

ELECTROMAGNETIC EMISSION COMPLIANCE REPORT

Test Report No.	: OT-20N-RWD-035
Reception No.	: 2010003943
Applicant	: Samsung Electronics Co Ltd
Address	: 19 Chapin Rd., Building D, Pine Brook, New Jersey, 07058, United States
Manufacturer	: Samsung Electronics Co Ltd
Address	: 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16677, Korea
Type of Equipment	: Audio Transceiver
FCC ID	: A3LWSA520S
Model Name	: WSA520S
Multiple Model Name	e:N/A
Serial number	: N/A
Total page of Report	: 31 pages (including this page)
Date of Incoming	: October 27, 2020
Date of Issuing	: November 11, 2020

SUMMARY

The equipment complies with the requirements of *FCC CFR 47 PART 15 SUBPART C Section 15.249* This test report contains only the result of a single test of the sample supplied for the examination. It is not a general valid assessment of the features of the respective products of the mass-production.

Tested by Hyung-Kwon, Oh / Manager ONETECH Corp.

Reviewed by Tae-Ho, Kim / Senior Manager ONETECH Corp.

Approved by Ki-Hong, Nam / General Manager ONETECH Corp.

OTC-TRF-RF-001(0)

ONETECH Corp.: 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea (TEL: 82-31-799-9500, FAX: 82-31-799-9599)

Page 2 of 31

CONTENTS

Page

1. VERIFICATION OF COMPLIANCE	5
2. TEST SUMMARY	6
2.1 TEST ITEMS AND RESULTS	6
2.2 RELATED SUBMITTAL(S) / GRANT(S)	6
2.3 PURPOSE OF THE TEST	6
2.4 Test Methodology	6
2.5 TEST FACILITY	6
3. GENERAL INFORMATION	7
3.1 Product Description	7
3.2 ALTERNATIVE TYPE(S)/MODEL(S); ALSO COVERED BY THIS TEST REPORT	7
4. EUT MODIFICATIONS	7
5. SYSTEM TEST CONFIGURATION	8
5.1 JUSTIFICATION	8
5.2 PERIPHERAL EQUIPMENT	8
5.3 MODE OF OPERATION DURING THE TEST	8
5.4 CONFIGURATION OF TEST SYSTEM	11
5.5 ANTENNA REQUIREMENT	11
6. PRELIMINARY TEST	11
6.1 AC POWER LINE CONDUCTED EMISSIONS TESTS	11
6.2 RADIATED EMISSIONS TESTS	11
7. MINIMUM 20 DB BANDWIDTH	12
7.1 OPERATING ENVIRONMENT	12
7.2 TEST SET-UP	12
7.3 TEST DATE	12
7.4 TEST DATA	13
8. RADIATED EMISSION TEST	15
8.1 OPERATING ENVIRONMENT	15
8.2 TEST SET-UP	15
8.3 MEASUREMENT UNCERTAINTY	

Page 3 of 31

3.5 FINAL RESULT OF MEASUREMENT	16
8.5.1 Field Strength of the Fundamental Frequency	16
8.5.2 Emissions Radiated Outside of the Specified Frequency Bands_Harmonic	23
8.5.3 Test Data for Frequency range: 30 MHz ~ 1 000 MHz	24
8.5.4 Test Data for Below 30 MHz	25
8.5.5 Test Data above 1 GHz except for harmonic	25
8.5.6 Band Edge	

Revision History

Rev. No.	Issue Report No.	Issued Date	Revisions	Section Affected
0	OT-20N-RWD-035	November 11, 2020	Initial Release	All

1. VERIFICATION OF COMPLIANCE

Applicant	: Samsung Electronics Co Ltd			
Address	: 19 Chapin Rd., Building D, Pine Brook, New Jersey, 07058, United States			
Contact Person	: Hansung You / Staff Eng	ineer		
Telephone No.	: +82-31-277-2746			
FCC ID	: A3LWSA520S			
Model Name	: WSA520S			
Brand Name	SAMSUNG			
Serial Number	: N/A			
Date	: November 11, 2020			
DEVICE TYPE		DXX – Low Power Communication Device Transmitter		
E.U.T. DESCRIPTION		Modular Transmitter, Audio Transceiver		
THIS REPORT CONCERNS		Original Grant		
MEASUREMENT PROCEDURES		ANSI C63.10: 2013		
TYPE OF EQUIPMENT TESTED		Pre-Production		
KIND OF EQUIPMENT				
AUTHORIZATION REQUESTED		Certification		
EQUIPMENT WILL BE OPERATED				
UNDER FCC RULES PART(S)		FCC CFR47 Part 15 Subpart C Section 15.249		
MODIFICATIONS ON THE EQUIPMENT				
TO ACHIEVE CO	OMPLIANCE	None		
FINAL TEST WA	AS CONDUCTED ON	3 m Semi Anechoic Chamber		

-. The above equipment was tested by ONETECH Corp. for compliance with the requirement set forth in the FCC Rules and Regulations. This said equipment in the configuration described in this report, shows the maximum emission levels emanating from equipment are within the compliance requirements.

2. TEST SUMMARY

2.1 Test items and results

SECTION	TEST ITEMS	RESULTS
15.249 (a)	Field Strength of Emission	Met the Limit / PASS
15.249 (c)	Measurement distance	Met the Requirement / PASS
15.249 (d)	Emissions Radiated Outside of the Specified Frequency Band	Met the Limit / PASS
15.249, 15.215	Minimum 20 dB Bandwidth	Met the Limit / PASS
15.249 (e)	Radiated Emissions above 1 000 MHz	Met the Limit / PASS
15.209	Radiated Emission Limits, General Requirement	Met the Limit / PASS
15.207	Conducted Limits	N/A (See Note)
15.203	Antenna Requirement	Met the Requirement / PASS

Note: This test is not performed because the EUT is operated by DC Power.

2.2 Related Submittal(s) / Grant(s)

Original submittal only

2.3 Purpose of the test

To determine whether the equipment under test fulfills the requirements of the regulation stated in section 2.1.

2.4 Test Methodology

Both conducted and radiated testing was performed according to the procedures in ANSI C63.10: 2013. Radiate d testing was performed at a distance of 3 m from EUT to the antenna.

2.5 Test Facility

The Onetech Corp. has been designated to perform equipment testing in compliance with ISO/IEC 17025.

The Electromagnetic compatibility measurement facilities are located at 43-14, Jinsaegol-gil, Chowol-eup, Gwangju-si, Gyeonggi-do, 12735, Korea.

-. Site Filing:

VCCI (Voluntary Control Council for Interference) - Registration No. R-4112/ C-14617/ G-10666/ T-11842

ISED (Innovation, Science and Economic Development Canada) - Registration No. Site# 3736A-3

KOLAS (Korea Laboratory Accreditation Scheme) - Accreditation NO. KT085

FCC (Federal Communications Commission) - Accreditation No. KR0013

RRA (Radio Research Agency) - Designation No. KR0013

3. GENERAL INFORMATION

3.1 Product Description

The Samsung Electronics Co Ltd, Model WSA520S (referred to as the EUT in this report) is an Audio Transceiver, Product specification information described herein was obtained from product data sheet or user's manual.

DEVICE TYPE	Audio Transceiver		
Temperature Range	-5 °C ~ 40 °C		
OPERATING FREQUENCY	5 773.35 MHz	z ~ 5 871.35 MHz	
MODULATION TYPE	DQPSK		
Field Strength Of Fundamental	96.76 dBµV/m at 3 m		
ANTENNA TYPE	PCB Antenna		
	Antenna 0	3.10 dBi	
ANTENNA GAIN	Antenna 1	3.10 dBi	
List of each Osc. or crystal Freq.(Freq. >= 1 MHz)	16 MHz		

Note: This Device works a Diversity Antenna. So, We Tested only Antenna 0.

3.2 Alternative type(s)/model(s); also covered by this test report.

-. None

4. EUT MODIFICATIONS

-. None

5. SYSTEM TEST CONFIGURATION

5.1 Justification

This device was configured for testing in a typical way as a normal customer is supposed to be used. During the test, the

following components were installed inside of the EUT.

DEVICE TYPE	MANUFACTURER	MODEL/PART NUMBER	FCC ID
Main Board	Samsung Electronics Co Ltd	AVM500 REV03	N/A

5.2 Peripheral equipment

Defined as equipment needed for correct operation of the EUT, but not considered as tested:

Model	Model Manufacturer Description		Connected to
WSA520S	Samsung Electronics Co Ltd	Audio Transceiver(EUT)	-
AVM500 ANTEATER REV01	N/A	Jig Board	EUT / Notebook PC
HP Probook	HP	Notebook PC	EUT
	LIE-ON TECHNOLOGY		
PPP009L-E	(CHANGZHOU) CO., LTD.	AC Adapter	

5.3 Mode of operation during the test

For the testing, software used to control the EUT for staying in continuous transmitting is programmed.

For final testing, the EUT was set at 5 773.35 MHz, 5 821.35 MHz, and 5 871.35 MHz to get a maximum emission levels from the EUT. The EUT was moved throughout the XY, XZ, and YZ planes and the worst case is "XY" axis, but the worst data was recorded in this report.

-. Duty Cycle

Mode	Tx On Time	Tx Off Time	Duty Cycle	Correction Factor
Widde	[ms]	[ms]	[%]	[dB]
_	-	-	100.00	-

Note - Duty Cycle : (Tx On Time / (Tx On Time + Tx Off Time)) * 100

Correction Factor : 10 * Log(1 / (Duty Cycle / 100))

-. Test Plot

	SWT 1 ms 👄 VBW 3	28 MHz		
●1Pk View				
		M1[1]		9.45 dBn 729.000 μ
10 d8m			M1	
apprecience and a second of the second of th	๚๚๛๛ <mark>๚๛๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</mark>	and a second and the second of	wallen werten all all and were the	erenterlyby typelastics
0 dBm				
o dom				
-10 dBm				
-10 ubin				
-20 dBm				
20 0011				
-30 dBm				
SO UDIN				
-40 dBm				
-50 dBm				
-60 dBm				
-70 dBm				

Channel Frequency[MHz] Channel Frequency[MHz] Channel Frequency[MHz] 0 5 773.35 5 809.35 5 845.35 18 36 1 5 775.35 19 5 811.35 37 5 847.35 2 5 777.35 20 5 813.35 38 5 849.35 39 3 5 779.35 21 5 815.35 5 851.35 4 5 781.35 22 5 817.35 40 5 853.35 5 23 5 819.35 41 5 855.35 5 783.35 6 5 785.35 24 5 821.35 42 5 857.35 7 25 5 859.35 5 787.35 5 823.35 43 44 8 5 789.35 26 5 825.35 5 861.35 9 5 791.35 27 5 827.35 45 5 863.35 10 5 829.35 5 793.35 28 46 5 865.35 29 11 5 795.35 5 831.35 47 5 867.35 12 5 797.35 30 5 833.35 48 5 869.35 13 31 49 5 799.35 5 835.35 5 871.35 14 32 5 837.35 5 801.35 15 33 5 803.35 5 839.35 16 5 805.35 34 5 841.35 17 5 807.35 35 5 843.35

-. Channel List

5.4 Configuration of Test System

Line Conducted Test:	It is not need to test this requirement, because the EUT shall be operated by DC Power.
Radiated Emission Test :	Preliminary radiated emissions test were conducted using the procedure in ANSI C63.10:
	2013 to determine the worse operating conditions. The radiated emissions measurements
	were performed on the 10 m Semi Anechoic Chamber.
	For frequencies from 150 kHz to 30 MHz measurements were made of the magnetic H field.
	The measuring antenna is an electrically screened loop antenna.
	The frequency spectrum from 30 MHz to 1 000 MHz was scanned and maximum emission
	levels maximized at each frequency recorded. The system was rotated 360°, and the antenna
	was varied in the height between 1.0 m and 4.0 m in order to determine the maximum
	emission levels. This procedure was performed for both horizontal and vertical polarization
	of the receiving antenna.

5.5 Antenna Requirement

For intentional device, according to section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Construction:

The antenna of the EUT is PCB Antenna on the main board in the EUT, so no consideration of replacement by the user.

6. PRELIMINARY TEST

6.1 AC Power line Conducted Emissions Tests

During Preliminary Test, the following operating mode was investigated.

Operation Mode	The Worse operating condition (Please check one only)				
It is not need to test this requirement, becau	use the power of the EUT is supplied by DC Power.				

6.2 Radiated Emissions Tests

During Preliminary Tests, the following operating modes were investigated

Operation Mode	The Worse operating condition (Please check one only)
Transmitting Mode	Х

7. MINIMUM 20 dB BANDWIDTH

7.1 Operating environment

Temperature	:	23 °C
Relative humidity	:	45 % R.H.

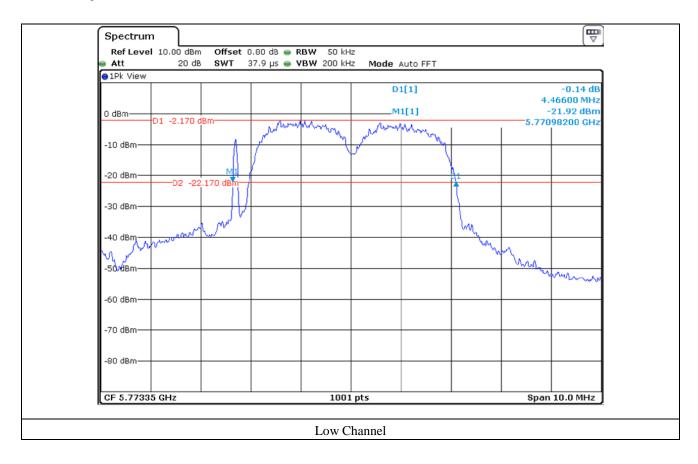
7.2 Test set-up

The antenna output of the EUT was connected to the spectrum analyzer. The resolution bandwidth is set to 50 kHz, and peak detection was used. The 20 dB bandwidth is defined as the total spectrum over which the power is higher than the peak power minus 20 dB.

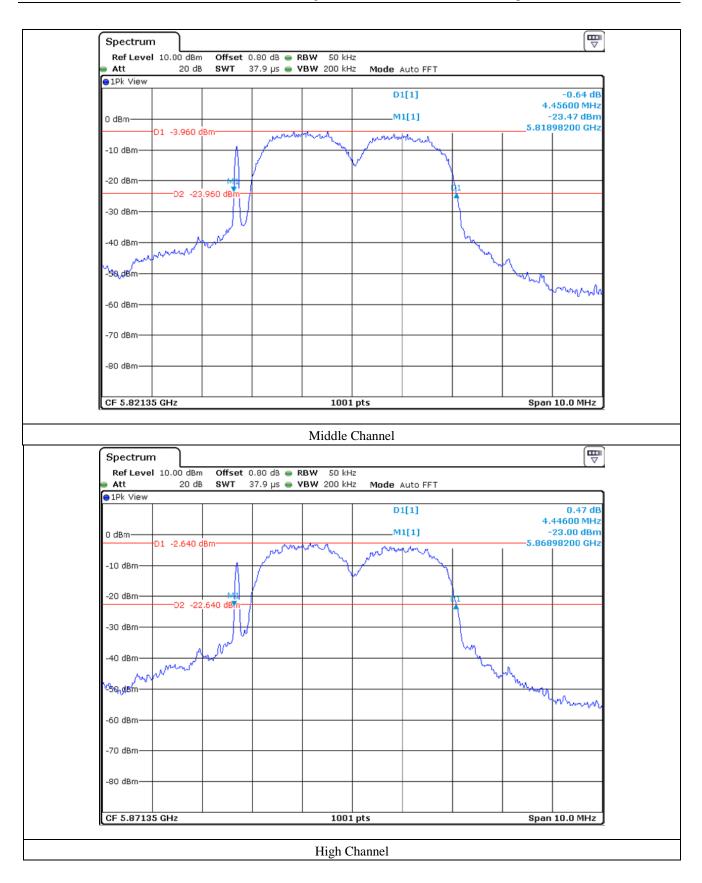
7.3 Test Date

October 27, 2020 ~ November 02, 2020

Page 13 of 31


7.4 Test data

-. Test Result


CHANNEL	FREQUENCY(MHz)	MEASURED VALUE (MHz)
Low	5 773.35	4.47
Middle	5 821.35	4.46
High	5 871.35	4.45

Remark. Margin = Measured Value - Limit

: Pass

8. RADIATED EMISSION TEST

8.1 Operating environment

Temperature	:	23 °C
Relative humidity	:	45 % R.H.

8.2 Test set-up

The radiated emissions measurements were on the 3 m, semi anechoic chamber. The EUT and other support equipment were placed on a non-conductive turntable above the ground plane. The interconnecting cables from outside test site were inserted into ferrite clamps at the point where the cables reach the turntable.

The frequency spectrum from up to 40 GHz was scanned and emission levels maximized at each frequency recorded. The system was rotated 360°, and the antenna was varied in height between 1.0 m and 4.0 m in order to determine the maximum emission levels. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

Test set-up photos are included in appendix I.

8.3 Measurement uncertainty

Radiated emission electric field intensity, $0.15 \text{ MHz} \sim 30 \text{ MHz}$	$\pm 2.61 \text{ dB}$
Radiated emission electric field intensity, 30 MHz ~ 300 MHz	$\pm 4.43 \text{ dB}$
Radiated emission electric field intensity, 300 MHz ~ 1 000 MHz	$\pm 3.80 \text{ dB}$
Radiated emission electric field intensity, 1 000 MHz ~ 3 000 MHz	z: ± 4.40 dB
Measurement uncertainty is calculated in accordance with CISPI	R 16-4-2. The measurement uncertainty is given with a
confidence of 95 % with the coverage factor, $k = 2$.	

8.4 Test Date

October 27, 2020 ~ November 02, 2020

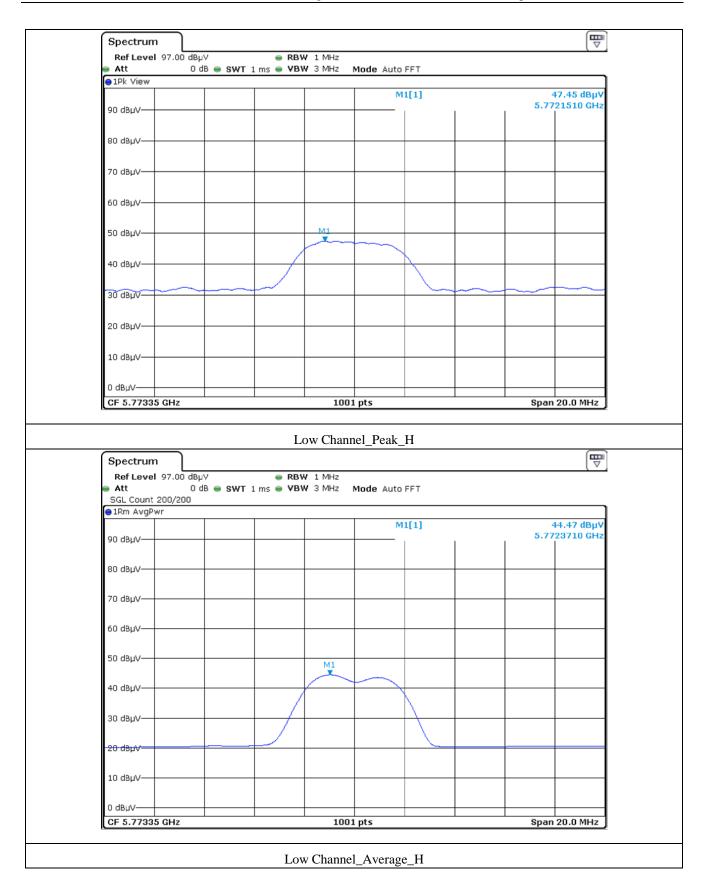
8.5 Final Result of Measurement

8.5.1 Field Strength of the Fundamental Frequency

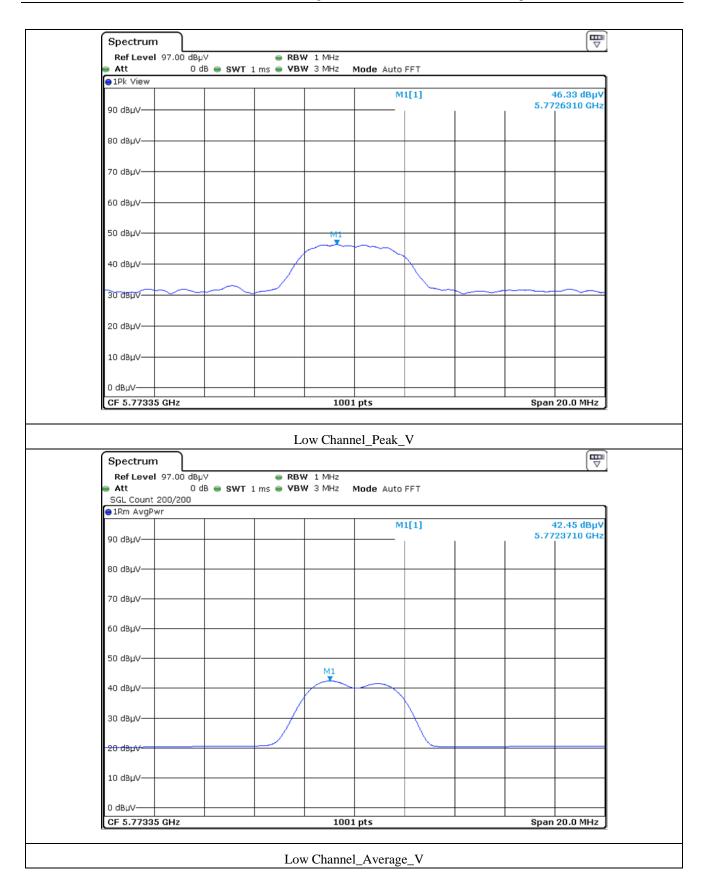
The following table shows the highest levels of radiated emissions on both polarizations of horizontal and vertical.

Limits apply to	: FCC CFR 47, PART 15, SUBPART C, SECTION 15.249(a)
Result	: <u>PASSED</u>
EUT	: Audio Transceiver
Operating Condition	: TX mode
Distance	: 3 m

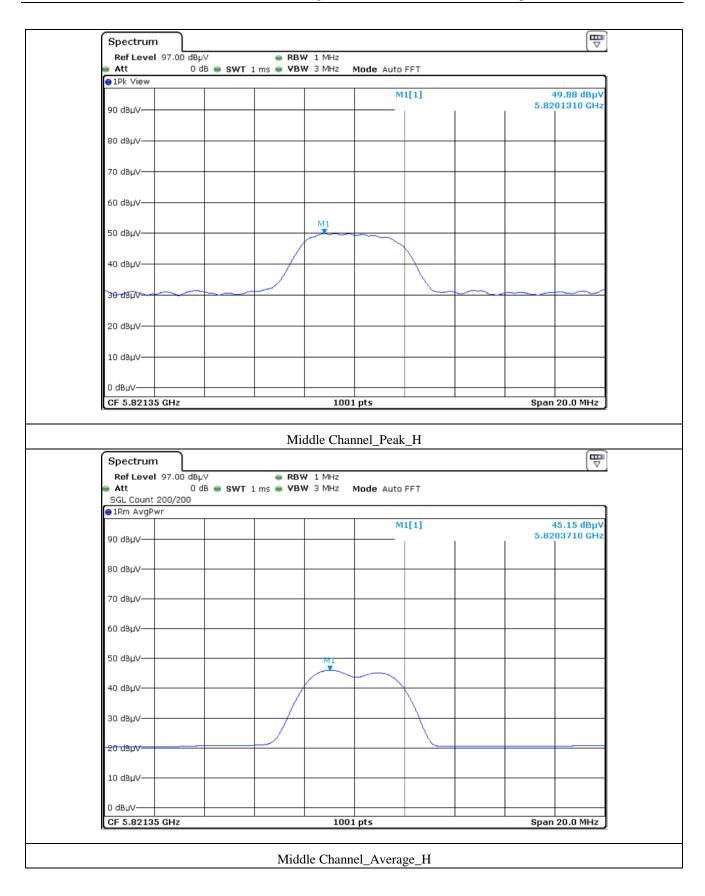
Radi	iated Emissio	ons	Ant	Correctio	n Factors	Total	Limit	
Carrier Freq. (MHz)	Reading (dBµV)	Detector Mode	Pol.	Antenna (dB/m)	Cable Loss (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
	((()))		T	est Data for Low		(u2µ (/11)	((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(uD)
	47.45	Peak	Н			94.33	114.00	19.67
	44.47 Average H		91.35	94.00	2.65			
5 773.35	46.33	Peak	V	34.50	12.38	93.21	114.00	20.79
	42.45	Average	V			89.33	94.00	4.67
			Tes	t Data for Middl	e Channel			
	49.88	Peak	Н		12.38	96.76	114.00	17.24
5 001 05	45.15	Average	Н	24.50		92.03	94.00	1.97
5 821.35	48.70	Peak	V	34.50		95.58	114.00	18.42
	44.10	Average	V			90.98	94.00	3.02
			Те	est Data for High	Channel			
	47.61	Peak	Н			94.49	114.00	19.51
5 071 25	43.38	Average	Н	24.50	12 20	90.26	94.00	3.74
5 871.35	46.19	Peak	V	34.50	12.38	93.07	114.00	20.93
	42.14	Average	V			89.02	94.00	4.98

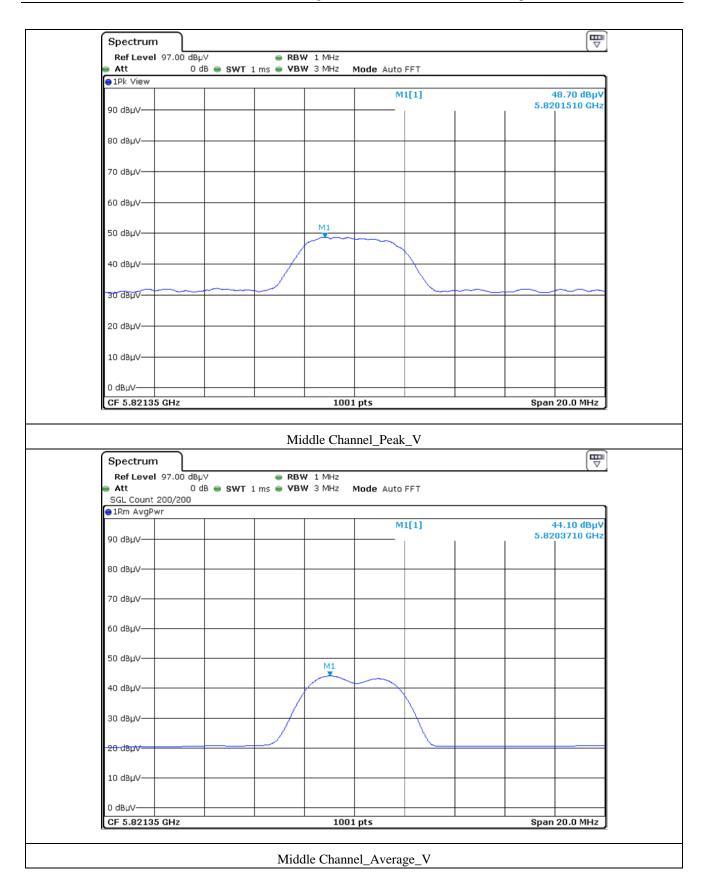

*Remark: To get a maximum emission level from the EUT, the EUT was moved throughout the XY, XZ, and YZ planes,

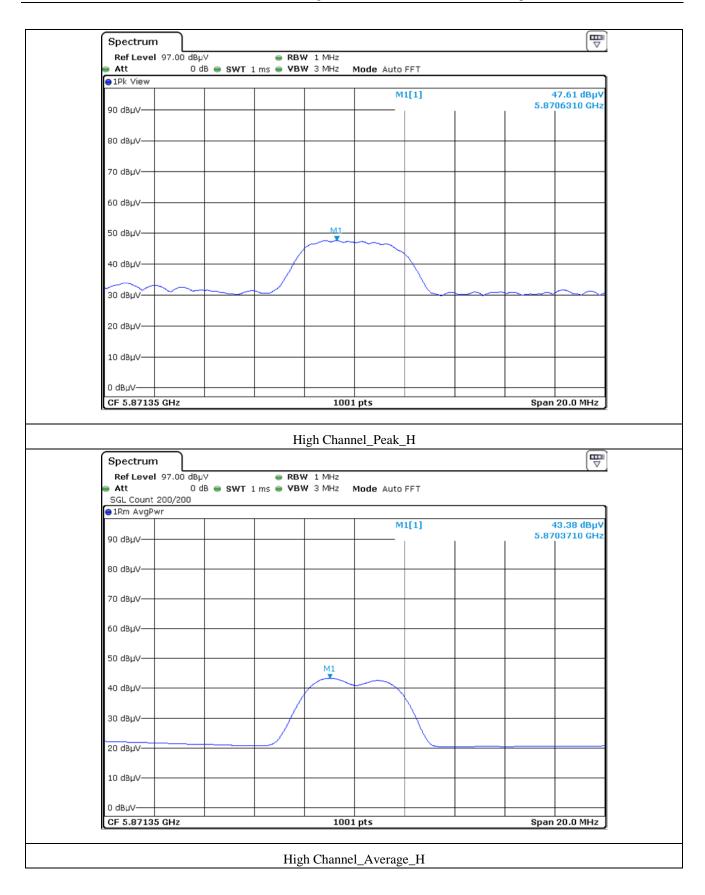
but the worst plane data were recorded in the report.

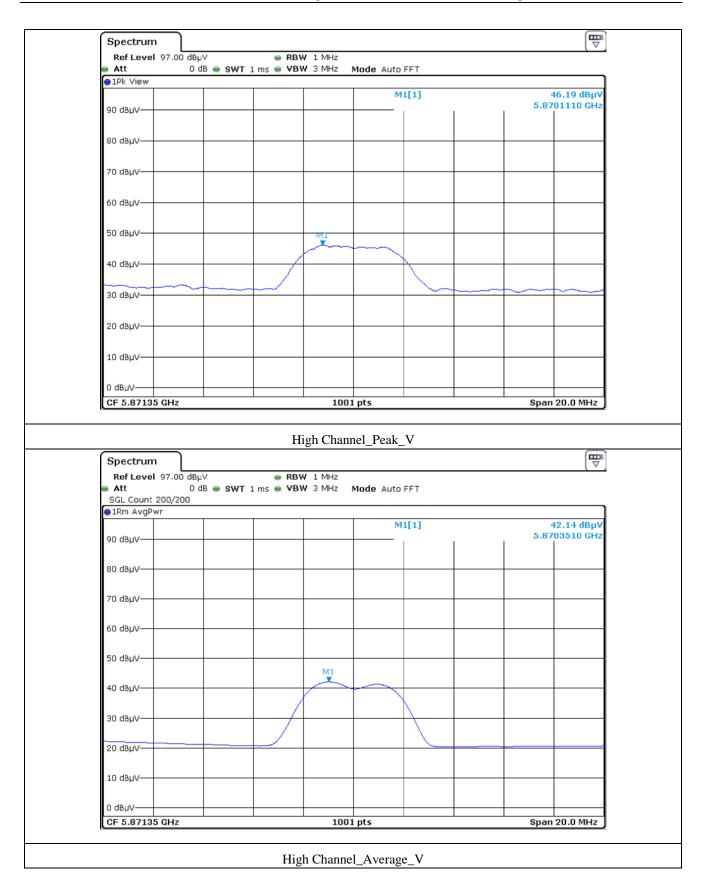

Margin (dB) = Limit (dBuV/m) – Total (dBuV/m)

Total = Reading + Antenna Factor + Cable Loss + Duty Cycle Reduction









Page 23 of 31

8.5.2 Emissions Radiated Outside of the Specified Frequency Bands_Harmonic

Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.249(a)								
Result		: PASSED	<u>)</u>					
EUT		: Audio Ti	ansceive	er				
Operating Condition : TX mod		: TX mode	e					
Distance		: 3 m						
Radiated Emissions			Ant	Correctio	n Factors	Total	FCC]	Limit
Carrier Freq. (MHz)	Reading (dBµV)	Detector Mode	Pol.	Antenna Cable (dB/m) Loss (dB)		Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Te	st Data for Low	Channel			
	13.78	Peak	Н	42.30	4.98	61.06	74.00	12.94
11 546 50	2.59	Average	Н			49.87	54.00	4.13
11 546.70	13.56	Peak	V			60.84	74.00	13.16
	2.42	Average	V			49.70	54.00	4.30
		1	Tes	t Data for Middle	e Channel	- I		
	13.60	Peak	Н			60.38	74.00	13.62
11 642.70	2.55	Average	Н	41.00	4.00	49.33	54.00	4.67
11 642.70	13.51	Peak	V	41.80	4.98	60.29	74.00	13.71
	2.49	Average	V			49.27	54.00	4.73
			Те	st Data for High	Channel	- F		
	13.57	Peak	Н			59.85	74.00	14.15
11 740 74	2.53	Average	Н	41.20	4.00	48.81	54.00	5.19
11 742.76	13.48	Peak	V	41.30	4.98	59.76	74.00	14.24
	2.56	Average	V			48.84	54.00	5.16

Other frequencies were not found up to 10 GHz. Tabulated test data for Restricted Band

Remark: "H": Horizontal, "V": Vertical, "*" Frequency fall in restricted band

Margin (dB) = Limit (dBuV/m) – Total (dBuV/m)

Total = Reading + Antenna Factor + Cable Loss + Duty Cycle Reduction

8.5.3 Test Data for Frequency range: 30 MHz ~ 1 000 MHz Limits apply to : FCC CFR 47, PART 15, SUBPART C, SECTION 15.249 (d) Result : PASSED EUT : Audio Transceiver Detector : CISPR Quasi-Peak (6 dB Bandwidth: 120 kHz) <<QP DATA>> ○ HORIZONTAL / × VERTICAL [dBuV/m] 70 60 50 40 30 J. J. Burneller 20 10 0 50M 70M 500M 700M 30M 100M 200M 300M 1G Frequency[Hz]

No.	FREQ	READING QP	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m][dB]	[cm]	[DEG]
	Horizo	ontal								
1	64.92	0 36.5	18.4	1.3	32.	7 23.5	40.0	16.5	300	359
2	137.67			2.0			43.5			75
3	203.63	0 35.7	15.8	2.4	32.	5 21.4	43.5	22.1	100	359
4	288.02	0 41.1	19.1	2.9	32.	4 30.7	46.0	15.3	100	100
5	672.13	6 30.8	26.5	4.5	32.	4 29.4	46.0	16.6	100	359
6	864.19	0 31.7	28.7	5.2	32.	2 33.4	46.0	12.6	100	117
	Vertic	al								
7	31.94	0 34.5	17.9	0.9	32.	6 20.7	40.0	19.3	200	139
8	39.70	0 27.4	18.9	1.0	32.	6 14.7	40.0	25.3	100	0
9	87.23	0 31.0	13.9	1.5	32.	6 13.8	40.0	26.2	100	0
10	179.38	0 33.2	17.7	2.3	32.	6 20.6	43.5	22.9	100	323
11	551.85	9 26.4	24.6	4.1	32.	3 22.8	46.0	23.2	100	166
12	624.60	7 26.0	25.9	4.3	32.	5 23.7	46.0	22.3	100	307

Page 25 of 31

8.5.4 Test Data for Below 30 MHz

Resolution bandwidth : 200 Hz (from 9 kHz to 0.15 MHz), 9 kHz (from 0.15 MHz to 30 MHz)

Frequency range

: 9 kHz ~ 30 MHz

Measurement distance : 3 m

Limits apply to

: FCC CFR 47, PART 15, SUBPART C, SECTION 15.249 (d)

Result : PASSED

Frequency	Reading	Ant. Pol.	Ant.	Angle	Ant. Factor	Cable	Emission	Limits	Margin
(MHz)	(dBµV)	(H/V)	Height (m)	(°)	(dB/m)	Loss	Level(dBµV/m)	(dBµV/m)	(dB)
			It was not o	observed a	any emissions t	from the I	EUT.		

8.5.5 Test Data above 1 GHz except for harmonic

: 1 MHz and Pea	or for Peak Mo	ode					
1 MHz and RMS Detector for Average Mode							
Video bandwidth : 3 MHz for Peak and Average Mode							
Frequency range : 1 GHz ~ 40 GHz							
Measurement distance : 3 m							
: FCC CFR 47, 1	PART 15,	SUBPART C	, SECTIC	ON 15.249 (d)			
: PASSED							
	Angle (°)	Ant. Factor (dB/m)	Cable Loss	Emission Level(dBµV/m)	Limits (dBµV/m)	Margin (dB)	
It was not	observed a	any emissions	from the l	EUT.			
	1 MHz and RM : 3 MHz for Pea : 1 GHz ~ 40 GI : 3 m : FCC CFR 47, 1 : PASSED Pol. Ant.	1 MHz and RMS Detector: 3 MHz for Peak and Ave: 1 GHz ~ 40 GHz: 3 m: FCC CFR 47, PART 15,: PASSEDPol.Ant.Angle	1 MHz and RMS Detector for Average : 3 MHz for Peak and Average Mode : 1 GHz ~ 40 GHz : 3 m : FCC CFR 47, PART 15, SUBPART C : PASSED Pol. Ant. Angle Ant. Factor	 : 3 MHz for Peak and Average Mode : 1 GHz ~ 40 GHz : 3 m : FCC CFR 47, PART 15, SUBPART C, SECTIO : PASSED Pol. Ant. Angle Ant. Factor Cable	1 MHz and RMS Detector for Average Mode : 3 MHz for Peak and Average Mode : 1 GHz ~ 40 GHz : 3 m : FCC CFR 47, PART 15, SUBPART C, SECTION 15.249 (d) : PASSED Pol. Ant. Angle Ant. Factor Cable Emission	1 MHz and RMS Detector for Average Mode : 3 MHz for Peak and Average Mode : 1 GHz ~ 40 GHz : 3 m : FCC CFR 47, PART 15, SUBPART C, SECTION 15.249 (d) : PASSED Pol. Ant. Angle Ant. Factor Cable Emission Limits	

8.5.6 Band Edge

-. Limits apply to

- -. Resolution bandwidth : 1 MHz and Peak Detector for Peak Mode
 - 1 MHz and RMS Detector for Average Mode
- -. Video bandwidth : 3 MHz for Peak and Average Mode
- -. Measurement distance : 3 m

: FCC CFR 47, PART 15, SUBPART C, SECTION 15.249 (d)

-. Result

: PASSED

Radiated Emissions		Ant	Correctio	n Factors	Total	FCC	Limit	
Frequency (MHz)	Reading (dBµV)	Detector Mode	Ant. Pol. (H/V)	Ant. Factor	Cable Loss (dB)	Total (dBµV/m)	Limits (dBµV/m)	Margin (dB)
			Test Da	ta for Low C	hannel			
	13.40	Peak	Н			60.28	74.00	13.72
5 725 00	3.72	Average	Н			50.60	54.00	3.40
5 725.00	13.78	Peak	V			60.66	74.00	13.34
	3.75	Average	V	24.50	10.00	50.63	54.00	3.37
	13.86	Peak	Н	34.50	12.38	60.74	74.00	13.26
	3.87	Average	Н			50.75	54.00	3.25
5 875.00	13.17	Peak	V			60.05	74.00	13.95
	3.82	Average	V			50.70	54.00	3.30
			Test Data	a for Middle (Channel			
	13.28	Peak	Н			60.16	74.00	13.84
5 725 00	3.43	Average	Н			50.31	54.00	3.69
5 725.00	11.68	Peak	V			58.56	74.00	15.44
	3.43	Average	V	24.50	10.00	50.31	54.00	3.69
	13.70	Peak	Н	34.50	12.38	60.58	74.00	13.42
5 0 7 5 0 0	4.19	Average	Н			51.07	54.00	2.93
5 875.00	12.35	Peak	V			59.23	74.00	14.77
	4.06	Average	V			50.94	54.00	3.06

Test Data for High Channel											
	12.59	Peak	Н			59.47	74.00	14.53			
	3.56	Average	Н			50.44	54.00	3.56			
5 725.00	12.07	Peak	V			58.95	74.00	15.05			
	3.69	Average	V	24.50	10.00	50.57	54.00	3.43			
	14.07	Peak	Н	34.50	12.38	60.95	74.00	13.05			
5 0 7 5 0 0	4.87	Average	Н			51.75	54.00	2.25			
5 875.00	13.31	Peak	V			60.19	74.00	13.81			
	4.55	Average	V			51.43	54.00	2.57			

Remark. Margin (dB) = Limit (dBuV/m) - Total (dBuV/m)

Total = Reading + Antenna Factor + Cable Loss + Duty Cycle Reduction

e Att											
PA PA	iew e 2	Rm View									
							M4	[2]			3.87 dBµ\
60 dBµ	v—						M1	F11			375000 GH2 13.40 dBµ\
50 dBµ	v—			 				[4]			725000 GH
				1	L D						
40 dBµ	v+										
30 dBµ	v—			L	+					L	
20 dBµ	v+			M1				M	2		
10 dBµ	min	www.	mariber	Amour	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	marken	round	when while		in Mon Canad	mound
		·		МЗ , Т	L L	~~~~		M4		h	Ļ
0 dBµV	+										
-10 dBı	N										
10 00,											
-20 dBJ	.v+										
-30 dBj	~										
Start S		z		Ĺ		1001 pts	5			Ste	p 6.0 GHz
Marker											
Туре			X-value		Y-va		Functi	on	Fund	tion Result	t
M1 M2		1		25 GHz		40 dBµ∨					
				75 CH2	13.9	VuBb 36					
M3		2		75 GHz 25 GHz		86 dBµ∨ 72 dBµ∨					
M4	trum		5.72 5.87	25 GHz 75 GHz	3.7 3.8	72 dbµv 87 dbµv w Chann	iel_H				
Spect Ref L Att	trum	2 2 67.00 dBµ	5.72 5.87	25 GHz 75 GHz	3.7 3.8 Low	72 dBµ∨ 37 dBµ∨ w Chann		FT			
Spect Ref L Att PA	trum .evel	2 2 67.00 dBµ	5.72 5.87 V	25 GHz 75 GHz	3.7 3.8 Low	72 dBµ∨ 37 dBµ∨ w Chann		FT			(E
M4 Spect Ref L • Att PA • 1Pk V	trum .evel	2 2 67.00 dBµ 0 d	5.72 5.87 V	25 GHz 75 GHz	3.7 3.8 Low	72 dBµ∨ 37 dBµ∨ w Chann					, 13.17 dBµ\
Spect Ref L Att PA	trum .evel	2 2 67.00 dBµ 0 d	5.72 5.87 V	25 GHz 75 GHz	3.7 3.8 Low	72 dBµ∨ 37 dBµ∨ w Chann	le Auto F	[1]		5.8	13.17 dBµ\ 375000 GH;
M4 Spect Ref L • Att PA • 1Pk V	trum evel	2 2 67.00 dBµ 0 d	5.72 5.87 V	25 GHz 75 GHz	3.7 3.8 Low	72 dBµ∨ 37 dBµ∨ w Chann	le Auto F	[1]		5.8	, 13.17 dBµ\
M4 Spect Ref L ● Att PA ● 1Pk V 60 dBµ 50 dBµ	trum .evel iew@2 v	2 2 67.00 dBµ 0 d	5.72 5.87 V	25 GHz 75 GHz	3.7 3.8 Low	72 dBµ∨ 37 dBµ∨ w Chann	le Auto F	[1]		5.8	13.17 dBµ\ 375000 GH; 13.78 dBµ\
Spect Ref L • Att PA • 1Pk V 60 dBµ	trum .evel iew@2 v	2 2 67.00 dBµ 0 d	5.72 5.87 V	25 GHz 75 GHz	3.7 3.8 Low	72 dBµ∨ 37 dBµ∨ w Chann	le Auto F	[1]		5.8	13.17 dBµ\ 375000 GH; 13.78 dBµ\
M4 Spect Ref L ● Att PA ● 1Pk V 60 dBµ 50 dBµ	trum evel iewe2 v	2 2 67.00 dBµ 0 d	5.72 5.87 V	25 GHz 75 GHz	3.7 3.8 Low	72 dBµ∨ 37 dBµ∨ w Chann	le Auto F	[1]		5.8	13.17 dBµ\ 375000 GH; 13.78 dBµ\
M4 Spect Ref L PA ● 1Pk V 60 dBµ 50 dBµ 30 dBµ	trum evel iew@2 v	2 2 67.00 dBµ 0 d	5.72 5.87 V	25 GHz 75 GHz	3.7 3.8 Low	72 dBµ∨ 37 dBµ∨ w Chann	le Auto F	[1]		5.8	13.17 dBµ\ 375000 GH; 13.78 dBµ\
М4 Spect Ref L • Att • 1Pk V 60 dBµ 50 dBµ 40 dBµ	trum evel iew@2 v	2 2 67.00 dBµ 0 d	5.72 5.87	€ GHZ 75 GHZ . ms ● V	3.7 3.6 Low BW 1 MH BW 3 MH	72 dBµV 87 dBµV v Chann Hz Hz Mod	M2	[1] [1]		5.8	13.17 dBµ\ 375000 GH; 13.78 dBµ\ 725000 GH;
M4 Spect Ref L Att PA 1Pk V 60 dBµ 50 dBµ 40 dBµ 30 dBµ 20 dBµ	trum evel	2 2 67.00 dBµ 0 d	5.72 5.87		3.7 3.6 Low BW 1 MH BW 3 MH	72 dBµV 87 dBµV v Chann Hz Hz Mod	le Auto F	[1] [1]	inamenous	5.8	13.17 dBµ\ 375000 GH; 13.78 dBµ\ 725000 GH;
М4 Spect Ref L Att PA 1Pk V 60 dBµ 30 dBµ 20 dBµ 10 dBµ		2 2 67.00 dBµ 0 d	5.72 5.87	€ GHZ 75 GHZ . ms ● V	3.7 3.6 Low BW 1 MH BW 3 MH	72 dBµV 87 dBµV v Chann Hz Hz Mod	le Auto F M2 	[1] [1]	4	5.8	13.17 dBµ\ 375000 GH; 13.78 dBµ\ 725000 GH;
M4 Spect Ref L Att PA 1Pk V 60 dBµ 50 dBµ 40 dBµ 30 dBµ 20 dBµ		2 2 67.00 dBµ 0 d	5.72 5.87		3.7 3.6 Low BW 1 MH BW 3 MH	72 dBµV 87 dBµV v Chann Hz Hz Mod	le Auto F M2 	[1] [1] 	4	5.8	13.17 dBµ\ 375000 GH; 13.78 dBµ\ 725000 GH;
М4 Spect Ref L ● Att РА ● 1Pk V 60 dBµ 50 dBµ 40 dBµ 20 dBµ 10 dBµV 0 dBµV	trum iew@2 v	2 2 67.00 dBµ 0 d	5.72 5.87		3.7 3.6 Low BW 1 MH BW 3 MH	72 dBµV 87 dBµV v Chann Hz Hz Mod	le Auto F M2 	[1] [1] 	4	5.8	13.17 dBµ\ 375000 GH; 13.78 dBµ\ 725000 GH;
М4 Spect Ref L Att PA 1Pk V 60 dBµ 30 dBµ 20 dBµ 10 dBµ	trum iew@2 v	2 2 67.00 dBµ 0 d	5.72 5.87		3.7 3.6 Low BW 1 MH BW 3 MH	72 dBµV 87 dBµV v Chann Hz Hz Mod	le Auto F M2 	[1] [1] 	4	5.8	13.17 dBµ\ 375000 GH; 13.78 dBµ\ 725000 GH;
M4 Spect Ref L Att PA IPk V 60 dBµ 50 dBµ 30 dBµ 20 dBµ 0 dBµV	trum evel	2 2 67.00 dBµ 0 d	5.72 5.87		3.7 3.6 Low BW 1 MH BW 3 MH	72 dBµV 87 dBµV v Chann Hz Hz Mod	le Auto F M2 	[1] [1] 	4	5.8	13.17 dBµ\ 375000 GH; 13.78 dBµ\ 725000 GH;
M4 Spect Ref L Att PA 1Pk V 60 dBµ 30 dBµ 20 dBµ 10 dBµ -10 dBµ -20 dBµ		2 2 67.00 dBµ 0 d	5.72 5.87		3.7 3.6 Low BW 1 MH BW 3 MH	72 dBµV 87 dBµV v Chann Hz Hz Mod	le Auto F M2 	[1] [1] 	4	5.8	13.17 dBµ\ 375000 GH; 13.78 dBµ\ 725000 GH;
Spect Ref L PA 1Pk V 60 dBµ 50 dBµ 40 dBµ 20 dBµ 10 dBµ -10 dBµ -20 dBµ -30 dBµ		2 2 67.00 dBµ 0 d	5.72 5.87		3.7 3.6 Low BW 1 MH BW 3 MH	72 dBµV 87 dBµV v Chann Hz Hz Mod	le Auto F M2 	[1] [1] 	4	5.5	13.17 dBµ\ 375000 GH; 13.78 dBµ\ 725000 GH;
M4 Spect Ref L Att PA 1Pk V 60 dBµ 30 dBµ 20 dBµ 10 dBµ -10 dBµ -20 dBµ Start S		2 2 67.00 dBµ 0 d	5.72 5.87		3.7 3.6 Low BW 1 MH BW 3 MH	72 dBµV 87 dBµV v Chann Hz Hz Mod	le Auto F M2 	[1] [1] 	4	5.5	13.17 dBµ\ 375000 GH; 13.78 dBµ\ 725000 GH;
M4 Spect Ref L Att PA 1Pk V 60 dBµ 30 dBµ 20 dBµV 10 dBµV -10 dBµV -20 dBµ Start 3 Marker		2 2 67.00 dBµ 0 d 2Rm View	5.72 5.87		3.7 3.6 Low BW 1 MH BW 3 MH	72 dBµV 37 dBµV w Chann Hz Hz Mod	le Auto F M2 	[1] [1] 	4	5.5 5.7	13.17 dBµ\ 375000 GHz
M4 Spect Ref L Att PA 1Pk V 60 dBµ 50 dBµ 40 dBµ 20 dBµ 10 dBµ -10 dBµ -30 dBµ Start S Marker Type	trum evel	2 2 67.00 dBµ 0 d 2Rm View	5.72 5.87	Comparison of the second	3.7 3.6 Low BW 1 MH BW 3 MH	72 dBµV 37 dBµV v Chann Hz Hz Hz Mod	le Auto F M2 	[1] [1] 	4	5.5	13.17 dBµ\ 375000 GHz
M4 Spect Ref L Att PA 1Pk V 60 dBµ 40 dBµ 30 dBµV 10 dBµV -20 dBµ -30 dB₁ Start S Marker	trum iewe2	2 2 67.00 dBµ 0 d 2Rm View	5.72 5.87	€ GHZ 25 GHZ 75 GHZ 10 10 10 10 10 10 10 10 10 10	3.7 3.6 Low BW 1 MH BW 3 MH	72 dBµV 37 dBµV v Chann Hz Hz Mod	le Auto F M2 	[1] [1] 	4	5.5 5.7	13.17 dBµ\ 375000 GHz

Ref Leve Att		B 👄 SWT 1 ms								
	●2Rm View									
60 dBµV—						M2	[1]			13.70 dBµV 375000 GHz
00 0000						M1	[1]			13.28 dBµV
50 dBµV—				++				1	5.7	725000 GHz
40 dBµV—						+				
30 dBµV—										
20 dBµV—										
	mound	M1	moland	montheman	man	hum	M2 Mangarant		mountain	howene
10 dBµV—		M3				+	M			
0 dBµV—										
-10 dBµV—	+			<u> </u>						
-20 dBµV—	<u> </u>									
-30 dBµV— Start 5.6				1001	nte				Ct/	p 6.0 GHz
Marker	382			1001	pts				511	эр 6.0 GHz
Type Re	ef Trc	X-value	1	Y-value	1	Functi	on	Fund	tion Result	t
M1	1	5.725 0		13.28 dBµ	IV					
M2 M3	2	5.875 0		13.70 dBµ						
				2 42 dour	0					
M4 Spectrur Ref Leve	2	5.725 (5.875 (GHz	3.43 dBµ' 4.19 dBµ' Middle Cł	IV	el_H				
Spectru	2 m al 67.00 dBµ	5.875 (e RBV	4.19 dBµ Middle Cł	hanne		FT			
Spectrue Ref Leve Att	2 m al 67.00 dBµ	5.875 (e RBV	4.19 dBµ Middle Cł	hanne	Auto F				
Spectrui Ref Leve Att PA 1Pk View	и 1 67.00 dBµ 0 d	5.875 (e RBV	4.19 dBµ Middle Cł	hanne					12.35 dBµV
Spectrue Ref Leve Att	и 1 67.00 dBµ 0 d	5.875 (e RBV	4.19 dBµ Middle Cł	hanne	Auto F	[1]		5.8	
Spectrui Ref Leve Att PA 1Pk View	и 1 67.00 dBµ 0 d	5.875 (e RBV	4.19 dBµ Middle Cł	hanne	Auto F	[1]		5.8	12.35 dBµV 375000 GH2
Spectrui Ref Leve Att PA 1Pk View 60 dBµV—	и 1 67.00 dBµ 0 d	5.875 (e RBV	4.19 dBµ Middle Cł	hanne	Auto F	[1]		5.8	12.35 dBµV 375000 GHz 11.68 dBµV
Spectrui Ref Leve • Att PA • 1Pk View 60 dBµV 50 dBµV 40 dBµV	и 1 67.00 dBµ 0 d	5.875 (e RBV	4.19 dBµ Middle Cł	hanne	Auto F	[1]		5.8	12.35 dBµV 375000 GHz 11.68 dBµV
Spectrui Ref Leve Att PA 1Pk View 60 dBµV- 50 dBµV- 40 dBµV- 30 dBµV-	и 1 67.00 dBµ 0 d	5.875 (e RBV	4.19 dBµ Middle Cł	hanne	Auto F	[1]		5.8	12.35 dBµV 375000 GHz 11.68 dBµV
Spectrui Ref Leve • Att PA • 1Pk View 60 dBµV 50 dBµV 40 dBµV	и 1 67.00 dBµ 0 d	5.875 (V B • SWT 1 ms	SHZ S ● RBV S ● VBV	4.19 dBµ Middle Cł W 1 MHz W 3 MHz N	hanne	Auto F	[1] [1]		5.8	12.35 dBµV 375000 GHz 11.68 dBµV 225000 GHz
Spectrui Ref Leve Att PA 1Pk View 60 dBµV- 50 dBµV- 40 dBµV- 30 dBµV-	и 1 67.00 dBµ 0 d	5.875 (V B • SWT 1 ms	e RBV	4.19 dBµ Middle Cł	hanne	Auto F	[1] [1]	Mumbulat	5.8	12.35 dBµV 375000 GHz 11.68 dBµV 25000 GHz
Spectrui Ref Leve PA ● 1Pk View 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 20 dBµV	и 1 67.00 dBµ 0 d	5.875 (V B • SWT 1 ms	SHZ S ● RBV S ● VBV	4.19 dBµ Middle Cł W 1 MHz W 3 MHz N	hanne	Auto F	[1] [1]	Mumbulat	5.8	12.35 dBµV 375000 GHz 11.68 dBµV 225000 GHz
Spectrui Ref Leve • Att PA • 1Pk View 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV	и 1 67.00 dBµ 0 d	5.875 (V B • SWT 1 ms	SHZ S ● RBV S ● VBV	4.19 dBµ Middle Cł W 1 MHz W 3 MHz N	hanne	Auto F	[1] [1]	Mumbulat	5.8	12.35 dBµV 375000 GHz 11.68 dBµV 225000 GHz
Spectrui Ref Leve PA ● 1Pk View 60 dBµV 50 dBµV 40 dBµV 30 dBµV 20 dBµV 20 dBµV	и 1 67.00 dBµ 0 d	5.875 (V B • SWT 1 ms	SHZ S ● RBV S ● VBV	4.19 dBµ Middle Cł W 1 MHz W 3 MHz N	hanne	Auto F	[1] [1]	Mumbulat	5.8	12.35 dBµV 375000 GHz 11.68 dBµV 225000 GHz
Spectrui Ref Leve Att PA 1Pk View 60 dBµV- 50 dBµV- 40 dBµV- 30 dBµV- 20 dBµV- 10 dBµV- 0 dBµV-	и 1 67.00 dBµ 0 d	5.875 (V B • SWT 1 ms	SHZ S ● RBV S ● VBV	4.19 dBµ Middle Cł W 1 MHz W 3 MHz N	hanne	Auto F	[1] [1]	Mumbulat	5.8	12.35 dBµV 375000 GHz 11.68 dBµV 225000 GHz
Spectrui Ref Leve PA ● 1Pk View 60 dBµV	и 1 67.00 dBµ 0 d	5.875 (V B • SWT 1 ms	SHZ S ● RBV S ● VBV	4.19 dBµ Middle Cł W 1 MHz W 3 MHz N	hanne	Auto F	[1] [1]	Mumbulat	5.8	12.35 dBµV 375000 GHz 11.68 dBµV 225000 GHz
Spectrui Ref Leve PA ● 1Pk View 60 dBµV	2 m el 67.00 dBµ 0 d €2Rm View	5.875 (V B • SWT 1 ms	SHZ S ● RBV S ● VBV	4.19 dBµ Middle Cł W 1 MHz W 3 MHz M	Mode	Auto F	[1] [1]	Mumbulat	5.8 5.7	12.35 dBµV 375000 GH2 11.68 dBµV 25000 GH2
Spectrui Ref Leve PA ● 1Pk View 60 dBµV	2 m el 67.00 dBµ 0 d €2Rm View	5.875 (V B • SWT 1 ms	SHZ S ● RBV S ● VBV	4.19 dBµ Middle Cł W 1 MHz W 3 MHz N	Mode	Auto F	[1] [1]	Mumbulat	5.8 5.7	12.35 dBµV 375000 GHz 11.68 dBµV 225000 GHz
Spectrun Ref Leve Att PA ● 1Pk View 60 dBµV	2 m el 67.00 dBµ 0 d e2Rm View GHz GHz	5.875 (V B • SWT 1 ms	€Hz	4.19 dBµ Middle Ch W 1 MHz W 3 MHz N 	Mode pts	Auto F	[1] [1] 		5.8 5.7	12.35 dBµV 375000 GHz 11.68 dBµV /25000 GHz
Spectrui Ref Leve Att PA ● 1Pk View 60 dBµV	2 m el 67.00 dBµ 0 d €2Rm View GHz GHz	5.875 (V B • SWT 1 ms	SHZ RBV S • VBV	4.19 dBµ Middle Ch W 1 MHz W 3 MHz N 3 MHz N 1001 Y-value 11.68 dBµ	Mode pts	Auto F	[1] [1] 		5.8 5.7	12.35 dBµV 375000 GHz 11.68 dBµV /25000 GHz
Spectrun Ref Leve Att PA ● 1Pk View 60 dBµV	2 m el 67.00 dBµ 0 d e2Rm View GHz GHz	5.875 (V B • SWT 1 ms	SHZ RBY RBY S VBY	4.19 dBµ Middle Ch W 1 MHz W 3 MHz N 	Mode pts	Auto F	[1] [1] 		5.8 5.7	12.35 dBµV 375000 GHz 11.68 dBµV /25000 GHz

👄 Att		0 ď	∨ B ⊜ SWT 1 m		WI1MHz WF3MHz Miot	ode Auto FFT				
PA	lioue	2Rm View								
UPK V	iew e z	2Km view				M1[1]				12.59 dBµV
60 dBµ	~+				+				5.7	725000 GHz
EQ day						M2[1]				14.07 dBµV 375000 GHz
50 dBµ	×						۱۵			
40 dBµ	v—				+		M			
30 dBµ	v—									
20 dBµ	v—		M1	1	+		M2			
10 dBµ	man	monun	www.lowerstan.	moundate	normalensing	mound	w to	whether	mon	mound
10 ash	v—		Ma	3						
0 dBµV	\simeq				+					
-10 dB	-v.									
-20 dB	µv-+		L		+					
-30 dB						•			01	
Start Marker		12			1001 p	its			50	op 6.0 GHz
Туре		Trc	X-value	1	Y-value	Function	1	Fund	tion Resul	t
M1		1	5.725		12.59 dBµ∨					-
M2		1	5.875		14.07 dBµV					
M3 M4		2	5.725 5.875		3.56 dBµ∨ 4.87 dBµ∨					
Spec Ref I	trum				High Char w 1 MHz					
	trum	67.00 dBµ	v	e RB	High Char	nnel_H				
Ref L Att	trum _evel	67.00 dBµ	v	e RB	High Char w 1 MHz	nnel_H				(IIII)
Ref I Att PA	trum _evel /iew@2	67.00 dBµ 0 d	v	e RB	High Char w 1 MHz	nnel_H				12.07 dBµV
Ref I Att	trum _evel /iew@2	67.00 dBµ 0 d	v	e RB	High Char w 1 MHz	nnel_H ode Auto FFT M1[1]			5.7	12.07 dBµV 725000 GHz
Ref I Att PA 1Pk V	trum _evel /iew@2	67.00 dBµ 0 d	v	e RB	High Char w 1 MHz	nnel_H ode Auto FFT			5.7	12.07 dBµV
Ref I ● Att PA ● 1Pk V 60 dBµ 50 dBµ	trum _evel /iew@2	67.00 dBµ 0 d	v	e RB	High Char w 1 MHz	nnel_H ode Auto FFT M1[1]			5.7	12.07 dBµ\ 725000 GHz 13.31 dBµ\
Ref I Att PA PA PA 60 dBµ	trum _evel /iew@2	67.00 dBµ 0 d	v	e RB	High Char w 1 MHz	nnel_H ode Auto FFT M1[1]			5.7	12.07 dBµ\ 725000 GHz 13.31 dBµ\
Ref I ● Att PA ● 1Pk V 60 dBµ 50 dBµ	trum evel /iew@2	67.00 dBµ 0 d	v	e RB	High Char w 1 MHz	nnel_H ode Auto FFT M1[1]			5.7	12.07 dBµ\ 725000 GHz 13.31 dBµ\
Ref I ● Att PA ● 1Pk V 60 dBµ 50 dBµ 40 dBµ 30 dBµ	trum _evel	67.00 dBµ 0 d	v	e RB	High Char w 1 MHz	nnel_H ode Auto FFT M1[1]			5.7	12.07 dBµ\ 725000 GHz 13.31 dBµ\
Ref I ● Att PA ● 1Pk V 60 dBµ 50 dBµ	trum _evel	67.00 dBµ 0 d	V B • SWT 1 m	● RB ms ● VB	High Char W 1 MHz W 3 MHz Mo	nnel_H ode Auto FFT M1[1]			5.5	12.07 dBµ\ 725000 GHz 13.31 dBµ\ 375000 GHz
Ref I ● Att PA ● 1Pk V 60 dBµ 50 dBµ 40 dBµ 30 dBµ	trum evel View@2 VV	67.00 dBµ 0 d	۷ B SWT 1 m	■ RB ms ■ VB	High Char w 1 MHz	nnel_H ode Auto FFT M1[1]		ulma	5.5	12.07 dBµ\ 725000 GHz 13.31 dBµ\ 375000 GHz
Ref I ▲ Att PA ● 1Pk V 60 dBµ 50 dBµ 40 dBµ 30 dBµ 20 dBµ 10 dBµ	trum Level	67.00 dBµ 0 d	V B ● SWT 1 m	■ RB ms ■ VB	High Char W 1 MHz W 3 MHz Mo	nnel_H ode Auto FFT M1[1]		ulur	5.5	12.07 dBµ\ 725000 GHz 13.31 dBµ\ 375000 GHz
Ref I ● Att PA ● 1Pk V 60 dBµ 50 dBµ 40 dBµ 30 dBµ 20 dBµ	trum Level	67.00 dBµ 0 d	۷ B SWT 1 m	■ RB ms ■ VB	High Char W 1 MHz W 3 MHz Mo	nnel_H ode Auto FFT M1[1]		Mimalan	5.5	12.07 dBµ\ 725000 GHz 13.31 dBµ\ 375000 GHz
Ref I ▲ Att PA ● 1Pk V 60 dBµ 50 dBµ 40 dBµ 30 dBµ 20 dBµ 10 dBµ 0 dBµV	trum evel liew 22	67.00 dBµ 0 d	۷ B SWT 1 m	■ RB ms ■ VB	High Char W 1 MHz W 3 MHz Mo	nnel_H ode Auto FFT M1[1]		Juralas	5.5	12.07 dBµ\ 725000 GHz 13.31 dBµ\ 375000 GHz
Ref I ● Att PA ● 1Pk V 60 dBµ 50 dBµ 40 dBµ 20 dBµ 10 dBµ	trum evel liew 22	67.00 dBµ 0 d	۷ B SWT 1 m	■ RB ms ■ VB	High Char W 1 MHz W 3 MHz Mo	nnel_H ode Auto FFT M1[1]		winghay	5.5	12.07 dBµ\ 725000 GHz 13.31 dBµ\ 375000 GHz
Ref I ▲ Att PA ● 1Pk V 60 dBµ 50 dBµ 40 dBµ 30 dBµ 20 dBµ 10 dBµ 0 dBµV		67.00 dBµ 0 d	۷ B SWT 1 m	■ RB ms ■ VB	High Char W 1 MHz W 3 MHz Mo	nnel_H ode Auto FFT M1[1]		ulma	5.5	12.07 dBµ\ 725000 GHz 13.31 dBµ\ 375000 GHz
Ref I Att PA 1Pk V 60 dBµ 50 dBµ 40 dBµ 20 dBµ 20 dBµ 10 dBµ -10 dB -20 dB		67.00 dBµ 0 d	۷ B SWT 1 m	■ RB ms ■ VB	High Char W 1 MHz W 3 MHz Mo	nnel_H ode Auto FFT M1[1]		ulma	5.5	12.07 dBµ\ 725000 GHz 13.31 dBµ\ 375000 GHz
Ref I Att PA 1Pk V 60 dBµ 50 dBµ 40 dBµ 20 dBµ 20 dBµ 10 dBµ 0 dBµV -10 dB -20 dB		67.00 dBµ 0 d 2Rm View	۷ B SWT 1 m	■ RB ms ■ VB	High Char	nnel_H			5.: 5.:	12.07 dBµ\ 725000 GH2 13.31 dBµ\ 375000 GH2
Ref I Att PA 1Pk V 60 dBµ 50 dBµ 40 dBµ 20 dBµ 20 dBµ 10 dBµ 0 dBµV -10 dB -20 dB -20 dB Start		67.00 dBµ 0 d 2Rm View	۷ B SWT 1 m	■ RB ms ■ VB	High Char W 1 MHz W 3 MHz Mo	nnel_H			5.: 5.:	12.07 dBµ\ 725000 GHz 13.31 dBµ\ 375000 GHz
Ref I ● Att PA ● 1Pk V 60 dBµ 50 dBµ 40 dBµ 20 dBµ 20 dBµ 10 dBµ 0 dBµV -10 dB -20 dB -20 dB Start 3 Market		67.00 dBµ 0 d 2Rm View	۷ B SWT 1 m	■ RB ms ■ VB	High Char	nnel_H			5.: 5.:	12.07 dBµV 725000 GHz 13.31 dBµV 875000 GHz
Ref I ● Att PA ● 1Pk V 60 dBµ 50 dBµ 40 dBµ 20 dBµ 20 dBµ 10 dBµ -10 dB -20 dB -20 dB -30 dB Start Marken Type 	trum .evel //iew@/ ///////////////////////////////////	67.00 dBµ 0 d 2Rm View	V B SWT 1 m	RB VB	High Char W 1 MHz W 3 MHz Mo	nnel_H			5.: 5.:	12.07 dBµV 725000 GHz 13.31 dBµV 875000 GHz
Ref I ● Att PA ● 1Pk V 60 dBµ 50 dBµ 40 dBµ 20 dBµ 20 dBµ 10 dBµ -10 dBµ -20 dB -20 dB -20 dB Start I Markei Type	trum 	67.00 dBµ 0 d 2Rm View	۷ B • SWT 1 m	RB VB	High Char W 1 MHz W 3 MHz Ma	nnel_H			5.: 5.:	12.07 dBµV 725000 GHz 13.31 dBµV 875000 GHz

9. LIST OF TEST EQUIPMENT

Model Number	Manufacturer	Description	Serial Number	Last Cal.(Interval)
FSV40-N	Rohde & Schwarz	Signal Analyzer	102177	Apr. 21, 2020 (1Y)
ESW	Rohde & Schwarz	EMI Test Receiver	101851	Mar. 27, 2020 (1Y)
310N	Sonoma Instrument	Pre-Amplifier	312544	Mar. 16, 2020 (1Y)
BBV 9718 B	Schwarzbeck	Broadband Preamplifier	00009	Mar. 16, 2020 (1Y)
SCU40A	Rohde & Schwarz	Signal Conditioning unit	100436	Feb. 20, 2020 (1Y)
SCU18	Rohde & Schwarz	Signal Conditioning unit	102266	Jul. 15, 2020 (1Y)
DT3000-3t	Innco System	Turn Table	DT3000/093	N/A
MA-4000XPET	Innco System	Antenna Master	MA4000/509	N/A
VULB9163	Schwarzbeck	TRILOG Broadband Antenna	777	Apr. 08, 2020 (2Y)
BBHA 9120D	Schwarzbeck	Horn Antenna	9120D-1366	Jul. 23, 2020 (1Y)
BBHA9170	Schwarzbeck	Horn Antenna	BBHA9170178	Jan. 07, 2020(1Y)
FMZB1513	Schwarzbeck	Active Loop Antenna	1513-235	Oct.28.2020(2Y)