

RADIO PERFORMANCE TEST REPORT (CLASS II PERMISSIVE CHANGE)

Test Report No.	: OT-227-RWD-037
Reception No.	: 2207002205
Applicant	: Samsung Electronics Co Ltd
Address	: 19 Chapin Rd., Building D, Pine Brook, New Jersey, 07058, United States
Manufacturer	: Samsung Electronics Co Ltd
Address	: 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16677, Korea
Type of Equipment	: Audio Transceiver
FCC ID	: A3LWSA520S
Model Name	: WSA520S
Multiple Model Name	e:N/A
Serial number	: N/A
Total page of Report	: 22 pages (including this page)
Date of Incoming	: July 04, 2022
Date of Issuing	: July 27, 2022

SUMMARY

The equipment complies with the requirements of FCC CFR 47 PART 15 SUBPART C Section 15.249

This test report contains only the result of a single test of the sample supplied for the examination.

It is not a general valid assessment of the features of the respective products of the mass-production.

This report is not correlated with the "KS Q ISO/IEC 17025 and KOLAS accreditation" of Korean Laboratory Accreditation Scheme.

Tested by Si-eon Lee / Assistant Manager ONETECH Corp.

Reviewed by Tae-Ho, Kim / General Manager ONETECH Corp.

Approved by Ki-Hong, Nam / General Manager ONETECH Corp.

It should not be reproduced except in full, without the written approval of ONETECH Corp.

OTC-TRF-RF-001(0)

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

Page 2 of 22

CONTENTS

Page

1. VERIFICATION OF COMPLIANCE	5
2. TEST SUMMARY	6
2.1 TEST ITEMS AND RESULTS	6
2.2 Related Submittal(s) / Grant(s)	6
2.3 PURPOSE OF THE TEST	6
2.4 TEST METHODOLOGY	6
2.5 TEST FACILITY	7
3. GENERAL INFORMATION	8
3.1 PRODUCT DESCRIPTION	8
3.2 ALTERNATIVE TYPE(S)/MODEL(S); ALSO COVERED BY THIS TEST REPORT	8
4. EUT MODIFICATIONS	8
5. SYSTEM TEST CONFIGURATION	9
5.1 JUSTIFICATION	9
5.2 PERIPHERAL EQUIPMENT	9
5.3 MODE OF OPERATION DURING THE TEST	9
5.4 CONFIGURATION OF TEST SYSTEM	
5.5 ANTENNA REQUIREMENT	
6. PRELIMINARY TEST	
6.1 AC POWER LINE CONDUCTED EMISSIONS TESTS	12
6.2 RADIATED EMISSIONS TESTS	
7. RADIATED EMISSION TEST	
7.1 OPERATING ENVIRONMENT	13
7.2 TEST SET-UP	
7.3 MEASUREMENT UNCERTAINTY	
7.4 TEST DATE	
7.5 FINAL RESULT OF MEASUREMENT	14
7.5.1 Emissions Radiated Outside of the Specified Frequency Bands_Harmonic	
7.5.2 Test Data for Frequency range: 30 MHz ~ 1 000 MHz	
7.5.3 Test Data for Below 30 MHz	
7.5.4 Test Data above 1 GHz except for harmonic	
It should not be reproduced except in full, without the written approval of ONETECH Corp.	OTC-TRF-RF-001(0)

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

ONETECH

Page 3 of 22

Report No.: OT-227-RWD-037

7.5.5 Band Edge	
8. CONDUCTED EMISSION TEST	
8.1 OPERATING ENVIRONMENT	
8.2 TEST SET-UP	
8.3 TEST DATE	19
8.4 Test data	
9. LIST OF TEST EQUIPMENT	

It should not be reproduced except in full, without the written approval of ONETECH Corp.

Revision History

Rev. No.	Issue Report No.	Issued Date	Revisions	Section Affected
0	OT-20N-RWD-035	T-20N-RWD-035 November 11, 2020 Initial Release		All
1	OT-216-RWD-093	D-093 June 30, 2021 The module LDO chip has changed. (Class II Permissive Change)		All
2	OT-227-RWD-037	July 27, 2022	Changed to use only Antenna 0 by firmware modification and Part L3 changed to 100pF. (Class II Permissive Change)	All

It should not be reproduced except in full, without the written approval of ONETECH Corp.

1. VERIFICATION OF COMPLIANCE

Applicant	: Samsung Electronics Co Ltd					
Address	: 19 Chapin Rd., Building D, Pine Brook, New Jersey, 07058, United States					
Contact Person	: Hansung You / Staff Eng	ineer				
Telephone No.	: +82-31-277-2746					
FCC ID	: A3LWSA520S					
Model Name	: WSA520S					
Brand Name	SAMSUNG					
Serial Number	: N/A					
Date	: July 27, 2022					
DEVICE TYPE		DXX – Low Power Communication Device Transmitter				
E.U.T. DESCRIP	TION	Modular Transmitter, Audio Transceiver				
THIS REPORT C	CONCERNS	Class II Permissive Change				
MEASUREMEN'	T PROCEDURES	ANSI C63.10: 2020				
TYPE OF EQUIP	MENT TESTED	Pre-Production				
KIND OF EQUIP	PMENT					
AUTHORIZATIO	ON REQUESTED	Certification				
EQUIPMENT WILL BE OPERATED						
UNDER FCC RU	LES PART(S)	FCC CFR47 Part 15 Subpart C Section 15.249				
MODIFICATION	IS ON THE EQUIPMENT	News				
TO ACHIEVE CO	OMPLIANCE	None				
FINAL TEST WA	AS CONDUCTED ON	3 m Semi Anechoic Chamber				

-. The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. TEST SUMMARY

2.1 Test items and results

SECTION	TEST ITEMS	RESULTS
15.249 (a)	Field Strength of Emission	Met the Limit / PASS
15.249 (c)	Measurement distance	Met the Requirement / PASS
15.249 (d)	Emissions Radiated Outside of the Specified Frequency Band	Met the Limit / PASS
15.249, 15.215	Minimum 20 dB Bandwidth	N/A (See Note 1)
15.249 (e)	Radiated Emissions above 1 000 MHz	Met the Limit / PASS
15.209	Radiated Emission Limits, General Requirement	Met the Limit / PASS
15.207	Conducted Limits	Met the Limit / PASS
15.203	Antenna Requirement	Met the Requirement / PASS

Note 1: The EUT has been already certified by FCC ID: A3LWSA520S, so this test was not performed.

2.2 Related Submittal(s) / Grant(s)

Class II Permissive Change

Following modification(s) is/are made on the product, which was already granted on November 17, 2020

- Changed to use only Antenna 0 by firmware modification and Part L3 changed to 100pF.

2.3 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in section 2.1.

2.4 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2020. Radiate d testing was performed at a distance of 3 m from EUT to the antenna.

2.5 Test Facility

The Onetech Corp. has been designated to perform equipment testing in compliance with ISO/IEC 17025.

The Electromagnetic compatibility measurement facilities are located at 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si,

Gyeonggi-do, 12735, Korea.

-. Site Filing:

VCCI (Voluntary Control Council for Interference) – Registration No. R-20122/ C-14617/ G-10666/ T-11842

ISED (Innovation, Science and Economic Development Canada) - Registration No. Site# 3736A-3

KOLAS (Korea Laboratory Accreditation Scheme) - Accreditation NO. KT085

FCC (Federal Communications Commission) - Accreditation No. KR0013

RRA (Radio Research Agency) – Designation No. KR0013

3. GENERAL INFORMATION

3.1 Product Description

The Samsung Electronics Co Ltd, Model WSA520S (referred to as the EUT in this report) is an Audio Transceiver, Product specification information described herein was obtained from product data sheet or user's manual.

DEVICE TYPE	Audio Transceiver				
Temperature Range	-5 °C ~ 40 °C				
OPERATING FREQUENCY	5 773.35 MHz ~ 5 871.35 MHz				
MODULATION TYPE	DQPSK				
Field Strength Of Fundamental	96.57 dBµV/m at 3 m				
ANTENNA TYPE	PCB Antenna				
ANTENNA GAIN	Antenna 0 3.10 dBi				
List of each Osc. or crystal	16100				
Freq.(Freq. >= 1 MHz)	16 MHz				

3.2 Alternative type(s)/model(s); also covered by this test report.

-. None

4. EUT MODIFICATIONS

-. None

5. SYSTEM TEST CONFIGURATION

5.1 Justification

This device was configured for testing in a typical way as a normal customer is supposed to be used. During the test, the

following components were installed inside of the EUT.

DEVICE TYPE	MANUFACTURER	MODEL/PART NUMBER	FCC ID	
Main Board	Samsung Electronics Co Ltd	AVM510 REV1.0	N/A	

5.2 Peripheral equipment

Defined as equipment needed for correct operation of the EUT, but not considered as tested:

Model	Manufacturer	Description	Connected to
WSA520S	Samsung Electronics Co Ltd	Audio Transceiver(EUT)	-
AVM500 ANTEATER REV01	N/A Jig Board		EUT / Notebook PC
HP Probook	НР	Notebook PC	EUT
	ACBEL ELECTRONIC		
TPN-AA05	(WUHAN) CO., LTD	AC Adapter	-

5.3 Mode of operation during the test

For the testing, software used to control the EUT for staying in continuous transmitting is programmed.

For final testing, the EUT was set at 5 773.35 MHz, 5 821.35 MHz, and 5 871.35 MHz to get a maximum emission levels from the EUT. The EUT was moved throughout the XY, XZ, and YZ planes and the worst case is "XY" axis, but the worst data was recorded in this report.

-. Duty Cycle

Mode	Tx On Time	Tx Off Time	Duty Cycle	Correction Factor
Mode	[ms]	[ms]	[%]	[dB]
_	-	-	100.00	-

Note – Duty Cycle : (Tx On Time / (Tx On Time + Tx Off Time)) * 100

Correction Factor : 10 * Log(1 / (Duty Cycle / 100))

-. Test Plot

Att	30 dB	e swt	1 ms 😑	VBW 28 MH	z				
●1Pk View			1	1					0.45.40
					M	1[1]			9.15 dBm 708.000 μs
10 dBm							11	1	1
allow de the way way	uniteralitati	መጣለመው አምሳት የ	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ակուսուկունոնին	ኢስተመጋጭስታት የ	["Wenter a state of the second s	and the second of the second of the second	መታተተትያለም መለማሮች	of the second
0 dBm									
o abiii									
-10 dBm									
-10 000									
-20 dBm									
-20 dBill									
-30 dBm									
-30 uBm									
10 10									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									

-. Channel List

Channel	Frequency[MHz]	Channel	Frequency[MHz]	Channel	Frequency[MHz]
0	5 773.35	18	5 809.35	36	5 845.35
1	5 775.35	19	5 811.35	37	5 847.35
2	5 777.35	20	5 813.35	38	5 849.35
3	5 779.35	21	5 815.35	39	5 851.35
4	5 781.35	22	5 817.35	40	5 853.35
5	5 783.35	23	5 819.35	41	5 855.35
6	5 785.35	24	5 821.35	42	5 857.35
7	5 787.35	25	5 823.35	43	5 859.35
8	5 789.35	26	5 825.35	44	5 861.35
9	5 791.35	27	5 827.35	45	5 863.35
10	5 793.35	28	5 829.35	46	5 865.35
11	5 795.35	29	5 831.35	47	5 867.35
12	5 797.35	30	5 833.35	48	5 869.35
13	5 799.35	31	5 835.35	49	5 871.35
14	5 801.35	32	5 837.35		
15	5 803.35	33	5 839.35		
16	5 805.35	34	5 841.35		
17	5 807.35	35	5 843.35		

5.4 Configuration of Test System

Line Conducted Test:	The EUT was connected to Jig Board and the power of USB was connected to Notebook
	PC. All supporting equipment were connected to another LISN. Preliminary Power line
	Conducted Emission test was performed by using the procedure in ANSI C63.10: 2020 to
	determine the worse operating conditions
Radiated Emission Test :	Preliminary radiated emissions test were conducted using the procedure in ANSI C63.10:
	2020 to determine the worse operating conditions. The radiated emissions measurements
	were performed on the 10 m Semi Anechoic Chamber.
	For frequencies from 150 kHz to 30 MHz measurements were made of the magnetic H field.
	The measuring antenna is an electrically screened loop antenna.
	The frequency spectrum from 30 MHz to 1 000 MHz was scanned and maximum emission
	levels maximized at each frequency recorded. The system was rotated 360°, and the antenna
	was varied in the height between 1.0 m and 4.0 m in order to determine the maximum
	emission levels. This procedure was performed for both horizontal and vertical polarization
	of the receiving antenna.

5.5 Antenna Requirement

For intentional device, according to section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Construction:

The antenna of the EUT is PCB Antenna on the main board in the EUT, so no consideration of replacement by the user.

6. PRELIMINARY TEST

6.1 AC Power line Conducted Emissions Tests

During Preliminary Test, the following operating mode was investigated.

Operation Mode	The Worse operating condition (Please check one only)
Transmitting Mode	Х

6.2 Radiated Emissions Tests

During Preliminary Tests, the following operating modes were investigated

Operation Mode	The Worse operating condition (Please check one only)
Transmitting Mode	Х

7. RADIATED EMISSION TEST

7.1 Operating environment

Temperature	:	22 °C
Relative humidity	:	46 % R.H.

7.2 Test set-up

The radiated emissions measurements were on the 3 m, semi anechoic chamber. The EUT and other support equipment were placed on a non-conductive turntable above the ground plane. The interconnecting cables from outside test site were inserted into ferrite clamps at the point where the cables reach the turntable.

The frequency spectrum from up to 40 GHz was scanned and emission levels maximized at each frequency recorded. The system was rotated 360°, and the antenna was varied in height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

7.3 Measurement uncertainty

Radiated emission electric field intensity, 0.15 MHz ~ 30 MHz	$:\pm$ 3.83 dB
Radiated emission electric field intensity, 30 MHz ~ 300 MHz	$\pm 3.68 \text{ dB}$
Radiated emission electric field intensity, 300 MHz \sim 1 000 MHz	$\pm 3.71 \text{ dB}$
Radiated emission electric field intensity, 1 000 MHz ~ 3 000 MHz	$:\pm 4.86 \text{ dB}$

Measurement uncertainty is calculated in accordance with CISPR 16-4-2. The measurement uncertainty is given with a confidence of 95 % with the coverage factor, k = 2.

7.4 Test Date

July 11, 2022 ~ July 12, 2022

7.5 Final Result of Measurement

7.5.1 Emissions Radiated Outside of the Specified Frequency Bands_ Harmonic

Limits apply to	: FCC CFR 47, PART 15, SUBPART C, SECTION 15.249(a)
Result	: <u>PASSED</u>
EUT	: Audio Transceiver
Operating Condition	: TX mode
Distance	: 3 m

Radiated Emissions			Ant	Cor	rection Fa	ctors	Total	FCC	Limit
Carrier Freq. (MHz)	Reading (dBµV)	Detector Mode	Pol.	Ant. Factor	Cable Loss	Amp Gain	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Те	est Data for	Low Char	nnel			
	51.80	Peak	Н	39.60	10.50	42.80	59.10	74.00	14.90
11 546 70	40.06	Average	Н	39.60	10.50	42.80	47.36	54.00	6.64
11 546.70	51.71	Peak	V	39.60	10.50	42.80	59.01	74.00	14.99
	40.06	Average	V	39.60	10.50	42.80	47.36	54.00	6.64
			Tes	t Data for N	Middle Cha	annel			
	52.85	Peak	Н	39.90	10.60	42.80	60.55	74.00	13.45
	41.06	Average	Н	39.90	10.60	42.80	48.76	54.00	5.24
11 642.70	52.54	Peak	V	39.90	10.60	42.80	60.24	74.00	13.76
	40.96	Average	V	39.90	10.60	42.80	48.66	54.00	5.34
			Те	st Data for	High Cha	nnel			
	52.40	Peak	Н	40.20	10.70	42.80	60.50	74.00	13.50
	40.92	Average	Н	40.20	10.70	42.80	49.02	54.00	4.98
11 742.70	52.19	Peak	V	40.20	10.70	42.80	60.29	74.00	13.71
	40.91	Average	V	40.20	10.70	42.80	49.01	54.00	4.99
		Oth	er frequ	encies were	not found u	p to 10 GHz			

Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical, "*" Frequency fall in restricted band

Margin (dB) = Limit (dBuV/m) - Total (dBuV/m)

Total = Reading + Ant. Factor + Cable Loss + Amp Gain

7.5.2 Test Data for Frequency range: 30 MHz ~ 1 000 MHz

Limits ap	pply to	: FCC CFR				ECTION 1	(d)			
Result	rr-J	: <u>PASSED</u>								
EUT Detector		: Audio Trai : CISPR Qua		6 dB Bandy	width: 120) kHz)				
[d 70	BuV/m]	< <qp data<="" td=""><td>>></td><td></td><td></td><td></td><td></td><td></td><td>/ × VER</td><td>TICAL</td></qp>	>>						/ × VER	TICAL
60										
50 —										
40										
30 —								*	low the hard and the state of the	
20			mar	manthan	March When	unter and the second	www.while	William Harrison and and a start and a		
10	- Harrison	s - marks			1. Michae .					
0 30M	1 50M	70M	100M		200M	3001	M	500M	700M Frequer	1G ncy[Hz]
No	o.FREQ READ: QP		LOSS	GAIN RE	SULT	LIMIT M	MARGIN	ANTENNA	TABLE	
	[MHz] [dB	uV] [dB]	[dB]	[dB] [d	BuV/m][dBuV/m]	[dB]	[cm]	[DEG]	
	Horizontal									
	1 288.020 3 2 335.550 3 3 833.151 3	4.218.82.419.71.927.2				46.0 46.0 46.0		100 100 200	359 296 0	
	Vertical									
	4 41.640 2 5 562.529 3 6 687.655 3	9.416.32.123.72.025.2	4.1	32.4	27.5	40.0 46.0 46.0	25.0 18.5 16.6	300 100 100	359 359 33	

It should not be reproduced except in full, without the written approval of ONETECH Corp.

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

ONETECH

Page 16 of 22

7.5.3 Test Data for Below 30 MHz

Resolution bandwidth: 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)Frequency range: 9 kHz ~ 30 MHz

Measurement distance

Limits apply to

: FCC CFR 47, PART 15, SUBPART C, SECTION 15.249 (d)

Result : PASSED

	Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
	(MHz)	(dBµV)	(H/V)	Height (m)	(°)	(dB/m)	Loss	Level(dBµV/m)	(dBµV/m)	(dB)
It was not observed any emissions from the EUT.				It was not o	observed a	any emissions	from the I	EUT.		

7.5.4 Test Data above 1 GHz except for harmonic

: 3 m

. Resolution bandwidth : 1 MHz and Peak Detector for Peak Mode										
1 MHz and RMS Detector for Average Mode										
Video bandwidth : 3 MHz for Peak and Average Mode										
Frequency range : 1 GHz ~ 40 GHz										
Measurement distanc	e :3	m								
Limits apply to	: F	CC CFR 47, I	PART 15,	SUBPART C	, SECTIO	N 15.249 (d)				
- Result : PASSED										
- Kesult	: P	ASSED								
	Ant. Pol. (H/V)	Assed Ant. Height (m)	Angle (°)	Ant. Factor (dB/m)	Cable Loss	Emission Level(dBµV/m)	Limits (dBµV/m)	Margin (dB)		
Frequency Reading	Ant. Pol.	Ant.	-					0		
Frequency Reading	Ant. Pol.	Ant. Height (m)	(°)	(dB/m)	Loss	Level(dBµV/m)		0		
Frequency Reading	Ant. Pol.	Ant. Height (m)	(°)		Loss	Level(dBµV/m)		0		

7.5.5 Band Edge

- -. Resolution bandwidth : 1 MHz and Peak Detector for Peak Mode
 - 1 MHz and RMS Detector for Average Mode
- -. Video bandwidth : 3 MHz for Peak and Average Mode
- -. Measurement distance : 3 m

: FCC CFR 47, PART 15, SUBPART C, SECTION 15.249 (d)

-. Result

-. Limits apply to

: PASSED

Radi	iated Emissio	ons	Ant	Cor	rection Fac	ctors	Total	FCC	Limit
Carrier Freq. (MHz)	Reading (dBµV)	Detector Mode	Pol.	Ant. Factor	Cable Loss	Amp Gain	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Те	est Data for	Low Char	nnel			
	51.88	Peak	Н	34.30	7.60	44.10	49.68	74.00	24.32
5 725 00	43.07	Average	Н	34.30	7.60	44.10	40.87	54.00	13.13
5 725.00	51.42	Peak	V	34.30	7.60	44.10	49.22	74.00	24.78
	42.87	Average	V	34.30	7.60	44.10	40.67	54.00	13.33
	48.13	Peak	Н	34.60	7.70	44.10	46.33	74.00	27.67
5 075 00	39.22	Average	Н	34.60	7.70	44.10	37.42	54.00	16.58
5 875.00	47.99	Peak	V	34.60	7.70	44.10	46.19	74.00	27.81
	39.22	Average	V	34.60	7.70	44.10	37.42	54.00	16.58
			Tes	t Data for N	Middle Cha	annel			
	48.75	Peak	Н	34.30	7.60	44.10	46.55	74.00	27.45
	39.38	Average	Н	34.30	7.60	44.10	37.18	54.00	16.82
5 725.00	48.16	Peak	V	34.30	7.60	44.10	45.96	74.00	28.04
	39.32	Average	V	34.30	7.60	44.10	37.12	54.00	16.88
	52.56	Peak	Н	34.60	7.70	44.10	50.76	74.00	23.24
5.075.00	41.73	Average	Н	34.60	7.70	44.10	39.93	54.00	14.07
5 875.00	51.70	Peak	V	34.60	7.70	44.10	49.90	74.00	24.10
	41.60	Average	V	34.60	7.70	44.10	39.80	54.00	14.20

Radiated Emissions			Ant	Cor	rection Fac	ctors	Total	FCC	Limit			
Carrier	Reading	Detector	Dol	Ant.	Cable	Amm Cain	Amplitude	Limit	Margin			
Freq. (MHz)	(dBµV)	Mode	Pol.	Factor	Loss	Amp Gain	(dBµV/m)	(dBµV/m)	(dB)			
	Test Data for High Channel											
	47.32	Peak	Н	34.30	7.60	44.10	45.12	74.00	28.88			
	38.47	Average	Н	34.30	7.60	44.10	36.27	54.00	17.73			
5 725.00	46.91	Peak	v	34.30	7.60	44.10	44.71	74.00	29.29			
	38.16	Average	v	34.30	7.60	44.10	35.96	54.00	18.04			
	64.05	Peak	Н	34.60	7.70	44.10	62.25	74.00	11.75			
	53.34	Average	Н	34.60	7.70	44.10	51.54	54.00	2.46			
5 875.00	63.95	Peak	v	34.60	7.70	44.10	62.15	74.00	11.85			
	53.13	Average	v	34.60	7.70	44.10	51.33	54.00	2.67			

Remark. Margin (dB) = Limit (dBuV/m) - Total (dBuV/m)

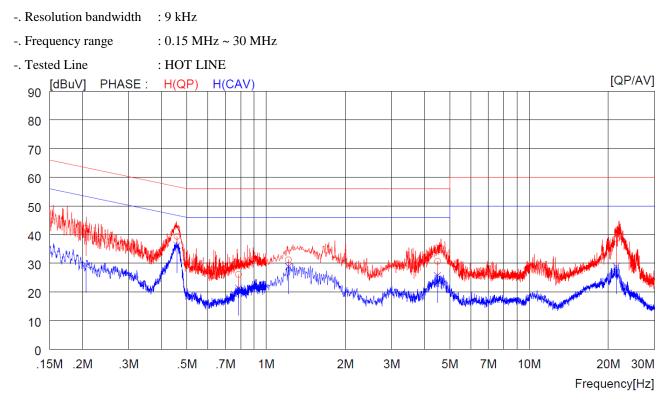
Total = Reading + Ant. Factor + Cable Loss + Amp Gain

8. CONDUCTED EMISSION TEST

8.1 Operating environment

Temperature	:	22 °C
Relative humidity	:	46 % R.H.

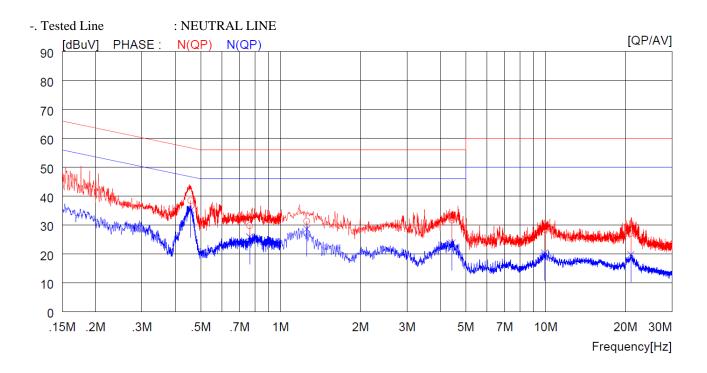
8.2 Test set-up


The EUT was placed on a wooden table, 0.8 m height above the floor. Power was fed to the EUT through a 50 Ω / 50 μ H + 5 Ω Artificial Mains Network (AMN). The ground plane was electrically bonded to the reference ground system and all power lines were filtered from ambient.

8.3 Test Date

July 11, 2022 ~ July 12, 2022

8.4 Test data


NO	FREQ	READ OP	ING AV	C.FACTOR	RES QP	ULT AV	LIM QP	IT AV	MAR OP	GIN AV	PHASE
	[MHz]	[dBuV]		[dB]	[dBuV]			[dBuV]	~	[dBuV]	
1	0.20700	32.2		10.0	42.2		63.3		21.1		H(QP)
2	0.45800	29.3		10.1	39.4		56.7		17.3		H(QP)
3	0.78500	15.9		10.2	26.1		56.0		29.9		H(QP)
4	1.21600	20.9		10.3	31.2		56.0		24.8		H(QP)
5	4.48400	20.4		10.3	30.7		56.0		25.3		H(QP)
6	21.44000	27.9		10.7	38.6		60.0		21.4		H(QP)
7	0.20700		19.3	10.0		29.3		53.3		24.0	H(CAV)
8	0.45800		26.1	10.1		36.2		46.7		10.5	H(CAV)
9	0.78500		11.1	10.2		21.3		46.0		24.7	H(CAV)
10	1.21600		18.5	10.3		28.8		46.0		17.2	H(CAV)
11	4.48400		15.4	10.3		25.7		46.0		20.3	H(CAV)
12	21.44000		18.1	10.7		28.8		50.0		21.2	H(CAV)

It should not be reproduced except in full, without the written approval of ONETECH Corp.

Page 21 of 22

Report No.: OT-227-RWD-037

NC) FREQ	READ		C.FACTOR	RESU		LIM			GIN	PHASE
		QP	AV		QP	AV	QP	AV	QP	AV	
	[MHz]	[dBuV]	[dBuV]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	
1	0.45900	28.3		10.1	38.4		56.7		18.3		N(QP)
2	0.76500	19.6		10.2	29.8		56.0		26.2		N(QP)
3	1.25600	21.0		10.3	31.3		56.0		24.7		N(QP)
4	4.43600	21.4		10.3	31.7		56.0		24.3		N(QP)
5	9.91000	18.0		10.5	28.5		60.0		31.5		N(QP)
6	20.97000	16.5		10.7	27.2		60.0		32.8		N(QP)
7	0.45900		25.1	10.1		35.2		46.7		11.5	N(CAV)
8	0.76500		15.7	10.2		25.9		46.0		20.1	N(CAV)
9	1.25600		18.3	10.3		28.6		46.0		17.4	N(CAV)
10	4.43600		13.5	10.3		23.8		46.0		22.2	N(CAV)
11	9.91000		9.9	10.5		20.4		50.0		29.6	N(CAV)
12	20.97000		9.1	10.7		19.8		50.0		30.2	N(CAV)

Remark: Margin (dB) = Limit – Level (Result)

The emission level in above table is included the transducer factor that means insertion loss (LISN), cable loss and attenuator.

9. LIST OF TEST EQUIPMENT

Model Number	Manufacturer	Description	Serial Number	Last Cal.(Interval)
FSV40-N	Rohde & Schwarz	Signal Analyzer	102165	Apr. 11, 2022 (1Y)
ESU	Rohde & Schwarz	EMI Test Receiver	100261	Mar. 07, 2022 (1Y)
ESR3	Rohde & Schwarz	EMI Test Receiver	102602	Mar. 14, 2022 (1Y)
310N	Sonoma Instrument	Pre-Amplifier	392756	Oct. 14, 2021 (1Y)
SCU40A	Rohde & Schwarz	Signal Conditioning unit	N/A	Jan. 18, 2022 (1Y)
ELNA18-40	EXYNOD	RF Pre Amplifier	27594	Jun. 22, 2022 (1Y)
WT-A1856-R12	Microwave	Cavity Band Rejection Filter	WT22040502-4	Jun. 21, 2022 (1Y)
DT2000-2t	Innco Systems GmbH	Turn Table	N/A	N/A
MA-4000XPET	Innco System	Antenna Master	MA4000/509	N/A
HLP-2008	TDK	Hybrid Antenna	131316	Mar. 07, 2022 (2Y)
AH-118	Com-Power	Horn Antenna	10050061	Oct. 15, 2021 (1Y)
BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170178	Jan. 06, 2022 (1Y)
FMZB 1513	Schwarzbeck	Active Loop Antenna	1513-235	Mar. 24. 2022 (2Y)
NSLK8126	Schwarzbeck	AMN	8126-404	Mar. 14, 2022 (1Y)
ESH3Z2	Rohde & Schwarz	PULSE LIMITER	357.8810.52	Mar. 14, 2022 (1Y)