RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS-247

Test Standard	FCC Part 15.247 and RSS-247 Issue 1
FCC ID	A4C-1000BA
ISED No.	10199A-1000BA
Trade name	Rand McNally
Product name	OverDryve™ 7c
Model No.	OD7C
Test Result	Pass

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

The sample selected for test was production product and was provided by manufacturer.

Approved by:

Hem Cleang

Sam Chuang Manager Reviewed by:

ED. Chiang

Ed Chiang Engineer

Revision History

Rev.	Issue Date	Revisions	Revised By
00	February 7, 2017	Initial Issue	Angel Cheng
01	March 24, 2017	 Remove Remark in page 4. Revise section 3.3 in page 12. Revise section 4.2.4 in page 16. Revised section 4.8.2 Duty Cycle in page 34. Add Test Setup Photos in page 61, 62. Revise section 1.3 Antenna Category in page 5. 	Doris Chu

Table of contents

1.	GENE	ERAL INFORMATION4
	1.1	EUT INFORMATION4
	1.2	EUT CHANNEL INFORMATION5
	1.3	ANTENNA INFORMATION5
	1.4	MEASUREMENT UNCERTAINTY6
	1.5	FACILITIES AND TEST LOCATION6
	1.6	INSTRUMENT CALIBRATION7
	1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT8
2.	TEST	SUMMERY9
3.	DESC	RIPTION OF TEST MODES10
	3.1	THE WORST MODE OF OPERATING CONDITION10
	3.2	THE WORST MODE OF MEASUREMENT11
	3.3	EUT DUTY CYCLE12
4.	TEST	RESULT13
	4.1	AC POWER LINE CONDUCTED EMISSION13
	4.2	20DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)16
	4.3	OUTPUT POWER MEASUREMENT19
	4.4	FREQUENCY SEPARATION21
	4.5	NUMBER OF HOPPING24
	4.6	CONDUCTED BANDEDGE AND SPURIOUS EMISSION
	4.7	TIME OF OCCUPANCY (DWELL TIME)
	4.8	RADIATION BANDEDGE AND SPURIOUS EMISSION
A	PPEN	DIX 1 - PHOTOGRAPHS OF EUT

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	RM Acquisition, LLC 9855 Woods Drive Skokie, IL 60077 USA.		
Equipment	OverDryve™ 7c		
Model Name	OD7C		
Model Discrepancy	N/A		
EUT Functions	IEEE 802.11b/g/n+BT+GPS+FM		
Received Date	Dec 28, 2016		
Date of Test	Jan 02, 2017 ~ Jan 18, 2017		
Output Power(W)	GFSK : 0.0056 (EIRP : 0.0105) 8DPSK : 0.0047 (EIRP : 0.0089)		
Power Operation	 AC 120V/60Hz Adapter(Not for sale) PoE(Not for sale) Host system DC Type : Battery Car Charger DC Power Supply External DC adapter 		

1.2 EUT CHANNEL INFORMATION

Frequency Range	2402MHz-2480MHz
Modulation Type	 GFSK for BR-1Mbps π/4-DQPSK for EDR-2Mbps 8DPSK for EDR-3Mbps
Number of channel	79 Channels

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 and RSS-GEN Table A1 for test channels

Number of frequencies to be tested				
Frequency range in which device operates	Number of frequencies	Location in frequency range of operation		
1 MHz or less	1	Middle		
1 MHz to 10 MHz	2	1 near top and 1 near bottom		
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom		

1.3 ANTENNA INFORMATION

Antenna Category	 Integral: antenna permanently attached External dedicated antennas External Unique antenna connector
Antenna Type	 □ PIFA ➢ PCB □ Dipole □ Coils
Antenna Gain	2.75dBi

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 1.4003
RF output power, conducted	+/- 1.1372
Power density, conducted	+/- 1.4003
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683
3M Semi Anechoic Chamber / 40G~60G	+/- 1.8509
3M Semi Anechoic Chamber / 60G~75G	+/- 1.9869
3M Semi Anechoic Chamber / 75G~110G	+/- 2.9651
3M Semi Anechoic Chamber / 110G~170G	+/- 2.7807
3M Semi Anechoic Chamber / 170G~220G	+/- 3.6437
3M Semi Anechoic Chamber / 220G~325G	+/- 4.2982

1.4 MEASUREMENT UNCERTAINTY

Remark:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

1.

Taipei City 24891, Taiwan. (R.O.C.)

No.11, Wugong 6th Rd., Wugu Dist., New

2.

No.163-1, Jhongsheng Rd. Sindian City,

Taipei County 23151, Taiwan.

Test site Test Engineer		Remark		
AC Conduction Room	Jim Lian	The AC conduction room test items was tested at Compliance Certification Services Inc. (Sindian Lab.) The test equipments were listed in page 7 and the test data, please refer page 14-15.		
Radiation	Ed Chiang			
RF Conducted	Eric Lee			

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.6 INSTRUMENT CALIBRATION

Equipment Manufacturer Model S/N Cal Date Cal Due Power Meter Anritsu ML2495A 1012009 07/04/2016 07/03/2017 Power Sensor Anritsu MA2411B 917072 07/04/2016 07/03/2017 Spectrum Analyzer R&S FSV 40 101073 10/05/2016 06/04/2016 Chamber GWIINSTEK GTC-288MH-CC TH160402 05/04/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260020 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260020 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260027 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260027 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260027 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260007 05/12/2016 05	RF Conducted Test Site					
Power Sensor Anritsu MA2411B 917072 07/04/2016 07/03/2017 Spectrum Analyzer R&S FSV 40 101073 10/05/2016 10/04/2017 Thermostatic/Hrgrosatic Chamber GWINSTEK GTC-288MH-CC TH160402 05/04/2016 05/03/2017 USB Wideband Power Sensor Agilent U2021XA MY54250027 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260016 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260020 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260007 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA	Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due
Spectrum Analyzer R&S FSV 40 101073 10/05/2016 10/04/2017 Thermostatic/Hrgrosatic Chamber GWINSTEK GTC-288MH-CC TH160402 05/04/2016 05/03/2017 USB Wideband Power Sensor Agilent U2021XA MY54250027 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260020 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260007 05/12/2016 05/12/2016 USB Wideband Power Sensor Agilent U2	Power Meter	Anritsu	ML2495A	1012009	07/04/2016	07/03/2017
Thermostatic/Hrgrosatic Chamber GWINSTEK GTC-288MH-CC TH160402 05/04/2016 05/03/2017 USB Wideband Power Sensor Agilent U2021XA MY54260020 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260007 05/12/2016 06/07/2017 USB Wideband Power Sensor Sunol Scin	Power Sensor	Anritsu	MA2411B	917072	07/04/2016	07/03/2017
Chamber GWNNERK GTC-288MPCC TH160402 03/04/2016 03/03/2117 USB Wideband Power Sensor Agilent U2021XA MY54250027 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260020 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260020 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260020 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260007 05/12/2016 05/12/2017 UTB Mantacturer Model S/N <td>Spectrum Analyzer</td> <td>R&S</td> <td>FSV 40</td> <td>101073</td> <td>10/05/2016</td> <td>10/04/2017</td>	Spectrum Analyzer	R&S	FSV 40	101073	10/05/2016	10/04/2017
Sensor Aglient U2021XA MY54250027 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260016 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260020 05/12/2016 05/12/2017 Free-Amplifier EMEC EM330 60609	Chamber	GWINSTEK	GTC-288MH-CC	TH160402	05/04/2016	05/03/2017
Sensor Aglient U2021XA MY54260016 05/12/2016 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260020 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260007 05/12/2016 05/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260007 05/12/2016 05/11/2017 Sensor Manufacturer Model S/N Cal Due Cal Due Spectrum Analyzer Agilent E4446A US42510252 12/05/2016 12/04/2017 Bilog Antenna Sunol Sciences JB3 A030105 07/03/2016 06/07/2017 Horn Antenna ETC MCTD 1209 DRH13M02003 06/08/2016 06/02/2016 06/22/2017 Antenna Tower CCS CC-A-5F N/A N.C.R N.C.R Turn Table CCS CC-7-5F N/A N.C.R N.C.R Horn Antenna ETC MCTD 1209 DRH13M02003 09/02/2016 06/07/2017 <td>Sensor</td> <td>Agilent</td> <td>U2021XA</td> <td>MY54250027</td> <td>05/12/2016</td> <td>05/11/2017</td>	Sensor	Agilent	U2021XA	MY54250027	05/12/2016	05/11/2017
Sensor Agilent U2021XA MY54260020 U5/12/2016 U5/11/2017 USB Wideband Power Sensor Agilent U2021XA MY54260007 05/12/2016 05/11/2017 Sensor Cal Due Ca	Sensor	Agilent	U2021XA	MY54260016	05/12/2016	05/11/2017
Sensor Agilent 02021XA M154260007 05/12/2018 05/11/2017 Sensor 3M 966 Chamber Test Site Equipment Manufacturer Model S/N Cal Due Cal Due Spectrum Analyzer Agilent E4446A US42510252 12/05/2016 12/04/2017 Bilog Antenna Sunol Sciences JB3 A030105 07/03/2016 07/02/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 Horn Antenna ETC MCTD 1209 DRH13M02003 06/01/2016 05/31/2017 Pre-Amplifier EMCI EMC012635 980151 06/23/2016 06/22/2017 Antenna Tower CCS CC-A-5F N/A N.C.R N.C.R Turn Table CCS CC-T-5F N/A N.C.R N.C.R Horn Antenna ETC MCTD 1209 DRH13M02003 09/02/2016 06/07/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 Dre-Am	Sensor	Agilent	U2021XA	MY54260020	05/12/2016	05/11/2017
Equipment Manufacturer Model S/N Cal Due Cal Due Spectrum Analyzer Agilent E4446A US42510252 12/05/2016 12/04/2017 Bilog Antenna Sunol Sciences JB3 A030105 07/03/2016 07/02/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 Horn Antenna ETC MCTD 1209 DRH13M02003 06/01/2016 05/31/2017 Pre-Amplifier EMCI EMC012635 980151 06/23/2016 06/22/2017 Antenna Tower CCS CC-A-5F N/A N.C.R N.C.R Controller CCS CC-T-5F N/A N.C.R N.C.R Turn Table CCS CC-T-5F N/A N.C.R N.C.R Horn Antenna ETC MCTD 1209 DRH13M02003 09/02/2016 06/07/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 Pro-Amplifier EMEC EM330 60609 06/08/201		Agilent	U2021XA	MY54260007	05/12/2016	05/11/2017
Spectrum Analyzer Agilent E4446A US42510252 12/05/2016 12/04/2017 Bilog Antenna Sunol Sciences JB3 A030105 07/03/2016 07/02/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 Horn Antenna ETC MCTD 1209 DRH13M02003 06/01/2016 05/31/2017 Pre-Amplifier EMCI EMC012635 980151 06/23/2016 06/22/2017 Antenna Tower CCS CC-A-5F N/A N.C.R N.C.R Controller CCS CC-T-5F N/A N.C.R N.C.R Horn Antenna ETC MCTD 1209 DRH13M02003 09/02/2016 09/01/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 Dre-Amplifier EMEC EM330 60609		3M 9	966 Chamber Test Si	te		
Bilog Antenna Sunol Sciences JB3 A030105 07/03/2016 07/02/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 Horn Antenna ETC MCTD 1209 DRH13M02003 06/01/2016 05/31/2017 Pre-Amplifier EMCI EMC012635 980151 06/23/2016 06/22/2017 Antenna Tower CCS CC-A-5F N/A N.C.R N.C.R Controller CCS CC-C-5F N/A N.C.R N.C.R Turn Table CCS CC-T-5F N/A N.C.R N.C.R Horn Antenna ETC MCTD 1209 DRH13M02003 09/02/2016 06/07/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 Equipment Manufacturer Model S/N Cal Date	Equipment	Manufacturer	Model	S/N	Cal Due	Cal Due
Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 Horn Antenna ETC MCTD 1209 DRH13M02003 06/01/2016 05/31/2017 Pre-Amplifier EMCI EMC012635 980151 06/23/2016 06/22/2017 Antenna Tower CCS CC-A-5F N/A N.C.R N.C.R Controller CCS CC-T-5F N/A N.C.R N.C.R Turn Table CCS CC-T-5F N/A N.C.R N.C.R Horn Antenna ETC MCTD 1209 DRH13M02003 09/02/2016 09/01/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 AC Conducted Emissions Test Site Equipment Manufacturer Model S/N Cal Date Cal Due BNC Cable EMCI CFD300-NL BNC#B4 05/29/2016 05/28/2017 EMI Test Receiver R&S ESCI 101201 08/19/2016 08/18/2017 LISN Schwarzbeck	Spectrum Analyzer	Agilent	E4446A	US42510252	12/05/2016	12/04/2017
Horn Antenna ETC MCTD 1209 DRH13M02003 06/01/2016 05/31/2017 Pre-Amplifier EMCI EMC012635 980151 06/23/2016 06/22/2017 Antenna Tower CCS CC-A-5F N/A N.C.R N.C.R Controller CCS CC-C-5F N/A N.C.R N.C.R Turn Table CCS CC-T-5F N/A N.C.R N.C.R Horn Antenna ETC MCTD 1209 DRH13M02003 09/02/2016 09/01/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 Equipment Manufacturer Model S/N Cal Date Cal Due BNC Cable EMCI CFD300-NL BNC#B4 05/29/2016 05/28/2017 EMI Test Receiver R&S ESCI 101201 08/20/2016 08/19/2017 ISN Teseq ISN T800 29449 08/19/2016 08/18/2017 LISN Schwarzbeck NSLK 8127 8129-286 08/19/20160	Bilog Antenna	Sunol Sciences	JB3	A030105	07/03/2016	07/02/2017
Pre-Amplifier EMCI EMC012635 980151 06/23/2016 06/22/2017 Antenna Tower CCS CC-A-5F N/A N.C.R N.C.R Controller CCS CC-C-5F N/A N.C.R N.C.R Turn Table CCS CC-T-5F N/A N.C.R N.C.R Horn Antenna ETC MCTD 1209 DRH13M02003 09/02/2016 09/01/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 AC Conducted Emissions Test Site Equipment Manufacturer Model S/N Cal Date Cal Due BNC Cable EMCI CFD300-NL BNC#B4 05/29/2016 05/28/2017 ISN Teseq ISN T800 29449 08/19/2016 08/18/2017 LISN Schwarzbeck NSLK 8127 8129-286 08/19/2016 08/18/2017 LISN(EUT) Schwarzbeck NSLK 8127 8127527 08/19/2016 08/21/2017 Pulse Limiter R&S	Pre-Amplifier	EMEC	EM330	60609	06/08/2016	06/07/2017
Antenna Tower CCS CC-A-5F N/A N.C.R N.C.R Controller CCS CC-C-5F N/A N.C.R N.C.R Turn Table CCS CC-T-5F N/A N.C.R N.C.R Horn Antenna ETC MCTD 1209 DRH13M02003 09/02/2016 09/01/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 Manufacturer Model S/N Cal Date Cal Due BNC Cable EMCI CFD300-NL BNC#B4 05/29/2016 05/28/2017 EMI Test Receiver R&S ESCI 101201 08/20/2016 08/19/2017 ISN Teseq ISN T800 29449 08/19/2016 08/18/2017 LISN Schwarzbeck NSLK 8127 8129-286 08/19/2016 08/18/2017 Pulse Limiter R&S ESH3-Z2 C3010026-2 08/23/2016 08/22/2017 Thermo-Hygro Meter Wisewind 201A No. 02 05/03/2016 05/02/2017	Horn Antenna	ETC	MCTD 1209	DRH13M02003	06/01/2016	05/31/2017
Controller CCS CC-C-5F N/A N.C.R N.C.R Turn Table CCS CC-T-5F N/A N.C.R N.C.R Horn Antenna ETC MCTD 1209 DRH13M02003 09/02/2016 09/01/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 AC Conducted Emissions Test Site Equipment Manufacturer Model S/N Cal Date Cal Due BNC Cable EMCI CFD300-NL BNC#B4 05/29/2016 05/28/2017 EMI Test Receiver R&S ESCI 101201 08/20/2016 08/18/2017 ISN Teseq ISN T800 29449 08/19/2016 08/18/2017 LISN Schwarzbeck NSLK 8127 8129-286 08/19/2016 08/18/2017 Pulse Limiter R&S ESH3-Z2 C3010026-2 08/23/2016 08/22/2017 Thermo-Hygro Meter Wisewind 201A No. 02 05/03/2016 05/02/2017 Current Sensor Probe	Pre-Amplifier	EMCI	EMC012635	980151	06/23/2016	06/22/2017
Turn Table CCS CC-T-5F N/A N.C.R N.C.R Horn Antenna ETC MCTD 1209 DRH13M02003 09/02/2016 09/01/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 AC Conducted Emissions Test Site AC Cal Date Cal Date Cal Date Cal Date BNC Cable EMCI CFD300-NL BNC#B4 05/29/2016 08/19/2017 EMI Test Receiver R&S ESCI 101201 08/20/2016 08/19/2017 ISN Teseq ISN T800 29449 08/19/2016 08/18/2017 LISN Schwarzbeck NSLK 8127 8129-286 08/19/2016 08/18/2017 LISN(EUT) Schwarzbeck NSLK 8127 8127527 08/19/2016 08/18/2017 Pulse Limiter R&S ESH3-Z2 C3010026-2 08/23/2016 08/22/2017 Thermo-Hygro Meter Wisewind 201A No. 02 05/03/2016 05/02/2017 Current Sensor Probe Teseq CVP 2200A <t< td=""><td>Antenna Tower</td><td>CCS</td><td>CC-A-5F</td><td>N/A</td><td>N.C.R</td><td>N.C.R</td></t<>	Antenna Tower	CCS	CC-A-5F	N/A	N.C.R	N.C.R
Horn Antenna ETC MCTD 1209 DRH13M02003 09/02/2016 09/01/2017 Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 AC Conducted Emissions Test Site Equipment Manufacturer Model S/N Cal Date Cal Due BNC Cable EMCI CFD300-NL BNC#B4 05/29/2016 05/28/2017 EMI Test Receiver R&S ESCI 101201 08/20/2016 08/19/2017 ISN Teseq ISN T800 29449 08/19/2016 08/18/2017 LISN Schwarzbeck NSLK 8127 8129-286 08/19/2016 08/18/2017 LISN(EUT) Schwarzbeck NSLK 8127 8127527 08/19/2016 08/22/2017 Pulse Limiter R&S ESH3-Z2 C3010026-2 08/23/2016 08/22/2017 Current Sensor Probe Teseq CSP 9160A 73982 06/02/2016 06/01/2017 Capacitive Voltage Probe Teseq CVP 2200A 37925 10/26/2016 10/25/2017 <td>Controller</td> <td>CCS</td> <td>CC-C-5F</td> <td>N/A</td> <td>N.C.R</td> <td>N.C.R</td>	Controller	CCS	CC-C-5F	N/A	N.C.R	N.C.R
Pre-Amplifier EMEC EM330 60609 06/08/2016 06/07/2017 AC Conducted Emissions Test Site AC Cal Date Cal Date Cal Due BNC Cable EMCI CFD300-NL BNC#B4 05/29/2016 05/28/2017 EMI Test Receiver R&S ESCI 101201 08/20/2016 08/19/2017 ISN Teseq ISN T800 29449 08/19/2016 08/18/2017 LISN Schwarzbeck NSLK 8127 8129-286 08/19/2016 08/18/2017 LISN(EUT) Schwarzbeck NSLK 8127 8127527 08/19/2016 08/22/2017 Pulse Limiter R&S ESH3-Z2 C3010026-2 08/23/2016 08/22/2017 Thermo-Hygro Meter Wisewind 201A No. 02 05/03/2016 05/02/2017 Current Sensor Probe Teseq CSP 9160A 73982 06/02/2016 06/01/2017 Capacitive Voltage Probe Teseq CVP 2200A 37925 10/26/2016 10/25/2017	Turn Table	CCS	CC-T-5F	N/A	N.C.R	N.C.R
AC Conducted Emissions Test Site Equipment Manufacturer Model S/N Cal Date Cal Due BNC Cable EMCI CFD300-NL BNC#B4 05/29/2016 05/28/2017 EMI Test Receiver R&S ESCI 101201 08/20/2016 08/19/2017 ISN Teseq ISN T800 29449 08/19/2016 08/18/2017 LISN Schwarzbeck NSLK 8127 8129-286 08/19/2016 08/18/2017 Pulse Limiter R&S ESH3-Z2 C3010026-2 08/23/2016 08/22/2017 Thermo-Hygro Meter Wisewind 201A No. 02 05/03/2016 05/22/2017 Current Sensor Probe Teseq CSP 9160A 73982 06/02/2016 06/01/2017 Capacitive Voltage Probe Teseq CVP 2200A 37925 10/26/2016 10/25/2017	Horn Antenna	ETC	MCTD 1209	DRH13M02003	09/02/2016	09/01/2017
EquipmentManufacturerModelS/NCal DateCal DueBNC CableEMCICFD300-NLBNC#B405/29/201605/28/2017EMI Test ReceiverR&SESCI10120108/20/201608/19/2017ISNTeseqISN T8002944908/19/201608/18/2017LISNSchwarzbeckNSLK 81278129-28608/19/201608/18/2017LISN(EUT)SchwarzbeckNSLK 8127812752708/19/201608/18/2017Pulse LimiterR&SESH3-Z2C3010026-208/23/201608/22/2017Thermo-Hygro MeterWisewind201ANo. 0205/03/201605/02/2017Current Sensor ProbeTeseqCSP 9160A7398206/02/201606/01/2017Cal DueTeseqCVP 2200A3792510/26/201610/25/2017	Pre-Amplifier	EMEC	EM330	60609	06/08/2016	06/07/2017
BNC Cable EMCI CFD300-NL BNC#B4 05/29/2016 05/28/2017 EMI Test Receiver R&S ESCI 101201 08/20/2016 08/19/2017 ISN Teseq ISN T800 29449 08/19/2016 08/18/2017 LISN Schwarzbeck NSLK 8127 8129-286 08/19/2016 08/18/2017 LISN(EUT) Schwarzbeck NSLK 8127 8127527 08/19/2016 08/18/2017 Pulse Limiter R&S ESH3-Z2 C3010026-2 08/23/2016 08/22/2017 Thermo-Hygro Meter Wisewind 201A No. 02 05/03/2016 05/02/2017 Current Sensor Probe Teseq CSP 9160A 73982 06/02/2016 06/01/2017 Capacitive Voltage Probe Teseq CVP 2200A 37925 10/26/2016 10/25/2017		AC Conc	lucted Emissions Te	st Site	-	
EMI Test ReceiverR&SESCI10120108/20/201608/19/2017ISNTeseqISN T8002944908/19/201608/18/2017LISNSchwarzbeckNSLK 81278129-28608/19/201608/18/2017LISN(EUT)SchwarzbeckNSLK 8127812752708/19/201608/18/2017Pulse LimiterR&SESH3-Z2C3010026-208/23/201608/22/2017Thermo-Hygro MeterWisewind201ANo. 0205/03/201605/02/2017Current Sensor ProbeTeseqCSP 9160A7398206/02/201606/01/2017Capacitive Voltage ProbeTeseqCVP 2200A3792510/26/201610/25/2017	Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due
ISN Teseq ISN T800 29449 08/19/2016 08/18/2017 LISN Schwarzbeck NSLK 8127 8129-286 08/19/2016 08/18/2017 LISN(EUT) Schwarzbeck NSLK 8127 8127527 08/19/2016 08/18/2017 Pulse Limiter R&S ESH3-Z2 C3010026-2 08/23/2016 08/22/2017 Thermo-Hygro Meter Wisewind 201A No. 02 05/03/2016 05/02/2017 Current Sensor Probe Teseq CSP 9160A 73982 06/02/2016 06/01/2017 Capacitive Voltage Probe Teseq CVP 2200A 37925 10/26/2016 10/25/2017	BNC Cable	EMCI	CFD300-NL	BNC#B4	05/29/2016	05/28/2017
LISN Schwarzbeck NSLK 8127 8129-286 08/19/2016 08/18/2017 LISN(EUT) Schwarzbeck NSLK 8127 8127527 08/19/2016 08/18/2017 Pulse Limiter R&S ESH3-Z2 C3010026-2 08/23/2016 08/22/2017 Thermo-Hygro Meter Wisewind 201A No. 02 05/03/2016 05/02/2017 Current Sensor Probe Teseq CSP 9160A 73982 06/02/2016 06/01/2017 Capacitive Voltage Probe Teseq CVP 2200A 37925 10/26/2016 10/25/2017	EMI Test Receiver	R&S	ESCI	101201	08/20/2016	08/19/2017
LISN(EUT) Schwarzbeck NSLK 8127 8127527 08/19/2016 08/18/2017 Pulse Limiter R&S ESH3-Z2 C3010026-2 08/23/2016 08/22/2017 Thermo-Hygro Meter Wisewind 201A No. 02 05/03/2016 05/02/2017 Current Sensor Probe Teseq CSP 9160A 73982 06/02/2016 06/01/2017 Capacitive Voltage Probe Teseq CVP 2200A 37925 10/26/2016 10/25/2017	ISN	Teseq	ISN T800	29449	08/19/2016	08/18/2017
Pulse Limiter R&S ESH3-Z2 C3010026-2 08/23/2016 08/22/2017 Thermo-Hygro Meter Wisewind 201A No. 02 05/03/2016 05/02/2017 Current Sensor Probe Teseq CSP 9160A 73982 06/02/2016 06/01/2017 Capacitive Voltage Probe Teseq CVP 2200A 37925 10/26/2016 10/25/2017	LISN	Schwarzbeck	NSLK 8127	8129-286	08/19/2016	08/18/2017
Thermo-Hygro Meter Wisewind 201A No. 02 05/03/2016 05/02/2017 Current Sensor Probe Teseq CSP 9160A 73982 06/02/2016 06/01/2017 Capacitive Voltage Probe Teseq CVP 2200A 37925 10/26/2016 10/25/2017	LISN(EUT)	Schwarzbeck	NSLK 8127	8127527	08/19/2016	08/18/2017
Current Sensor Probe Teseq CSP 9160A 73982 06/02/2016 06/01/2017 Capacitive Voltage Probe Teseq CVP 2200A 37925 10/26/2016 10/25/2017	Pulse Limiter	R&S	ESH3-Z2	C3010026-2	08/23/2016	08/22/2017
Capacitive Voltage Probe Teseq CVP 2200A 37925 10/26/2016 10/25/2017	Thermo-Hygro Meter	Wisewind	201A	No. 02	05/03/2016	05/02/2017
Probe 16569 CVP 2200A 37925 10/20/2016 10/23/2017	Current Sensor Probe	Teseq	CSP 9160A	73982	06/02/2016	06/01/2017
Software EZ-EMC		Teseq	CVP 2200A	37925	10/26/2016	10/25/2017
	Software	EZ-EMC				

Remark: Each piece of equipment is scheduled for calibration once a year.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

EUT Accessories Equipment						
No.	No. Equipment Brand Model Series No. FCC ID					
	N/A					

	Support Equipment					
No.	Equipment	Brand	Model	Series No.	FCC ID	
1	NB	DELL	PP19L	R33002	E2KWM3945ABG	
2	Battery	YUASA	CMF 75D23L	N/A	N/A	
3	PS/2 Mouse	hp	M-SBF96	FATSQ0C5BYJQKZ	DOC BSMI:R41126	
4	PS/2 Keyboard	Genius	K639	N/A	DOC BSMI:T3A164	
5	Microphone & Earphone	INTOPIC	LASS-288	N/A	N/A	
6	Monitor	DELL	P2314t	CN-0HMJ1V-74445-46 S-156S	R43004	
7	Host PC	DELL	T5810	8G5NKG2	N/A	
8	Modem	GALILEO	AL-56ERM	0MERM04A0212	DOC	
9	Printer	HP	SNPRB-1202 -01	CN54K182G9	R330D1	

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, KDB 558074 D01 v03r05, RSS-247 Issue 1 and RSS-GEN Issue 4.

1.9 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

2. TEST SUMMERY

FCC Standard Section	IC Standard Section	Report Section	Test Item	Result
15.203	-	1.2	Antenna Requirement	Pass
15.207(a)	RSS-GEN 8.8	4.1	AC Conducted Emission	Pass
15.247(a)(1)	RSS-247(5.2)(1)	4.2	20 dB Bandwidth	Pass
-	RSS-GEN 6.6	4.2	Occupied Bandwidth (99%)	Pass
15.247(b)(1)	RSS-247(5.4)(2)	4.3	Output Power Measurement	Pass
15.247(a)(1)	RSS-247(5.1)(2)	4.4	Frequency Separation	Pass
15.247(a)(1)(iii)	RSS-247(5.1)(4)	4.5	Number of Hopping	Pass
15.247(d)	RSS-247(5.5)	4.6	Conducted Band Edge	Pass
15.247(d)	RSS-247(5.5)	4.6	Conducted Emission	Pass
15.247(a)(1)(iii)	RSS-247(5.1)(4)	4.7	Time of Occupancy	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.8	Radiation Band Edge	Pass
15.247(d)	RSS-GEN 8.9, 8.10	4.8	Radiation Spurious Emission	Pass

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	GFSK for BR-1Mbps (DH5) π/4-DQPSK for EDR-2Mbps (DH5) 8DPSK for EDR-3Mbps (DH5)
Test Channel Frequencies	GFSK for BR-1Mbps: 1.Lowest Channel : 2402MHz 2.Middle Channel : 2441MHz 3.Highest Channel : 2480MHz π/4-DQPSK for EDR-2Mbps: 1.Lowest Channel : 2402MHz 2.Middle Channel : 2480MHz 8DPSK for EDR-3Mbps: 1.Lowest Channel : 2402MHz 2.Middle Channel : 2402MHz 3.Highest Channel : 2402MHz 3.Highest Channel : 2480MHz

Remark:

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

3.2 THE WORST MODE OF MEASUREMENT

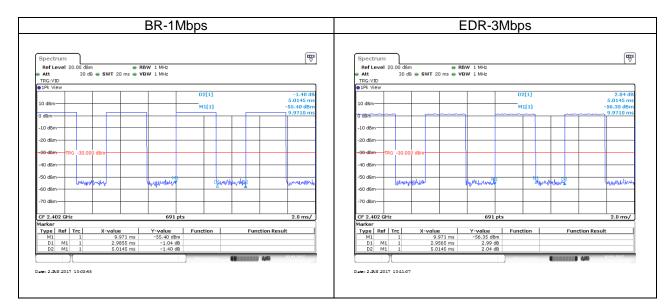
Worst Mode of Power				
Bluetooth Maximum Peak Data Rate Conducted Output Worst Mo		Worst Mode		
Mode		Power (dBm)		
BR(GFSK)	1 Mbps	7.46	V	
EDR(8DPSK)	3 Mbps	6.73	V	

AC Power Line Conducted Emission		
Test Condition AC Power line conducted emission for line and neutral		
Voltage/Hz 120V/60Hz		
Test Mode Mode 1:EUT power by AC adapter via power cable.		
Worst Mode	🔀 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4	

Radiated Emission Measurement Above 1G				
Test Condition	Band edge, Emission for Unwanted and Fundamental			
Voltage/Hz	5V DC			
Test Mode	Mode 1:EUT power by USB cable.			
Worst Mode	🛛 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4			
Worst Position	 Placed in fixed position. Placed in fixed position at X-Plane (E2-Plane) Placed in fixed position at Y-Plane (E1-Plane) Placed in fixed position at Z-Plane (H-Plane) 			
Worst Polarity	Horizontal 🛛 Vertical			

Radiated Emission Measurement Below 1G			
Test Condition	Test Condition Radiated Emission Below 1G		
Voltage/Hz	Voltage/Hz 12V DC and 5V DC		
Test ModeMode 1:EUT power by 12V DC via car charger. Mode 2:EUT power by 5V DC via USB.			
Worst Mode Mode 1 Mode 2 Mode 3 Mode 4			

Remark:


1. The worst mode was record in this test report.

2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(Y-Plane and Vertical) were recorded in this report

3.3 EUT DUTY CYCLE

Duty Cycle				
Configuration	TX ON (ms)	TX ALL (ms)	Duty Cycle (%)	Duty Factor(dB)
BR-1Mbps	2.9855	5.0145	59.53%	2.25
EDR-3Mbps	2.9565	5.0145	58.96%	2.29

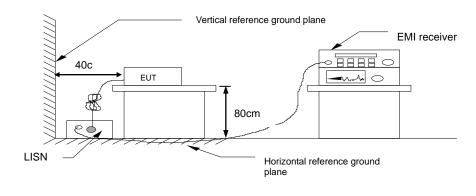
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

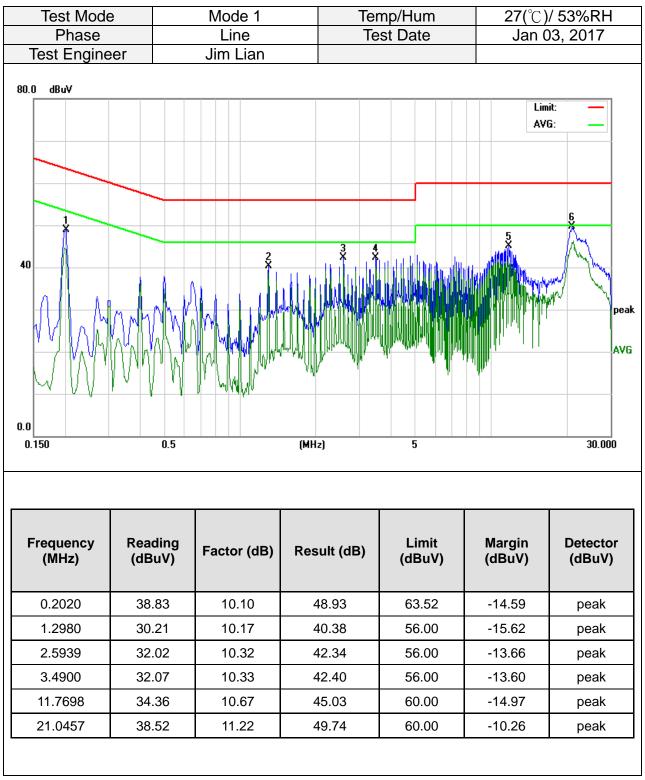
According to §15.207(a) and RSS-GEN section 8.8,

Frequency Range	Limits(dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	

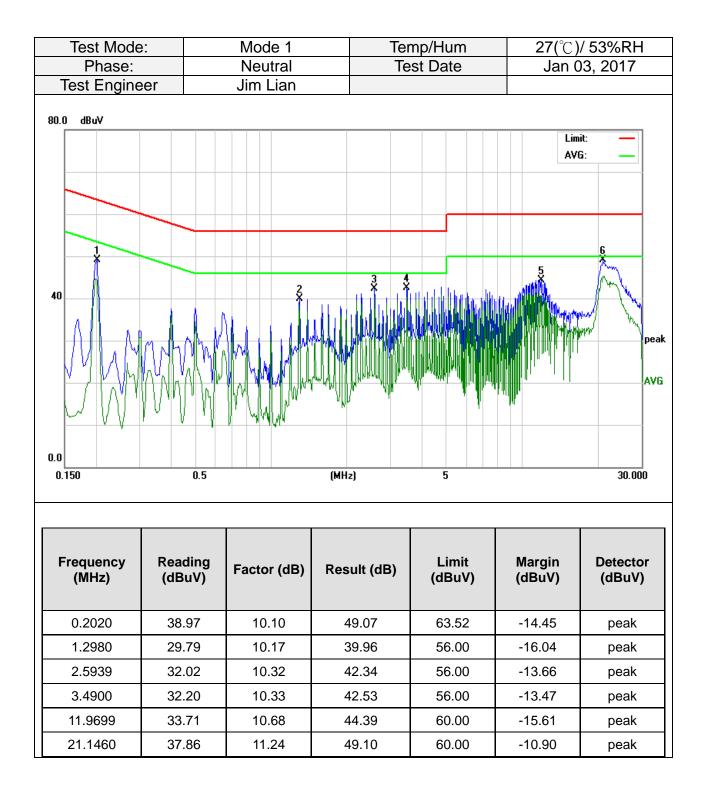

* Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,


- 1. The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

4.1.3 Test Setup



4.1.4 Test Result

PASS

4.220DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)

4.2.1 Test Limit

According to §15.247(a) (1), RSS-247 section 5.2(1) and RSS-GEN 6.6,

20 dB Bandwidth : For reporting purposes only.

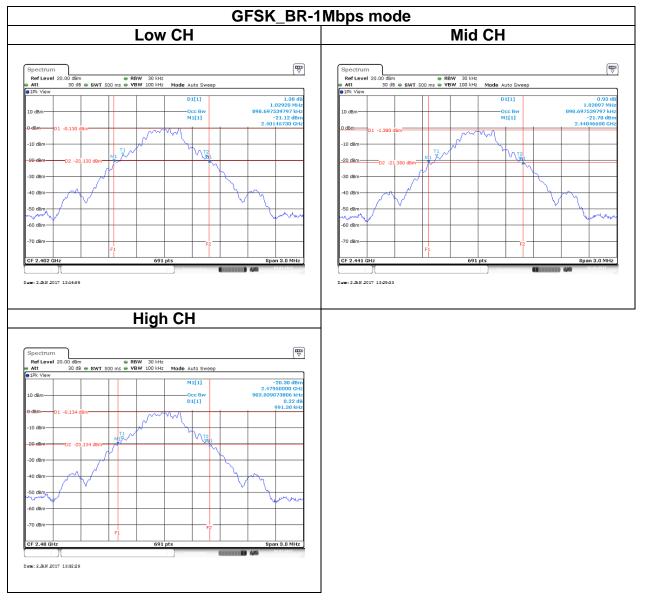

Occupied Bandwidth(99%) : For reporting purposes only.

4.2.2 Test Procedure

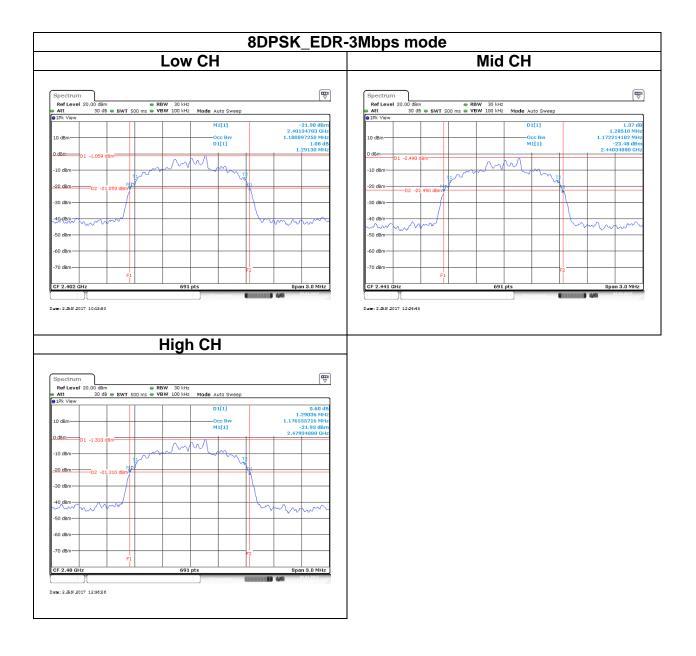
Test method Refer as ANSI 63.10:2013 clause 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 20 dB Bandwidth and 99% Bandwidth.
- 4. Measure and record the result of 20 dB Bandwidth and 99% Bandwidth in the test report.

4.2.3 Test Setup



4.2.4 Test Result


Test mode: GFSK_BR-1Mbps mode / 2402-2480 MHz				
Channel	Frequency (MHz)	OBW(99%) (kHz)	20dB BW (MHz)	
Low	2402	898.6975	1.0292	
Mid	2441	898.6975	1.0209	
High	2480	903.0390	0.9913	

Test mode: 8DPSK_EDR-3Mbps mode / 2402-2480 MHz				
Channel	Frequency (MHz)	OBW(99%) (MHz)	20dB BW (MHz)	
Low	2402	1.1808	1.2913	
Mid	2441	1.1722	1.2851	
High	2480	1.1765	1.2903	

4.3 OUTPUT POWER MEASUREMENT

4.3.1 Test Limit

According to §15.247(b)(1) and RSS-247 section 5.4(2)

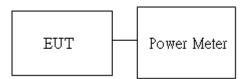
Peak output power :

FCC

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

<u>IC</u>

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W and the e.i.r.p. shall not exceed 4 W if the hopset uses 75 or more hopping channels.


	Antenna not exceed 6 dBi : 21dBm
Limit	Antenna with DG greater than 6 dBi : 21dBm
	[Limit = 30 - (DG - 6)]

Average output power : For reporting purposes only.

4.3.2 Test Procedure

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

4.3.3 Test Setup

4.3.4 Test Result

Peak output power :

BT								
Config.	СН	Freq. (MHz)	PK Power (dBm)	EIRP PK Power (dBm)	PK Power (W)	EIRP PK Power (W)	FCC/IC Limit (dBm)	IC EIRP Limit (dBm)
GFSK	0	2402	6.32	9.07	0.0043	0.0081		
BR-1Mbps	39	2441	4.91	7.66	0.0031	0.0058		
(DH5)	78	2480	7.46	10.21	0.0056	0.0105	21	27
8DPSK	0	2402	5.54	8.29	0.0036	0.0067	21	21
EDR-3Mbps	39	2441	4.27	7.02	0.0027	0.0050		
(DH5)	78	2480	6.73	9.48	0.0047	0.0089		

Average output power :

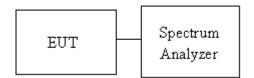
BT				
Config.	СН	Freq. (MHz)	AV Power (dBm)	
GFSK BR-1Mbps	0	2402	3.88	
	39	2441	2.47	
(DH5)	78	2480	5.07	
8DPSK	0	2402	1.18	
EDR-3Mbps	39	2441	0.06	
(DH5)	78	2480	2.24	

4.4 FREQUENCY SEPARATION

4.4.1 Test Limit

According to §15.247(a)(1) and RSS-247 section 5.1(2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

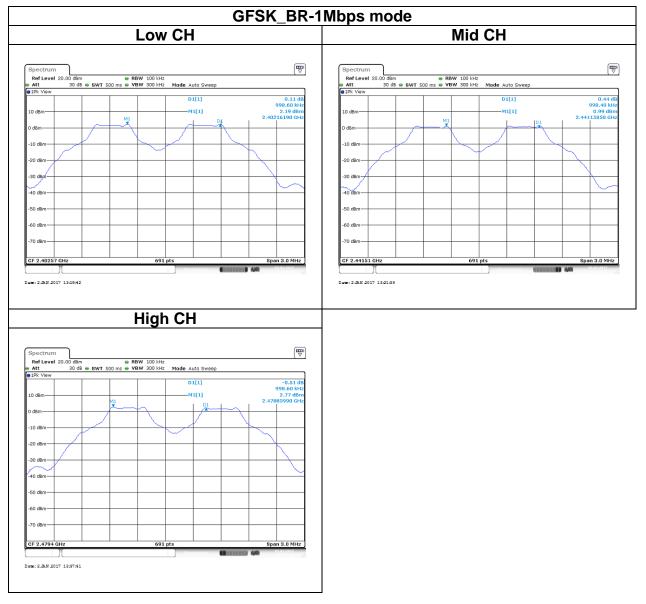

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Limit > two-thirds of the 20 dB bandwidth	
---	--

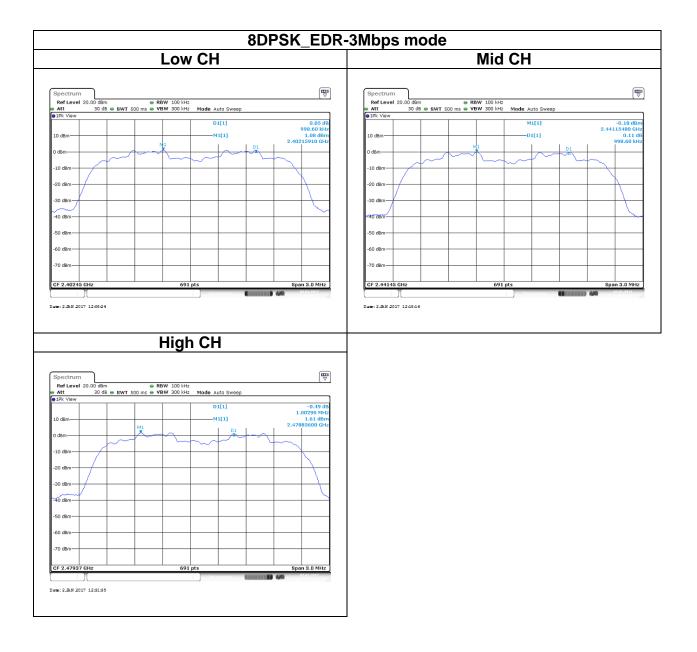
4.4.2 Test Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set the spectrum analyzer as RBW = 100kHz, VBW = 300kHz, Sweep = auto. Max hold, mark 3 peaks of hopping channel and record the 3 peaks frequency

4.4.3 Test Setup


4.4.4 Test Result

Test mode: GFSK_BR-1Mbps mode / 2402-2480 MHz					
Channel	Frequency (MHz)	Channel Separation (kHz)	Channel Separation Limits (MHz)	Result	
Low	2402	998.60	0.6861	PASS	
Mid	2441	998.40	0.6806	PASS	
High	2480	998.60	0.6608	PASS	

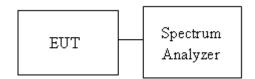

Test mode: 8DPSK_EDR-3Mbps mode / 2402-2480 MHz					
Channel	Frequency (MHz)	Channel Separation (MHz)	Channel Separation Limits (MHz)	Result	
Low	2402	0.9986	0.8608	PASS	
Mid	2441	0.9986	0.8567	PASS	
High	2480	1.0029	0.8602	PASS	

This report shall not be reproduced except in full, without the written approval of Compliance Certification Services.

4.5 NUMBER OF HOPPING

4.5.1 Test Limit

According to §15.247(a)(1)(iii) and RSS-247 section 5.1(4)

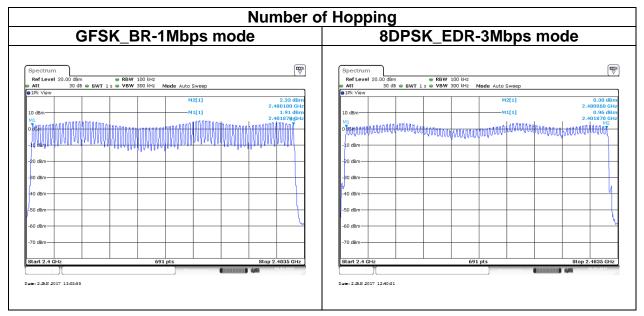

Frequency hopping system in the 2400-2483.5MHz band shall use at least 15 channels.

4.5.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 7.8.3

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. EUT RF output port connected to the SA by RF cable.
- 3. Set spectrum analyzer Start Freq. = 2400 MHz, Stop Freq. = 2483.5 MHz, RBW
- =100KHz, VBW = 300KHz.
- 4. Max hold, view and count how many channel in the band.

4.5.3 Test Setup


4.5.4 Test Result

Number of Hopping					
Mode	Frequency (MHz)	Hopping Channel Number	Hopping Channel Number Limits	Result	
BR-1Mbps	2402-2480	79	15	Deee	
EDR-3Mbps	2402-2480	79	15	- Pass	

REMARK:

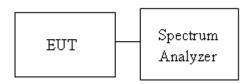
The frequency spectrum was broken up in to two sub-range to clearly show all of the hopping frequencies. In the AFH mode, this device operation was using 20 channels, so the requirement for minimum number of hopping channels is satisfied

4.6 CONDUCTED BANDEDGE AND SPURIOUS EMISSION

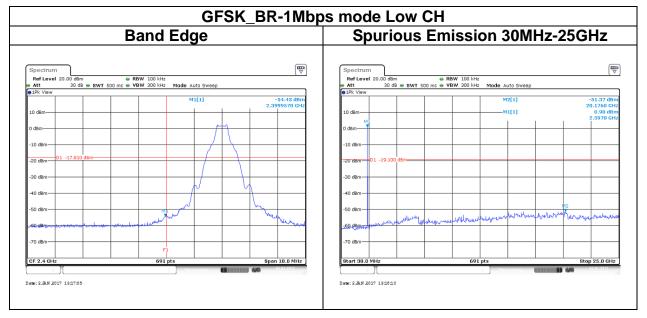
4.6.1 Test Limit

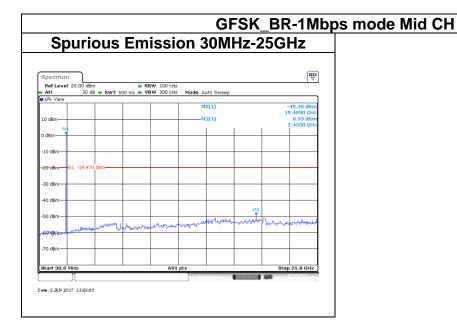
According to §15.247(d) and RSS-247 section 5.5

```
Limit -20 dBc
```

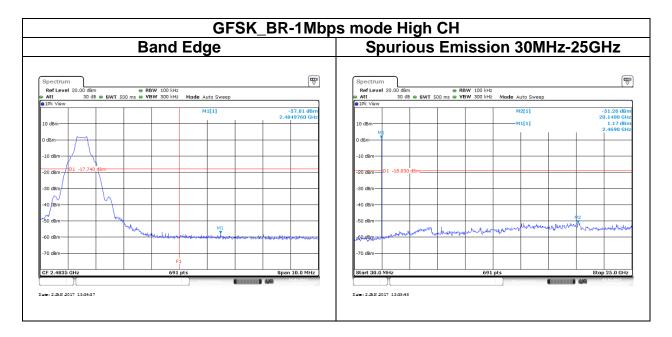

4.6.2 Test Procedure

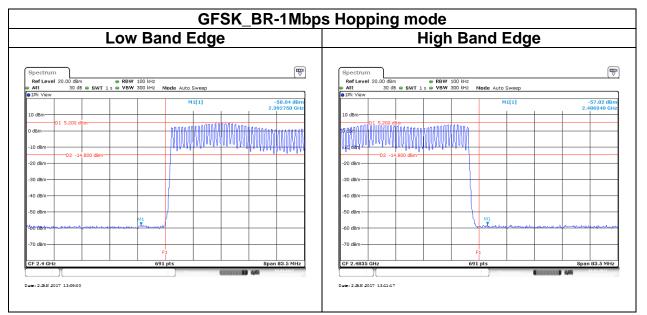
1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

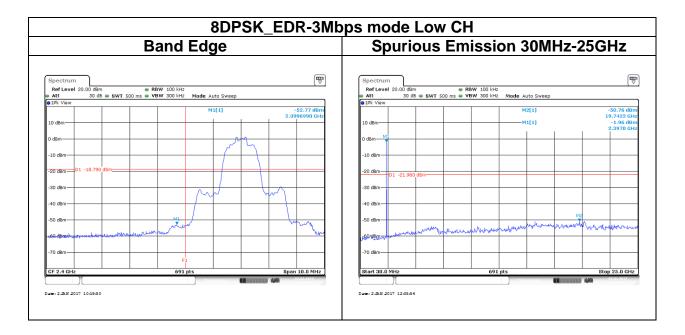

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

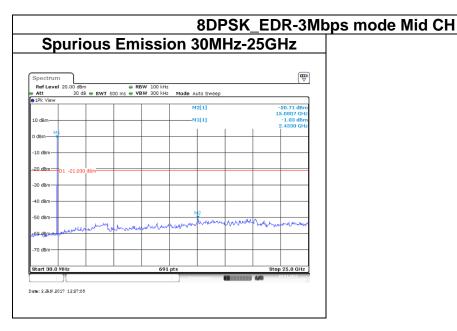

3. The Band Edge at 2.4GHz and 2.4835GHz are investigated with normal hopping mode.

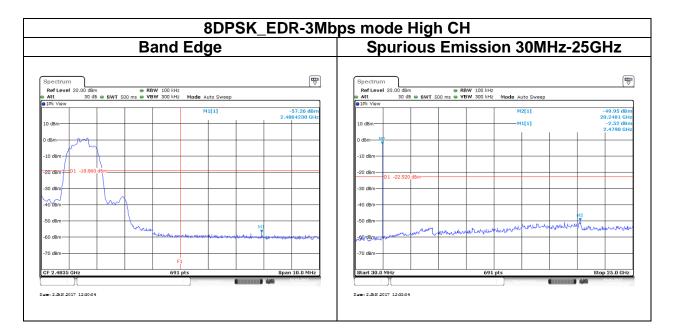
4.6.3 Test Setup

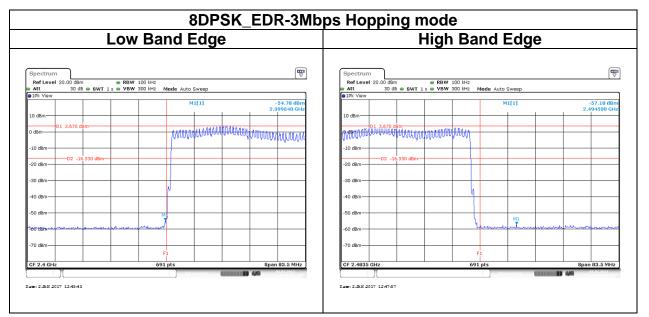



4.6.4 Test Result







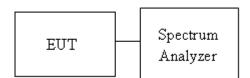


4.7 TIME OF OCCUPANCY (DWELL TIME)

4.7.1 Test Limit

According to §15.247(a)(1)(iii)and RSS-247 section 5.1(4)

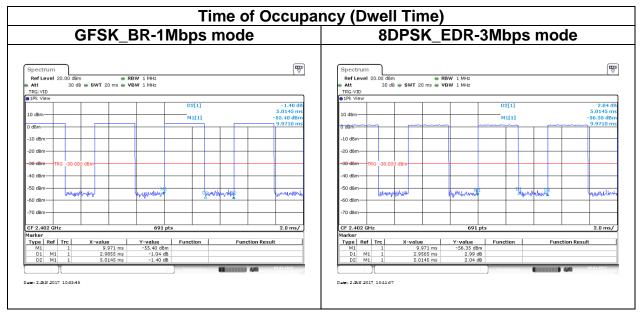
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.


4.7.2 Test Procedure

1. EUT RF output port connected to the SA by RF cable.

2. Set center frequency of spectrum analyzer = operating frequency.

3. Set the spectrum analyzer as RBW, VBW=1MHz, Sweep = 1 ms


4.7.3 Test Setup

4.7.4 Test Result

Time of Occupancy (Dwell Time)							
Mode	Frequency Per Hoppin	Pulse Time Per Hopping	Minimum Number of	Number of pulse in	Dwell Time IN	Dwell Time	Result
	(MHz)	(ms)	Hopping Freq.	(0.4 * N sec)	(0.4 * N sec)	Limits (s)	
BR-1Mbps	2441	2.8841	79	106.67	0.3123	0.4	
EDR-3Mbps	2441	2.8841	79	106.67	0.3123	0.4	Pass
AFH: DH5	2441	2.8841	20	53.33	0.1561	0.4	
Non-AFH: DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 3.37 * 0.4 *79 = 106.6 AFH: DH5 Packet permit maximum 800/ 20 / 6 = 6.666 hops per second in each channel (5 time slots RX, 1 time slot TX). So, the dwell time is the time duration of the pulse times 6.666*0.4*20 = 53.33							

4.8 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.8.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

IC according to RSS-247 section 5.5, RSS-Gen, Section 8.9 and 8.10

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)		
(MHz)	Transmitters	Receivers	
30-88	100 (3 nW)	100 (3 nW)	
88-216	150 (6.8 nW)	150 (6.8 nW)	
216-960	200 (12 nW)	200 (12 nW)	
Above 960	500 (75 nW)	500 (75 nW)	

4.8.2 Test Procedure

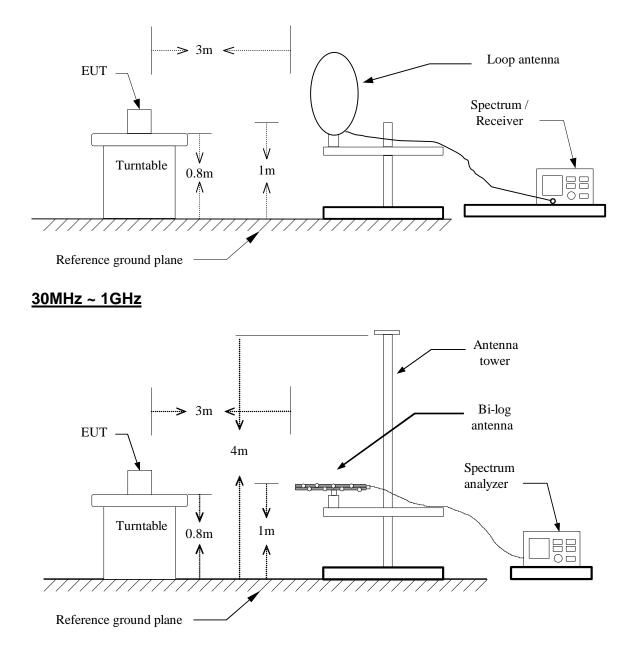
Test method Refer as KDB 558074 D01 v03r05, Section 12.1.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.

2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

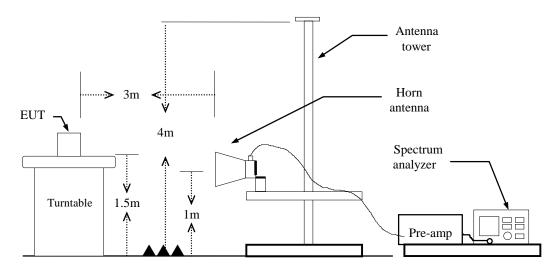
3. Span shall wide enough to full capture the emission measured. The SA from 30MHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

4. For harmonic, the worst case of output power was BR-1Mbps. Therefore only BR-1Mbps record in the report.


- 5. The SA setting following :
 - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2) Above 1G:
 - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
 - (2.2) For Average measurement : RBW = 1MHz, VBW

If Duty Cycle \geq 98%, VBW=10Hz.

If Duty Cycle < 98%, VBW=1/T.


Configuration	Duty Cycle (%)	VBW
GFSK_BR-1Mbps	59.53 %	360Hz
8DPSK_EDR-3Mbps	58.96 %	360Hz

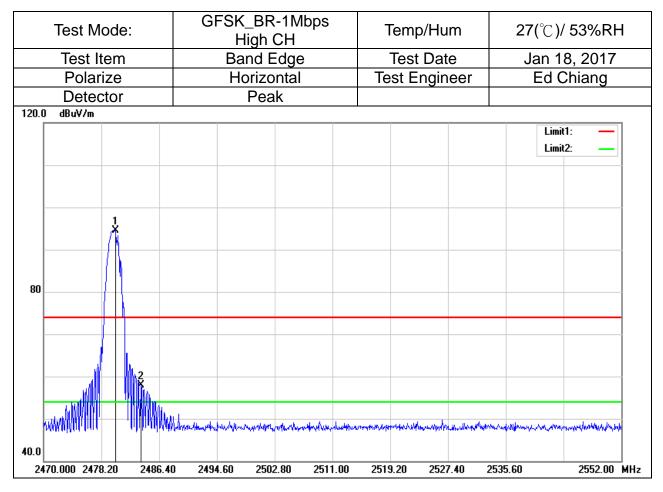
4.8.3 Test Setup <u>9kHz ~ 30MHz</u>

Above 1 GHz

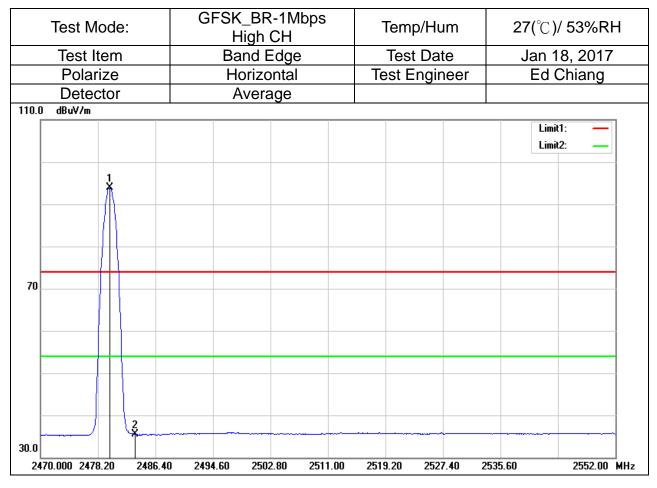
4.8.4 Test Result

Band Edge Test Data

•	Test Mo	de:	GF	SK_BR	-1Mbps CH	-	Temp/H	um	27(℃)/ 53%RH		
	Test Ite	em		Band E	dge		Test Da	ate	Jan 1	8, 2017	
	Polariz	ze		Horizo		Te	est Engi	neer	Ed (Chiang	
	Detect	or		Pea	ık						
120.0	dBuV/m					•					
									Limi Limi		
_										2	
80											
_											
	manufacture	and and a state of the second second	na meneral frances	and have a star a subout	wy.Madenenski	shermonic	1 **	le the right of monoton	man where	WMM	
40.0	and the line of a	والايترية بالتر بالايتيار	anne d'alle : l'angleige	Month Concerning Constraints	an and a sure of a s	ere at a street		a ar i fri di fi			


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2375.484	51.77	-2.61	49.16	74.00	-24.84	peak
2	2401.800	96.89	-2.41	94.48	-	-	peak

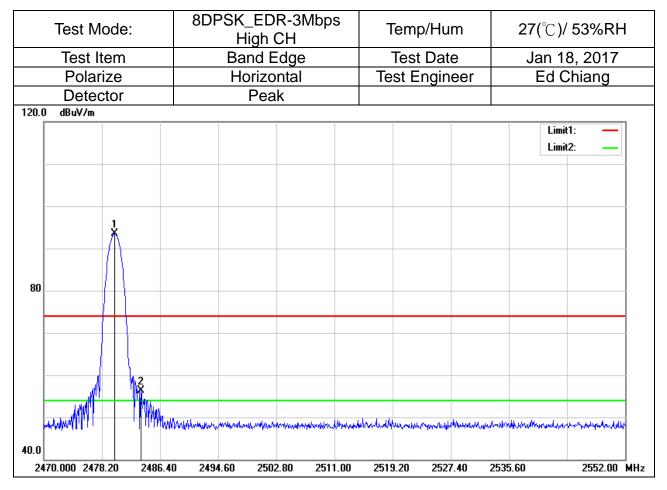
	Tes	st Mode	e:	(L	low Cl				Temp/l	Hum		27(℃)/ 53%RH
	Te	st Item	1		Ba	ind Ed	ge			Test D	Date	Ja	an 18, 2017
	P	olarize			H	orizon	tal		Т	est Eng	gineer	E	Ed Chiang
		etector			A	verag	е						
110.0) dBu\	√/m											
												Lim Lim	
												LIM	itz:
													2
													λ I
70													+
70												ſ	
											1		Luna A
30.0	40.00-												
23	810.000	2320.20	2330.40	2340.	60 2	2350.80	2361.00	237	1.20	2381.40	2391.6	50	2412.00 MHz


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	37.37	-2.49	34.88	54.00	-19.12	AVG
2	2401.902	96.36	-2.41	93.95	-	-	AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.168	96.57	-2.03	94.54	-	-	peak
2	2483.858	59.90	-1.99	57.91	74.00	-16.09	peak

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2479.922	95.97	-2.03	93.94	-	-	AVG
2	2483.500	37.57	-1.99	35.58	54.00	-18.42	AVG

Test Mode:	8DPSK_EDR-3Mbps Low CH	Temp/Hum	27(℃)/ 53%RH		
Test Item	Band Edge	Test Date	Jan 18, 2017		
Polarize	Horizontal	Test Engineer	Ed Chiang		
Detector	Peak				
20.0 dBuV/m					
			Limit1: — Limit2: —		
80			2		
10.0	han an a	uduren inder balerierandur. ver Merunen da	www.wall		

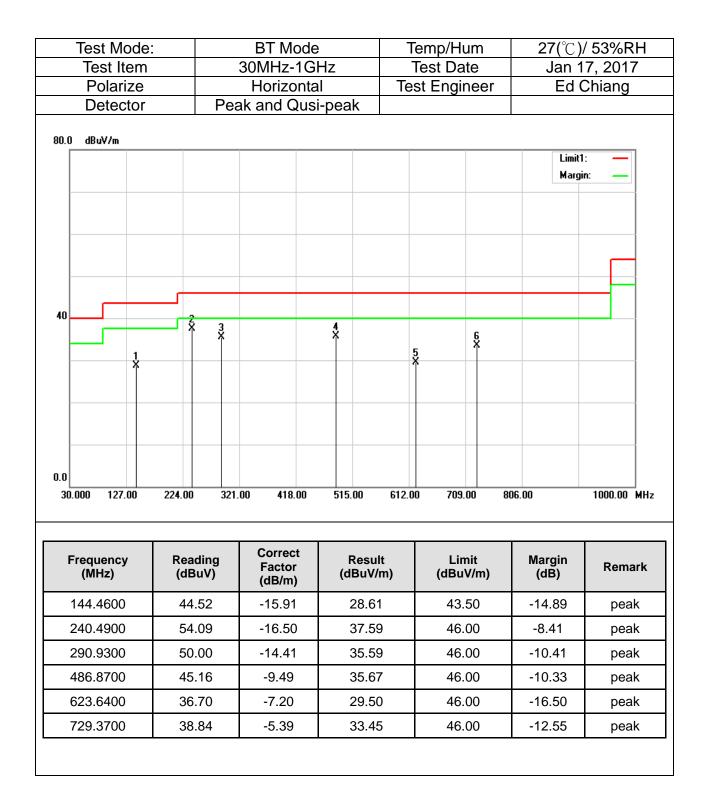

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2328.870	52.23	-2.94	49.29	74.00	-24.71	peak
2	2402.004	96.27	-2.41	93.86	-	-	peak

	Test M	lode:		80		.ow (СН		s		ſem	o/Hu	ım		27	(℃)	/ 539	%RH	
	Test I	tem			Ba	and E	dge	;			Test	Dat	te		J	an 1	18, 2	017	
	Pola	ize			H	orizo	ntal			Те	st E	ngir	neer	Ed Chiang			ng		
	Deteo	ctor			A	vera	ge												
110.0	dBuV/m																		
																Limi		-	
																Limi	it2:		
																	2		
																	آر		
																,	41		
																	11		
																	11		
70																			
																		ĺ	
																	11		
																- (
														ţ					
30.0	· · · · · · · · · · · · · · · · · · ·	+		<u> </u>										Ť		~~~	~		
L	10.000 232	0.20	2330.40) 23	40.60	2350	.80	2361	.00	2371	.20	238	1.40	2391	.60		241	2.00	MH:

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2390.000	37.46	-2.49	34.97	54.00	-19.03	AVG
2	2402.004	92.66	-2.41	90.25	-	-	AVG

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.004	95.52	-2.03	93.49	-	-	peak
2	2483.694	58.37	-1.99	56.38	74.00	-17.62	peak

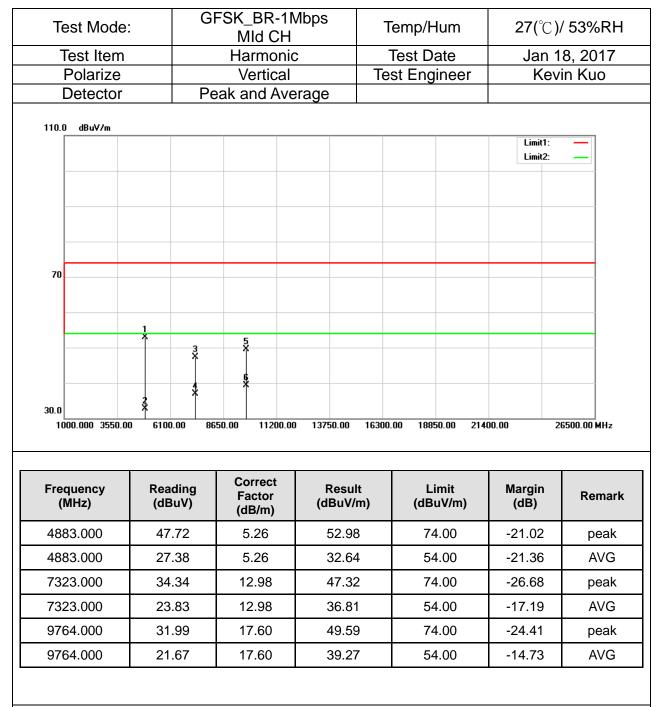
	Test M	ode	e:		8DI	H	ligh	СН	Mbp	S		em	p/Hu	m		27	(°C)	/ 53%	RH
	Test It	em	l			Ba	nd E	Edge	;			Test	t Dat	е				8, 201	
	Polar	ize				Н	orizo	ntal			Te	st E	ingin	eer		Ed Chiang			ļ
	Detec	ctor				Α	vera	age											
110.0	dBuV/m																		
																	Limi Limi		
		Å																	
		$\ $																	
		\square																	
70																			
-																			
⊢																			-
			2																
0.0																			
247	0.000 2478	3.20	2486	6.40	2494	4.60	2502	2.80	2511	.00	2519	.20	2527	.40	2535	60		2552.0	IO MH:


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2480.086	91.70	-2.03	89.67	-	-	AVG
2	2483.500	37.64	-1.99	35.65	54.00	-18.35	AVG

Below 1G Test Data

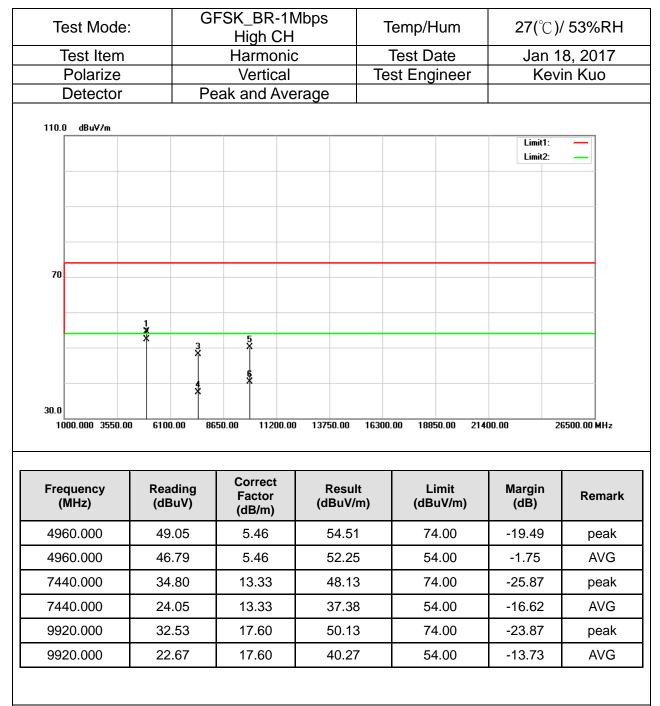
		BT Mode			emp/Hum	· · · ·	/ 53%RH
Test Item		30MHz-1G			est Date		7, 2017
Polarize		Vertical		Tes	t Engineer	Ed (Chiang
Detector	Pe	ak and Qus	i-peak				
80.0 dBuV/m							
						Limit1 Margi	
40		2	3 4 X X	Ş	į		
						6 X	
0.0							
30.000 127.00 2	224.00 32	1.00 418.00	515.00	612.00	709.00	806.00	1000.00 MHz
30.000 127.00 2	224.00 32		515.00	612.00	709.00	806.00	1000.00 MHz
30.000 127.00 2 Frequency (MHz)	224.00 32 Reading (dBuV)	1.00 418.00 Correct Factor (dB/m)	515.00 Resul (dBuV/	lt	709.00 Limit (dBuV/m)	806.00 Margin (dB)	1000.00 MHz Remark
Frequency	Reading	Correct Factor	Resu	lt ˈm)	Limit	Margin	
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Resu (dBuV/	lt 'm) 2	Limit (dBuV/m)	Margin (dB)	Remark
Frequency (MHz) 291.9000	Reading (dBuV) 52.01	Correct Factor (dB/m) -14.39	Resu (dBuV/ 37.62	lt (m) 2 4	Limit (dBuV/m) 46.00	Margin (dB) -8.38	Remark peak
Frequency (MHz) 291.9000 356.8900	Reading (dBuV) 52.01 52.07	Correct Factor (dB/m) -14.39 -12.73	Resul (dBuV/ 37.62 39.34	lt m) 2 4 3	Limit (dBuV/m) 46.00 46.00	Margin (dB) -8.38 -6.66	Remark peak peak
Frequency (MHz) 291.9000 356.8900 454.8600	Reading (dBuV) 52.01 52.07 51.68	Correct Factor (dB/m) -14.39 -12.73 -10.10	Resul (dBuV/ 37.62 39.34 41.58	lt m) 2 4 3 2	Limit (dBuV/m) 46.00 46.00 46.00	Margin (dB) -8.38 -6.66 -4.42	Remark peak peak QP

Above 1G Test Data

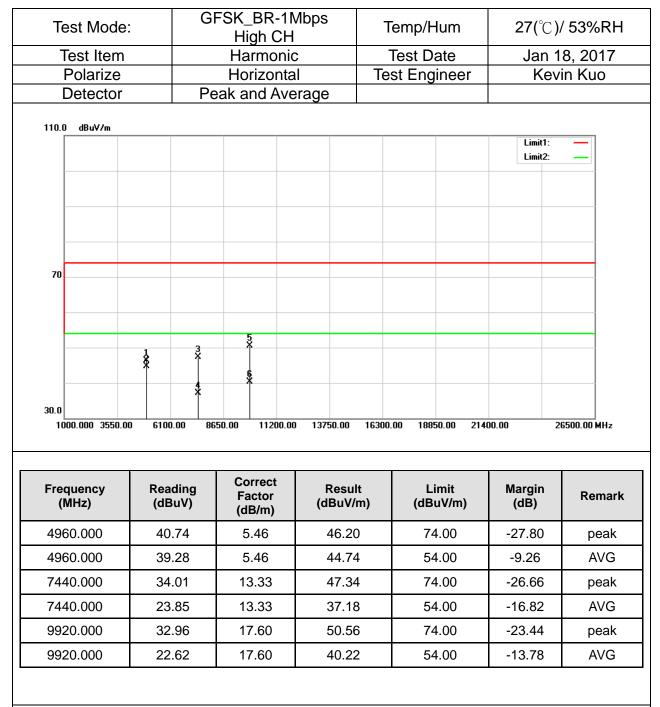

Test Mode	: 6	FSK_BR-1N Low CH		Temp/Hum	27(°C),	/ 53%RH
Test Item		Harmonio		Test Date	Jan 1	8, 2017
Polarize		Vertical	Т	est Engineer		in Kuo
Detector	F	eak and Ave		-		
110.0 dBuV/m						
					Limit1: Limit2:	_
70						
	1,					
	1	5				
	3X	6				
	*					
30.0 1000.000 3550.0	<u>*</u> 0 6100.00	3650.00 11200.00	0 13750.00 1630	0.00 18850.00 214	00.00 2	6500.00 MHz
Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
4806.000	53.31	5.05	58.36	74.00	-15.64	peak
4806.000	25.64	5.05	30.69	54.00	-23.31	AVG
7206.000	34.21	12.62	46.83	74.00	-27.17	peak
7206.000	23.86	12.62	36.48	54.00	-17.52	AVG
	1	17.60	50.42	74.00	-23.58	peak
9608.000	32.82	17.00	001.12			•

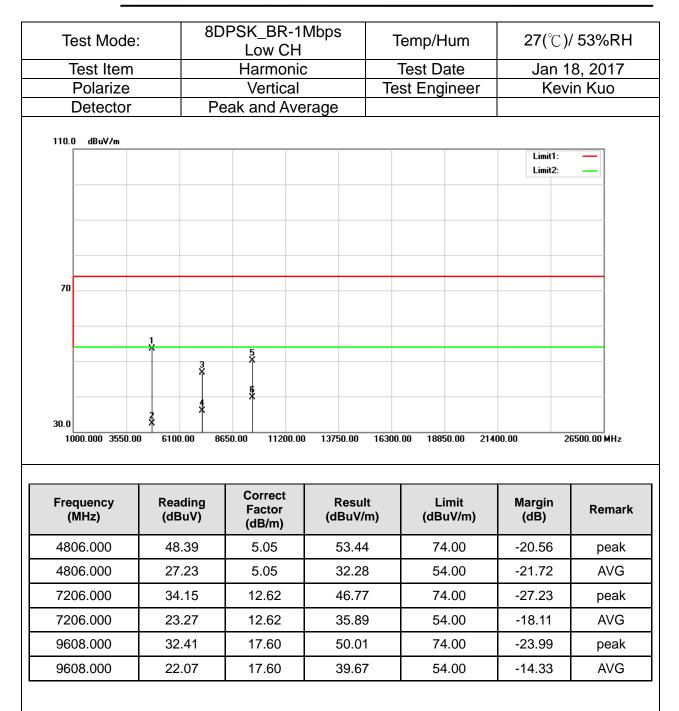
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

Test Mode		GFSK_BR-1I Low CH		Temp/Hum		/ 53%RH
Test Item Polarize		Harmoni		Test Date		8, 2017 in Kuo
Detector		Horizonta Peak and Ave		est Engineer	Kev	
).0 dBu∀/m						
						Limit1: Limit2:
0						
	;	3 5 3 6 6 4 7 8650.00 112	200.00 13750.0	0 16300.00 188	50.00 21400.	.00 2
0 1000.000 3550.00 Frequency (MHz)		8650.00 112	200.00 13750.0 Result (dBuV/m)	0 16300.00 188 Limit (dBuV/m)	50.00 21400 Margin (dB)	.00 21 Remark
1000.000 3550.00 Frequency	6100.00	8650.00 112 Correct Factor	Result	Limit	Margin	
Frequency (MHz)	6100.00 Reading (dBuV)	8650.00 112 8650.00 112 Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
Frequency (MHz) 4804.000	Reading (dBuV) 44.76	8650.00 112 8650.00 112 Correct Factor (dB/m) 5.04	Result (dBuV/m) 49.80	Limit (dBuV/m) 74.00	Margin (dB) -24.20	Remark peak
Frequency (MHz) 4804.000 4804.000	6100.00 Reading (dBuV) 44.76 41.13	8650.00 112 8650.00 112 Correct Factor (dB/m) 5.04 5.04 5.04	Result (dBuV/m) 49.80 46.17	Limit (dBuV/m) 74.00 54.00	Margin (dB) -24.20 -7.83	Remark peak AVG
OOD. 000 3550.00 Frequency (MHz) 4804.000 4804.000 7206.000	6100.00 Reading (dBuV) 44.76 41.13 34.40	8650.00 112 8650.00 112 Correct Factor (dB/m) 5.04 5.04 5.04 12.62 12.62	Result (dBuV/m) 49.80 46.17 47.02	Limit (dBuV/m) 74.00 54.00 74.00	Margin (dB) -24.20 -7.83 -26.98	Remark peak AVG peak



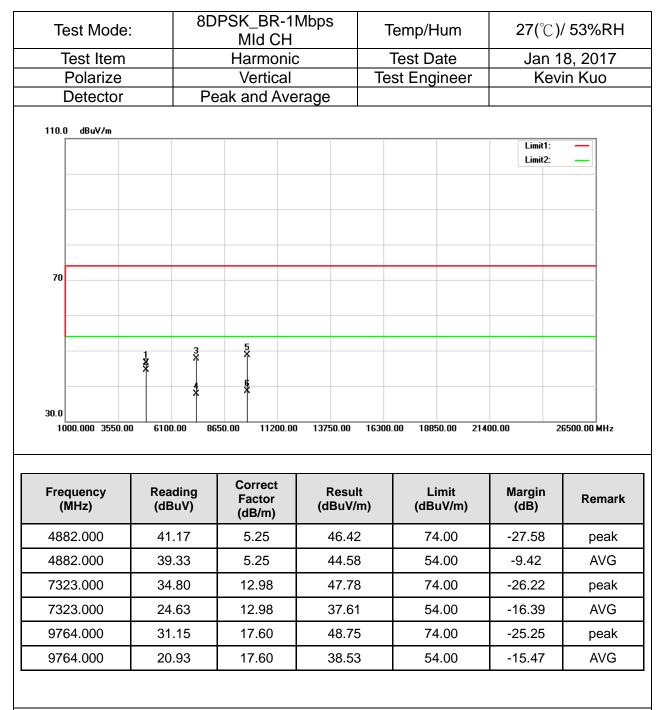
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit


	e:	GFSK_BR-1I Mid CH	vinha	Temp/Hum	27(°C)	/ 53%RH
Test Iten		Harmonie		Test Date		8, 2017
Polarize		Horizonta		Test Engineer	Kev	in Kuo
Detector		Peak and Ave	erage			
).0 dBu¥/m						
						Limit1: Limit2:
0						
	1 3 X X	5 X				
	Î	6				
	2 ×	6				
	** **	8650.00 112	00.00 13750	.00 16300.00 18	350.00 21400	.00 21
	** **	6 8650.00 112	00.00 13750	.00 16300.00 184	350.00 21400	.00 20
0 1000.000 3550.0 Frequency (MHz)	** **	8650.00 112 Correct Factor (dB/m)	00.00 13750 Result (dBuV/m)	Limit	350.00 21400 Margin (dB)	.00 20 Remark
1000.000 3550.0 Frequency	0 6100.00 Reading	Correct Factor	Result	Limit	Margin	
1000.000 3550.0 Frequency (MHz)	0 6100.00 Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
1000.000 3550.0 Frequency (MHz) 4883.000	0 6100.00 Reading (dBuV) 41.08	Correct Factor (dB/m) 5.26	Result (dBuV/m) 46.34	Limit (dBuV/m) 74.00	Margin (dB) -27.66	Remark peak
Frequency (MHz) 4883.000 4883.000 7323.000 7323.000	Reading (dBuV) 41.08 27.57 34.34 24.07	Correct Factor (dB/m) 5.26 5.26 5.26 12.98 12.98	Result (dBuV/m) 46.34 32.83 47.32 37.05	Limit (dBuV/m) 74.00 54.00 74.00 54.00	Margin (dB) -27.66 -21.17 -26.68 -16.95	Remark peak AVG peak AVG
Frequency (MHz) 4883.000 4883.000 7323.000	Reading (dBuV) 41.08 27.57 34.34	Correct Factor (dB/m) 5.26 5.26 5.26 12.98	Result (dBuV/m) 46.34 32.83 47.32	Limit (dBuV/m) 74.00 54.00 74.00	Margin (dB) -27.66 -21.17 -26.68	Remark peak AVG peak



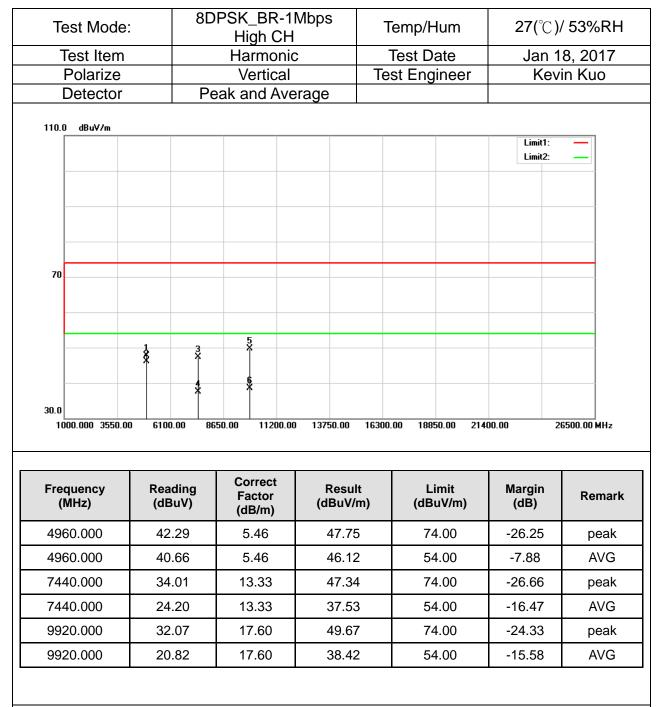
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

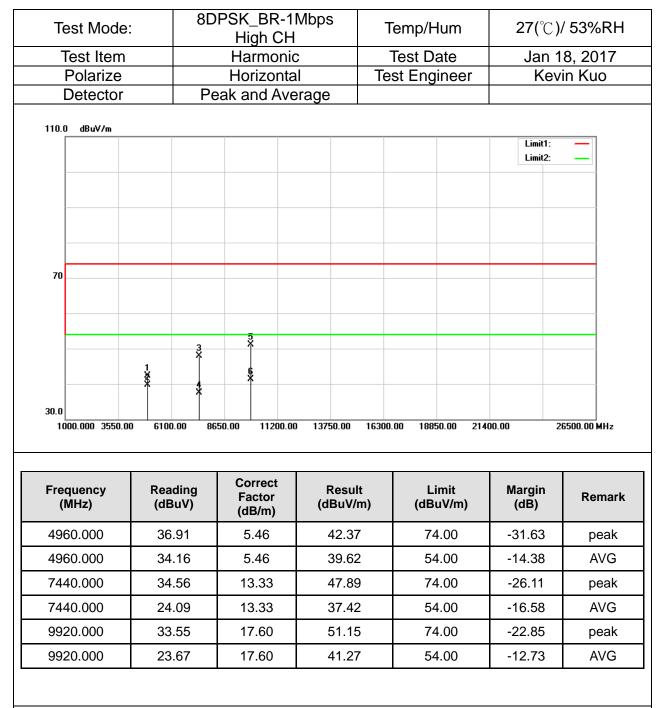


- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

	t Mode:			PSK_BR-1 Low CH	-		np/Hum		/ 53%RH
	st Item plarize			Harmonie Horizonta			st Date		8, 2017 in Kuo
	etector		Pe	ak and Ave		Test	Engineer	nev	
0.0 dBu ¹			1		5				
									Limit1: Limit2:
70									
				5					
		1 X? X	3 X 4	6 *					
.0 1000.000 Freque (MH	ency	6100 Rea	4 X	650.00 112 Correct Factor (dB/m)	00.00 137 Result (dBuV/r	t	6300.00 188 Limit (dBuV/m)	50.00 21400. Margin (dB)	.00 26 Remark
1000.000 Freque	ency Iz)	6100 Rea (dB	4 × 0.00 8 ding	Correct Factor	Result	t n)	Limit	Margin	
Freque (MH	ency z) 000	6100 Rea (dB	4 X 0.00 8 ding suV)	Correct Factor (dB/m)	Result (dBuV/r	t n)	Limit (dBuV/m)	Margin (dB)	Remark
Freque (MH 4804.	ency z) 000 000	6100 Rea (dB 40 36	4 × 0.00 8 ding suV) .56	Correct Factor (dB/m) 5.04	Result (dBuV/r 45.60	t n)	Limit (dBuV/m) 74.00	Margin (dB) -28.40	Remark peak
Freque (MH 4804.)	ency (z) 000 000 000	6100 Rea (dB 40 36 33	4 2.00 8 ding BuV) .56 .43	Correct Factor (dB/m) 5.04 5.04	Result (dBuV/r 45.60 41.47	t n)	Limit (dBuV/m) 74.00 54.00	Margin (dB) -28.40 -12.53	Remark peak AVG
Freque (MH 4804.1 4804.1 7206.1	ency (z) 000 000 000 000	6100 6100 Rea (dB 40 36 33 22	4 2.00 8 ding suV) .56 .43 .94	Correct Factor (dB/m) 5.04 5.04 12.62	Result (dBuV/r 45.60 41.47 46.56	i n)	Limit (dBuV/m) 74.00 54.00 74.00	Margin (dB) -28.40 -12.53 -27.44	Remark peak AVG peak



- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit


-	ode:		PSK_BR-1 Mid CH			np/Hum		/ 53%RH
Test l Polar			Harmonio Horizonta			st Date		8, 2017 in Kuo
Deteo		Pea	ak and Ave		Test	Engineer	Nev	
0.0 dBu∀/m							1	
								Limit1: Limit2:
70								
			5					
		3	5 X					
	1	×						
	1 2 2 X	4	6					
	×		6 X	0.00 107		C200.00 100		
	2 X	* *).00 86	6 × 50.00 112	00.00 137	50.00 1	6300.00 188	50.00 21400.	.00 26
.0 1000.000 35 Frequenc (MHz)	50.00 6100 y Rea	3.00 86	550.00 112 Correct Factor (dB/m)	00.00 137 Resul (dBuV/r	t	6300.00 188 Limit (dBuV/m)	50.00 21400. Margin (dB)	.00 26 Remark
1000.000 35 Frequenc	y Rea (dB	ding	Correct Factor	Resul	t n)	Limit	Margin	
Frequenc (MHz)	y Rea (dB	ding BuV)	Correct Factor (dB/m)	Resul (dBuV/r	t n)	Limit (dBuV/m)	Margin (dB)	Remark
1000.000 35 Frequenc (MHz) 4882.000	x 50.00 6100 y Rea (dB) 38) 33	ding suV) .69	Correct Factor (dB/m) 5.25	Resul (dBuV/r 43.94	t m)	Limit (dBuV/m) 74.00	Margin (dB) -30.06	Remark peak
Frequenc; (MHz) 4882.000 4882.000	x 50.00 6100 x x x x x x x x x x x x x	ding BuV) .69 .31	Correct Factor (dB/m) 5.25 5.25	Resul (dBuV/r 43.94 38.56	t n)	Limit (dBuV/m) 74.00 54.00	Margin (dB) -30.06 -15.44	Remark peak AVG
Frequenc; (MHz) 4882.000 4882.000 7323.000	y Rea (dB) 38) 33) 33) 23	ding BuV) .69 .31 .87	Correct Factor (dB/m) 5.25 5.25 5.25 12.98	Resul (dBuV/r 43.94 38.56 46.85	t n)	Limit (dBuV/m) 74.00 54.00 74.00	Margin (dB) -30.06 -15.44 -27.15	Remark peak AVG peak

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit