RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247

Test Standard	FCC Part 15.247 and IC RSS-247 issue 1
FCC ID	A4C-1000CA
ISED ID	10199A-1000CA
Product name	TND™ 740
Brand Name	Rand McNally
Test Result	Pass

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of CCS. Inc.

The sample selected for test was production product and was provided by manufacturer.

Approved by:

Davis, Tseng

Davis Tseng Sr. Engineer Reviewed by:

ern Chen

Zeus Chen Supervisor

Revision History

Rev.	Issue Date	Revisions	Revised By
00	January 20, 2017	Initial Issue	Angel Cheng
	March 17, 2017	 Revise section 4.6.2 Duty Cycle in page 27. Add Remark in page 26. 	Doris Chu

Table of contents

1.	GENE	ERAL INFORMATION4
	1.1	EUT INFORMATION4
	1.2	EUT CHANNEL INFORMATION5
	1.3	ANTENNA INFORMATION5
	1.4	MEASUREMENT UNCERTAINTY6
	1.5	FACILITIES AND TEST LOCATION7
	1.6	INSTRUMENT CALIBRATION
	1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT8
2.	TEST	SUMMERY9
3.	DESC	CRIPTION OF TEST MODES10
	3.1	THE WORST MODE OF OPERATING CONDITION10
	3.2	THE WORST MODE OF MEASUREMENT11
	3.3	EUT DUTY CYCLE12
4.	TEST	RESULT13
	4.1	AC POWER LINE CONDUCTED EMISSION13
	4.2	6DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)16
	4.3	OUTPUT POWER MEASUREMENT18
	4.4	POWER SPECTRAL DENSITY
	4.5	CONDUCTED BAND EDGE AND SPURIOUS EMISSION
	4.6	RADIATION BANDEDGE AND SPURIOUS EMISSION
A	PPEN	DIX 1 - PHOTOGRAPHS OF EUT

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	RM Acquisition, LLC 9855 Woods Drive Skokie, IL 60077 USA	
Equipment	TND TM 740	
Model No.	TND 740	
Model Discrepancy	N/A	
EUT Functions	IEEE 802.11bgn+BT+GPS	
Received Date	Jan, 03, 2017	
Date of Test	Jan 06 ~ Jan 19, 2017	
Output Power (W)	BLE : 0.0009 (EIRP : 0.0018)	
Power Operation	 AC 120V/60Hz Adapter(Not for sale) PoE(Not for sale) Host system DC Type : Battery Car Charger DC Power Supply External DC adapter 	

Remark:

All listed models are using an identical RF module with the only differences on number of key buttons mounted for additional functions.

Due to similarity of RF product constructions of given model series, only dedicated model as described in test report with the most complexity constructions was selected for testing and record

1.2 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	GFSK for BLE-1Mbps
Number of channel	40 Channels

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 and RSS-GEN Table A1 for test channels

Number of frequencies to be tested				
Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation				
1 MHz or less	1	Middle		
1 MHz to 10 MHz	2	1 near top and 1 near bottom		
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom		

1.3 ANTENNA INFORMATION

Antenna Category	 Integral: antenna permanently attached External dedicated antennas External Unique antenna connector
Antenna Type	 PIFA PCB Dipole Coils
Antenna Gain	2.75 dBi

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 1.4003
RF output power, conducted	+/- 1.1372
Power density, conducted	+/- 1.4003
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683
3M Semi Anechoic Chamber / 40G~60G	+/- 1.8509
3M Semi Anechoic Chamber / 60G~75G	+/- 1.9869
3M Semi Anechoic Chamber / 75G~110G	+/- 2.9651
3M Semi Anechoic Chamber / 110G~170G	+/- 2.7807
3M Semi Anechoic Chamber / 170G~220G	+/- 3.6437
3M Semi Anechoic Chamber / 220G~325G	+/- 4.2982

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

Test site	Test Engineer	Remark
AC Conduction Room	David Cheng	
Radiation	Kevin Kuo	
RF Conducted	Eric Lee	

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site						
Equipment	Equipment Manufacturer Model S/N Cal Date Cal Due					
Spectrum Analyzer	R&S	FSV 40	101073	08/01/2016	07/31/2017	

3M 966 Chamber Test Site					
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due
Bi-log Antenna	TESEQ	CBL 6112D	35403	07/03/2016	07/02/2017
Double Ridged BroadBand Horn Antenna	SCHWARZBECK	BBHA 9120 D	9120D-778	07/15/2016	07/14/2017
Double Ridged Guide Horn Antenna	ETS · LINDGREN	3117	00078733	11/17/2016	11/16/2017
EMI Test Receiver	ROHDE & SCHWARZ	ESCI	100221	04/27/2016	04/26/2017
Horn Antenna	COM-POWER	AH-840	03077	12/02/2016	12/01/2017
Loop Antenna	COM-POWER	AL-130	121060	05/24/2016	05/23/2017
Preamplifier	Agilent	8447D	2944A10052	07/13/2016	07/12/2017
Preamplifier	Agilent	8449B	3008A01916	07/13/2016	07/12/2017
PSA Series Spectrum Analyzer	Agilent	E4446A	MY46180323	04/13/2016	04/12/2017
Software	Software E3.815206a				

AC Conducted Emissions Test Site						
Equipment Manufacturer Model S/N Cal Date Cal Due						
EMI Test Receiver	R&S	ESCI	101201	08/20/2016	08/19/2017	
LISN	Schwarzbeck	NNLK 8129	8129-286	08/19/2016	08/18/2017	
LISN(EUT)	Schwarzbeck	NSLK 8127	8127-527	08/19/2016	08/18/2017	
Pulse Limiter	R&S	ESH3Z2	C3010026-2	08/21/2016	08/22/2017	
Software	EZ-EMC					

Remark: Each piece of equipment is scheduled for calibration once a year.

.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

EUT Accessories Equipment						
No.	No. Equipment Brand Model Series No. FCC ID					
1	Car Charger	N/A	N/A	N/A	N/A	
2	Docking	N/A	N/A	N/A	N/A	

	Support Equipment						
No.	Equipment	Brand	Model	Series No.	FCC ID		
1	Notebook	Acer	Z01	N/A	QDS-BRCM1018		
2	Battery	YUASA	CMF75D23L	N/A	N/A		
3	PS/2 Mouse	hp	M-SBF96	FATSQDC5BYJQKZ	FCC DoC		
4	PS/2 Keyboard	Genius	K939	N/A	FCC DoC		
5	Microphone & Earphone	INTOPIC	JASS-288	N/A	N/A		
6	Monitor	DELL	P2314Ht	CN-0HMJ1V-74445-46S-156S	FCC DoC		
7	Host PC	DELL	T5810	8G5NKG2	N/A		
8	Modem	GALILEO	AL-56ERM	0MERM04A0212	FCC DoC		
9	Printer	HP	SNPRB-1202-01	CN54K182G9	N/A		

1.8 Test methodology and applied standards

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, KDB 558074 D01 v03r05, RSS-247 Issue 1 and RSS-GEN Issue 4

1.9 Table of accreditations and listings

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW0240
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

2. TEST SUMMERY

FCC Standard Section	IC Standard Section	Report Section	Test Item	Result
15.203	-	1.2	Antenna Requirement	Pass
15.207(a)	RSS-GEN 8.8	4.1	AC Conducted Emission	Pass
15.247(a)(2)	RSS-247(5.2)(1)	4.2	6 dB Bandwidth	Pass
-	RSS-GEN 6.6	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)	RSS-247(5.4)(4)	4.3	Output Power Measurement	Pass
15.247(e)	RSS-247(5.2)(2)	4.4	Power Spectral Density	Pass
15.247(d)	RSS-247(5.5)	4.5	Conducted Band Edge	Pass
15.247(d)	RSS-247(5.5)	4.5	Conducted Emission	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.6	Radiation Band Edge	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.6	Radiation Spurious Emission	Pass

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	BT4.0 Mode (1Mbps)
Test Channel Frequencies	1.Lowest Channel : 2402MHz 2.Middle Channel : 2440MHz 3.Highest Channel : 2480MHz

Remark:

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

3.2 THE WORST MODE OF MEASUREMENT

AC Power Line Conducted Emission			
Test Condition AC Power line conducted emission for line and neutral			
Voltage/Hz 120V/60Hz			
Test Mode Mode 1:EUT power by host system via USB Cable			
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4			

Radiated Emission Measurement Above 1G			
Test Condition	Test Condition Band edge, Emission for Unwanted and Fundamental		
Voltage/Hz	120V/60Hz		
Test Mode	Test Mode Mode 1:EUT power by host system via USB Cable		
Worst Mode	Worst Mode Mode 1 Mode 2 Mode 3 Mode 4		
Worst Position Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane)			
Worst Polarity			

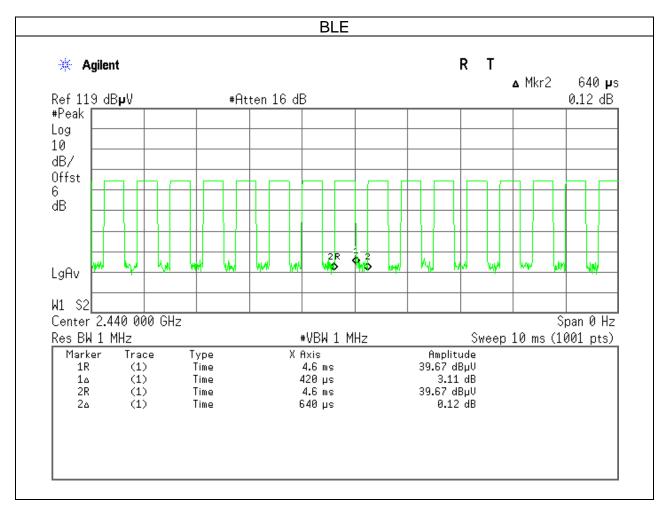
Radiated Emission Measurement Below 1G			
Test Condition Radiated Emission Below 1G			
Voltage/Hz	120V/60Hz		
Test Mode	Mode 1:EUT power by host system via USB Cable Mode 2:EUT power by Car charger via Power Board(Charger mode)		
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4			

Remark:

1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X ,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(Y-Plane and Vertical) were recorded in this report.

3. For below 1G AC power line conducted emission and radiation emission were performed the EUT transmit at the Maximum bandwidth and Middle channel as worse case.


4. EUT power supply had two ways (Car charger, by host system), that EUT pre-scanned two power supply(Car charger and host system) at Radiated below 1G, and the worst case was host system mode.

5. EUT Transmit only can by host system to set, and we tested car Car charger in Charger mode. Therefore EUT used host system mode for Radiated measurement above 1G and Conduction below 1G in test report.

3.3 EUT DUTY CYCLE

Duty Cycle						
Configuration	Configuration TX ON (ms) TX ALL (ms) Duty Cycle (%) Duty Factor(dB)					
BLE	0.42	0.64	65.63	1.83		

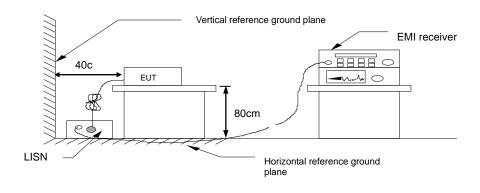
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a) and RSS-GEN section 8.8,

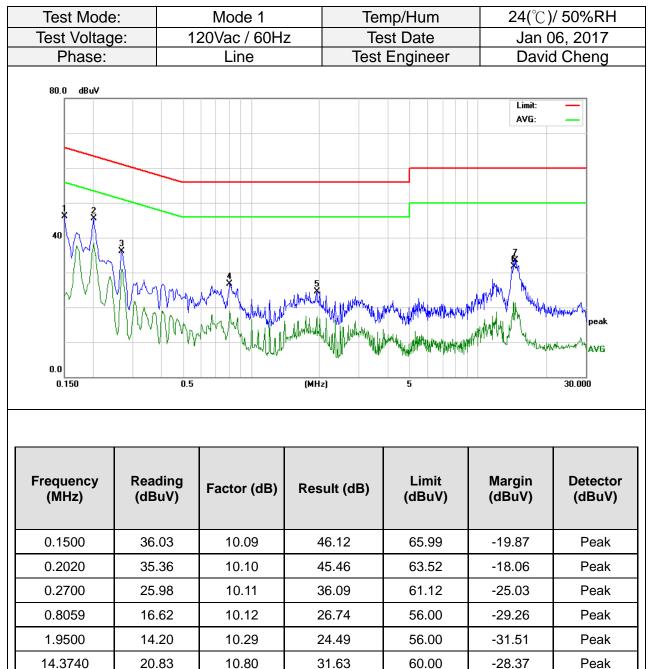
Frequency Range	Limits(dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	

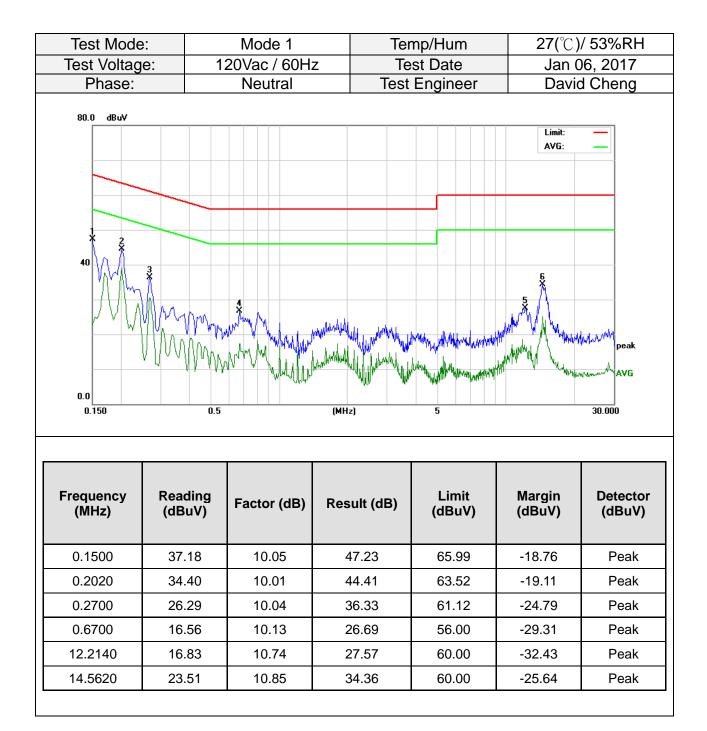

* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.


4.1.3 Test Setup



4.1.4 Test Result

<u>Pass</u>

Test Data

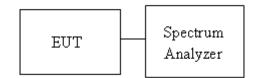
4.2 6DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)

4.2.1 Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(1)

6 dB Bandwidth :

Limit	Shall be at least 500kHz

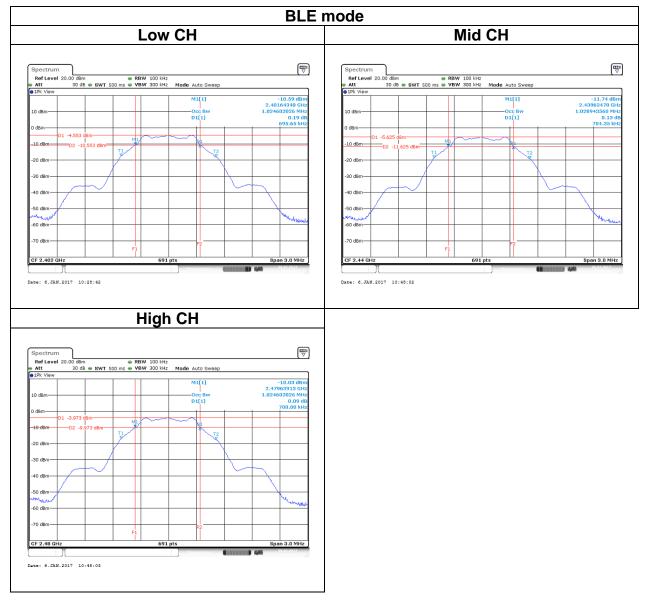

Occupied Bandwidth(99%) : For reporting purposes only.

4.2.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, section 8.1 and ANSI 63.10:2013 clause 6.9.2,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth and 99% Bandwidth.
- 4. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

4.2.3 Test Setup



4.2.4 Test Result

Test mode: BLE mode / 2402-2480 MHz					
Channel	Frequency (MHz)	OBW(99%) (MHz)	6dB BW (MHz)	6dB limit (kHz)	
Low	2402	1.0246	0.6956		
Mid	2440	1.0289	0.7043	>500	
High	2480	1.0246	0.7000		

Test Data

4.3 OUTPUT POWER MEASUREMENT

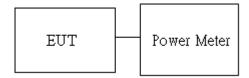
4.3.1 Test Limit

According to §15.247(b) and RSS-247 section 5.4(4)

Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

 Antenna not exceed 6 dBi : 30dBm Antenna with DG greater than 6 dBi
[Limit = 30 – (DG – 6)]


Average output power : For reporting purposes only.

4.3.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

4.3.4 Test Result

Peak output power :

			BLI	E Mode			
Config.	СН	Freq. (MHz)	PK Power (dBm)	EIRP PK Power (dBm)	PK Power (W)	EIRP PK Power (W)	FCC/IC Limit (dBm)
BLE	0	2402	-0.45	2.30	0.0009	0.0017	
Data rate:	19	2440	-1.42	1.33	0.0007	0.0014	30
1Mbps	39	2480	-0.23	2.52	0.0009	0.0018	

Average output power :

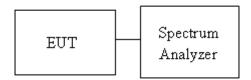
	BLE	Mode	
Config.	СН	Freq. (MHz)	AV Power (dBm)
BLE	0	2402	-1.53
Data rate:	19	2440	-3.13
1Mbps	39	2480	-0.74

4.4 POWER SPECTRAL DENSITY

4.4.1 Test Limit

According to §15.247(e) and RSS-247 section 5.2(2)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

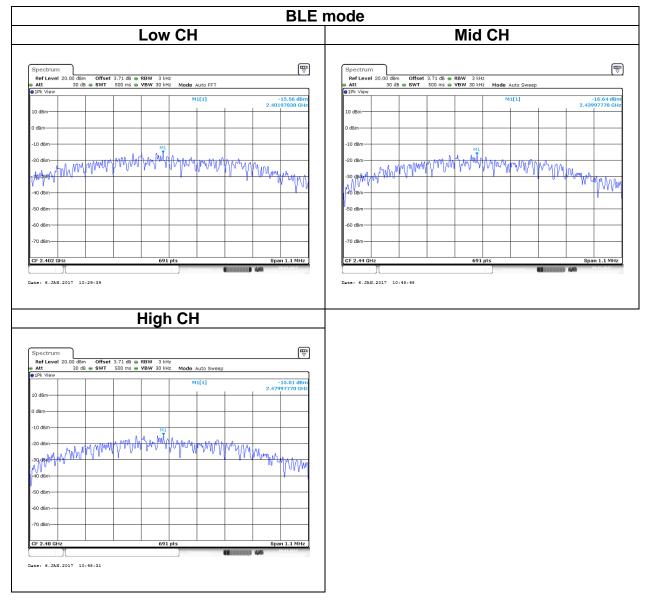

Limit	 Antenna not exceed 6 dBi : 8dBm Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] Point-to-point operation :
-------	---

4.4.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

4.4.3 Test Setup



4.4.4 Test Result

Test mode: BLE mode / 2402-2480 MHz						
Channel	Frequency (MHz)	PSD (dBm)	IC/FCC limit (dBm)			
Low	2402	-15.56				
Mid	2440	-16.64	8			
High	2480	-15.01				

Test Data

4.5 CONDUCTED BAND EDGE AND SPURIOUS EMISSION

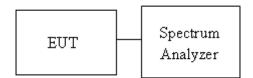
4.5.1 Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

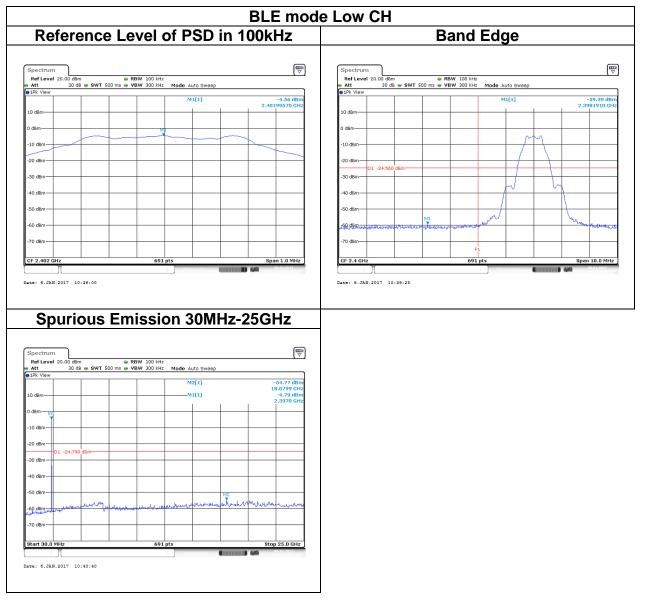
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

4.5.2 Test Procedure

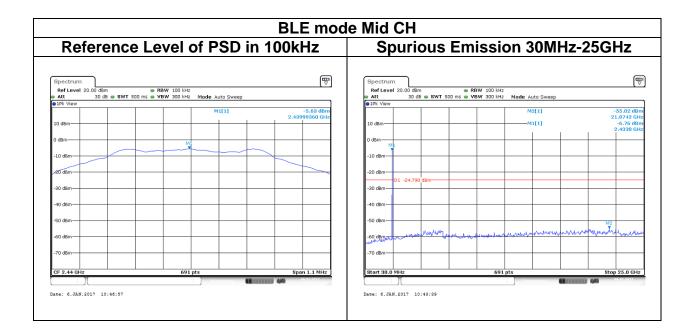

Test method Refer as KDB 558074 D01 v03r05, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

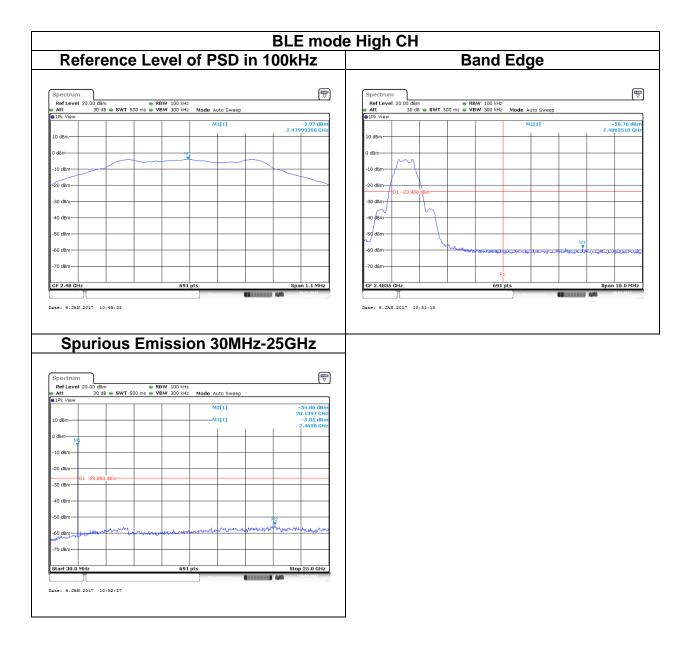
2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.


3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

4.5.3 Test Setup



4.5.4 Test Result


Test Data

4.6 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.6.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)				
(MHz)	Transmitters	Receivers			
30-88	100 (3 nW)	100 (3 nW)			
88-216	150 (6.8 nW)	150 (6.8 nW)			
216-960	200 (12 nW)	200 (12 nW)			
Above 960	500 (75 nW)	500 (75 nW)			

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 937606.

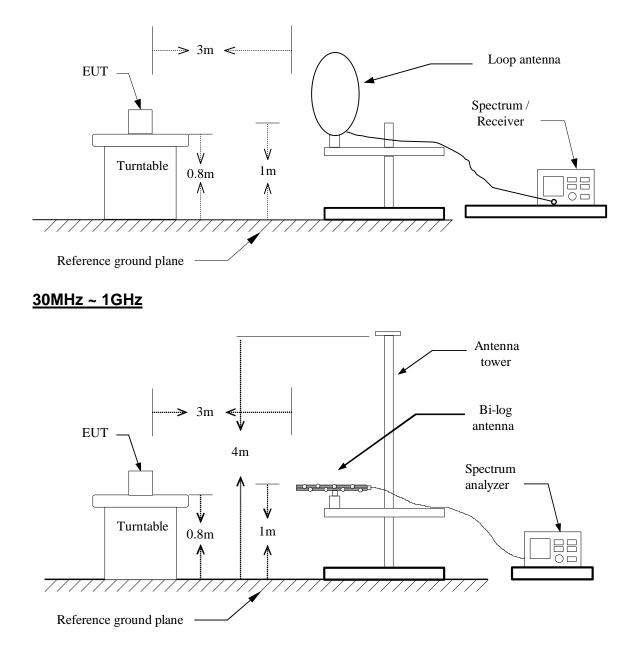
4.6.2 Test Procedure

Test method Refer as KDB 558074 D01 v03r05, Section 12.1.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.

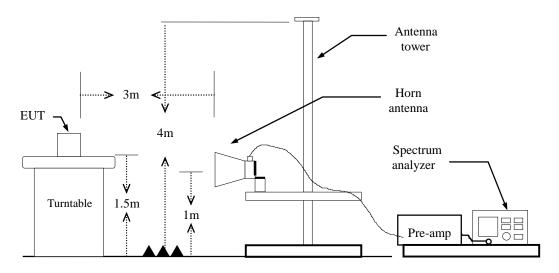
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 30MHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.


- 4. The SA setting following :
 - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

If Duty Cycle \geq 98%, VBW=10Hz.

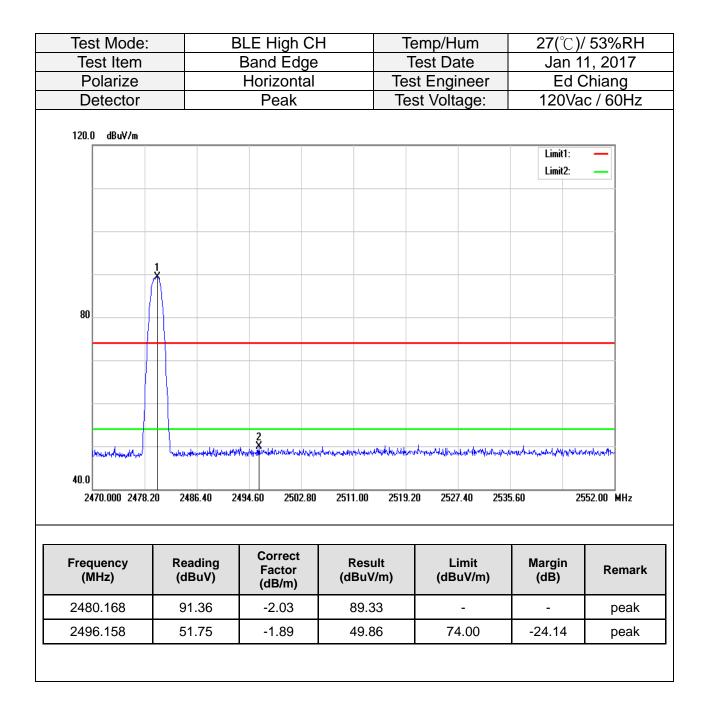
If Duty Cycle < 98%, VBW=1/T.


Configuration	Duty Cycle (%)	VBW
BLE	65.63 %	2.4kHz

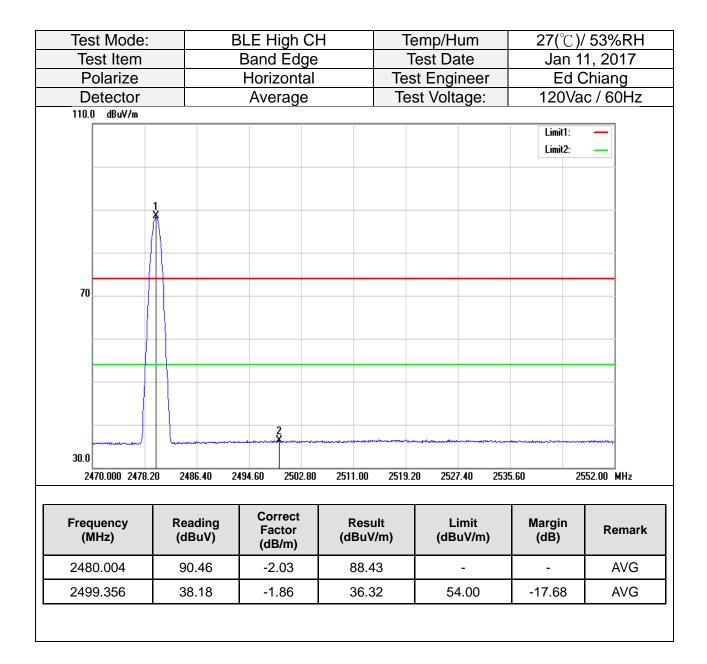
4.6.3 Test Setup <u>9kHz ~ 30MHz</u>

Above 1 GHz

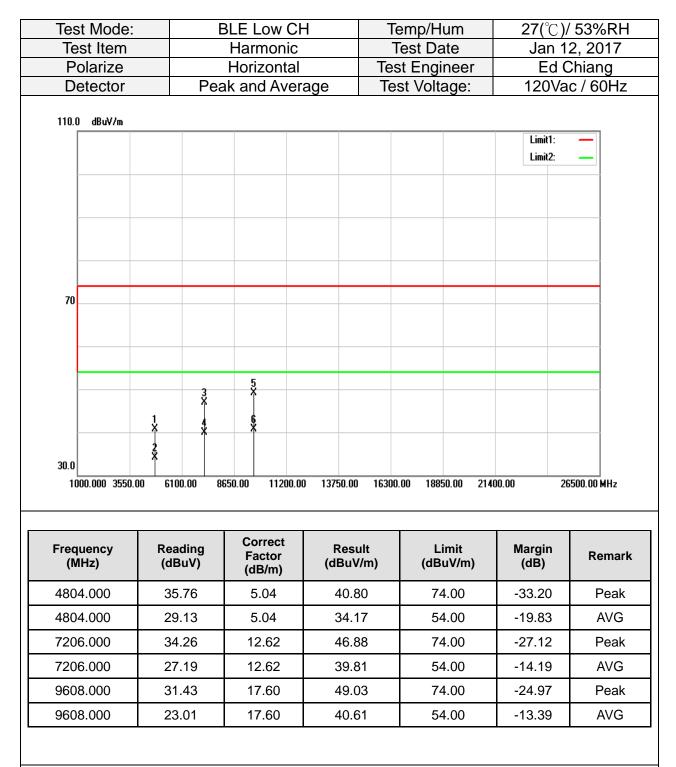
4.6.4 Test Result


Band Edge Test Data

Test Mode:		BLE Low CH	4	Temp/Hur	n)/ 53%RH
Test Item		Band Edge		Test Date		Jan 11, 2017	
Polarize		Horizontal		Test Engine			Chiang
Detector		Peak		Test Voltag	je:	120V	/ac / 60Hz
120.0 dBuV/m							
						Limit1: Limit2:	_
						2 X	
80							
www.www.	nyittyk pathakana nyinaifada	norman harder and the second to	phanadalahanadada	ana mangana ang ang ang ang ang ang ang ang a	numbership	and the second	hennewharm
40.0							
2310.000 2320.3	20 2330.40 2	340.60 2350.80	2361.00	2371.20 2381.40	0 2391	.60	2412.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m	Lim) (dBuV		Margin (dB)	Remark
2348.250	51.95	-2.83	49.12	74.0	00	-24.88	Peak
	93.23	-2.41	90.82	_		_	Peak



Test Mode:		BLE Low C	H	Temp/Hum	27(°C).	/ 53%RH
Test Item		Band Edge		Test Date		1, 2017
Polarize		Horizontal		Test Engineer		Chiang
Detector		Average		Test Voltage:	120Va	ic / 60Hz
110.0 dBuV/m						
					Limit1: Limit2:	_
					2	
					Ň	
70						
					¥/ h	Mar
30.0 2310.000 2320.	20 2330.40	2340.60 2350.80	D 2361.00 2	371.20 2381.40 2	391.60 2 [.]	412.00 MHz
2310.000 2320.	20 2330.40	2340.00 2330.00	J 2301.00 2.	571.20 2.301.40 2.	551.00 2	412.00 MII2
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
2389.866	38.16	-2.49	35.67	54.00	-18.33	AVG
2402.004	92.40	-2.41	89.99	-	-	AVG

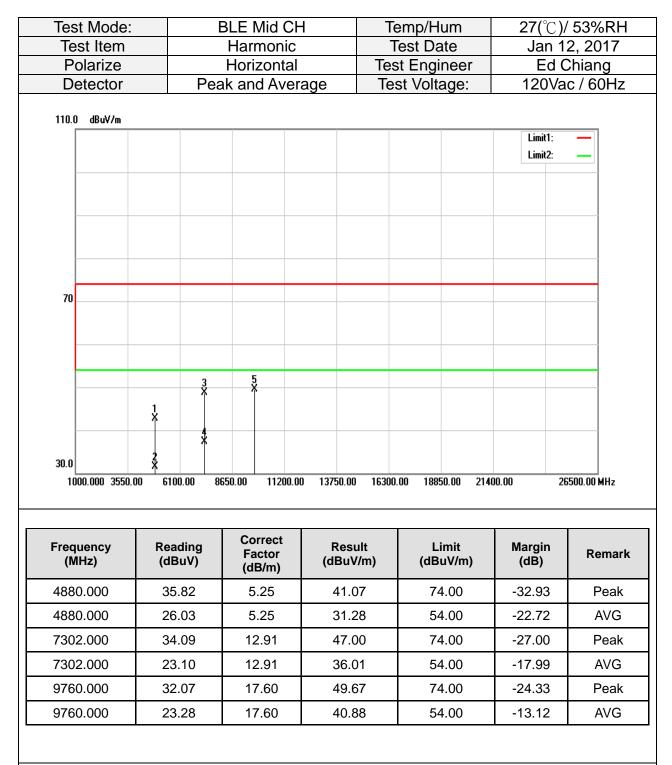

Above 1G Test Data

Test Mode:		BLE Low Cl		ſemp/Hum	(-)	53%RH
Test Item		Harmonic		Test Date	Jan 12, 2017	
Polarize		Vertical		st Engineer		hiang
Detector	Pe	ak and Aver	age le	est Voltage:	120Va	c / 60Hz
110.0 dBuV/m						
					Limit1:	—
					Limit2:	_
70						
	3	5 X				
	1 3 1					
	2 *	¥				
30.0	Î					
1000.000 3550.	00 6100.00	8650.00 11200.0	0 13750.00 1630	0.00 18850.00 214	00.00 26	500.00 MHz
Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
4804.000	37.41	5.04	42.45	74.00	-31.55	Peak
4804.000	32.03	5.04	37.07	54.00	-16.93	AVG
7000 000	33.73	12.62	46.35	74.00	-27.65	Peak
7206.000			00.70	54.00	-14.21	AVG
7206.000	27.17	12.62	39.79	04.00		
	27.17 31.10	12.62 17.60	48.70	74.00	-25.30	Peak

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Remark:


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode:		L	BLE Mid C			emp/H			<u>)/ 53%RH</u>
Test Item Polarize		Harmonic Vertical			Test Date Test Engineer		Jan 12, 2017 Ed Chiang		
Detector		Pea	ak and Ave	erage		st Volta		120Vac / 60	
110.0 dBu∀/m				Jidgo	100			1201	
								Limit1: Limit2:	_
70									
			5						
		3 X 4 X	6						
30.0 1000.000 3550.	<u>*</u> .00 610	0.00 86	650.00 11200).00 13750.00	16300.	.00 188	50.00 214	00.00	26500.00 MHz
Frequency (MHz)		iding BuV)	Correct Factor (dB/m)	Resu (dBuV			imit uV/m)	Margin (dB)	Remark
	(dE		Factor		//m)	(dB			Remark Peak
(MHz)	(dE 35	BuV)	Factor (dB/m)	(dBuV	//m) 54	(dB 74	uV/m)	(dB)	
(MHz) 4880.000	(dE 35 26	3uV) 5.29	Factor (dB/m) 5.25	(dBuV 40.5	//m) 54 34	(dB 74 54	uV/m) 4.00	(dB) -33.46	Peak
(MHz) 4880.000 4880.000	(dE 35 26 32	3 uV) 5.29 5.09	Factor (dB/m) 5.25 5.25	(dBuV 40.5 31.3	//m) 54 34 66	(dB 74 54 74	uV/m) 4.00 4.00	(dB) -33.46 -22.66	Peak AVG
(MHz) 4880.000 4880.000 7320.000	(dE 35 26 32 22	3uV) 5.29 5.09 2.69	Factor (dB/m) 5.25 5.25 12.97	(dBuV 40.5 31.3 45.6	7/m) 54 34 56 92	(dB 74 54 74 54	uV/m) 4.00 4.00 4.00	(dB) -33.46 -22.66 -28.34	AVG Peak

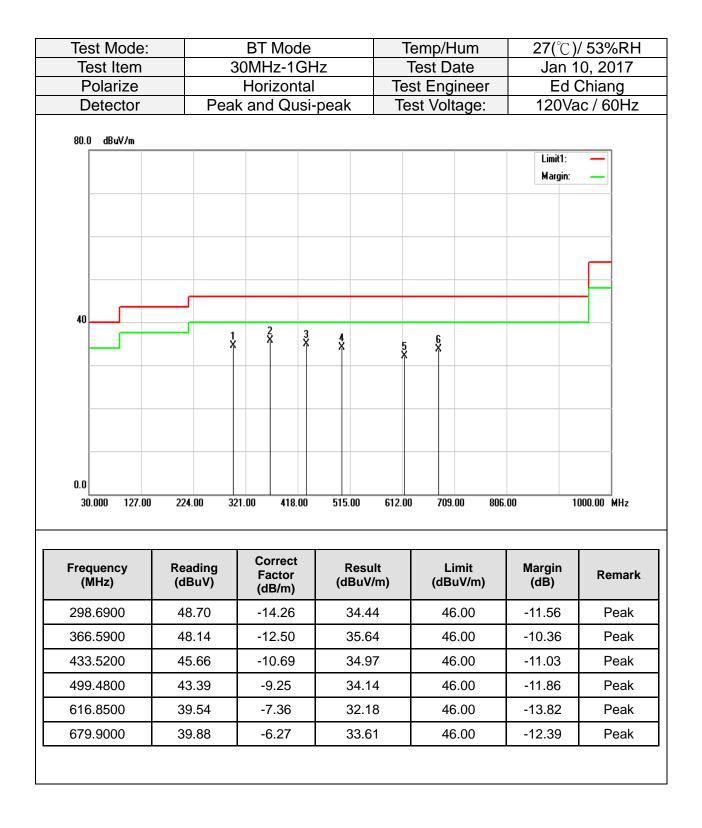
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Remark:

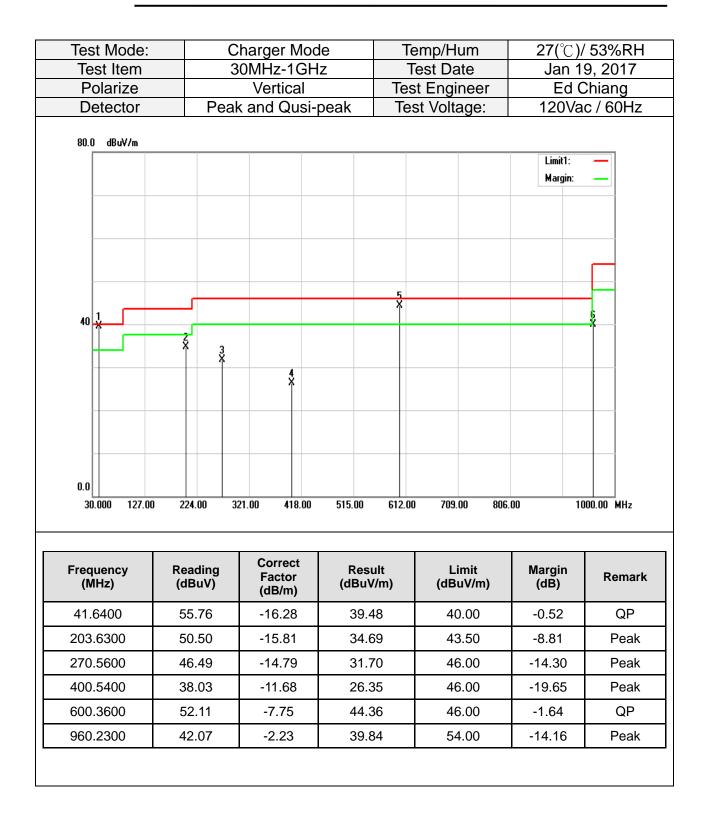
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

	BLE High CH			27(°C)/ 53%RH	
				Jan 12, 2017 Ed Chiang	
F				120Vac / 60H	
				Limit1: Limit2:	
	3 5 X				
1 2 2 X	4 5 X				
00 6100.00	8650.00 11200.0	0 13750.00 1630	00.00 18850.00 214	00.00 26	500.00 MHz
Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remarl
36.59	5.46	42.05	74.00	-31.95	Peak
27.36	5.46	32.82	54.00	-21.18	AVG
	13.33	48.00	74.00	-26.00	Peak
34.67	13.33	40.00			
34.67 24.28	13.33	37.61	54.00	-16.39	AVG
			54.00 74.00	-16.39 -24.00	AVG Peak
	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	Harmonic Vertical Peak and Aver Peak ando	Harmonic Te Vertical Te Peak and Average Te Image: Peak and Average Te	Harmonic Test Date Vertical Test Engineer Peak and Average Test Voltage:	Harmonic Test Date Jan 1 Vertical Test Engineer Ed C Peak and Average Test Voltage: 120Va Imit: Imit: Imit: Imit:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit


	Node: BLE High (27(°C)/ 53%RH	
Test Item Polarize		Harmonic Horizontal		Test Date est Engineer	Jan 12, 2017 Ed Chiang	
Detector	Pe	Peak and Average		est Voltage:	120Vac / 60Hz	
110.0 dBuV/m						
					Limit1: Limit2:	
70						
	1 X 4	5. 6.				
30.0 1000.000 3550.	2 X	8650.00 11200.00) 13750.00 1630	00.00 18850.00 214	00.00 26	500.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remarl
• •		· · ·				
4960.000	36.81	5.46	42.27	74.00	-31.73	Peak
	36.81 27.28		42.27 32.74	74.00	-31.73 -21.26	Peak AVG
4960.000		5.46				
4960.000 4960.000	27.28	5.46 5.46	32.74	54.00	-21.26	AVG
4960.000 4960.000 7440.000	27.28 34.66	5.46 5.46 13.33	32.74 47.99	54.00 74.00	-21.26 -26.01	AVG Peak

- Remark:
 - 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
 - 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit


Below 1G Test Data

Test Mode:		BT Mode			mp/Hun			C)/ 539	
		30MHz-1GHz		Test Date		Jan 10, 2017			
Polarize		Vertical		Test Engineer		Ed Chiang			
Detector Pea		k and Qusi-peak		Test Voltage:		120Vac / 60Hz		OHz	
80.0 dBuV/m			4	5			Limit		
0.0 30.000 127.00) 224.00	321.00 418.00	515.00	612.00	709.00	806.	00	1000.00	MHz
	Reading (dBuV)	321.00 418.00 Correct Factor (dB/m)	515.00 Resu (dBuV	ılt	709.00 Limi (dBuV	it	00 Margin (dB)		
30.000 127.00 Frequency	Reading	Correct Factor	Resu	ılt /m)	Limi	it /m)	Margin	ר R	
30.000 127.00 Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV	ılt /m) i6	Limi (dBuV	it /m) 0	Margin (dB)	ⁿ R	emark
30.000 127.00 Frequency (MHz) 43.5800	Reading (dBuV) 50.05	Correct Factor (dB/m) -17.39	Resu (dBuV) 32.6	ult /m) 66	Limi (dBuV) 40.0	it /m) 0	Margin (dB) -7.34	• R	emark QP
30.000 127.00 Frequency (MHz) 43.5800 356.8900	Reading (dBuV) 50.05 44.74	Correct Factor (dB/m) -17.39 -12.73	Resu (dBuV) 32.6 32.0	ult /m) 66 11 -8	Limi (dBuV 40.0 46.0	it /m) 0 0	Margin (dB) -7.34 -13.99	1 R	emark QP Peak
30.000 127.00 Frequency (MHz) 43.5800 356.8900 420.9100	Reading (dBuV) 50.05 44.74 44.55	Correct Factor (dB/m) -17.39 -12.73 -11.07	Resu (dBuV) 32.6 32.0 33.4	ult /m) 66 01 -8 57	Limi (dBuV 40.0 46.0 46.0	it /m) 0 0 0	Margin (dB) -7.34 -13.99 -12.52	P R	emark QP Peak Peak

