

FCC SAR TEST REPORT

Report No: STS1412001H01

Issued for

RM ACQUISITIONS LLC

9855 Woods Drive Skokie. IL 60077 U.S.A

Product Name:	TND Tablet			
Brand Name:	RAND MCNALLY			
Model No.:	TNDT80			
Series Model:	Road Explorer 80			
FCC ID:	A4C-10007A			
	ANSI/IEEE Std. C95.1			
Test Standard:	FCC 47 CFR Part 2 (2.1093)			
	IEEE 1528: 2003			
Max. SAR (1g):	Body:0.246 W/kg			

Any reproduction of this document must be done in full. No single part of this document may permission from STS, All Test Data Presented in this report is only applicable to presented Test

Shenzhen STS Test Services Co., Ltd.

1/F, Building B, Zhuoke Science Park, Chongqing Road, Fuyong, Baoan District, Shenzhen, China
TEL: +86-755 3688 6288 FAX: +86-755 3688 6277 E-mail:sts@stsapp.com

Test Report Certification

Applicant's name: RM ACQUISITIONS LLC

Address 9855 Woods Drive Skokie. IL 60077 U.S.A

Manufacture's Name Apical Technology Research (shenzhen) Co., Ltd

Address: 9/F,B, Building, singhua Unis Infoport, Langshan Road, North

District, Hi-tech Industrial park, Nanshan, Shenzhen, China

Product description

Product name: TND Tablet

Trademark: RAND MCNALLY

Model and/or type reference : TNDT80

Serial Model: Road Explorer 80

Standards ANSI/IEEE Std. C95.1-1992

FCC 47 CFR Part 2 (2.1093)

IEEE 1528: 2003

The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of Test

Date (s) of performance of tests 1 Dec. 2014

Date of Issue....: 2 Dec. 2014

Test Result....: **Pass**

Testing Engineer

Technical Manager

(Vita Li)

Authorized Signatory:

(Bovey Yang)

TABLE OF CONTENS

1. General Information	4
1.1 EUT Description	4
1.2 Test Environment	5
1.3 Test Facility	5
2. Test Standards And Limits	6
3. SAR Measurement System	7
3.1 Definition Of Specific Absorption Rate (SAR)	7
3.2 SAR System	7
3.2.1 Probe 3.2.2 Phantom	8 9
3.2.3 Device Holder	9
4. Tissue Simulating Liquids	10
4.1 Simulating Liquids Parameter Check	10
5. SAR System Validation	11
5.1 Validation System	11
5.2 Validation Result	11
6. SAR Evaluation Procedures	12
7. EUT Antenna Location Sketch	13
8. EUT Test Position	14
8.1 Define Two Imaginary Lines On The Handset	14
8.2 Hotspot mode exposure position condition	14
9. Measurement Uncertainty	16
10. Conducted Power Measurement	18
11. EUT And Test Setup Photo	19
11.1 EUT Photo	19
11.2 Setup Photo	22
12. SAR Result Summary	26
13. Equipment List	27
Appendix A. System Validation Plots	28
System Performance Check Data(2450MHz Body)	28
Appendix B. SAR Test Plots	30
Appendix C. Probe Calibration And Dipole Calibration Report	36

1. General Information

1.1 EUT Description

Equipment	TND Tablet				
Brand Name	RAND MCNALLY				
Model No.	TNDT80				
Serial Model	Road Explorer 80				
FCC ID	A4C-10007A				
Model Difference	Only different in model				
Adapter	Input: AC100-240V, 0.5 A, 50/60 Hz Output: DC 5V, 2000mA				
Battery	Rated Voltage: 3.7V Charge Limit: 4.2V Capacity: 4000mAh				
Hardware Version	N/A				
Software Version	N/A				
Frequency Range	IEEE 802.11b/g/20n: 2412MHz to 2472 MHz				
Frequency Range	IEEE 802.1140n: 2422MHz to 2462 MHz				
Transmit	IEEE 802.11b: 15.13 dBm				
Power(Average):	1222 302.116. 10.10 dBill				
Max. Reported	Body: 802.11b:0.246W/kg				
SAR(1g):	Body. 002.11b.0.240V/Ng				
Operating Mode:	Maximum continuous output				
Antenna	WIFI: PIFA Antenna				
Specification:	WII I.1 II / (Allicilla				
Test Mode:	Maximum continuous output				
Hotspot Mode:	Support				
DTM Mode:	Not Support				

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required	Actual	
Temperature (°C)	18-25	22~23	
Humidity (%RH)	30-70	55~65	

1.3 Test Facility

Shenzhen STS Test Services Co., Ltd.

Add.: 1/F, Building 2, Zhuoke Science Park, Chongqing Road, Fuyong,

Baoan District, Shenzhen, China

FCC Registration No.: 842334; IC Registration No.: 12108A-1

2. Test Standards And Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	ANSI/IEEE Std. C95.1-1992	IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz
3	IEEE Std. 1528-2003	Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D01 v05r02	Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies
5	FCC KDB 865664 D01 v01r03	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D01 v01r03	SAR Measurement 100 MHz to 6 GHz
7	FCC KDB 941225 D01	SAR Measurement Procedures for 3G Devices
8	FCC KDB 248227 D01	SAR Measurement Procedures for 802.11 a/b/g Transmitters

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. According to EN 50360 and 1999/519/EC the limit for General Population/Uncontrolled exposure should be applied for this device, it is 2.0 W/kg as averaged over any 10 gram of tissue.

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles

0.08 1.6 4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 10 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg

3. SAR Measurement System

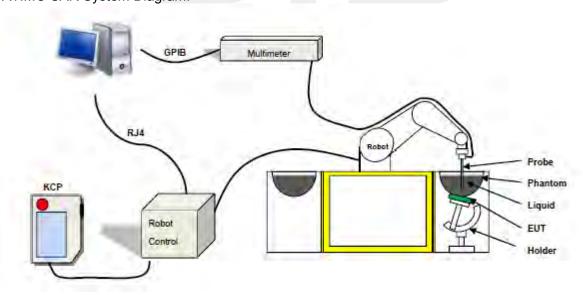
3.1 Definition Of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue,

 $\boldsymbol{\rho}$ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

SATIMO SAR System Diagram:

Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 17/14 EP221 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter :5 mm
- Distance between probe tip and sensor center: 2.7mm
- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)
- Probe linearity: < 0.25 dB
- Axial Isotropy: < 0.25 dB
- Spherical Isotropy: < 0.25 dB
- Calibration range: 450MHz to 2600MHz for head & body simulating liquid. Angle between probe axis (evaluation axis) and suface normal line:less than 30°

Figure 1 - Satimo COMOSAR Dosimetric E field Dipole

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.4. Tissue Simulating Liquids

4. Tissue Simulating Liquids

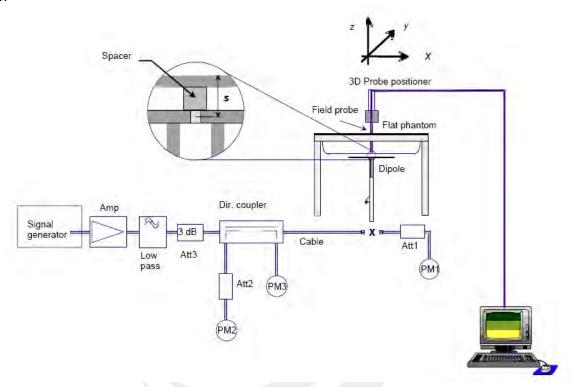
4.1 Simulating Liquids Parameter Check

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

LIQUID MEASUREMENT RESULTS

Date: Dec. 01, 2014 Ambient condition: Temperature 22.7°C Relative humidity: 49%

Body Simulating Liquid		Parameters	Target	Measured	Deviation[%]	Limited[%]	
Frequency	Temp. [°C]						
2450 MHz		Permitivity:	52.7	51.2	-2.9	± 5	
2430 WII 12	22.00	Conductivity:	1.95	1.95	+0.0	± 5	



5. SAR System Validation

5.1 Validation System

Each SATIMO system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10 %.

Ambient condition: Temperature 22.7°C Relative humidity: 49%

Freq.(MHz)	Power(mW)	Tested Value (W/Kg)	Normalized SAR (W/kg)	Target(W/Kg)	Tolerance(%)	Date
2450 Body	100	5.123	51.23	52.40	-2.18	2014-12-01

Note:

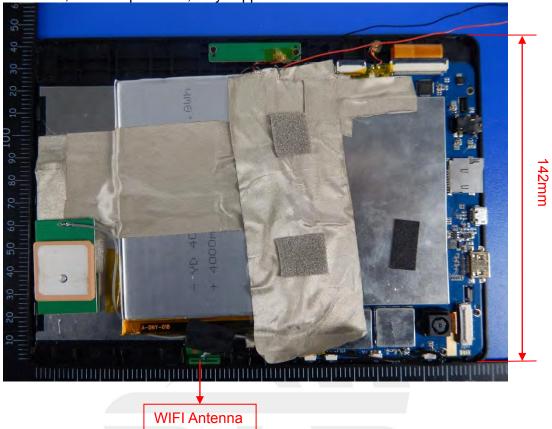
1. The tolerance limit of System validation ±10%.

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps: The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

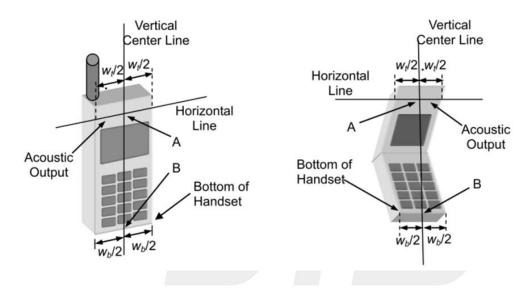
Area Scan& Zoom Scan


First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r01 quoted below.

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

7. EUT Antenna Location Sketch

It is a TND Tablet; Road Explorer 80, only support WIFI mode.



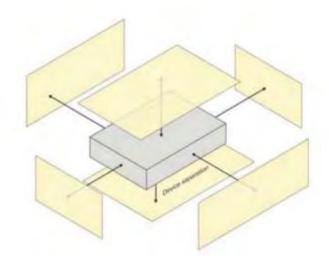
This EUT was tested in Right Cheek, Right Titled, Left Cheek, Left Titled, Front Face and Rear Face.

8.1 Define Two Imaginary Lines On The Handset

- (1)The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2)The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3)The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.

Body-worn Position Conditions

- (1) To position the EUT parallel to the phantom surface.
- (2) To adjust the EUT parallel to the flat phantom.
- (3) To adjust the distance between the EUT surface and the flat phantom to 5mm.



8.2 Hotspot mode exposure position condition

For handsets that support hotspot mode operations, with wireless router capabilities and various web browsing function, the relevant hand and body exposure condition are tested according to the hotspot SAR procedures in KDB 941225. A test separation distance of 10 mm is required between the phantom and all surface and edges with a transmitting antenna located within 25 mm form that surface or edge. When form factor of a handset is smaller than 9cm x 5cm, a test separation distance of 5mm(instead of 10mm)is required for testing hotspot mode. When the separate distance required for body-worn accessory testing is larger than or equal to that tested for hotspot mode, in the same wireless mode and for the same surface of the phone, the hotspot mode SAR data may be used to support body-worn accessory SAR compliance for that particular configuration(surface).

9. Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2003. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

approx	pproximately the 95% confidence level using a coverage factor of k=2.											
NO	Source	Tol(%)	Prob. Dist.	Div. k	ci (1g)	ci (10g)	1gUi	10gUi	Veff			
Ma	MeauenertSystem											
1	Probe calibration	5.8	N	1	1	1	5.8	5.8	∞			
2	Axial isotropy	3.5	R	√3	(1-cp) ^{1/2}	(1-cp) ^{1/2}	1.43	1.43	8			
3	Hemispherical isotropy	5.9	R	√3	√Cp	√Cp	2.41	2.41				
4	Boundary effect	1.0	R	√3	1	1	0.58	0.58	80			
5	Linearity	4.7	R	√3	1	1	2.71	2.71	8			
6	System Detection limits	1.0	R	√3	1	1	0.58	0.58	80			
7	Readout electronics	0.5	N	1	1	1	0.50	0.50	8			
8	Response time	0	R	√3	1	1	0	0	80			
9	Integration time	1.4	R	√3	1	1	0.81	0.81	8			
10	Ambient noise	3.0	R	√3	1	1	1.73	1.73	8			
11	Ambient reflections	3.0	R	√3	1	1	1.73	1.73	80			
12	Probe positioner mech. restrictions	1.4	R	√3	1	1	0.81	0.81	8			
13	Probe positioning with respect to phantom shell	1.4	R	√3	1	1	0.81	0.81	∞			
14	Max.SAR evaluation	1.0	R	√3	1	1	0.6	0.6	8			
Test s	ample related											

Page 17 of 55 Report No.: STS1412001H01

15	Device positioning	2.6	N	1	1	1	2.6	2.6	11
16	Device holder	3	N	1	1	1	3.0	3.0	7
17	Drift of output power	5.0	R	√3	1	1	2.89	2.89	8
Phant	om and set-up								
18	Phantom uncertainty	4.0	R	√3	1	1	2.31	2.31	80
19	Liquid conductivity (target)	2.5	N	1	0.78	0.71	1.95	1.78	5
20	Liquid conductivity (meas)	4	N	1	0.23	0.26	0.92	1.04	5
21	Liquid Permittivity (target)	2.5	N	1	0.78	0.71	1.95	1.78	8
22	Liquid Permittivity (meas)	5.0	N	1 0.23 0.26		1.15	1.30	8	
Comb	nined standard		RSS	$U_C = \sqrt{\sum_{i=1}^n C_i^2 U_i^2}$			10.63%	10.54%	
Expar (P=95	Expanded uncertainty $U = k \ U_{C}$,k=2						21.26%	21.08%	

10. Conducted Power Measurement

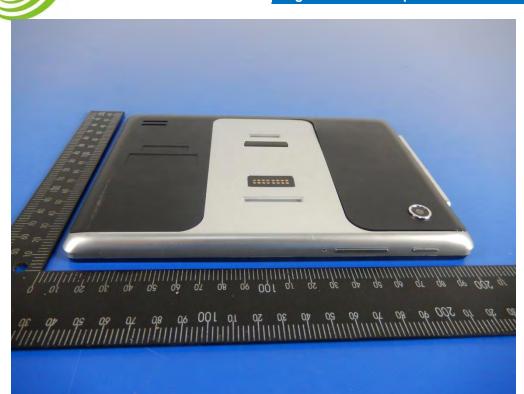
WIFI (2.4Gband)

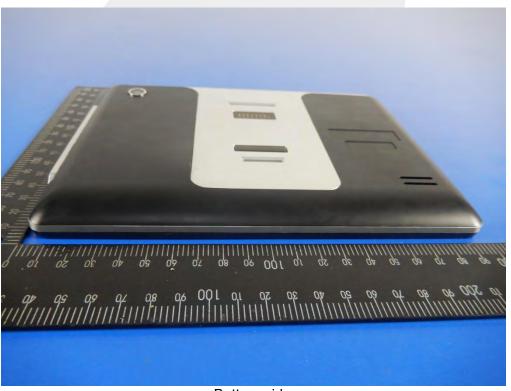
- a. The client supplied a special driver to program the EUT, allowing it to continually transmit the specified maximum power and change the channel frequency.
- b. Maximum conducted power was measured by replacing the antenna with an adapter for conductive measurement.
- c. The conducted power was measured at the high, middle and low channel frequency before and after the SAR measurement.
- d. During SAR test, the highest output channel per band measured first, and then if necessary, the other channels were measured according to the normal procedures.

Conducted output power (Average)(dBm):

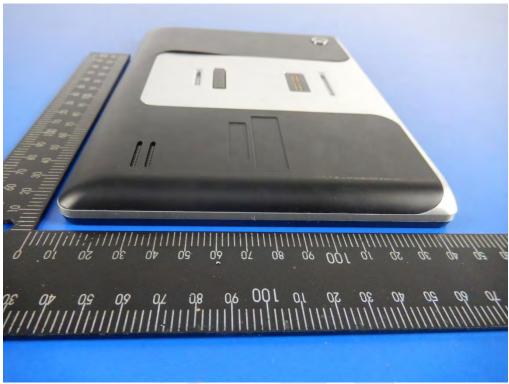
Mode	Channel Number	Frequency (MHz)	Average EIRP Power (dBm)
	1	2412	14.79
802.11b	6	2437	15.13
	11	2462	15.12
	1	2412	10.70
802.11g	6	2437	11.77
	11	2462	11.14
	1	2412	9.92
802.11n(HT-20)	6	2437	10.02
\ \	11	2462	10.20
	3	2422	11.34
802.11n(HT-40)	6	2437	11.16
	9	2452	11.22

11. EUT And Test Setup Photo


11.1 EUT Photo

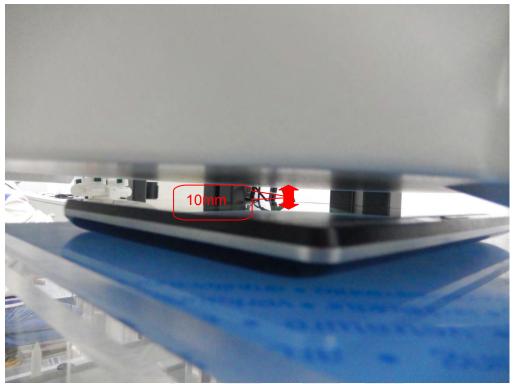

Front side

Back side

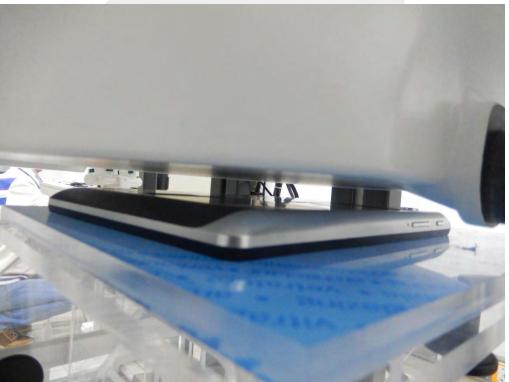


Top side

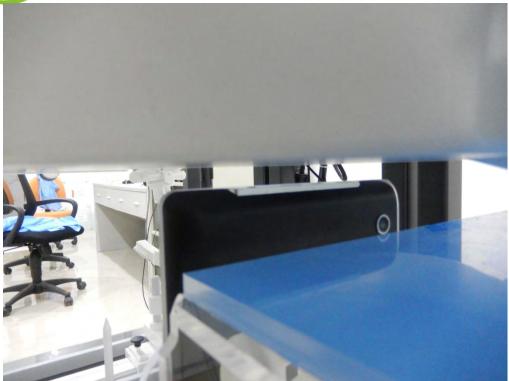
Bottom side



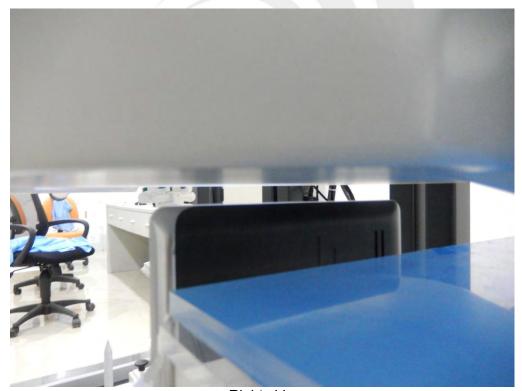
Left side



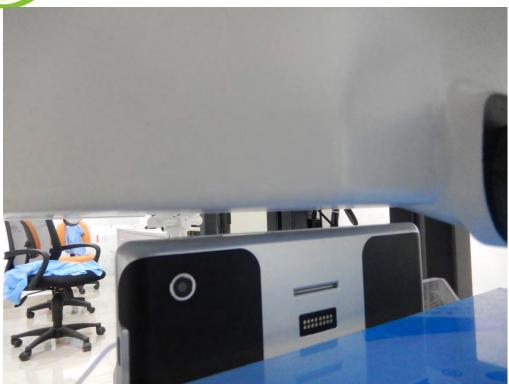
Right side



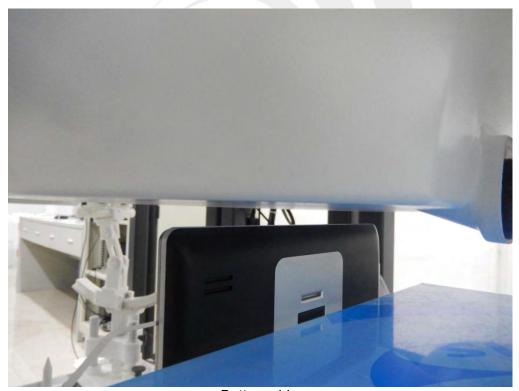
Front side



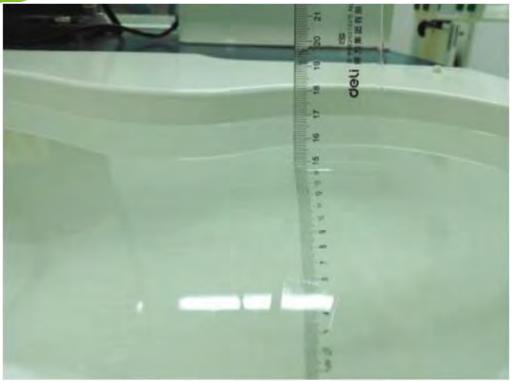
Back side



Left side



Right side


Top side

Bottom side

Liquid depth (15 cm)

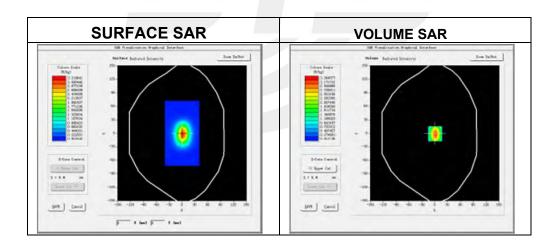
	Test Case of Body		Freq.	Power	SAR (1g)	Max.Turn-up	Meas Output	Scaled	Meas.	
Band	Model	Test Position	Channel	(MHz)	Drift	(W/kg)		Power(dBm)	SAR (W/Kg)	No.
WIFI	802.11b	Front	CH7	2437	0.76	0.226	15.50	15.13	0.246	1
		Back	CH7	2437	3.54	0.136	15.50	15.13	0.148	2
		Left	CH7	2437	0.27	0.044	15.50	15.13	0.048	3
		Right	CH7	2437	-0.86	0.043	15.50	15.13	0.047	4
		Тор	CH7	2437	1.52	0.044	15.50	15.13	0.048	5
		Bottom	CH7	2437	-2.43	0.043	15.50	15.13	0.047	6

Note: The test separation of all above table is 10mm.

NO.	Instrument	Manufacturer	Model	S/N	Cal. Date	Cal. Due Date
1	2450 MHz Dipole	SATIMO	SID2450	SN 30/14 DIP2G450-335	Sep.1, 2014	Sep.1, 2015
2	E-Field Probe	SATIMO	SSE5	SN 17/14 EP221	2014.09.01	2015.08.31
3	Antenna	SATIMO	ANTA3	SN 07/13 ZNTA52	2014.09.01	2015.08.31
4	Waveguide	SATIMO	SWG5500	SN 13/14 WGA32	2014.09.01	2015.08.31
5	Phantom1	SATIMO	SAM	SN 32/14 SAM115	2014.09.01	2015.08.31
6	Phantom2	SATIMO	SAM	SN 32/14 SAM116	2014.09.01	2015.08.31
7	SAR TEST BENCH	SATIMO	TND TABLET; ROAD EXPLORER 80 POSITIONNIN	SN 32/14 MSH97	2014.09.01	2015.08.31
8	SAR TEST BENCH	SATIMO	LAPTOP POSITIONNIN G SYSTEM	SN 32/14 LSH29	2014.09.01	2015.08.31
9	Dielectric Probe Kit	SATIMO	SCLMP	SN 32/14 OCPG52	2014.09.01	2015.08.31
10	MultiMeter	Keithley	MultiMeter 2000	4050073	2014.11.20	2015.11.19
11	Signal Generator	R&S	SMF100A	104260	2014.10.27	2015.10.26
12	Power Meter	R&S	NRP	100510	2014.10.25	2015.10.24
13	Power Sensor	R&S	NRP-Z11	101919	2014.10.25	2015.10.24
14	Network Analyzer	R&S	5071C	EMY46103472	2013.12.12	2014.12.11

Appendix A. System Validation Plots

System Performance Check Data(2450MHz Body)

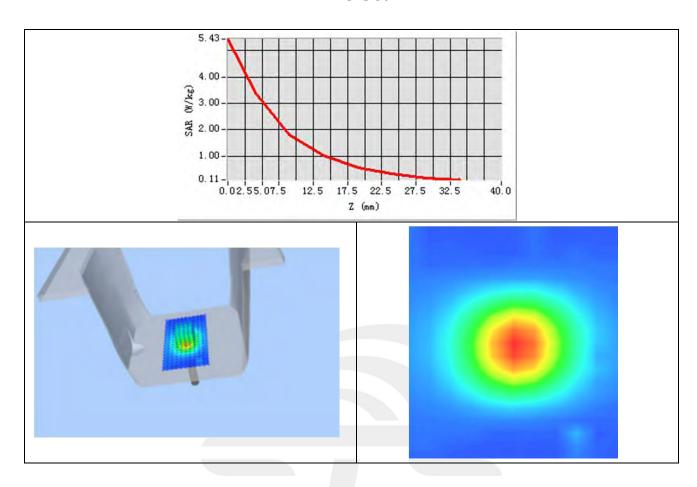

Type: Phone measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.12.01

Experimental conditions.

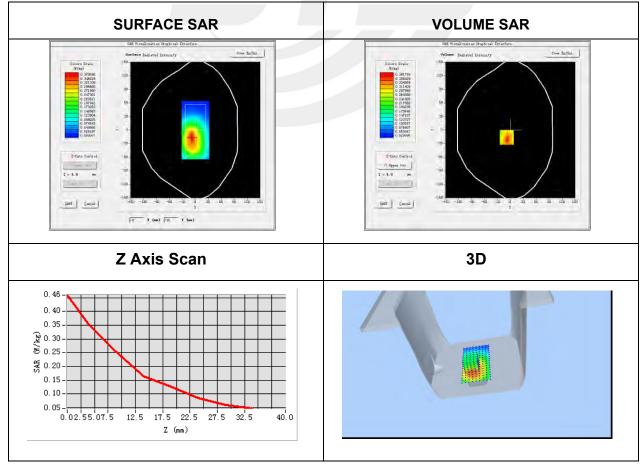
Device Position	Validation plane	
Band	2450 MHz	
Channels	-	
Signal	CW	
Frequency (MHz)	2450	
Relative permittivity (real part)	39.226002	
Relative permittivity	12.930000	
Conductivity (S/m)	13.207000	
Power drift (%)	-1.200000	
Ambient Temperature	22.7°C	
Liquid Temperature	22.3°C	
Probe	SN 17/14 EP221	
ConvF	4.25	
Crest factor:	1:1	



Maximum location: X=3.00, Y=1.00

SAR 10g (W/Kg)	2.1589463
SAR 1g (W/Kg)	4.7459246

Z Axis Scan

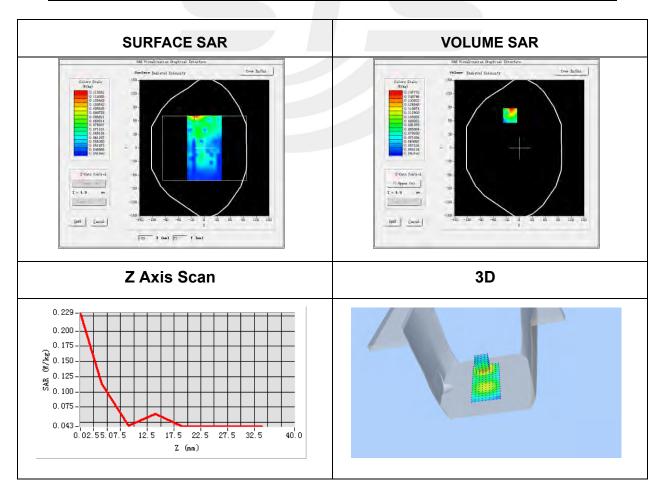


Plot 1: DUT: TND Tablet; EUT Model: TNDT80

. 2011 1112 143101, 201 11104011 1112100			
Test Data	2014-12-01		
Probe	SN 17/14 EP221		
ConvF	4.25		
Area Scan	dx=8mm dy=8mm, h= 5.00 mm		
ZoomScan	5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm		
Phantom	Validation plane		
Device Position	Body Front		
Band	IEEE 802.11b ISM		
Channels	Middle		
Signal	IEEE802.b (Crest factor: 1.0)		
Frequency (MHz)	2437		
Relative permittivity (real part)	39.22		
Conductivity (S/m)	1.78		
Variation (%)	0.76		

Maximum location: X=-40.00, Y=-55.00 SAR Peak: 0.54W/kg

SAR 10g (W/Kg)	0.117663
SAR 1g (W/Kg)	0.225562

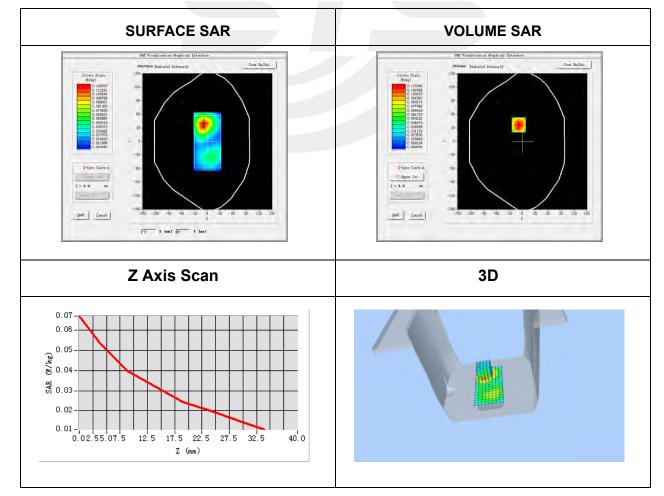


Plot 2: DUT: TND Tablet; EUT Model: TNDT80

2014-12-01
SN 17/14 EP221
4.25
dx=8mm dy=8mm, h= 5.00 mm
5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Validation plane
Body back
IEEE 802.11b ISM
Middle
IEEE802.b (Crest factor: 1.0)
2437
39.22
1.78
3.54

Maximum location: X=-22.00, Y=72.00 SAR Peak: 0.23W/kg

SAR 10g (W/Kg)	0.082288
SAR 1g (W/Kg)	0.135998

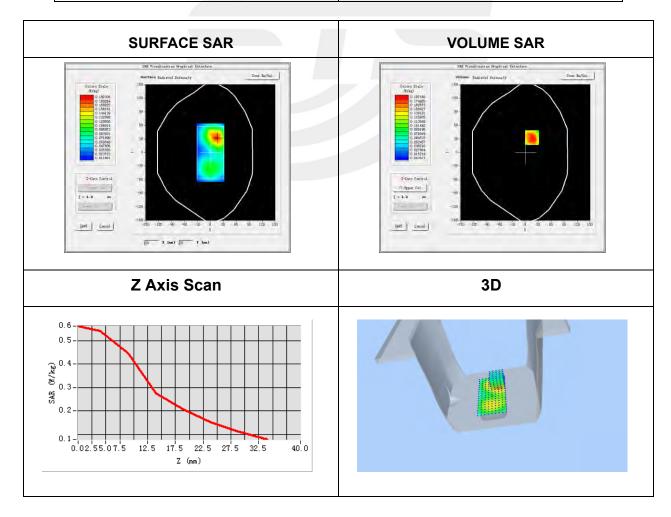


Plot 3: DUT: TND Tablet; EUT Model: TNDT80

2014-12-01
SN 17/14 EP221
4.25
dx=8mm dy=8mm, h= 5.00 mm
5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Validation plane
Body left
IEEE 802.11b ISM
Middle
IEEE802.b (Crest factor: 1.0)
2437
39.22
1.78
0.27

Maximum location: X=40.00, Y=-32.00 SAR Peak: 0.07W/kg

SAR 10g (W/Kg)	0.023744
SAR 1g (W/Kg)	0.043875

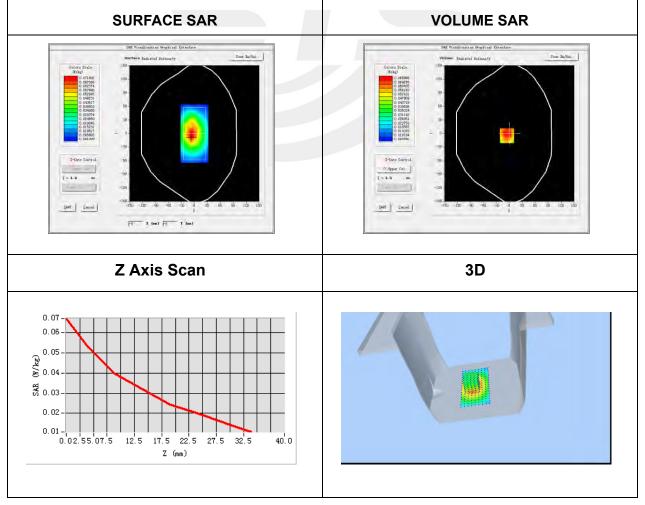


Plot 4: DUT: TND Tablet; EUT Model: TNDT80

2014-12-01
SN 17/14 EP221
4.25
dx=8mm dy=8mm, h= 5.00 mm
5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Validation plane
Body right
IEEE 802.11b ISM
Middle
IEEE802.b (Crest factor: 1.0)
2437
39.22
1.78
-0.86

Maximum location: X=32.00, Y=64.00 SAR Peak: 0.06 W/kg

CAD 40~ (\M/\/~)	0.040000
SAR 10g (W/Kg)	0.042903
SAR 1g (W/Kg)	0.043304

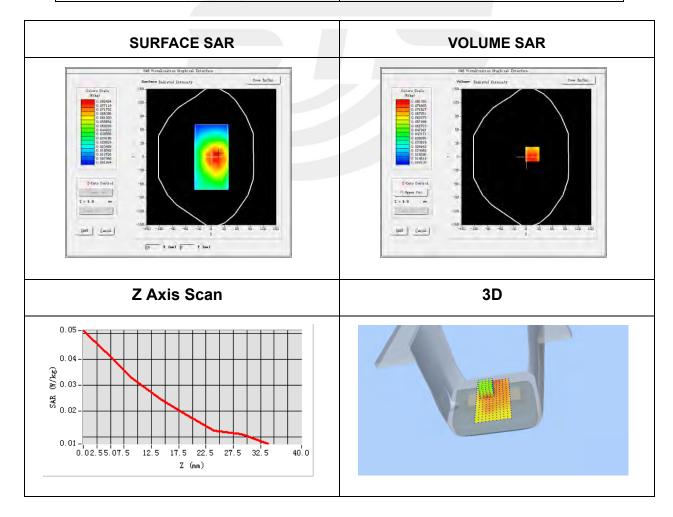


Plot 5: DUT: TND Tablet; EUT Model: TNDT80

2014-12-01
SN 17/14 EP221
4.25
dx=8mm dy=8mm, h= 5.00 mm
5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Validation plane
Body top
IEEE 802.11b ISM
Middle
IEEE802.b (Crest factor: 1.0)
2437
39.22
1.78
1.52

Maximum location: X=40.00, Y=-56.00 SAR Peak: 0.07W/kg

SAR 10g (W/Kg)	0.035219
SAR 1g (W/Kg)	0.043573



Plot 6 : DUT: TND Tablet; EUT Model: TNDT80

2014-12-01
SN 17/14 EP221
4.25
dx=8mm dy=8mm, h= 5.00 mm
5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm
Validation plane
Body bottom
IEEE 802.11b ISM
Middle
IEEE802.b (Crest factor: 1.0)
2437
39.22
1.78
-2.43

Maximum location: X=33.00, Y=72.00 SAR Peak: 0.05 W/kg

SAR 10g (W/Kg)	0.042715
SAR 1g (W/Kg)	0.043152

Appendix C. Probe C alibration And Dipole Calibration Report

COMOSAR E-Field Probe Calibration Report

Ref: ACR.262.1.14.SATU.A

SHENZHEN STS TEST SERVICES CO., LTD. 1/F, BUILDING 2, ZHUOKE SCIENCE PARK, CHONGQING ROAD

FUYONG, BAO' AN DISTRICT, SHENZHEN, CHINA SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 17/14 EP221

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

09/01/2014

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national metrology institutions.

Ref: ACR,262.1,14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/19/2014	75
Checked by :	Jérôme LUC	Product Manager	9/19/2014	13
Approved by :	Kim RUTKOWSKI	Quality Manager	9/19/2014	Hon Posthanishi

	Customer Name		
Distribution ;	Shenzhen STS Test Services Co., Ltd.		

Issue	Date	Modifications
A	9/19/2014	Initial release
*		

Page: 2/9

Ref: ACR.262.1.14.SATU.A

TABLE OF CONTENTS

1	De	vice Under Test4	
2	Pro	duct Description4	
	2.1	General Information	4
3	Me	asurement Method	
	3.1	Linearity	4
	3.2	Sensitivity	5
	3.3	Lower Detection Limit	5
	3.4	Isotropy	5
	3.5	Boundary Effect	5
4	Me	asurement Uncertainty	
5	Cal	ibration Measurement Results	
	5.1	Sensitivity in air	6
	5.2	Linearity	7
	5,3	Sensitivity in liquid	7
	5.4	Isotropy	8
6	Lis	t of Equipment9	

Page: 3/9

Ref: ACR.262.1.14.SATU.A

1 DEVICE UNDER TEST

Device Under Test			
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE		
Manufacturer	Satimo		
Model	SSE5		
Serial Number	SN 17/14 EP221		
Product Condition (new / used)	New		
Frequency Range of Probe	0.4 GHz- 6 GHz		
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.179 MΩ		
and the second s	Dipole 2; R2=0.167 MΩ		
	Dipole 3: R3=0.178 MΩ		

A yearly calibration interval is recommended.

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.

Figure 1 – Satimo COMOSAR Dosimetric E field Dipole

Probe Length	330 mm
Length of Individual Dipoles	4.5 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	5 mm
Distance between dipoles / probe extremity	2.7 mm

3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9

Ref: ACR,262.1.14.SATU.A

3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis $(0^{\circ}-180^{\circ})$ in 15° increments. At each step the probe is rotated about its axis $(0^{\circ}-360^{\circ})$.

3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

ERROR SOURCES	Uncertainty value (%)	Probability Distribution	Divisor	ci	Standard Uncertainty (%)
Incident or forward power	3.00%	Rectangular	√3	1	1.732%
Reflected power	3.00%	Rectangular	√3	1	1.732%
Liquid conductivity	5.00%	Rectangular	√3	1	2.887%
Liquid permittivity	4.00%	Rectangular	√3	1	2.309%
Field homogeneity	3.00%	Rectangular	√3	1	1.732%
Field probe positioning	5.00%	Rectangular	$\sqrt{3}$	1	2.887%
Field probe linearity	3.00%	Rectangular	$\sqrt{3}$	1	1.732%

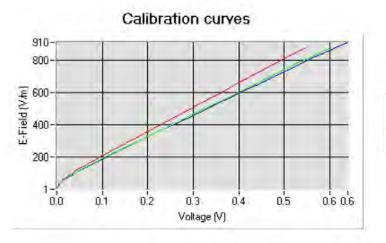
Page: 5/9

Ref: ACR.262.1,14.SATU,A

Combined standard uncertainty	5,831%
Expanded uncertainty 95 % confidence level k = 2	12.0%

5 CALIBRATION MEASUREMENT RESULTS

Calibration Parameters				
Liquid Temperature 21 °C				
Lab Temperature	21 °C			
Lab Humidity	45 %			


5.1 SENSITIVITY IN AIR

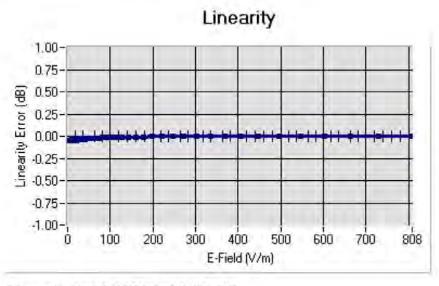
Normx dipole	Normy dipole	Normz dipole
$1 \left(\mu V / (V/m)^2 \right)$	$2 \left(\mu V / (V/m)^2 \right)$	$3 (\mu V/(V/m)^2)$
4.81	6.15	6.02

DCP dipole 1	DCP dipole 2	DCP dipole 3	
(mV)	(mV)	(mV)	
95	100	90	

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$

Dipole 1 Dipole 2 Dipole 3


Page: 6/9

Ref: ACR,262.1.14.SATU.A

5.2 LINEARITY

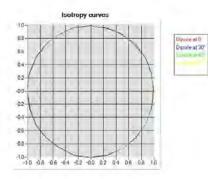
Linearity: I+/-1.16% (+/-0.05dB)

5.3 SENSITIVITY IN LIQUID

Liquid	Frequency (MHz +/- 100MHz)	Permittivity	Epsilon (S/m)	ConvF
HL450	450	43.90	0.87	4.84
BL450	450	58.63	0.98	4.98
HL750	750	42.06	0.89	4.53
BL750	750	56.57	0,99	4.70
HL850	835	42.81	0.89	4.83
BL850	835	53.46	0.96	5.02
HL900	900	42.47	0.96	4.74
BL900	900	56.69	1.08	4.89
HL1800	1800	41.31	1.38	4.25
BL1800	1800	53.27	1,51	4.34
HL1900	1900	41.09	1.42	4.71
BL1900	1900	54.20	1.54	4.85
HL2000	2000	39.72	1.43	4.27
BL2000	2000	53.91	1.53	4.44
HL2450	2450	39.05	1.77	4.11
BL2450	2450	52,97	1.93	4.25
HL2600	2600	38.35	1.92	4.20
BL2600	2600	51.81	2.19	4.32

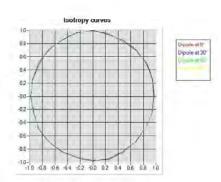
LOWER DETECTION LIMIT: 7mW/kg

Page: 7/9



Ref: ACR.262.1.14.SATU.A

5.4 ISOTROPY


HL900 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB

HL1800 MHz

- Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.08 dB

Page: 8/9

Ref: ACR,262.1.14.SATU.A

6 LIST OF EQUIPMENT

Equipment Description			Current Calibration Date	Next Calibration Date		
Flat Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016		
Reference Probe	Satimo	EP 94 SN 37/08	10/2013	10/2014		
Multimeter	Keithley 2000	1188656	12/2013	12/2016		
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required,	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2013	12/2016		
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Waveguide	Mega Industries	069Y7-158-13-712	Validated No cal required	Validated. No cal required.		
Waveguide Transition	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Waveguide Termination	Mega Industries	069Y7-158-13-701	Validated. No cal required.	Validated. No cal required.		
Temperature / Humidity Sensor	Control Company	11-661-9	8/2012	8/2015		

Page: 9/9

SAR Reference Dipole Calibration Report

Ref: ACR.262.10.14.SATU.A

SHENZHEN STS TEST SERVICES CO., LTD. 1/F, BUILDING 2, ZHUOKE SCIENCE PARK, CHONGQING ROAD

FUYONG, BAO' AN DISTRICT, SHENZHEN, CHINA SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ

SERIAL NO.: SN 30/14 DIP2G450-335

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144

09/01/2014

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Ref: ACR.262,10.14.SATU.A

	Name	Function	Date	Signature
Prepared by :	Jérôme LUC	Product Manager	9/19/2014	JES
Checked by:	Jérôme LUC	Product Manager	9/19/2014	JES
Approved by :	Kim RUTKOWSKI	Quality Manager	9/19/2014	them theremound he

	Customer Name
Distribution:	Shenzhen STS Test Services Co., Ltd.

Issue	Date	Modifications
A	9/19/2014	Initial release

Page: 2/11

Ref: ACR,262,10,14.SATU,A

TABLE OF CONTENTS

1	Inti	oduction4	
2	De	vice Under Test4	
3	Pro	duct Description4	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	6
7	Val	lidation measurement	
	7.1	Head Liquid Measurement	7
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	9
	7.4	SAR Measurement Result With Body Liquid	10
8	Lis	t of Equipment11	

Page: 3/11

Ref: ACR.262.10.14.SATU.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE			
Manufacturer	Satimo			
Model	SID2450			
Serial Number	SN 30/14 DIP2G450-335			
Product Condition (new / used)	New			

A yearly calibration interval is recommended.

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/11

Ref: ACR.262.10.14.SATU.A

4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss		
400-6000MHz	0.1 dB		

5.2 <u>DIMENSION MEASUREMENT</u>

The following uncertainties apply to the dimension measurements:

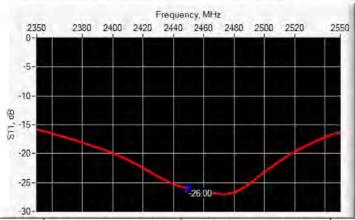
Length (mm)	Expanded Uncertainty on Length		
3 - 300	0.05 mm		

5.3 VALIDATION MEASUREMENT

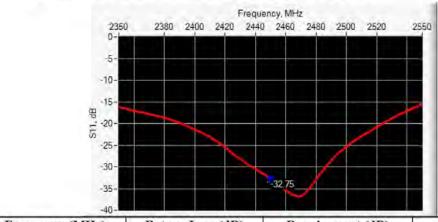
The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty		
1 g	20.3 %		
10 g	20.1 %		

Page: 5/11



Ref: ACR.262.10.14.SATU.A


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2450	-26.00	-20	$46.1 \Omega + 3.2 j\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
2450	-32.75	-20	$48.8 \Omega + 1.9 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Ln	L mm h mm		d mm		
	required	measured	required	measured	required	measured
300	420.0 ±1 %.		250.0 ±1 %.		6.35.±1%,	
450	290.0 ±1 %.		166,7 ±1 %.		6,35 ±1 %.	
750	176.0 ±1 %,		100.0 ±1 %.		6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	

Page: 6/11

Ref: ACR.262.10.14.SATU.A

900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	80.5 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3,6 ±1 %.	
1800	72.0 ±1 %.		41.7 ±1 %.		3.6 ±1 %.	-
1900	68.0 ±1 %,		39,5 ±1 %.		3.6 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	51.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	PASS	30.4 ±1 %.	PASS	3.6 ±1 %.	PAS
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0±1%.		3.6 ±1 %.	
3500	37.0±1 %.		26.4 ±1 %.		3.6 ±1 %.	
3700	34.7±1 %,		26.4 ±1 %.		3.6 ±1 %.	

7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ɛ,')	Conductiv	ity (ơ) S/m
	required	measured	required	measured
300	45.3 ±5 %		0.87 ±5 %	
450	43.5 ±5 %		0.87 ±5 %	
750	41,9 ±5 %		0.89 ±5 %	
835	41,5 ±5 %		0.90 ±5 %	
900	41.5 ±5 %		0.97 ±5 %	
1450	40.5 ±5 %		1.20 ±5 %	
1500	40.4 ±5 %		1.23 ±5 %	
1640	40.2 ±5 %		1.31 ±5 %	
1750	40,1 ±5 %		1.37 ±5 %	
1800	40.0 ±5 %		1,40 ±5 %	
1900	40.0 ±5 %		1.40 ±5 %	
1950	40.0 ±5 %		1,40 ±5 %	
2000	40.0 ±5 %		1.40 ±5 %	

Page: 7/11

Ref: ACR.262.10.14.SATU.A

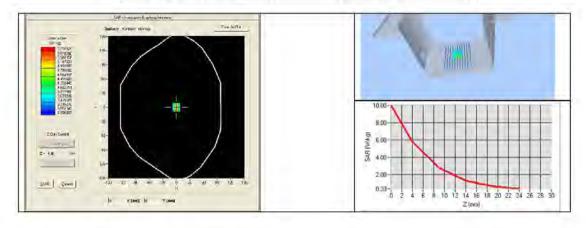
	1.49 ±5 %		39.8 ±5 %	2100
	1.67 ±5 %		39.5 ±5 %	2300
PASS	1.80 ±5 %	PASS	39.2 ±5 %	2450
	1.96 ±5 %		39.0 ±5 %	2600
	2,40 ±5 %		38.5 ±5 %	3000
	2.91 ±5 %		37.9 ±5 %	3500

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V4	
Phantom	SN 20/09 SAM71	
Probe	SN 18/11 EPG122	
Liquid	Head Liquid Values: eps1: 39.0 sigma: 1.77	
Distance between dipole center and liquid	10,0 mm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm	
Frequency	2450 MHz	
Input power	20 dBm	
Liquid Temperature	21 °C	
Lab Temperature	21 °C	
Lab Humidity	45 %	

Frequency MHz	1 g SAR (W/kg/Wj	10 g SAR	SAR (W/kg/W)	
	required	measured	required	measured	
300	2,85		1.94		
450	4.58		3.06		
750	8.49		5.55		
835	9.56		5.22		
900	10.9		6.99		
1450	29		16		
1500	30,5		16.8		
1640	34,2		18.4		
1750	36.4		19.3		
1800	38.4		20,1		
1900	39.7		20.5		
1950	40,5		20.9		
2000	41.1		21,1		
2100	43.6		21.9		
2300	48.7	1	23.3		


Page: 8/11

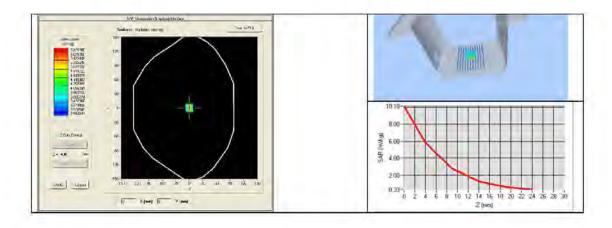
Ref: ACR.262.10.14.SATU.A

2450	52.4	54.70 (5.47)	24	24.11 (2.41)
2600	55.3		24.6	
3000	63.8		25.7	
3500	67,1		25	

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative per	mittivity (ɛ,')	Conductiv	ity (a) S/m
	required	measured	required	measured
150	61.9 ±5 %		0.80 ±5 %	
300	58.2 ±5 %		0.92 ±5 %	
450	56.7 ±5 %		0,94 ±5 %	
750	55.5 ±5 %		0.96 ±5 %	
835	55.2 ±5 %		0.97 ±5 %	
900	55.0 ±5 %		1.05 ±5 %	
915	55.0 ±5 %		1.06 ±5 %	
1450	54.0 ±5 %		1.30 ±5 %	
1610	53.8 ±5 %		1.40 ±5 %	
1800	53.3 ±5 %		1.52 ±5 %	
1900	53.3 ±5 %		1.52 ±5 %	
2000	53.3 ±5 %		1.52 ±5 %	
2100	53.2 ±5 %		1.62 ±5 %	
2450	52.7 ±5 %	PASS	1.95 ±5 %	PASS
2600	52,5 ±5 %		2.16 ±5 %	
3000	52.0 ±5 %		2.73 ±5 %	
3500	51.3 ±5 %		3,31 ±5 %	
5200	49.0 ±10 %		5,30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	

Page: 9/11


Ref: ACR.262,10.14.SATU.A

5500	48.6 ±10 %	5.65 ±10 %
5600	48.5 ±10 %	5.77 ±10 %
5800	48.2 ±10 %	6.00 ±10 %

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V4		
Phantom	SN 20/09 SAM71		
Probe	SN 18/11 EPG122		
Liquid	Body Liquid Values: eps': 53.0 sigma: 1.93		
Distance between dipole center and liquid	10.0 mm		
Area scan resolution	dx=8mm/dy=8mm		
Zoon Scan Resolution	dx=8mm/dy=8m/dz=5mm		
Frequency	2450 MHz		
Input power	20 dBm		
Liquid Temperature	21 °C		
Lab Temperature	21 °C		
Lab Humidity	45 %		

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)	
	measured	measured	
2450	55.65 (5.57)	24.56 (2.46)	

Page: 10/11

Ref: ACR.262,10,14.SATU.A

8 LIST OF EQUIPMENT

Equipment Summary Sheet						
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	Satimo	SN-20/09-SAM71	Validated. No cal required.	Validated. No ca required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.		
Network Analyzer	Rhode & Schwarz ZVA	SN100132	02/2013	02/2016		
Calipers	Carrera	CALIPER-01	12/2013	12/2016		
Reference Probe	Satimo	EPG122 SN 18/11	10/2013	10/2014		
Multimeter	Keithley 2000	1188656	12/2013	12/2016		
Signal Generator	Agilent E4438C	MY49070581	12/2013	12/2016		
Amplifier	Aethercomm	SN 046	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	HP E4418A	US38261498	12/2013 12/20			
Power Sensor	HP ECP-E26A	US37181460	12/2013	12/2016		
Directional Coupler	Narda 4216-20	01386	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature and Humidity Sensor	Control Company	11-661-9	8/2012	8/2015		