

Report Number : F690501/RF-RTL005851

TEST REPORT

of

FCC Part 15 Subpart E §15.407 / RSS-210 Issue 8, RSS-Gen Issue 3 FCC ID/IC Certification : A3LXE303C12 / 649E-XE303C12

Equipment Under Test	: SAMSUNG Notebook
Model Name	: XE303C12
Serial No.	: N/A
Applicant	: SAMSUNG ELECTRONICS CO., LTD.
Manufacturer	: SAMSUNG ELECTRONICS CO., LTD.
Date of Test(s)	: 2012.09.10 ~ 2012.09.24
Date of Issue	: 2012.09.27

In the configuration tested, the EUT complied with the standards specified above.

Tested By:	Ú	Date	2012.09.27
Approved By: -	Hyunchae You Feel Jeong	Date	2012.09.27

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040 Tel. +82 31 428 5700 / Fax. +82 31 427 2371

Table of contents

1. General information	3
2. DFS (Dynamic Frequency Selection)	6

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

1. General information

1.1 Testing laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

- 705, Dongchun-Dong Sooji-Gu, Yongin-Shi, Kyungki-Do, South Korea.

- Wireless Div. 3FL, 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea 435-040

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>.

Phone No.	:	+82 31 428 5700
Fax No.	:	+82 31 427 2371

1.2 Details of applicant

Applicant	:	SAMSUNG ELECTRONICS CO., LTD.
Address	:	416, Maetan-3dong, Yeongtong, Suwon, Gyeonggi, Korea
Contact Person	:	Lee, Sang-Cheong
Phone No.	:	+82 31 277 4784

1.3. Description of EUT

Kind of Product	SAMSUNG Notebook			
Model Name	XE303C12	XE303C12		
Serial Number	N/A			
Power Supply	DC 7.5 V			
Frequency Range	5 260 MHz ~ 5 320 MHz (11a/n_HT20_DFS), 5 270 MHz ~ 5 310 MHz (11n_HT40_DFS), 5 500 MHz ~ 5 700 MHz (11a/n_HT20_DFS), 5 510 MHz ~ 5 670 MHz (11n_HT40_DFS)			
Modulation Technique	DSSS, OFDM			
Number of Channels	15 channel (11a/n_HT20_DFS), 7 channel (11n_HT40_DFS)			
Antenna Type	Internal type (MIMO - 2 Tx / 2 Rx)			
Antenna Gain	ANTO ANT1 5 180 MHz ~ 5 320 MHz: -0.64 dB i 5 180 MHz ~ 5 320 MHz: 1.72 dB i 5 500 MHz ~ 5 700 MHz: -0.18 dB i 5 500 MHz ~ 5 700 MHz: 1.87 dB i			

1.4. Declaration by the manufacturer

- EUT is SLAVE without DFS and TPC.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

1.5. Test equipment list

Equipment	Manufacturer	Model	S/N	Cal Date	Cal Interval	Cal Due.
Spectrum Analyzer	Agilent	N9030A	US51350132	Oct. 28, 2011	Annual	Oct. 28, 2012
Attenuator	Agilent	8490D	50449	Jan. 11, 2012	Annual	Jan. 11, 2013
Power Splitter	Mini-Circuits	ZFSC-2-10G	001	Jul. 12, 2012	Annual	Jul. 12, 2013
Power Splitter	Mini-Circuits	ZFSC-2-10G	002	Jul. 12, 2012	Annual	Jul. 12, 2013
DC Power Supply	Agilent	U8002A	MY50020026	Mar. 29, 2012	Annual	Mar. 29, 2013

Support equipment

Description	Manufacturer	Model	Serial Number / FCC ID
Access Point(master)	Cisco	AIR-AP1262N-K-K9	FTX1553K03A FCC ID:LDK102073
Notebook	IBM	T43	2669CC8

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

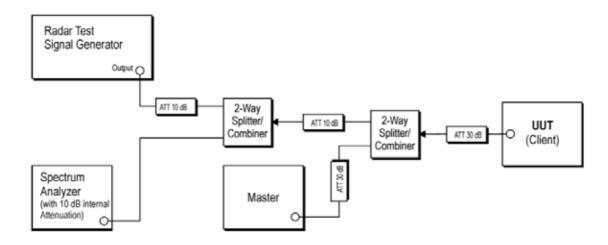
1.6. Summary of test result

The EUT has been tested according to the following specifications:

APPLIED STANDARD:FCC Part15, RSS-210,RSS-Gen				
Section in RSS-210Section in Test ItemResultFCC 15RSS-Gen				
15.407(h)	A9.3	DFS -Channel closing transmission time -Channel move time -Non occupied period	Complied	

1.7. Test report revision

Revision	Report number	Description
0	F690501/RF-RTL005851	Initial


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

2. DFS (Dynamic Frequency Selection)

2.1. System overview

2.1.1. Set up of EUT

The radar signal generation equipment consists of a vector signal generator

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time domain resolution is 2 msec/bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

The Slave is tested separately for compliance with the Channel Shutdown requirements, for the situation when the Slave device vacates the channel in response to detection of a radar by the Master.

All tests were performed at a channel center frequency of 5 310 MHz and 5 510 MHz. Measurements were performed using conducted test methods.

Stream the MPEG test file from the Master Device to the Client Device on the test Channel for the entire period of the test.

The designated MPEG test file and instructions are located at: <u>http://ntiacsd.ntia.doc.gov/dfs/</u> The test file name is 'TestFile.mpg.'

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

2.2 Limit

§15.407 (h) and FCC 06-96 APPENDIX "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVCIES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION

Doguizament	Operational Mode			
Requirement	Master	Client (without DFS)	Client (with DFS)	
Non-Occupancy Period	Yes	Yes (according to KDB 848637)	Yes	
DFS Detection Threshold	Yes	Yes (according to KDB 848637)	Yes	
Channel Availability Check Time	Yes	Not required	Not required	
Uniform Spreading	Yes	Not required	Not required	

Table 2: Applicability of DFS requirements during normal operation

	Operational Mode				
Requirement	Master	Client (without DFS)	Client (with DFS)		
DFS Detection Threshold	Yes	Not required	Yes		
Channel Closing Transmission Time	Yes	Yes	Yes		
Channel Move Time	Yes	Yes	Yes		

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

Maximum Transmit Power	Value (see note)
200 milliwatt	-64 dB m
< 200 milliwatt	-62 dB m

Note 1: This is the level at the input of the receiver assuming a 0 dB i receive antenna Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

KDB 848637 : Non-Occupancy Period for Client Device without radar detection

• Test results demonstrating an associated client link is established with the master on a test frequency;

• The client and DFS-certified master device are associated, and a movie can be streamed as specified in the DFS Order for a non-occupancy period test;

• The test frequency has been monitored to ensure no transmission of any type has occurred for 30 minutes. Note: If the client moves with the master, the device is considered compliant if nothing appears in the client non-occupancy period test. For devices that shut down (rather than moving channels), no beacons should appear;

• An analyzer plot that contains a single 30-minute sweep on the original channel.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Page: 8 of 14

Parameter	Value				
Non-occupancy period	30 minutes				
Channel Availability Check Time	60 seconds				
Channel Move Time	10 seconds				
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over				
	remaining 10 second period				
The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:					
For the Short pulse radar Test Signals this instant is the end of the Burst. For the Frequency Hopping radar					
Test Signal, this instant is the end of the last radar burst generated. For the Long Pulse radar Test Signal					
this instant is the end of the 12 second period defining the radar transmission. The Channel Closing					
Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time					
plus any additional intermittent control signals required to facilitate channel changes (an aggregate of					
approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of					
control signals will not count quiet periods in between transmissions.					

Table 4: DFS Response requirement values

Table 5 – Short Pulse Radar Test Waveforms						
Radar Type	Pulse Width (Microseconds)	PRI (Microseconds)	Pulses	Minimum Percentage of Successful Detection	Minimum Trials	
1	1	1428	18	60%	30	
2	1-5	150-230	23-29	60%	30	
3	6-10	200-500	16-18	60%	30	
4	11-20	200-500	12-16	60%	30	
Aggregate	(Radar Types 1-4)	80%	120			

Table 6 – Long Pulse Radar Test Signal

Radar Waveform	Bursts	Pulses per Burst	Pulse Width (µsec)	Chirp Width (Mrz)	PRI (µsec)	Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	10002000	80%	30

Table 7 – Frequency Hopping Radar Test Signal

Radar Waveform	Pulse Width (µsec)	PRI (µsec)	Burst Length (ms)	Pulses per Hop	Hopping Rate (kHz)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	300	9	0.333	70%	30

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

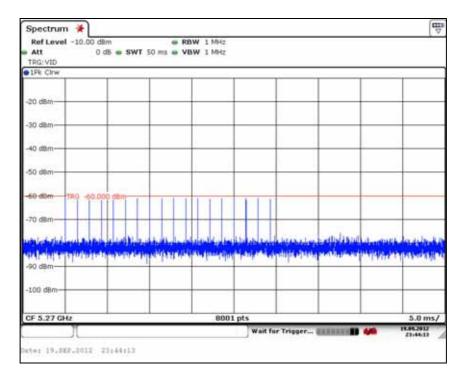
2.3. Description of EUT

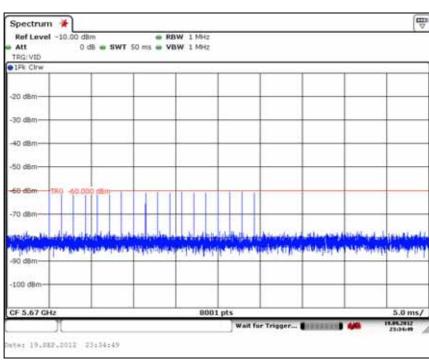
The EUT operates over the 5 260 MHz ~ 5 320 MHz (11a/n-HT20-DFS), 5 270 MHz ~ 5 310 MHz (11n-HT40-DFS), 5 500 MHz ~ 5700 MHz (11a/n-HT20-DFS), and 5 510 MHz ~ 5670 MHz (11n-HT40-DFS) range.

The gain antenna assembly utilized with the master has a gain of 3.5 dB i.

The rated output power of the master unit is <200 milliwatt. Therefore the required interference threshold level is -62 dB m. After correction for antenna gain and procedure adjustments the required conducted threshold at the antenna port is -62 + 3.5 = -58.50 dB m

The calibrated conducted DFS Detection Threshold level is is -60 dB m

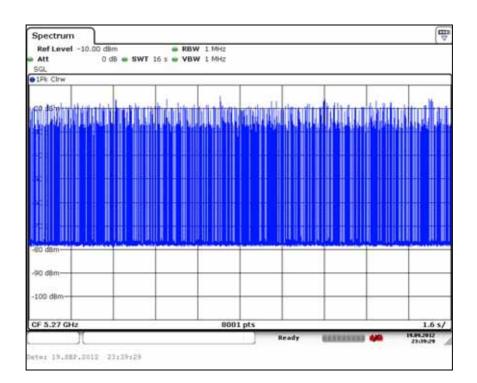

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040


PLOTS OF RADAR WAVEFORMS AND WLAN TRAFFIC

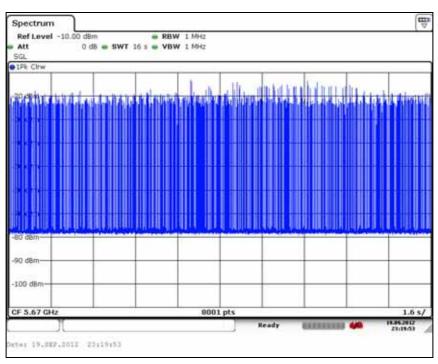
Plot of radar waveform type 1

5 270 MHz

5 670 MHz



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.



Plot of LAN traffic

5 270 MHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 18-34, Sanbon-dong, Gunpo-si, Gyeonggi-do, Korea, 435-040

Tal 102 21 428 5700 / Eav 102 21 427 2271

The reference maker is set after 200 ms from the end of Last radar pulse.

The delta is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time within the 10 sec.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time= (Number of analyzer bins showing transmission)*(dwell time per bin)

The observation period over which the aggregated time is calculated begins at (Reference Maker) and ends no earlier than (Reference Maker +10 sec)

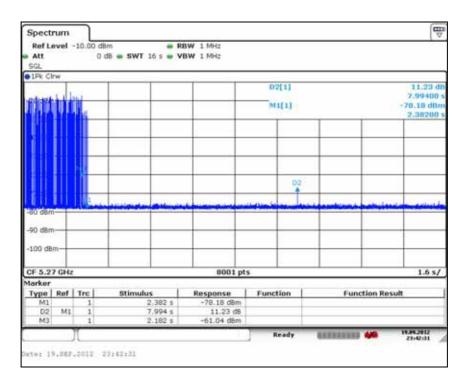
2.3. Test result

Frequency (Mrb)	Channel Move Time (sec)	Limit
5 270	7.994	Not exceed 10 sec
5 670	0.030	Not exceed to sec
Frequency (Mrb)	Aggregate channel closing transmission time (msec)	Limit
5 270	2	Not exceed 60 msec
5 670	0	NOT EXCEED OU HISEC

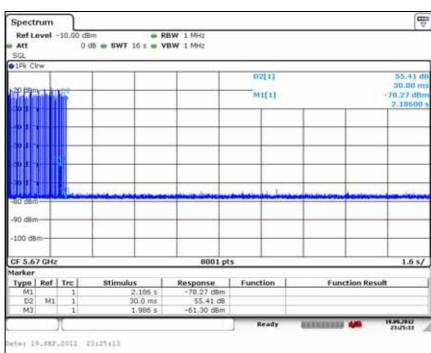
Aggregate channel closing transmission time

[16s (sweep time) / 8001 (sweep point)] × The number of channel bin from 200 ms at the end of radar pulse 5 270 MHz: $(16 / 8001) \times 1 = 2$ ms

5 670 MHz: $(16 / 8001) \times 0 = 0 \text{ ms}$


Frequency (Mrz)	Non-occupancy period (min)	Limit	
5 270	30	- Not be less than 30 minute	
5 670	30		

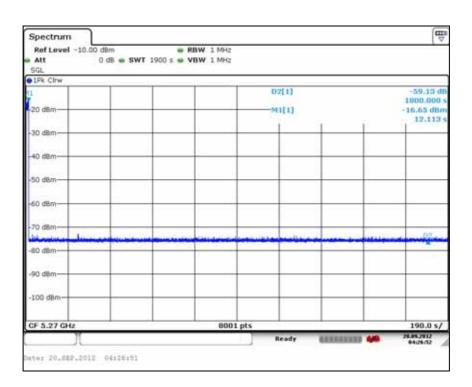
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.



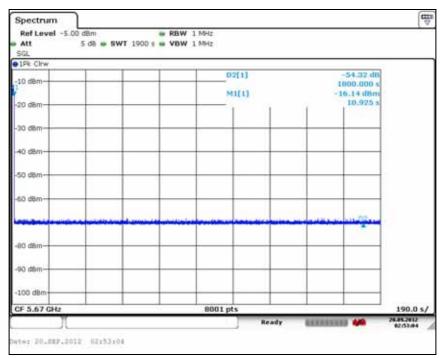
Plot of channel move time & aggregate channel closing transmission time

5 270 MHz

5 670 MHz



The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.



Plot of Non-occupancy period

5 270 MHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.