

RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C **INDUSTRY CANADA RSS-210**

Test Standard FCC Part 15.239 and RSS-210 Issue 9

FCC ID A4C-1000BA

ISED No. 10199A-1000BA

Trade name Rand McNally

OverDryve™ 7c Product name

Model No. OD7C **Test Result Pass**

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

The sample selected for test was production product and was provided by manufacturer.

Approved by:

Reviewed by:

Sam Chuang Manager

Ed Chiang Engineer

Revision History

Rev.	Issue Date	Revisions	Revised By
00	February 7, 2017	Initial Issue	Angel Cheng
01	March 24, 2017	 Remove Remark in page 4. Revise section 1.3 Antenna Category and Antenna Type in page 5. Add test data in section 4.3.4 in page 22, 23. Add Test Setup Photos in page 33, 34. 	Doris Chu
02	April 5, 2017	 Revise section 4.2.2 & 4.2.3 in page 15. Modify 20dB bandwidth and occupied bandwidth (99%) test data in page 16. Revise section 4.3.2 in page 18. 	Angel Cheng

Table of contents

1.	GEN	ERAL INFORMATION	4
		EUT INFORMATION	
		EUT CHANNEL INFORMATION	
		ANTENNA INFORMATION	
	1.4	MEASUREMENT UNCERTAINTY	6
	1.5	FACILITIES AND TEST LOCATION	
	1.6	INSTRUMENT CALIBRATION	7
	1.7	SUPPORT AND EUT ACCESSORIES EQUIPMENT	8
2.	TEST	SUMMERY	9
3.	DES	CRIPTION OF TEST MODES	10
	3.1	THE WORST MODE OF OPERATING CONDITION	10
	3.2	THE WORST MODE OF MEASUREMENT	11
4.	TEST	TRESULT	12
	4.1	AC POWER LINE CONDUCTED EMISSION	12
	4.2	20DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)	15
	4.3	RADIATION BANDEDGE AND SPURIOUS EMISSION	17
ΔF	PFN	DIX 1 - PHOTOGRAPHS OF FUT	

1. GENERAL INFORMATION

1.1 EUT INFORMATION

Applicant	RM Acquisition, LLC 9855 Woods Drive Skokie, IL 60077 USA.
Equipment	OverDryve™ 7c
Model Name	OD7C
Model Discrepancy	N/A
EUT Functions	IEEE 802.11b/g/n+BT+GPS+FM
Received Date	Dec 28, 2016
Date of Test	Jan 03, 2017 ~ March 22, 2017
Output Power (dBuV/m)	Peak : 36.51 Average : 34.77
Power Operation	 AC 120V/60Hz Adapter(Not for sale) PoE(Not for sale) Host system DC Type: Battery Car Charger DC Power Supply External DC adapter

1.2 EUT CHANNEL INFORMATION

Frequency Range	88MHz to 108MHz
Modulation Type	FM

Remark:

Refer as ANSI 63.10:2013 clause 5.6.1 Table 4 and RSS-GEN Table A1 for test channels

Number of frequencies to be tested					
Frequency range in Number of Location in frequency which device operates frequencies range of operation					
1 MHz or less	1	Middle			
1 MHz to 10 MHz	2	1 near top and 1 near bottom			
More than 10 MHz	3	1 near top, 1 near middle, and 1 near bottom			

1.3 ANTENNA INFORMATION

Antenna Category	☐ Internal: antenna permanently attached ☐ External dedicated antennas ☐ External Unique antenna connector			
Antenna Type	☐ PIFA ☐ PCB ☐ Dipole ☐ Coils			

1.4 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
AC Powerline Conducted Emission	+/- 1.2575
Emission bandwidth, 20dB bandwidth	+/- 1.4003
RF output power, conducted	+/- 1.1372
Power density, conducted	+/- 1.4003
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683
3M Semi Anechoic Chamber / 40G~60G	+/- 1.8509
3M Semi Anechoic Chamber / 60G~75G	+/- 1.9869
3M Semi Anechoic Chamber / 75G~110G	+/- 2.9651
3M Semi Anechoic Chamber / 110G~170G	+/- 2.7807
3M Semi Anechoic Chamber / 170G~220G	+/- 3.6437
3M Semi Anechoic Chamber / 220G~325G	+/- 4.2982

Remark:

^{1.} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

^{2.} ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.

1.5 FACILITIES AND TEST LOCATION

All measurement facilities used to collect the measurement data are located at

1. No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.)

2. No.163-1, Jhongsheng Rd. Sindian City, Taipei County 23151, Taiwan.

Test site	Test Engineer	Remark
AC Conduction Room	Jim Lian	The AC conduction room test items was tested at Compliance Certification Services Inc. (Sindian Lab.) The test equipments were listed in page 7 and the test data, please refer page 14-15.
Radiation	Ed Chiang	
RF Conducted	Eric Lee	

Remark: The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

1.6 INSTRUMENT CALIBRATION

RF Conducted Test Site							
Equipment Manufacturer Model S/N Cal Date Cal Due					Cal Due		
Spectrum Analyzer	R&S	FSV 40	101073	10/05/2016	10/04/2017		

3M 966 Chamber Test Site							
Equipment Manufacturer Model S/N Cal				Cal Due	Cal Due		
Bilog Antenna	Sunol Sciences	JB3	A030105	07/03/2016	07/02/2017		
Pre-Amplifier	EMEC	EM330	60609	06/08/2016	06/07/2017		

AC Conducted Emissions Test Site						
Equipment	Manufacturer	Model	S/N	Cal Date	Cal Due	
BNC Cable	EMCI	CFD300-NL	BNC#B4	05/29/2016	05/28/2017	
EMI Test Receiver	R&S	ESCI	101201	08/20/2016	08/19/2017	
ISN	Teseq	ISN T800	29449	08/19/2016	08/18/2017	
LISN	Schwarzbeck	NSLK 8127	8129-286	08/19/2016	08/18/2017	
LISN(EUT)	Schwarzbeck	NSLK 8127	8127527	08/19/2016	08/18/2017	
Pulse Limiter	R&S	ESH3-Z2	C3010026-2	08/23/2016	08/22/2017	
Thermo-Hygro Meter	Wisewind	201A	No. 02	05/03/2016	05/02/2017	
Current Sensor Probe	Teseq	CSP 9160A	73982	06/02/2016	06/01/2017	
Capacitive Voltage Probe	Teseq	CVP 2200A	37925	10/26/2016	10/25/2017	
Software	EZ-EMC					

Remark: Each piece of equipment is scheduled for calibration once a year.

1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT

EUT Accessories Equipment							
No. Equipment Brand Model Series No. FCC ID							
	N/A						

	Support Equipment						
No.	Equipment	Brand	Model	Series No.	FCC ID		
1	NB	DELL	PP19L	R33002	E2KWM3945ABG		
2	Battery	YUASA	CMF 75D23L	N/A	N/A		
3	PS/2 Mouse	hp	M-SBF96	FATSQ0C5BYJQKZ	DOC BSMI:R41126		
4	PS/2 Keyboard	Genius	K639	N/A	DOC BSMI:T3A164		
5	Microphone & Earphone	INTOPIC	LASS-288	N/A	N/A		
6	Monitor	DELL	P2314t	CN-0HMJ1V-74445-46 S-156S	R43004		
7	Host PC	DELL	T5810	8G5NKG2	N/A		
8	Modem	GALILEO	AL-56ERM	0MERM04A0212	DOC		
9	Printer	HP	SNPRB-1202 -01	CN54K182G9	R330D1		

1.8 TEST METHODOLOGY AND APPLIED STANDARDS

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 15.239, RSS-210 Issue 9 and RSS-GEN Issue 4

1.9 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo	
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039	
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2	

Page 8 / 35 Rev.02

2. TEST SUMMERY

FCC Standard Section	IC Standard Section	Report Section	Test Item	Result
15.203	-	1.2	Antenna Requirement	Pass
15.207(a)	RSS-GEN 8.8	4.1	AC Conducted Emission	Pass
-	-	4.2	20 dB Bandwidth	-
15.239(a)	RSS-210 B.9(a)	4.2	Occupied Bandwidth (99%)	Pass
15.239(b)(c)	RSS-210 B.9(b)(c)	4.3	Radiation Band Edge	Pass
15.239(b)(c)	RSS-210 B.9(b)(c)	4.3	Radiation Spurious Emission	Pass

3. DESCRIPTION OF TEST MODES

3.1 THE WORST MODE OF OPERATING CONDITION

Operation mode	FM 88MHz to 108MHz
Test Channel Frequencies	1.Lowest Channel: 88.1MHz 2.Middle Channel: 98.1MHz 3.Highest Channel: 107.9MHz

Remark:

_

^{1.} EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.

3.2 THE WORST MODE OF MEASUREMENT

AC Power Line Conducted Emission				
Test Condition AC Power line conducted emission for line and neutral				
Voltage/Hz	120V/60Hz			
Test Mode Mode 1:EUT power by AC adapter via power cable.				
Worst Mode				

Radiated Emission Measurement Below 1G				
Test Condition	Radiated Emission Below 1G			
Voltage/Hz	12V DC and 5V DC			
	Mode 1:EUT power by 12V DC via car charger. Mode 2:EUT power by 5V DC via USB.			
Worst Mode				

Remark:

- 1. The worst mode was record in this test report.
- 2. EUT pre-scanned in three axis ,X,Y, Z and two polarity, Horizontal and Vertical for radiated measurement. The worst case(Y-Plane and Vertical) were recorded in this report

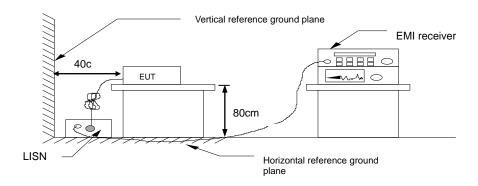
4. TEST RESULT

4.1 AC POWER LINE CONDUCTED EMISSION

4.1.1 Test Limit

According to §15.207(a) and RSS-GEN section 8.8,

Frequency Range	Limits(dBµV)		
(MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	

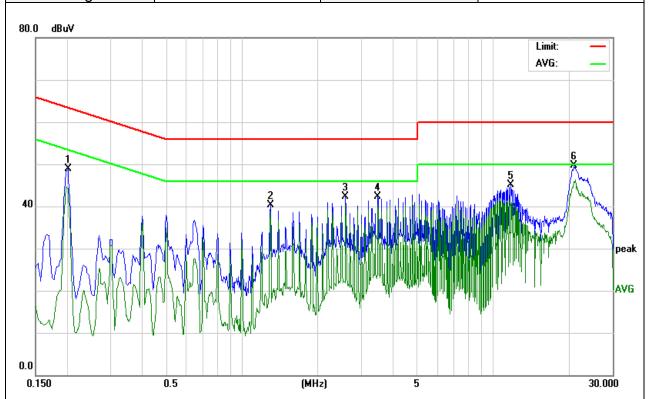

^{*} Decreases with the logarithm of the frequency.

4.1.2 Test Procedure

Test method Refer as ANSI 63.10:2013 clause 6.2,

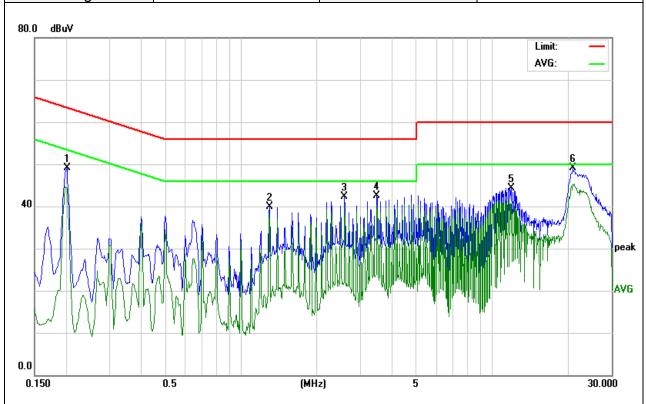
- The EUT was placed on a non-conducted table, which is 0.8m above horizontal ground plane and 0.4m above vertical ground plane.
- 2. EUT connected to the line impedance stabilization network (LISN)
- Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- Recorded Line for Neutral and Line.

4.1.3 Test Setup



4.1.4 Test Result

Pass


Test Data

Test Mode	Mode 1	Temp/Hum	27(°C)/ 53%RH
Phase	Line	Test Date	Jan 03, 2017
Test Engineer	Jim Lian		

Frequency (MHz)	Reading (dBuV)	Factor (dB)	Result (dB)	Limit (dBuV)	Margin (dBuV)	Detector (dBuV)
0.2020	38.83	10.10	48.93	63.52	-14.59	peak
1.2980	30.21	10.17	40.38	56.00	-15.62	peak
2.5939	32.02	10.32	42.34	56.00	-13.66	peak
3.4900	32.07	10.33	42.40	56.00	-13.60	peak
11.7698	34.36	10.67	45.03	60.00	-14.97	peak
21.0457	38.52	11.22	49.74	60.00	-10.26	peak

Test Mode	Mode 1	Temp/Hum	27(°C)/ 53%RH
Phase	Neutral	Test Date	Jan 03, 2017
Test Engineer	Jim Lian		

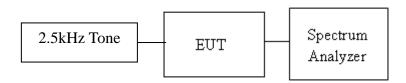
Frequency (MHz)	Reading (dBuV)	Factor (dB)	Result (dB)	Limit (dBuV)	Margin (dBuV)	Detector (dBuV)
0.2020	38.97	10.10	49.07	63.52	-14.45	peak
1.2980	29.79	10.17	39.96	56.00	-16.04	peak
2.5939	32.02	10.32	42.34	56.00	-13.66	peak
3.4900	32.20	10.33	42.53	56.00	-13.47	peak
11.9699	33.71	10.68	44.39	60.00	-15.61	peak
21.1460	37.86	11.24	49.10	60.00	-10.90	peak

4.220DB BANDWIDTH AND OCCUPIED BANDWIDTH(99%)

4.2.1 Test Limit

According to §15.239(a)(2) and RSS-210 section B9 (a)

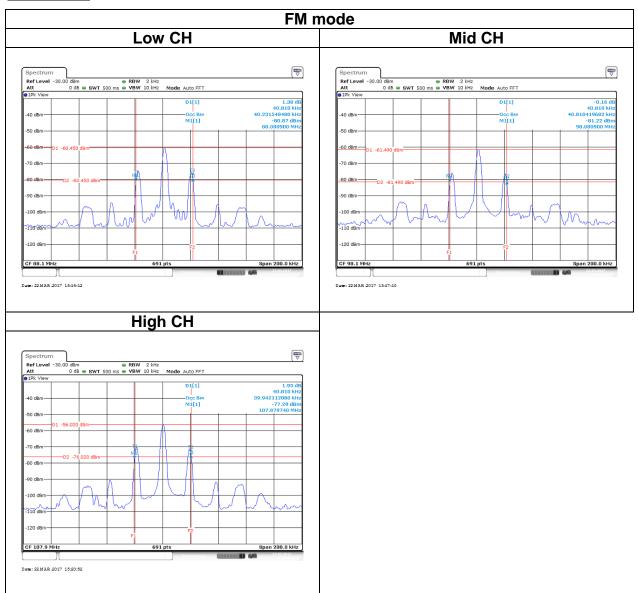
20 dB Bandwidth and Occupied Bandwidth(99%) :


Limit	200kHz

Emissions from the intentional radiator shall be confined within a band 200 kHz wide centered on the operating frequency. The 200 kHz band shall lie wholly within the frequency range of 88-108 MHz.

4.2.2 Test Procedure

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- SA set RBW = 2kHz, VBW = 10kHz and Detector = Peak, to measurement 20 dB Bandwidth and 99% Bandwidth.
- Measure and record the result of 20 dB Bandwidth and 99% Bandwidth. in the test report.


4.2.3 Test Setup

4.2.4 Test Result

	Test mode: FM mode / 88-108 MHz										
Channel	Frequency (MHz)	OBW(99%) (kHz)	20dB BW (kHz)	OBW(99%) limit (kHz)							
Low	88.1	40.2315	40.810								
Mid	98.1	40.8104	40.810	200							
High	107.9	39.9421	40.810								

Test Data

4.3 RADIATION BANDEDGE AND SPURIOUS EMISSION

4.3.1 Test Limit

FCC according to §15.239(b)(c), §15.209 and §15.205,

The field strength of any emissions within the permitted 200 kHz band shall not exceed 250 microvolts/meter at 3 meters. The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. The field strength of any emissions radiated on any frequency outside of the specified 200 kHz band shall not exceed the general radiated emission limits in §15.209

IC according to RSS-210 section B.9(b)(c), RSS-Gen, Section 8.9 and 8.10

The field strength of any emissions within the authorized bandwidth shall not exceed 250 µV/m measured at 3 m with an average meter. Any type of modulation can be used.

The field strength of any emissions outside the 200 kHz authorized bandwidth or outside the band 88-108 MHz shall not exceed the general field strength limits specified in RSS-Gen.

FCC section 15.209 and RSS-Gen, Section 8.9 and 8.10 as below limit in table.

Below 30 MHz

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

Above 30 MHz

Frequency	Field Stromicrovolts/m at 3 me	
(MHz)	Transmitters	Receivers
30-88	100 (3 nW)	100 (3 nW)
88-216	150 (6.8 nW)	150 (6.8 nW)
216-960	200 (12 nW)	200 (12 nW)
Above 960	500 (75 nW)	500 (75 nW)

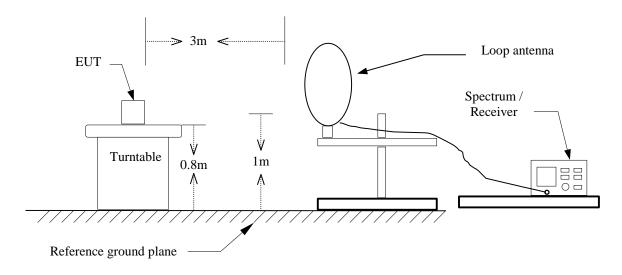
FCC section 15.239(b)(c) and RSS-210 Section B.9(b)(c) as below limit in table.

Fundamental:

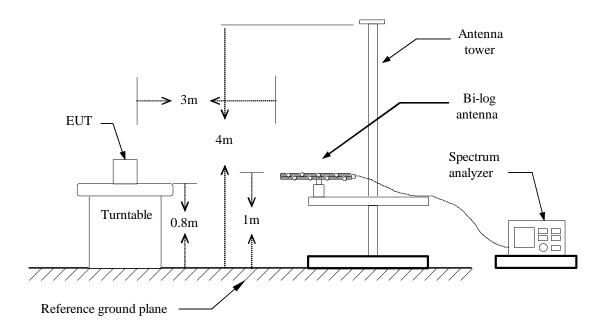
Frequency(MHz)		of Fundamental V/m)
88-108	AVG	Peak
	47.96	67.96

Band Edge and Emission Outside of the frequency:

Frequency(MHz)	QP Limit (dBuV/m at 3M)
Below 88	40.0
Above 108	43.5

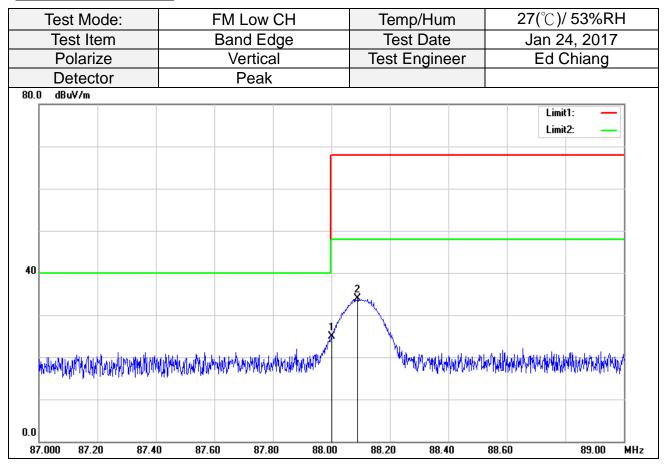

4.3.2 Test Procedure

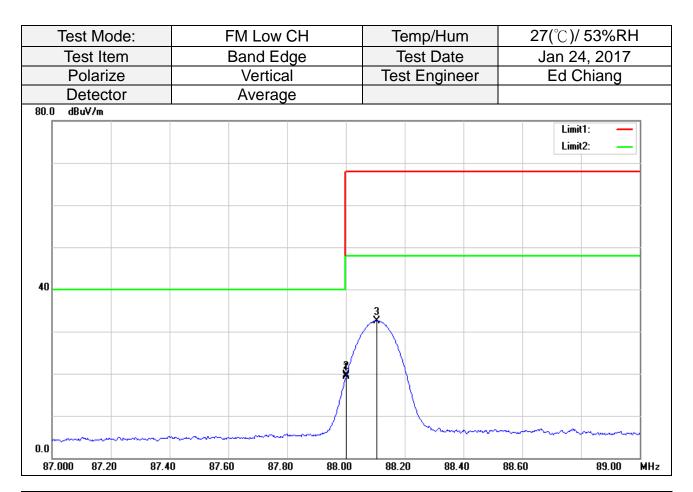
- 1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10, and the EUT set in a continuous mode.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.
- 3. Span shall wide enough to full capture the emission measured. The SA from 30MHz to 1GHz set to the low, Mid and High channels with the EUT transmit.
- 4. The SA setting following:
 - (1) Below 1G: RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.



4.3.3 Test Setup

9kHz ~ 30MHz

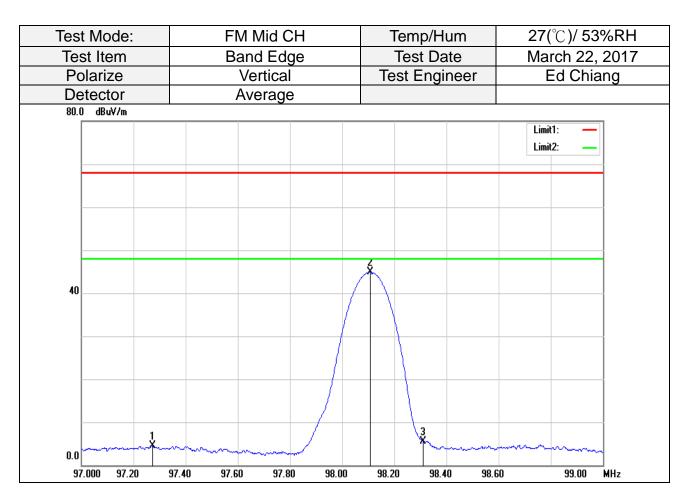

30MHz ~ 1GHz



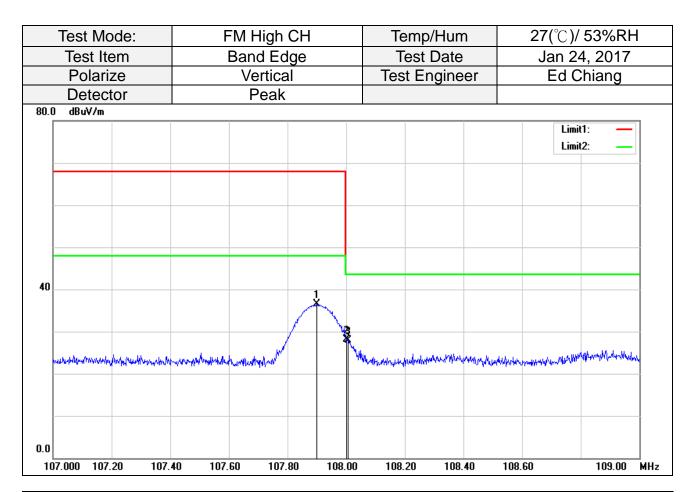
4.3.4 Test Result

Band Edge Test Data

	No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
Ī	1	88.0000	46.37	-21.45	24.92	40.00	-15.08	peak
	2	88.0900	55.31	-21.45	33.86	67.96	-34.10	peak

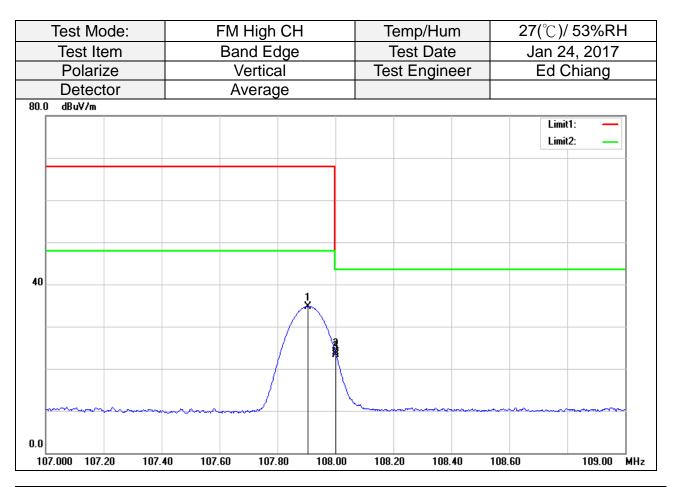


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	88.0000	40.71	-21.45	19.26	40.00	-20.74	AVG
2	88.0020	41.18	-21.45	19.73	47.96	-28.23	AVG
3	88.1060	53.97	-21.45	32.52	47.96	-15.44	AVG



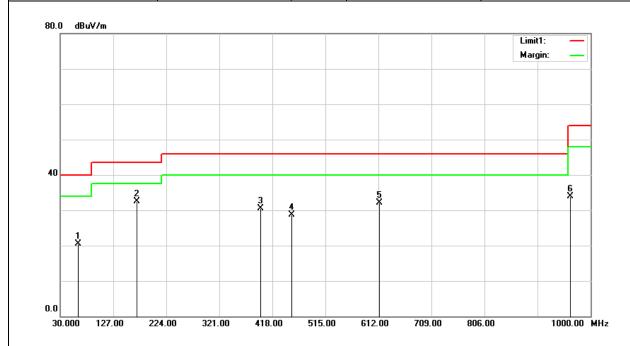
Test Item Band Edge Test Date March 22, 2017 Polarize Vertical Test Engineer Ed Chiang Detector Peak 80.0 dBuV/m Limit1: — Limit2: —	Polarize Vertical Test Engineer Ed Chiang Detector Peak 80.0 dBuV/m Limit1: — Limit2: — 40	Test Mode:	FM Mid CH	Temp/Hum	27(°ℂ)/ 53%RH
Detector Peak 80.0 dBuV/m Limit1: — Limit2: —	Detector Peak 80.0 dBuV/m Limit1: — Limit2: —	Test Item	Band Edge	Test Date	March 22, 2017
80.0 dBuV/m Limit1: — Limit2: —	80.0 dBuV/m Limit1: Limit2: Limit2: Limit4: Limit2: Limit4: Limit4: Limit4: Limit4: Limit4: Limit4: Limit4: Limit4: Limit5: Limit5: Limit6: L	Polarize	Vertical	Test Engineer	Ed Chiang
Limit1: — Limit2: —	40 Limit1: — Limit2: —	Detector	Peak		
Limit2:	40	80.0 dBuV/m			
40					
40					
		40			
WAS COMPANY CO		0.0			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	97.4220	37.76	-19.67	18.09	67.96	-49.87	peak
2	98.0940	64.66	-19.50	45.16	67.96	-22.80	peak
3	98.3000	37.56	-19.45	18.11	67.96	-49.85	peak

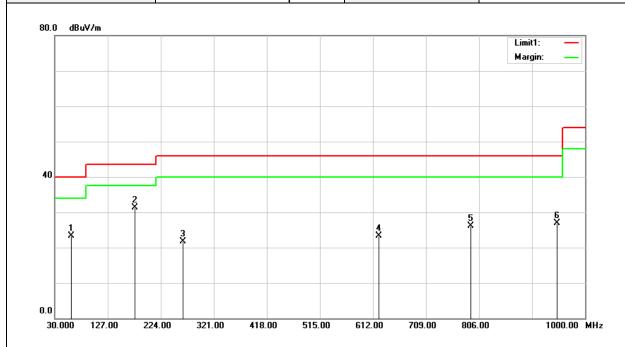


No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	97.2720	24.19	-19.70	4.49	47.96	-43.47	AVG
2	98.1080	64.37	-19.50	44.87	47.96	-3.09	AVG
3	98.3100	25.03	-19.45	5.58	47.96	-42.38	AVG

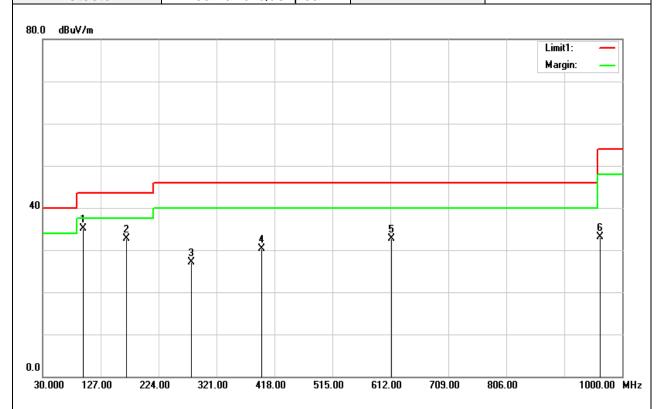
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	107.9000	54.15	-17.64	36.51	67.96	-31.45	peak
2	108.0000	45.70	-17.62	28.08	43.52	-15.44	peak
3	108.0060	45.62	-17.62	28.00	43.52	-15.52	peak



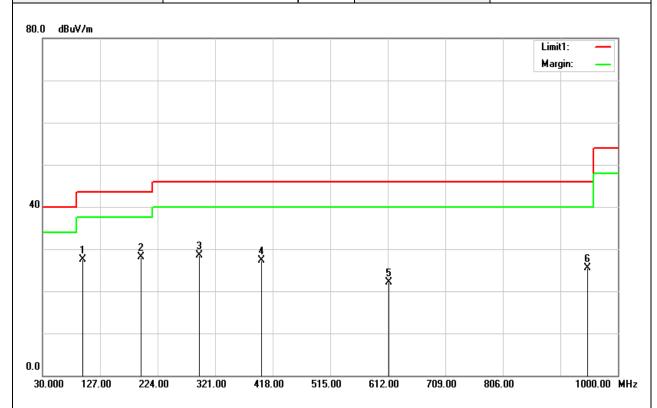
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	107.9040	52.40	-17.63	34.77	47.96	-13.19	AVG
2	108.0000	41.47	-17.62	23.85	43.52	-19.67	AVG
3	108.0020	40.99	-17.62	23.37	43.52	-20.15	AVG


Below 1G Test Data

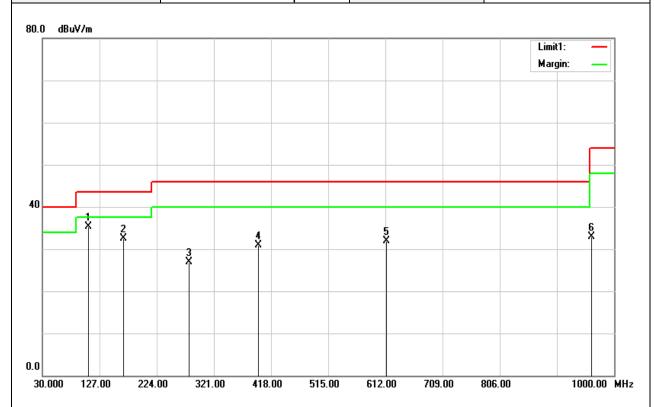
Test Mode:	FM Low CH	Temp/Hum	27(°ℂ)/ 53%RH
Test Item	30MHz-1GHz	Test Date	Jan 24, 2017
Polarize	Vertical	Test Engineer	Ed Chiang
Detector	Peak and Qusi-peak		


Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
62.3600	42.36	-21.78	20.58	40.00	-19.42	peak
169.6800	49.39	-16.83	32.56	43.50	-10.94	peak
396.6600	42.23	-11.78	30.45	46.00	-15.55	peak
452.9200	38.82	-10.13	28.69	46.00	-17.31	peak
613.9400	39.59	-7.43	32.16	46.00	-13.84	peak
963.1400	36.15	-2.18	33.97	54.00	-20.03	peak

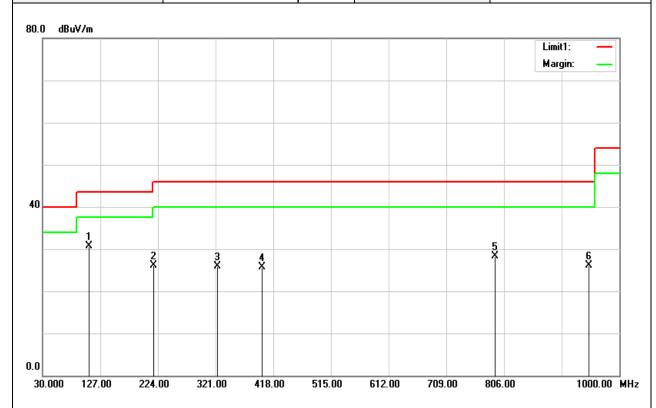
Test Mode:	FM Low CH	Temp/Hum	27(°C)/ 53%RH
Test Item	30MHz-1GHz	Test Date	Jan 24, 2017
Polarize	Horizontal	Test Engineer	Ed Chiang
Detector	Peak and Qusi-peak		


Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
60.3600	45.33	-22.06	23.27	40.00	-16.73	peak
176.4700	48.50	-17.17	31.33	43.50	-12.17	peak
264.7400	36.99	-15.19	21.80	46.00	-24.20	peak
622.6700	30.48	-7.22	23.26	46.00	-22.74	peak
791.4500	30.71	-4.57	26.14	46.00	-19.86	peak
948.5900	29.28	-2.42	26.86	46.00	-19.14	peak

Test Mode:	FM Mid CH	Temp/Hum	27(°ℂ)/ 53%RH
Test Item	30MHz-1GHz	Test Date	Jan 24, 2017
Polarize	Vertical	Test Engineer	Ed Chiang
Detector	Peak and Qusi-peak		


Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
97.9000	54.73	-19.55	35.18	43.50	-8.32	peak
169.6800	49.54	-16.83	32.71	43.50	-10.79	peak
279.2900	41.67	-14.63	27.04	46.00	-18.96	peak
396.6600	42.08	-11.78	30.30	46.00	-15.70	peak
613.9400	40.05	-7.43	32.62	46.00	-13.38	peak
963.1400	35.28	-2.18	33.10	54.00	-20.90	peak

Test Mode:	FM Low CH	Temp/Hum	27(°ℂ)/ 53%RH
Test Item	30MHz-1GHz	Test Date	Jan 24, 2017
Polarize	Horizontal	Test Engineer	Ed Chiang
Detector	Peak and Qusi-peak		-


Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
97.9000	47.08	-19.55	27.53	43.50	-15.97	peak
195.8700	44.08	-15.92	28.16	43.50	-15.34	peak
293.8400	42.95	-14.35	28.60	46.00	-17.40	peak
399.5700	39.02	-11.71	27.31	46.00	-18.69	peak
613.9400	29.45	-7.43	22.02	46.00	-23.98	peak
948.5900	27.99	-2.42	25.57	46.00	-20.43	peak

Test Mode:	FM High CH	Temp/Hum	27(°ℂ)/ 53%RH
Test Item	30MHz-1GHz	Test Date	Jan 24, 2017
Polarize	Vertical	Test Engineer	Ed Chiang
Detector	Peak and Qusi-peak	_	_

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
107.6000	53.06	-17.69	35.37	43.50	-8.13	peak
167.7400	49.28	-16.74	32.54	43.50	-10.96	peak
279.2900	41.47	-14.63	26.84	46.00	-19.16	peak
396.6600	42.64	-11.78	30.86	46.00	-15.14	peak
613.9400	39.35	-7.43	31.92	46.00	-14.08	peak
962.1700	35.16	-2.20	32.96	54.00	-21.04	peak

Test Mode:	FM High CH	Temp/Hum	27(°C)/ 53%RH
Test Item	30MHz-1GHz	Test Date	Jan 24, 2017
Polarize	Horizontal	Test Engineer	Ed Chiang
Detector	Peak and Qusi-peak		-

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
107.6000	48.37	-17.69	30.68	43.50	-12.82	peak
216.2400	42.83	-16.69	26.14	46.00	-19.86	peak
323.9100	39.41	-13.59	25.82	46.00	-20.18	peak
399.5700	37.50	-11.71	25.79	46.00	-20.21	peak
791.4500	32.96	-4.57	28.39	46.00	-17.61	peak
948.5900	28.47	-2.42	26.05	46.00	-19.95	peak