/kg; Linearity: ± 0.2
	dB (noise: typically< 1 μW/g)
Dimensions	Overall length: 330 mm (Tip: 20 mm)
	Tip diameter: 2.5 mm (Body: 12 mm)
	Typical distance from probe tip to
	dipole centers: 1 mm

Photo of EX3DV4

E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report.

4.2. Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

Aupolek

Report No.:1812C40026112501-M1 FCC ID: A4C91008B

Photo of DAE

4.3. Robot

The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controllersystem, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäublirobot series have many features that are important for our application:

- High precision (repeatability ±0.035 mm)
- High reliability (industrial design)
- Jerk-free straight movements

Anbotek

> Low ELF interference (the closed metallic construction shields against motor control fields)

Photo of DASY5

4.4. Measurement Server

Aupolek

The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

Photo of Server for DASY5

4.5. Phantom

<SAM Twin Phantom>

	A TOPE AND THE PROPERTY OF THE
Shell Thickness	2 ± 0.2 mm;
	Center ear point: 6 ± 0.2 mm
Filling Volume	Approx. 25 liters
Dimensions	Length: 1000 mm; Width: 500 mm;
	Height: adjustable feet
Measurement	Left Hand, Right Hand, Flat
Areas	Phantom
	Anbotek And tak abotek
	Thotak Auport Am
	And tek Anbotek Anbo ok Dirato
	Photo Photo

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI4 Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)
Filling Volume	Approx. 30 liters
Dimensions	Major ellipse axis: 600 mm
e e e e e e e e e e e e e e e e e e e	Minor axis:400 mm
3	otek Anbotek Anbotek Anboek Anbo
	Anborek

The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

4.6. Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ϵ = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered.

Device Holder

4.7. Data Storage and Evaluation

Data Storage

Anbotek

The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be

corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [W/kg]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Normi, ai0, ai1, ai2

Conversion factor ConvF_i
 Diode compression point dcp_i

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity σ

- Density ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power.

The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with V_i = compensated signal of channel i, (i = x, y, z)

 U_i = input signal of channel i, (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

dcp_i = diode compression point (DASY parameter)

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field Probes:
$$E_i = \sqrt{\frac{V_i}{Norm_i \cdot Conv}}$$

H-field Probes: $H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$

with V_i = compensated signal of channel i,(i= x, y, z)

Norm_i= sensor sensitivity of channel i, (i= x, y, z), $\mu V/(V/m)^2$ for E-field Probes

ConvF= sensitivity enhancement in solution

a_{ij}= sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

E_i= electric field strength of channel iin V/m

H_i= magnetic field strength of channel iin A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with SAR = local specific absorption rate in W/kg

E_{tot}= total field strength in V/m

 σ = conductivity in [mho/m] or [Siemens/m]

 ρ = equivalent tissue density in g/cm³

Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

Report No.:1812C40026112501-M² FCC ID: A4C91008B

5. Test Equipment List

	, , , , , , , , , , , , , , , , , , ,	161.	V U.	10°		
Manufacturer	Name of Equipment	Type/Model	Serial	Calibration		
Manaracturer	Name of Equipment	i ype/iviodei	Number	Last Cal.	Due Date	
SPEAG	2450MHz System Validation Kit	D2450V2	910 And	Jun. 15,2024	Jun. 14,2027	
SPEAG	Data Acquisition Electronics	DAE4	387	Sept.06,2023	Sept.05,2024	
SPEAG	Dosimetric E-Field Probe	EX3DV4	7396	May 06,2024	May 05,2025	
Agilent Noov	ENA Series Network Analyzer	E5071C	MY46317418	Oct.26, 2023	Oct.25, 2024	
SPEAG	DAK DAK	DAK-3.5	1226 NO	NCR	NCR NCR NOVE	
SPEAG	SAM Twin Phantom	QD000P40CD	1802	nbotek NCR And	NCR	
SPEAG	ELI Phantom	QDOVA004AA	2058	NCR	NCR	
AR N	Amplifier	ZHL-42W	QA1118004	NCR	NCR	
Agilent	Power Meter	N1914A	MY50001102	Oct.26, 2023	Oct.25, 2024	
otek Agilent Mario	Power Sensor	E9323A	US40410647	Jan. 23, 2024	Jan. 22, 2025	
Agilent	Power Sensor	E9323A	MY53100007	Jan. 23, 2024	Jan. 22, 2025	
CDKMV	Attenuator	6610	6610-1	Oct.20, 2023	Oct.19, 2024	
CDKMV	Attenuator	6606	6606-1	Oct.20, 2023	Oct.19, 2024	
Agilent	Spectrum Analyzer	N9020A	MY51170037	Oct.26, 2023	Oct.25, 2024	
Agilent	Signal Generation	N5182A	MY48180656	Oct.26, 2023	Oct.25, 2024	
Worken Marken	Directional Coupler	0110A05601O- 10	COM5BNW1A 2	Oct.26, 2023	Oct.25, 2024	

Note:

- 1. The calibration certificate of DASY can be referred to appendix C of this report.
- 2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval.
- 3. The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check.
- 4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent.
- 5. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it

6. Tissue Simulating Liquids

For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed:

Photo of Liquid Height for Head SAR

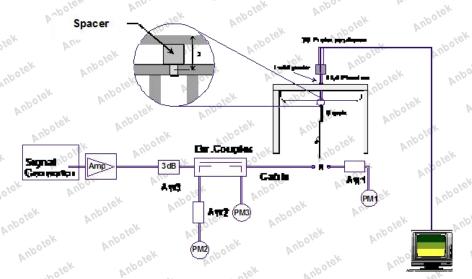
The following table gives the recipes for tissue simulating liquid.

(c)	Frequency	Frequency Water Sugar		Cellulose Salt		Preventol DGBE		Conductivity	Permittivity			
(MHz)		(%)	(%)	(%)	(%)	(%)	(%)	(σ)	(ɛr)			
	For Head											
	2450	55.0	,e ^k 0	Aupole 0	0.3	k O Aupoli	44.7	1,80	abo ^{tek} 39.2	24/2		

The following table shows the measuring results for simulating liquid.

Measured	Target 7	Tissue		Measure	Liquid				
Frequency (MHz)	٤r	σ	٤r	Dev. (%)	σ	Dev. (%)	Temp.	Test Data	
2450	And 39.2	1.800010	39.67	1.20	1.86	3.33 pm	22.6	08/22/2024	

7. System Verification Procedures


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

> Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

System Setup

In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

System Setup for System Evaluation

Anbolek

Anbotek

Anborek

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbolek

Anbotek

Report No.:1812C40026112501-M1 FCC ID: A4C91008B

Photo of Dipole Setup

Validation Results

Anbolek


Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

200	Date	Frequency (MHz)	Power fed onto reference dipole (mW)	Targeted SAR (W/kg)	Measured SAR (W/kg)	Normalized SAR (W/kg)	Deviation (%)
	08/22/2024	2450 Anbi	250	olek 52.4 Anbo	12.91	51.64 Anbol	-1.46 And

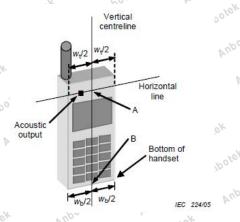
Target and Measurement SAR after Normalized

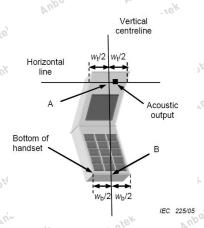
8. EUT Testing Position

8.1. Head Position

Anbolek

Anbotek


Anbotek


The wireless device define two imaginary lines on the handset, the vertical centreline and the horizontal line, for the handset in vertical orientation as shown in Figures 5a and 5b.

The vertical centreline passes through two points on the front side of the handset: the midpoint of the width W_t of the handset at the level of the acoustic output (point A in Figures 5a and 5b), and the midpoint of the width W_b of the bottom of the handset (point B).

The horizontal line is perpendicular to the vertical centreline and passes through the centre of the acoustic output (see Figures 5a and 5b). The two lines intersect at point A.

Note that for many handsets, point A coincides with the centre of the acoustic output. However, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centreline is not necessarily parallel to the front face of the handset (see Figure 5b), especially for clam-shell handsets, handsets with flip cover pieces, and other irregularly shaped handsets.

Anbotek

Figures 5a

Figures 5b

- W_t Width of the handset at the level of the acoustic
- W_b Width of the bottom of the handset
- A Midpoint of the widthwt of the handset at the level of the acoustic output
- B Midpoint of the width wb of the bottom of the handset

9. Measurement Procedures

The measurement procedures are as follows:

- (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel.
- (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable)
- (c) Measure output power through RF cable and power meter.
- (d) Place the EUT in the positions as setup photos demonstrates.
- (e) Set scan area, grid size and other setting on the DASY software.
- (f) Measure SAR transmitting at the middle channel for all applicable exposure positions.
- (g) Identify the exposure position and device configuration resulting the highest SAR
- (h) Measure SAR at the lowest and highest channels attheworst exposure position and device configuration if applicable.

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

9.1. Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

9.2. Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

9.3. Area Scan Procedures

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

	≤3 GHz	> 3 (i Hz			
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	5 1 mm	$\frac{1}{2} \cdot \delta \cdot \ln(2) + 0.5 \text{ mm}$			
Maximum probe angle from probe axis to phantom surface normal at the measurement location	30° ± 1°	20° ± 1°			
	≤ 2 GHz: ≤ 15 mm 2 – 3 GHz: ≤ 12 mm	3 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm			
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above the measurement resolution must be ≤ the corresponding x or y dimension of the test device with at least one measurement point on the test device.				

Report No.:1812C40026112501-M² FCC ID: A4C91008B

9.4. Zoom Scan Procedures

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz.

, (C)			≤3 GHz	> 3 GHz		
~pore	b	r roken	Vuo16k	"Upo. V.		
Maximum zoom scan	spatial reso	olution: Δx _{Zoom} , Δy _{Zoom}	\leq 2 GHz: \leq 8 mm 2 - 3 GHz: \leq 5 mm [*]	$3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$		
	uniform	grid: Δz _{Zoom} (n)	≤ 5 mm	3 – 4 GHz: ≤ 4 mm 4 – 5 GHz: ≤ 3 mm 5 – 6 GHz: ≤ 2 mm		
Maximum zoom scan spatial resolution, normal to phantom surface	graded	Δz _{Zoom} (1): between 1 st two points closest to phantom surface	≤ 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
	grid $\Delta z_{Zoom}(n>1)$: between subsequen points		$\leq 1.5 \cdot \Delta z_{Z_{00m}}(n-1)$			
Minimum zoom scan volume	x, y, z		≥ 30 mm	3 – 4 GHz: ≥ 28 mm 4 – 5 GHz: ≥ 25 mm 5 – 6 GHz: ≥ 22 mm		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the <u>area scan based 1-g SAR estimation</u> procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

9.5. Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregateSAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

9.6. Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested.

Anbotek

Anbolek

Anbotek

Anbolek

Anbolek

Anboick

nbotek

Anborek

Anbolek

Anbotek

Anbolek

Anbolek

Anbolek

Anbolek

Aupolek

Anbotek

Anbolek

Anbolek

Report No.:1812C40026112501-M1 Anbotek FCC ID: A4C91008B

10. Conducted Power

Anbolek

Anbolek

<Bluetooth Conducted Power>

Anbotek

A PIUCIOOIII	Conducted F	OMCI> "Po.	- V	Polo Viv		
Mode	Channel	Frequency (MHz)	Conducted Peak Power (dBm)	Conducted Average Power (dBm)	Tune-up power(dBm)	
DT DDD	May 00	2402	9.811	nek 7.311 nboten	7.50	
BT BDR	39	2441	10.257	7.757	8.00	
(GFSK)	78 nbote	2480	9.803	7.303	7.50, boles	
5	00	2402 Maria	10.870	8.370	10 8.50 nove	
BT EDR (Π/4DQPSK)	39	2441	11.226	8.726	9.00	
(II/4DQF3N	nbole 78	2480	10.689 Anbox	8.189	Anbo 8.50	
DT EDD	00	2402	10.904	8.404	8.50	
BT EDR (8DPSK)	39	2441	11.238	nbotek 8.738 And	9.00	
(ODF 3K)	78	2480	10.672	8.172 Anhol	8.50	
DT DI E 4N	00 And	2402	6.713	5.213	5.50°m	
BT BLE_1N (GFSK)	otek 19 AT	2440	7.395,001e	5.895	anbotek 6.00 Anbo	
(GF3K)	39	2480	7.147 nbole	5.647	6.00 N	
BT BLE 2N	00	2402	6.752	5.252	5.50	
(GFSK)	№19	2440	7.377	5.877 ₁₁₀ 010 ¹⁰	6.00	
(GFSK)	39	2480	7.046	5.546	5.50	
o. Alle	otek Anbo	ter Augu	tek Anbotek	Auport Air	upotek Aupoter	

Anbotek

Anbotek

Anbotek

Anbolek

Anboiek

Anbolek

Anbole

nbotek

Anborek

Anbolek

Anbolek

Anbolek

Anbolek

Anbolek

Report No.:1812C40026112501-M1 FCC ID: A4C91008B

Page 27 of 59

Anbolek

Anbolek

Anborek

Anbolok

Right Side

rek

"upolek

otek

Anbolek

Anbotek

Anbolek

Anbolek

Aupolek

Anbotek

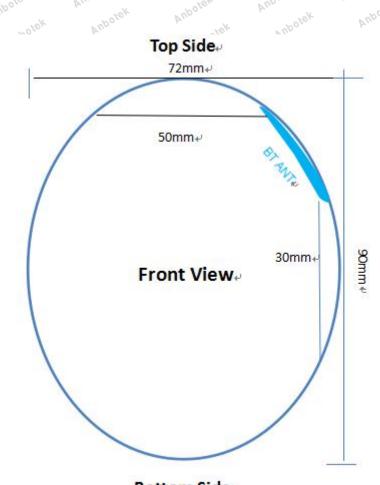
Anbolek

Anbotok

Anbolek

Anbolek

Anbolek


Anboick

Anbolok

11. Antenna Location

Anbolek

Anbolek

Bottom Side

Anbotek Anbotek

Anbolek

Shenzhen Anbotek Compliance Laboratory Limited

Anboick

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

Anbolek

12. SAR Test Results Summary

General Note:

1. Per KDB 447498 D01 v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Reported SAR(W/kg)= Measured SAR(W/kg)* Scaling Factor

Per KDB 447498 D01 v06, for each exposure position, if the highest output channel reported SAR≤0.8W/kg, other channels SAR testing are not necessary

12.1. SAR Results

<Bluetooth>

ď	Plot No.	Band	Mode	Test Positio n	Gap (cm)	Ch.	Freq. (MHz)	Average Power (dBm)	р	Scaling Factor	POWAR		Report ed SAR _{1g} (W/kg)	e
	#1 _{An}	BT EDR	8DPSK	Head	W.Oolek	39	2441	8.738	9.00	1.062	0.05	0.206	0.219	00

Anbotek

Anboiek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbolek

Anboiek

Anbolek

Anbotek

Anbotek

Anbolek

Anborek

Anbolek

Aupolek

Anbolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbolek

Anbolek

Anbolek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Report No.:1812C40026112501-M1 FCC ID: A4C91008B

Anbolek

Anbotek

Anbolek

Anbolek

Anbolek

Anbolek

Anbolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbotek

Anbotek

Anbolek

Anbolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

Anbolek

Anbolek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbotek

Anbotek

13. Simultaneous Transmission Analysis

Anbolek

Anbolek

Anbotek

Anbolek

Anbotek

Anbotek

Anbolek

Anbotek

Anbolek

Anbotek

Anbolek

Anbotek

Anbotek

Simultaneous TX SAR Considerations

Anbolek

Anbotek

Anbolek

Anbolek

Anbotek

Anbotek

Anbotek

Anbotek

Anbotek

Anbolek

Anbolek

No. Applicable Simultaneous Transmission

1. N/A

Shenzhen Anbotek Compliance Laboratory Limited

Anbolek

Anbotek

Hotline 400-003-0500 www.anbotek.com

Anbotek

Anbolek

Anbotek

Anbotek

14. Measurement Uncertainty

D.	-k Polek	AUDO		Yes	N	100.	by.	You	"pole"
NO	Anbotek Source	Uncert.	Prob. Dist.	Div. k	ci (1g)	ci (10g)	Stand.U ncert.	Stand.U ncert.	Veff Anbolek
1970g	Vupo, V.	16K	, abole	D. Tr.	Yar	` ' '	ui (1g)	ui (10g)	
Aufotel	Repeat	0.4	Anboiek N	₈ ¥ 1	Anbordan Anbord	1 1	0. 4	Anbol	10019
Anb	or Wholek	Aupolek	Instru	ment	P	nbotek	Aups	olek .	Aupotek
2	Probe calibration	7 ^{Anboh}	N N	2019	1	Anbore	3.5	3.5	l∞potek
00/3	Axial isotropy	4.7	Anbotek	for.	O.7	0.7	And 1.9	1.9	tek ∞
Vupor.	VICK.	Anboiek	VUD	\V3	Anb	18/6	Hupo.	/r	abolek
4 A ^{nl}	Hemispherical isotropy	9.4	R Anbo	√3	0.7	0.7	3.9 ^{anbo}	3.9	Ant∞tek Anto∞tek
5	Boundary effect	1.0 Anbo	nbote/R	√3	0 ^k 1	Anbo'	0.6	0.6	&nbole
nbotek 6	Linearity	4.7	Anbotek	√3 	Anthie	1	Anbotek 2.7 otek	Anbotes 2.7 Anb	olek ∞
Anbo	Detection limits	1.0,botek	R Anb	√3.×	A ^{nl}	16.	0.6 Anb	0.6	Wpolek Wpolek
8	Readout electronics	0.3 And	40.	Anboro	.e⊁ 1	1 nbc	0.3	0.3 ×	Pur
10/4	Treadout electronies	V.0 /r	holek	20/2		1911.	O.O	AUDOLON	v ^{up} o _l
9.	Response time	0.8	An Rick	√3	nbotek	1	0.5	0.51001e	e ∞ An
10	Integration time	2.6	R ^{Anbotel}		Anbor	10019K	1.5	1.5	Aupo iok
11	Ambient noise	3.0	olek R	√3	. 1	Anbotel	otek 1.7	Anbotek 1.7	Anbotek o
otek.	Anbolek Anbole	rek Vi	Anbolek	Anb	Ofor.	VU	Anbotek	Aupolek	Vupo
12	Ambient reflections	3.0	K tok	√3	Anbol ^{ok}	'	1.7 1/2	1.7 nbot	S _k ∞ V,
Anbotol 13	Probe positioner mech. restrictions	0.4 otek	Anbo*	√3	Anbo	opol s k	0.2 hote	0.2	, we k
ek K	Probe positioning with	Aupor	olek Vu	Anbore Anbore).	Aupole	k An	Anbotek Anbotek	Anbore
Dotek	respect to phantom shell	2.9	Anbolk K	√3 _m	po ^{ten} 1	1 A ⁿ	1.7	1.70tek	∞ Anb
Anbole 15	Max.SAR evaluation	Anbotek 1.0	Aupolen	√3	Ano	1 1 1	Anbotek 0.6	Anbo	upotek w
V.U.	i otok	PUD	*	484		4000	Dr.		1018.

