

ber: F690501/RF-RTL009894

TEST REPORT

of

FCC Part 15 Subpart E §15.407

FCC ID: A3LWIDT30Q

Equipment Under Test	1	WiFi Module
Model Name	:	WIDT30Q
Applicant	;	Samsung Electronics Co., Ltd.
Manufacturer#1	:	Wisol Co., Ltd.
Manufacturer#2	:	Wisol Hanoi Co., Ltd.
Date of Test(s)	:	2016.05.30 ~ 2016.06.01
Date of Issue	:	2016.06.01

In the configuration tested, the EUT complied with the standards specified above.

Tested By:

Date:

2016.06.01

Patrick Kang

Alvin Kim

Approved By:

Date:

2016.06.01

 The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

 RTT5041-20(2015.10.01)(3)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm x 297 mm)

Table of contents

1. General information	3
2. Transmitter radiated spurious emissions	9
3. 26 dB Bandwidth	20
4. 6 dB Bandwidth	26
5. Maximum Conducted Output Power	32
6. Peak Power Spectral Density	37
7. AC Power Line Conducted Emission	48
8. Antenna Requirement	52

1. General information

1.1. Testing laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

- Wireless Div. 2FL, 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx.

Telephone : +82 31 688 0901 FAX : +82 31 688 0921

1.2. Details of applicant

Applicant	:	Samsung Electronics Co., Ltd.
Address	:	129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Republic of Korea
Contact Person	:	Cho, Min-Hyeong
Phone No.	:	+82 31 277 2688

1.3. Description of EUT

Kind of Product		WiFi Module		
Model Name		WIDT30Q		
Power Supply		DC 5.0 V		
Frequency Ran	ige	5 745 Mz ~ 5 825 Mz (Band 3: 11a/n_HT20), 5 755 Mz ~ 5 795 Mz (Band 3: 11n_HT40)		
Modulation Teo	chnique	OFDM		
Number of Cha	nnels	5 channels (Band 3: 11a/n_HT20), 2 channels (Band 3: 11n_HT40)		
Antenna Type		Fixed type (MIMO - 2 Tx / 2 Rx)		
Port#0		5 745 MHz ~ 5 825 MHz: 1.35 dB i		
Antenna Gain	Port#1	5 745 MHz ~ 5 825 MHz: -0.90 dB i		

1.4. Declaration by the manufacturer

- The device supports 2.4 GHz WLAN and 5 GHz WLAN (Band 1, Band 2A, Band 2C and Band 3).

- There is no increase in authorized power for UNII bands (Band 1, 2A, 2C and 3) compared to original output power.

1.5. Test equipment list

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Interval	Cal. Due
Signal Generator	Agilent	E8257D	MY51501169	Jul. 13, 2015	Annual	Jul. 13, 2016
Signal Generator	R&S	SMBV100A	255834	Jun. 22, 2015	Annual	Jun. 22, 2016
Spectrum Analyzer	R&S	FSV30	103100	Jun. 22, 2015	Annual	Jun. 22, 2016
Spectrum Analyzer	Agilent	N9020A	MY53421758	Sep. 24, 2015	Annual	Sep. 24, 2016
Power Meter	Anritsu	ML2495A	1223004	Jun. 08, 2015	Annual	Jun. 08, 2016
Power Sensor	Anritsu	MA2411B	1207272	Jun. 08, 2015	Annual	Jun. 08, 2016
Attenuator	MCLI	FAS-12-10	1	Jun. 09, 2015	Annual	Jun. 09, 2016
Low Pass Filter	Mini-Circuits	NLP-1200+	V 8979400903-2	Feb. 29, 2016	Annual	Feb. 28, 2017
High Pass Filter	Wainwright Instrument GmbH	WHKX6.0/18G-10SS	51	Jun. 23, 2015	Annual	Jun. 23, 2016
High Pass Filter	Wainwright Instrument GmbH	WHNX7.5/26.5G-6SS	15	Jun. 23, 2015	Annual	Jun. 23, 2016
Preamplifier	H.P.	8447F	2944A03909	Aug. 27, 2015	Annual	Aug. 27, 2016
Preamplifier	R&S	SCU-18	10117	Apr. 07, 2016	Annual	Apr. 07, 2017
Preamplifier	TESTEK	TK-PA1840H	130016	Sep. 29, 2015	Annual	Sep. 29, 2016
Loop Antenna	Schwarzbeck Mess-Elektronik	FMZB 1519	1519-039	Aug. 19, 2015	Biennial	Aug. 19, 2017
Bilog Antenna	Schwarzbeck Mess-Elektronik	VULB9163	396	Jun. 18, 2015	Biennial	Jun. 18, 2017
Horn Antenna	R&S	HF906	100326	Feb. 01, 2016	Biennial	Feb. 01, 2018
Horn Antenna	Schwarzbeck Mess-Elektronik	BBHA 9170	BBHA9170223	Sep. 01, 2014	Biennial	Sep. 01, 2016
Antenna Master	INN-CO GmbH	MM4000	N/A	N.C.R.	N/A	N.C.R.
Turn Table	INN-CO GmbH	DS 1200 S	N/A	N.C.R.	N/A	N.C.R.
Test Receiver	R&S	ESU26	100109	Mar. 07, 2016	Annual	Mar. 07, 2017
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	N/A	N.C.R.	N/A	N.C.R.
Test Receiver	R&S	ESCI 7	100911	Dec. 22, 2015	Annual	Dec. 22, 2016
Two-Line V-Network	R&S	ENV216	100190	Dec. 21, 2015	Annual	Dec. 21, 2016
Shield Room	SY Corporation	L × W × H (6.5 m × 3.5 m × 3.5 m)	N/A	N.C.R.	N/A	N.C.R.

1.6. Summary of test result

The EUT has been tested according to the following specifications:

APPLIED STANDARD : FCC Part 15 Subpart E								
Standard section	Test Item	Result						
15.205(a) 15.209(a) 15.407(b)(4)	Transmitter radiated spurious emissions	Complied						
15.407(a)	26 dB Bandwidth	Complied						
15.407(e)	6 dB Bandwidth	Complied						
15.407(a)(3)	Maximum Conducted Output Power	Complied						
15.407(a)(3)	Peak Power Spectral Density	Complied						
15.207	AC Power Line Conducted Emission	Complied						

1.7. Test Procedure(s)

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (ANSI C63.10-2009) and the guidance provided in KDB 789033 D02 v01r02 were used in the measurement of the DUT.

1.8. Sample calculation

Where relevant, the following sample calculation is provided:

1.8.1. Conducted test

Offset value (dB) = Attenuator (dB) + Cable loss (dB)

1.8.2. Radiation test

Field strength level (dB/J/m) = Measured level (dB/J) + Antenna factor (dB) + Cable loss (dB) - Amplifier gain (dB)

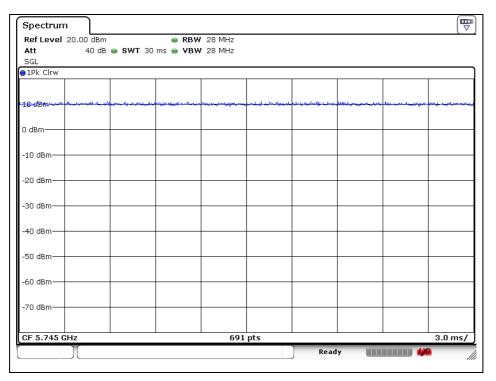
1.9. Test report revision

Revision	Report number	Date of Issue	Description		
0	F690501/RF-RTL009894	2016.06.01	Initial		

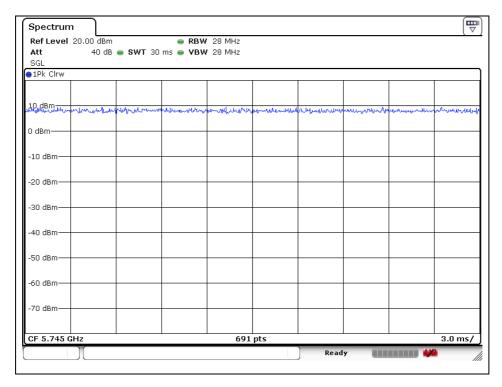
1.10 Duty Cycle of EUT

Regarding to KDB 558074 D01_v03r05, 6.0, the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below.

Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.


Mode	Data Rate (Mbps)								
11a	6	9	12	18	24	36	48	54	
Duty Cycle (%)	100	100	100	100	100	100	100	100	
Correction factor (dB)	0	0	0	0	0	0	0	0	
11n_HT20	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
Duty Cycle (%)	100	100	100	100	100	100	100	100	
Correction factor (dB)	0	0	0	0	0	0	0	0	
11n_HT20	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15	
Duty Cycle (%)	100	100	100	100	100	100	100	100	
Correction factor (dB)	0	0	0	0	0	0	0	0	
11n_HT40	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
Duty Cycle (%)	100	100	100	100	100	100	100	100	
Correction factor (dB)	0	0	0	0	0	0	0	0	
11n_HT40	MCS8	MCS9	MCS10	MCS11	MCS12	MCS13	MCS14	MCS15	
Duty Cycle (%)	100	100	100	100	100	100	100	100	
Correction factor (dB)	0	0	0	0	0	0	0	0	

Remark:


- 1. As measured duty cycles of EUT, all of mode and data rate keep constant period and are converted to log scale (power averaging) to compensate correction factor to result of average test items.
- 2. Duty cycle (%) = (Tx on time / Tx on + off time) x 100
- 3. Correction factor (dB) = 10 log (1 / Duty cycle)

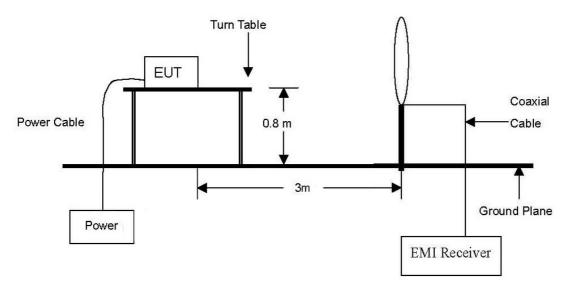
OFDM : 802.11a

OFDM : 802.11n_HT20

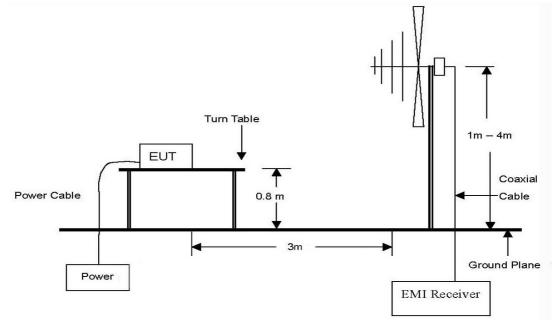
The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This testreport cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807http://www.sgsgroup.kr

OFDM : 802.11n_HT40

Att 4 SGL	0 dB 👄 SWT 3	0 ms 👄 VBW	/ 28 MHz					
1Pk Clrw								
LO dBm								
J dBm	Munumbrut	mollower	thermundult	mundance	doutentration	number	hummente	ululportugetor
10 dBm								
20 dBm								
30 dBm								
40 dBm								
50 dBm								
60 dBm								
70.10								
70 dBm								
CF 5.755 GHz			691					3.0 ms/

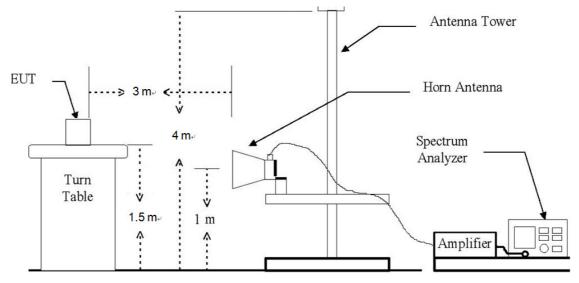


2. Transmitter radiated spurious emissions


2.1. Test setup

2.1.1. Transmitter Radiated Spurious Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 $\,\rm klz$ to 30 $\,\rm Mz\,$ Emissions.



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 $\mathbb{G}_{\mathbb{Z}}$ Emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated form 1 Gz to the 10th harmonic of the highest fundamental frequency or 40 Gz, whichever is lower.

2.2. Limit

FCC §15.407(4)(i)

All emissions shall be limited to a level of -27 dB m/Mt at 75 Mt or more above or below the band edge increasing linearly to 10 dB m/Mt at 25 Mt above or below the band edge, and from 25 Mt above or below the band edge increasing linearly to a level of 15.6 dB m/Mt at 5 Mt above or below the band edge, and from 5 Mt above or below the band edge increasing linearly to a level of 27 dB m/Mt at 5 Mt above or below the band edge.

FCC §15.209(a)

Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (脈)	Distance (Meters)	Field Strength (dBµV/m)	Field Strength (µN/m)
0.009 - 0.490	300	20 log (2 400/F(\lz))	2 400/F(kHz)
0.490 - 1.705	30	20 log (24 000/F(klz))	24 000/F(kHz)
1.705 - 30.0	30	29.54	30
30 - 88	3	40.0	100**
88 - 216	3	43.5	150**
216 - 960	3	46.0	200**
Above 960	3	54.0	500

2.3. Test procedures

Radiated spurious emissions from the EUT were measured according to the dictates in section G of KDB 789033 D02 v01r02 and ANSI C63.10-2009.

Remark:

Testing for radiated emissions above 1 GHz was performed with the EUT elevated at 1.5 m instead of 0.8 m. 1.5 m is the required height in ANSI C63.10:2013 as referenced by RSS-GEN issue 4. This test height has been permitted by FCC as discussed in FCC-TCB conference call in December 2014.

2.3.1. Test Procedures for emission below 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum Hold Mode.

2.3.2. Test Procedures for emission from above 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site below 1 GHz and 1.5 meters above the ground at a 3 meter anechoic chamber test site above 1 GHz. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a bi-log antenna, a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE;

All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

- The measurements for below 1 \times refer to section II.G.4. Compliance shall be demonstrated using CISPR quasi-peak detection; however, peak detection is permitted as an alternative to quasi-peak detection.

- The measurements for above 1 GHz II.G.5.

Peak emission levels are measured by setting the analyzer as follows: Set to RBW = 1 Mi₂, VBW ≥ 3 Mi₂, Detector = Peak, Sweep time = auto, Trace mode= Max hold

- The measurements for above 1 GHz II.G.6.

Average emission levels are measured by setting the analyzer as follows:

Set to RBW = 1 MHz, VBW \geq 3 MHz, Detector = power averaging (rms), Averaging type = power averaging (rms), Sweep time = auto, Perform a trace average of at least 100 traces If the transmission is continuous, If the transmission is not continuous, the number of traces shall be increased by a factor of 1/x, where x is the duty cycle. For example, with 50 % duty cycle, at least 200 traces shall be averaged.

If tests are performed with the EUT transmitting at a duty cycle less than 98 %, a correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 % duty cycle. The correction factor is computed as follows:

- If power averaging (rms) mode was used in step (iv) above, the correction factor is 10 log (1/x), where x is the duty cycle. For example, if the transmit duty cycle was 50 %, then 3 dB must be added to the measured emission levels.
- If a specific emission is demonstrated to be continuous (100 % duty cycle) rather than turning on and off with the transmit cycle, no duty cycle correction is required for that emission.
- To get a maximum emission level from the EUT, the EUT is manipulated through three orthogonal planes (X, Y, Z). Worst orthogonal plan of EUT is <u>X axis</u> during radiation test.

2.4. Test result

Ambient temperature	:	(23	± 1) ℃
Relative humidity	:	47	% R.H.

2.4.1. Radiated Spurious Emission below 1 000 Mb

The frequency spectrum from 9 klz to 1 000 Mz was investigated. All reading values are peak values.

Radi	ated Emissio	ns	Ant.	Correctio	n Factors	Total	Lim	it
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
123.69	50.40	Peak	н	11.23	-26.32	35.31	43.50	8.19
136.66	47.90	Peak	V	8.54	-26.19	30.25	43.50	13.25
137.39	53.90	Peak	н	9.80	-26.18	37.52	43.50	5.98
144.82	48.40	Peak	V	8.18	-26.12	30.46	43.50	13.04
145.55	55.80	Peak	н	9.40	-26.12	39.08	43.50	4.42
206.66	46.90	Peak	н	11.64	-25.63	32.91	43.50	10.59
208.12	43.20	Peak	V	12.08	-25.62	29.66	43.50	13.84
235.52	44.80	Peak	н	12.83	-25.41	32.22	46.00	13.78
383.73	42.00	Peak	н	16.52	-25.35	33.17	46.00	12.83
456.68	38.90	Peak	н	17.71	-25.63	30.98	46.00	15.02
960.03	37.50	Peak	Н	23.48	-23.68	37.30	54.00	16.70

Remark:

- 1. Spurious emissions for all channels and modes were investigated and almost the same below 1 GHz.
- 2. Reported spurious emissions are in <u>11n HT20 (Band 3) / MCS8 / high channel</u> as worst case among other modes.
- Radiated spurious emission measurement as below.
 (Actual = Reading + AF + AMP + CL)
- 4. According to §15.31(o), emission levels are not report much lower than the limits by over 20 dB.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This testreport cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807http://www.sgsgroup.kr

RTT5041-20(2015.10.01)(3)

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

2.4.2. Radiated Spurious Emission above 1 000 Mb

802.11a (Band 3)_6 Mbps - ANT0

A. Low Channel (5 745 Mtz)

Radiated Emissions		Ant.	Correctio	on Factors	Total	Limi	it	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5 724.30	50.87	Peak	н	34.23	8.59	93.69	120.63	26.94

Radi	Radiated Emissions			Correction Factors		Total	Lim	it
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*11 489.60	43.35	Peak	V	38.44	-26.17	55.62	74.00	18.38
*11 490.00	34.18	Average	V	38.44	-26.17	46.45	54.00	7.55
Above 11 500.00	Not detected	-	-	-	-	-	-	-

B. Middle Channel (5 785 Mtz)

Radi	Radiated Emissions			Ant. Correction Factors		Total	Lim	it
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*11 571.60	47.02	Peak	V	38.43	-25.70	59.75	74.00	14.25
*11 570.70	37.59	Average	V	38.43	-25.71	50.31	54.00	3.69
Above 11 600.00	Not detected	-	-	-	-	-	-	-

C. High Channel (5 825 Mz)

Radiated Emissions			Ant.	Correctio	on Factors	Total	Limi	it
Frequency (胍)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
5 850.45	41.16	Peak	Н	34.43	8.61	84.20	121.20	37.00

Radi	Radiated Emissions			Correction Factors		Total	Lim	Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)	
*11 650.30	45.67	Peak	V	38.40	-25.74	58.33	74.00	15.67	
*11 649.10	36.15	Average	V	38.41	-25.73	48.83	54.00	5.17	
Above 11 700.00	Not detected	-	-	-	-	-	-	-	

802.11a (Band 3)_6 Mbps - ANT1

A. Low Channel (5 745 Mtz)

Radi	Radiated Emissions		Ant.	Correctio	on Factors	Total	Limi	t
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/ m)	CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
5 724.55	46.58	Peak	н	34.23	8.59	89.40	121.20	31.80

Radi	Radiated Emissions			Correction Factors		Total	Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*11 490.00	46.28	Peak	V	38.44	-26.17	58.55	74.00	15.45
*11 489.10	35.99	Average	V	38.44	-26.18	48.25	54.00	5.75
Above 11 500.00	Not detected	-	-	-	-	-	-	-

B. Middle Channel (5 785 Mz)

Radi	Radiated Emissions			Ant. Correction Factors		Total	Lim	it
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*11 572.10	47.98	Peak	V	38.43	-25.70	60.71	74.00	13.29
*11 571.80	36.67	Average	V	38.43	-25.70	49.40	54.00	4.60
Above 11 600.00	Not detected	-	-	-	-	-	-	-

C. High Channel (5 825 Mz)

Radi	Radiated Emissions			Correctio	on Factors	Total	Limi	it
Frequency	Reading	Detect	Pol.	AF	AMP+CL	Actual	Limit	Margin
(MHz)	(dBµV)	Mode	FUI.	(dB/m)	(dB)	(dBµN/ m)	(dBµV/ m)	(dB)
5 850.00	27.02	Peak	н	34.43	8.61	70.06	122.23	52.17

Radi	Radiated Emissions			Correction Factors		Total	Limit	
Frequency (Mbz)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*11 653.90	46.36	Peak	V	38.40	-25.75	59.01	74.00	14.99
*11 651.30	37.48	Average	V	38.40	-25.75	50.13	54.00	3.87
Above 11 700.00	Not detected	-	-	-	-	-	-	-

802.11n_HT20 (Band 3)_MCS8 - ANT0+1

A. Low Channel (5 745 Mtz)

Radi	Radiated Emissions			Correctio	n Factors	Total	Lim	it
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5 724.90	44.16	Peak	Н	34.23	8.59	86.98	122.00	35.02

Radi	Radiated Emissions			Ant. Correction Factors		Total Limit		it
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*11 490.90	44.70	Peak	V	38.44	-26.18	56.96	74.00	17.04
*11 491.10	35.06	Average	V	38.44	-26.18	47.32	54.00	6.68
Above 11 500.00	Not detected	-	-	-	-	-	-	-

B. Middle Channel (5 785 Mtz)

Radiated Emissions			Ant.	Correction Factors		Total	Limit	
Frequency (畑)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*11 570.90	45.66	Peak	V	38.43	-25.70	58.39	74.00	15.61
*11 570.80	36.52	Average	V	38.43	-25.71	49.24	54.00	4.76
Above 11 600.00	Not detected	-	-	-	-	-	-	-

C. High Channel (5 825 Mtz)

Radiated Emissions		Ant.	Correction Factors		Total	Limit		
Frequency (畑)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/ m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
5 850.08	33.89	Peak	н	34.43	8.61	76.93	122.05	45.12

Radiated Emissions			Ant.	Correctio	on Factors	Total	Limit	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	AMP+CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*11 650.50	44.20	Peak	V	38.40	-25.74	56.86	74.00	17.14
*11 653.10	34.20	Average	V	38.40	-25.76	46.84	54.00	7.16
Above 11 700.00	Not detected	-	-	-	-	-	-	-

802.11n_HT40 (Band 3)_MCS8 - ANT0+1

A. Low Channel (5 755 Mtz)

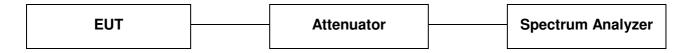
Radiated Emissions		Ant.	Correction Factors		Total	Limit		
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
5 720.18	44.37	Peak	Н	34.22	8.61	87.20	111.24	24.04

Radiated Emissions			Ant.	Correctio	on Factors	Total	Limit	
Frequency (M脸)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*11 507.10	39.67	Peak	V	38.45	-26.18	51.94	74.00	22.06
*11 511.60	30.28	Average	V	38.45	-26.14	42.59	54.00	11.41
Above 11 600.00	Not detected	-	-	-	-	-	-	-

B. High Channel (5 795 Mtz)

Radiated Emissions		Ant.	Correction Factors		Total	Lim	it	
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
5 850.22	25.41	Peak	Н	34.43	8.61	68.45	121.73	53.28

Radiated Emissions			Ant.	Correctio	on Factors	Total	Limit	
Frequency (畑)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/ m)	AMP+CL (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
*11 590.70	41.28	Peak	V	38.42	-25.56	54.14	74.00	19.86
*11 590.90	31.47	Average	V	38.42	-25.55	44.34	54.00	9.66
Above 11 600.00	Not detected	-	-	-	-	-	-	-


Remark:

- 1. "*" means the restricted band.
- Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using Peak / average detector mode if frequency was in restricted band. Otherwise the frequency was out of restricted band, only peak detector should be used.
- 3. Band edge measurement. (Actual = Reading + AF + CL)
- 4. Radiated spurious emission measurement. (Actual = Reading + AF + AMP + CL)
- 5. If the frequency was out of restricted band, the calculation method for peak limit is same as below. $68.23 \text{ dB}_{\mu}\text{V/m} = \text{EIRP} - 20 \log(d) + 104.77 = -27 - 20 \log(3) + 104.77$
- 6. In case of the emissions within ± 75 Mb from band edge of band 3, limit should be adjusted to emission mask of 15.407(4)(i).

3.26 dB Bandwidth

3.1. Test setup

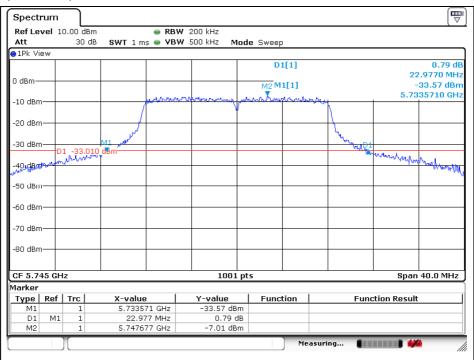
3.2. Test procedure

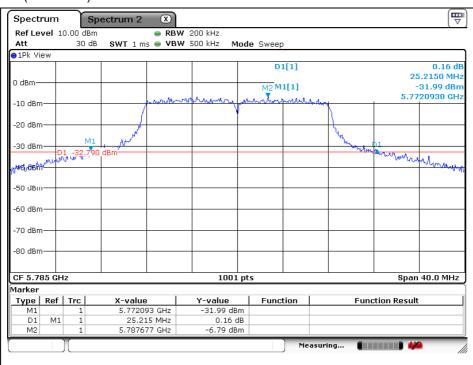
All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

- 1. This measurement settings are specified in section C.1 of KDB 789033 D02 v01r02.
- 2. Set RBW : approximately 1 % of the emission bandwidth.
- 3. Set the VBW > RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 6. Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1 %.

3.4. Test result

Ambient temperature	:	(23	± 1) ℃
Relative humidity	:	47	% R.H.

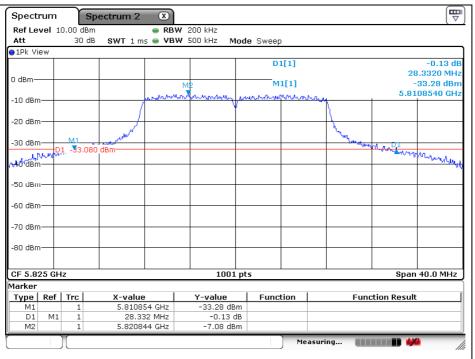

Band	Mode	Frequency (Mb)	Ch.	Data Rate (Mbps)	26 dB Bandwidth (Mb)
		5 745	149	6	22.98
	11a	5 785	157	6	25.22
		5 825	165	6	28.33
U-NII 3		5 745	149	MCS8	22.54
0-1411 0	11n_HT20	5 785	157	MCS8	22.46
		5 825	165	MCS8	22.90
	11n_HT40	5 755	151	MCS8	47.77
	1111_11140	5 795	159	MCS8	48.47


$26 \ \mathrm{dB} \ Bandwidth$

802.11a (Band 3)

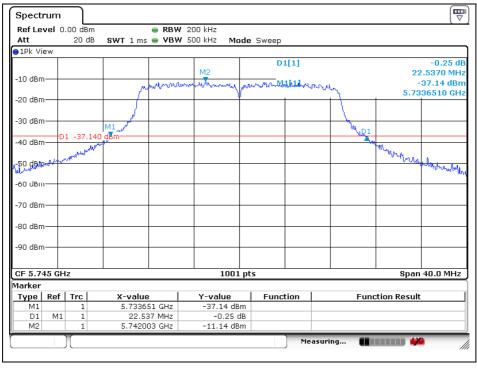
Low Channel (5 745 MHz)

Middle Channel (5 785 MHz)


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

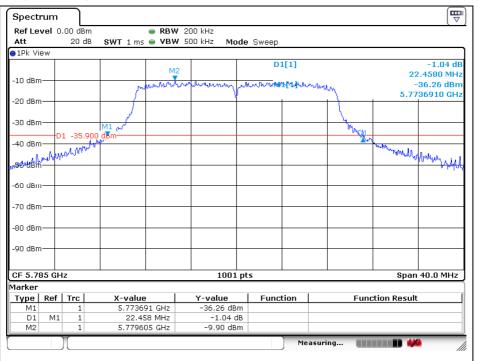
 RTT5041-20(2015.10.01)(3)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm × 297 mm)



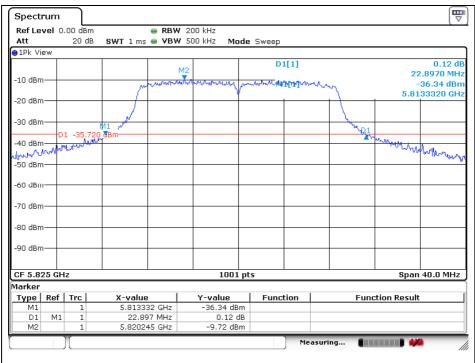
High Channel (5 825 MHz)

802.11n_HT20 (Band 3)

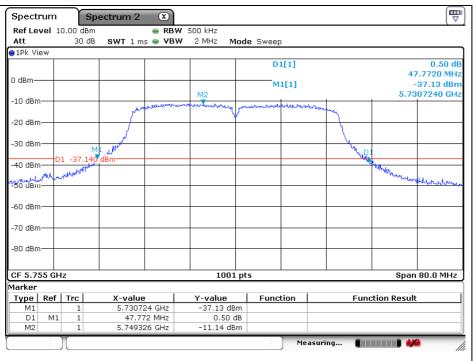
Low Channel (5 745 Mtz)

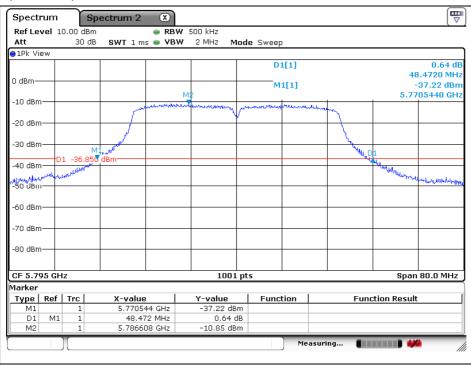

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This testreport cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807<u>http://www.sgsgroup.kr</u>

RTT5041-20(2015.10.01)(3)


Tel. +82 31 428 5700 / Fax. +82 31 427 2370

Middle Channel (5 785 MHz)


High Channel (5 825 Mtz)



802.11n_HT40 (Band 3)

Low Channel (5 755 Mtz)

High Channel (5 795 Mtz)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <u>http://www.sgsgroup.kr</u>

RTT5041-20(2015.10.01)(3)

Tel. +82 31 428 5700 / Fax. +82 31 427 2370

4.6 dB Bandwidth

4.1. Test setup

4.2. Limit

FCC §15.407(e)

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

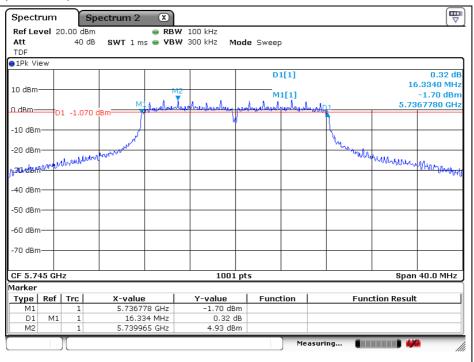
4.3. Test procedure

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

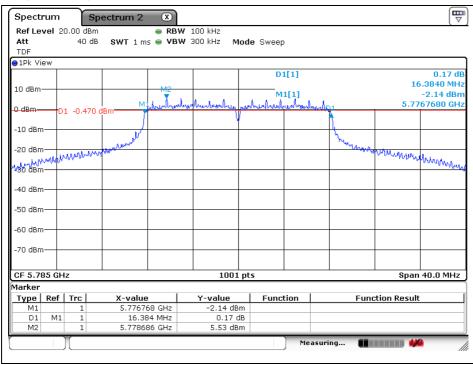
- 1. This measurement settings are specified in section C.2 of KDB 789033 D02 v01r02.
- 2. Set RBW : 100 ktz.
- 3. Set the video bandwidth (VBW) \ge 3 x RBW.
- 4. Detector = Peak.
- 5. Trace mode = max hold.
- 6. Sweep = auto couple.
- 7. Allow the trace to stabilize.

8. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.4. Test result

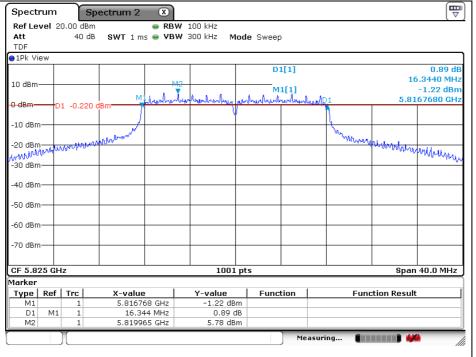

Ambient temperature	:	(23	±1) ℃
Relative humidity	:	47	% R.H.

Band	Mode	Frequency (Mb)	Ch.	Data Rate (Mbps)	6 dB Bandwidth (MEz)	Minimum Bandwidth (朏)
		5 745		6	16.33	500
	11a 5 785		157	6	16.38	500
		5 825	165	6	16.34	500
U-NII 3	11n_HT20	5 745	149	MCS8	17.50	500
0-1111 0		5 785	157	MCS8	17.50	500
		5 825	165	MCS8	17.50	500
	11n HT40	5 755	151	MCS8	35.79	500
	1111_11140	5 795	159	MCS8	36.00	500



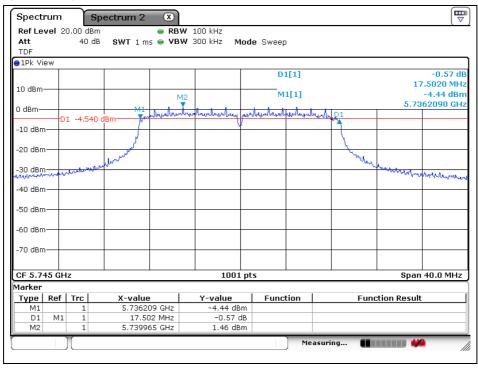
802.11a (Band 3)

Middle Channel (5 785 Mtz)


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

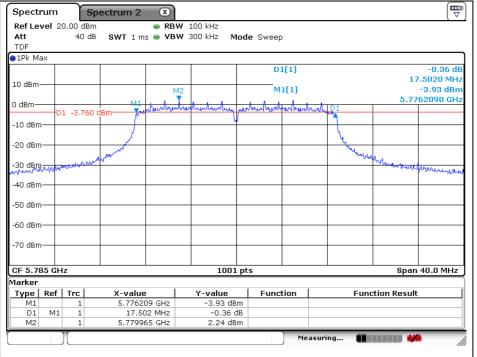
 RTT5041-20(2015.10.01)(3)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm × 297 mm)



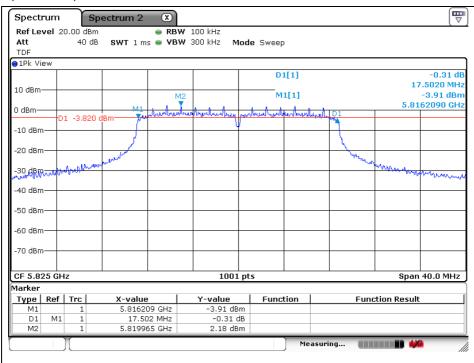
High Channel (5 825 Mlz)

802.11n_HT20 (Band 3)

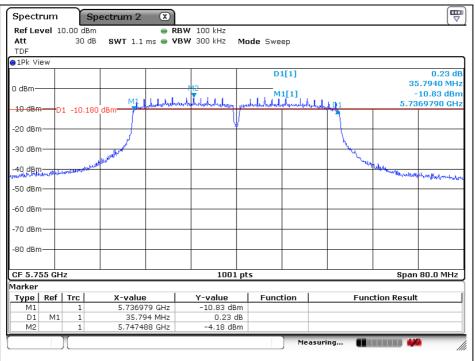
Low Channel (5 745 Mtz)

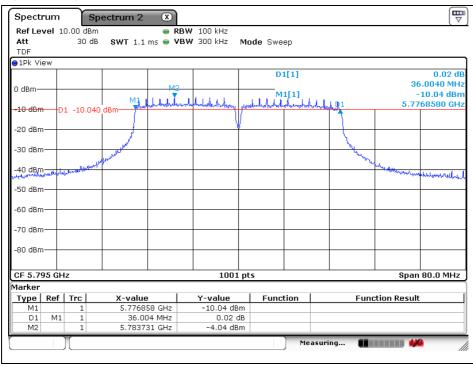

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This testreport cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807http://www.sgsgroup.kr

RTT5041-20(2015.10.01)(3)


Tel. +82 31 428 5700 / Fax. +82 31 427 2370

Middle Channel (5 785 Mtz)


High Channel (5 825 MHz)

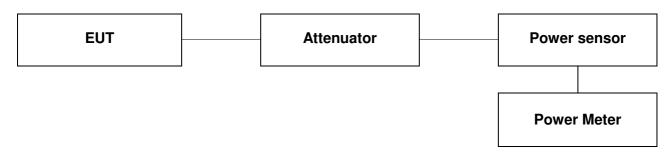


802.11n_HT40 (Band 3)

Low Channel (5 755 MHz)

High Channel (5 795 MHz)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.


 SGS Korea Co., Ltd. (Gunpo Laboratory)
 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
 http://www.sgsgroup.kr

 RTT5041-20(2015.10.01)(3)
 Tel. +82 31 428 5700 / Fax. +82 31 427 2370
 A4(210 mm × 297 mm)

5. Maximum Conducted Output Power

5.1. Test setup

5.2. Limit

FCC §15.407(a)(3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dB m in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dB i are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dB i. However, fixed point-to point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dB i without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

5.3. Test procedure

- 1. This measurement settings are specified in section E.3.a of KDB 789033 D02 v01r02.
- 2. Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the conditions listed below are satisfied.
 - The EUT is configured to transmit continuously or to transmit with a consistent duty cycle.
 - At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
 - The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- 3. If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in section II.B.
- 4. Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- 5. Adjust the measurement in dB m by adding 10 log (1/x) where x is the duty cycle (e.g., 10 log(1/0.25) if the duty cycle is 25 percent).

5.4. Test result

Ambient temperature	:	(23	± 1) ℃
Relative humidity	:	47	% R.H.

- 11a

	U-NII 3				C	onducted I	Power (dB i	n)		
						Data Rat	e [Mbps]			
		(MEz)	6	9	12	18	24	36	48	54
	Mea. average	5 745	15.02	14.99	14.97	14.93	14.88	14.85	14.79	14.75
	Result	5745	15.02	14.99	14.97	14.93	14.88	14.85	14.79	14.75
ANTO	Mea. average	5 785	15.28	15.24	15.22	15.19	15.15	15.14	15.11	14.98
ANTU	Result	5765	15.28	15.24	15.22	15.19	15.15	15.14	15.11	14.98
	Mea. average	5 825	15.84	15.81	15.83	15.78	15.75	15.78	15.72	15.68
	Result	5 825	<u>15.84</u>	15.81	15.83	15.78	15.75	15.78	15.72	15.68
	Mea. average	5 745	15.09	15.05	15.01	14.98	14.97	14.95	14.96	14.97
	Result	5745	15.09	15.05	15.01	14.98	14.97	14.95	14.96	14.97
ANT1	Mea. average	5 785	15.25	15.23	15.20	15.16	15.12	15.09	15.07	15.03
	Result	5785	15.25	15.23	15.20	15.16	15.12	15.09	15.07	15.03
	Mea. average	5 825	15.28	15.26	15.23	15.21	15.18	15.14	15.12	15.09
	Result	5 825	15.28	15.26	15.23	15.21	15.18	15.14	15.12	15.09

Mode	Duty cycle										
Mode	Data Rate [Mbps]										
11a	6	9	12	18	24	36	48	54			
Duty Cycle (%)	100	100	100	100	100	100	100	100			
Correction factor (dB)	0	0	0	0	0	0	0	0			

Remark:

- 1. Result (dB m) = Average (dB m) + Correction factor (dB)
- 2. Duty cycle (%) = (Tx on time / Tx on + off time) x 100
- 3. Correction factor (dB) = 10 log (1/duty cycle (ms))

- 11n_HT20

			Conducted Power (dB m)									
	U-NII 3	Frequency (MBz)				Data Rat	e [Mbps]					
		(nuz)	0	1	2	3	4	5	6	7		
	Mea. average	5 745	13.45	13.43	13.42	13.41	13.43	13.41	13.39	13.38		
	Result	5745	13.45	13.43	13.42	13.41	13.43	13.41	13.39	13.38		
ANTO	Mea. average	5 785	13.28	13.26	13.25	13.26	13.24	13.21	13.19	13.15		
ANTO	Result	5765	13.28	13.26	13.25	13.26	13.24	13.21	13.19	13.15		
	Mea. average	5 825	13.51	13.49	13.50	13.48	13.46	13.44	13.45	13.43		
	Result	5 625	13.51	13.49	13.50	13.48	13.46	13.44	13.45	13.43		
	Mea. average	5 7 4 5	12.31	12.28	12.26	12.28	12.27	12.25	12.24	12.22		
	Result	5 745	12.31	12.28	12.26	12.28	12.27	12.25	12.24	12.22		
ANT1	Mea. average	5 785	12.33	12.31	12.30	12.28	12.29	12.26	12.25	12.23		
ANTI	Result	5765	12.33	12.31	12.30	12.28	12.29	12.26	12.25	12.23		
	Mea. average	5 825	12.86	12.83	12.79	12.81	12.78	12.75	12.74	12.75		
	Result	5 825	12.86	12.83	12.79	12.81	12.78	12.75	12.74	12.75		

			Frequency	Conducted Power (dB m)										
	Band		(MEz)				Data Rat	te [MCS]						
			(nub)	8	9	10	11	12	13	14	15			
	ANT0	Mea. average		13.39	13.37	13.35	13.36	13.35	13.33	13.32	13.31			
	ANT1	Mea. average	5 745	12.20	12.19	12.16	12.18	12.16	12.15	12.13	12.10			
	ANT0+1 Result			15.85	15.83	15.81	15.82	15.81	15.79	15.78	15.76			
	ANT0	Mea. average	5 785	13.13	13.11	13.09	13.06	13.08	13.06	13.05	13.04			
U-NII 3	ANT1	Mea. average		12.21	12.20	12.18	12.19	12.19	12.16	12.15	12.13			
	ANT0-	⊦1 Result		15.70	15.69	15.67	15.66	15.67	15.64	15.63	15.62			
	ANT0	Mea. average		13.43	13.40	13.38	13.35	13.33	13.32	13.28	13.28			
	ANT1	Mea. average	5 825	12.72	12.68	12.66	12.67	12.63	12.60	12.59	12.57			
	ANT0-	⊦1 Result		<u>16.10</u>	16.07	16.05	16.03	16.00	15.99	15.96	15.95			

Mode	Duty cycle Data Rate [MCS]										
woue											
11n_HT20	0	1	2	3	4	5	6	7			
Duty Cycle (%)	100	100	100	100	100	100	100	100			
Correction factor (dB)	0	0	0	0	0	0	0	0			
11n_HT20	8	9	10	11	12	13	14	15			
Duty Cycle (%)	100	100	100	100	100	100	100	100			
Correction factor (dB)	0	0	0	0	0	0	0	0			

Remark:

- 1. Result (dB m) = Average (dB m) + Correction factor (dB)
- 2. Duty cycle (%) = (Tx on time / Tx on + off time) x 100
- 3. Correction factor (dB) = 10 log (1/duty cycle (ms))
- According to KDB 662911 D01 v02r01, power spectral density of each port (Ant0 + Ant1) was combined by using below calculation. Power: 10log{10^(ANT0 power/10)+10^(ANT1 power/10)}

The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company.

SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807 <u>http://www.sgsgroup.kr</u>

- 11n_HT40

			Conducted Power (dB m)								
U-NII 3		Frequency (MBz)				Data Rat	e [Mbps]				
		(miz)	0	1	2	3	4	5	6	7	
	Mea. average	5 755	8.78	8.76	8.74	8.71	8.68	8.65	8.63	8.59	
ANTO	Result	5755	8.78	8.76	8.74	8.71	8.68	8.65	8.63	8.59	
ANTO	Mea. average	5 795	8.93	8.91	8.88	8.86	8.84	8.81	8.79	8.76	
	Result	5795	8.93	8.91	8.88	8.86	8.84	8.81	8.79	8.76	
	Mea. average	5 755	8.77	8.75	8.73	8.71	8.68	8.65	8.63	8.60	
ANT1	Result	5755	8.77	8.75	8.73	8.71	8.68	8.65	8.63	8.60	
ANTI	Mea. average	5 795	8.96	8.93	8.91	8.89	8.86	8.85	8.83	8.81	
	Result	5795	8.96	8.93	8.91	8.89	8.86	8.85	8.83	8.81	

	Band		F wa muan aw			Co	onducted I	Power (dB i	m)		
			Frequency (M⊞z)				Data Rat	te [MCS]			
			(111)	8	9	10	11	12	13	14	15
	ANT0	Mea. average		8.63	8.62	8.59	8.56	8.55	8.53	8.51	8.51
	ANT1	Mea. average	5 755	8.61	8.60	8.58	8.53	8.51	8.51	8.48	8.46
U-NII 3	ANT0-	⊦1 Result		11.63	11.62	11.60	11.56	11.54	11.53	11.51	11.50
0-1111 3	ANT0	Mea. average		8.81	8.80	8.78	8.75	8.73	8.73	8.71	8.69
	ANT1	Mea. average	5 795	8.83	8.81	8.79	8.76	8.73	8.71	8.69	8.68
	ANT0-	⊦1 Result		<u>11.83</u>	11.82	11.80	11.77	11.74	11.73	11.71	11.70

Mode	Duty cycle										
Mode	Data Rate [MCS]										
11n_HT40	0	1	2	3	4	5	6	7			
Duty Cycle (%)	100	100	100	100	100	100	100	100			
Correction factor (dB)	0	0	0	0	0	0	0	0			
11n_HT40	8	9	10	11	12	13	14	15			
Duty Cycle (%)	100	100	100	100	100	100	100	100			
Correction factor (dB)	0	0	0	0	0	0	0	0			

Remark:

- 1. Result (dB m) = Average (dB m) + Correction factor (dB)
- 2. Duty cycle (%) = (Tx on time / Tx on + off time) x 100
- 3. Correction factor (dB) = $10 \log (1/duty cycle (ms))$
- According to KDB 662911 D01 v02r01, power spectral density of each port (Ant0 + Ant1) was combined by using below calculation. Power: 10log{10^(ANT0 power/10)+10^(ANT1 power/10)}

6. Peak Power Spectral Density

6.1. Test setup

6.2. Limit

FCC §15.407(a)(3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dB m in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dB i are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dB i. However, fixed point-to point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dB i without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

6.3. Test procedure

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

- 1. This measurement settings are specified in section F of KDB 789033 D02 v01r02.
- 2. Create an average power spectrum for the EUT operating mode being tested by following the instructions in section II.E.2. for measuring maximum conducted output power using a spectrum analyzer or EMI receiver: select the appropriate test method (<u>SA-1</u>, SA-2, SA-3, or alternatives to each) and apply it up to, but not including, the step labeled, "Compute power...". (This procedure is required even if the maximum conducted output power measurement was performed using a power meter, method PM.)
- 3. Use the peak search function on the instrument to find the peak of the spectrum and record its value.
- 4. Make the following adjustments to the peak value of the spectrum, if applicable:
- a) If Method SA-2 or SA-2 Alternative was used, add 10 log(1/x), where x is the duty cycle, to the peak of the spectrum.
- b) If Method SA-3 Alternative was used and the linear mode was used in step II.E.2.g)(viii), add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
- 5. The result is the Maximum PSD over 1 $M_{\mathbb{Z}}$ reference bandwidth.
- 6. For devices operating in the bands 5.15-5.25 GHz, 5.25-5.35 GHz, and 5.47-5.725 GHz, the above procedures make use of 1 MHz RBW to satisfy directly the 1 MHz reference bandwidth specified in § 15.407(a)(5). For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (*i.e.*, 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 kHz bandwidth, the following adjustments to the procedures apply:
- a) Set RBW $\geq 1/T$, where *T* is defined in section II.B.1.a).
- b) Set VBW \geq 3 RBW.
- c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500 kHz/RBW) to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.
- d) If measurement bandwidth of Maximum PSD is specified in 1 Mb, add 10log(1 Mb/RBW) to the measured result, whereas RBW (< 1 Mb) is the reduced resolution bandwidth of spectrum analyzer set during measurement.
- e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 kHz for the sections 5.c) and 5.d) above, since RBW = 100 kHz is available on nearly all spectrum analyzers.

6.4. Test result

Ambient temperature	:	(23	± 1) ℃
Relative humidity	:	47	% R.H.

Band	Mode	Frequency (Mb)	Ch.	Data Rate	PPSD (dB m)	Limit (傏m/500 朏)
		5 745	149	6	0.62	30
	11a - ANT0	5 785	157	6	1.07	30
U-NII 3		5 825	165	6	1.47	30
0-111 5		5 745	149	6	1.87	30
	11a - ANT1	5 785	157	6	2.16	30
		5 825	165	6	2.04	30

				Data	ANT0	ANT1	ANT0+1	
Band	Mode	Frequency (Mb)	Ch.	Rate (Mbps)	Measured PPSD (dB m)	Measured PPSD (dB m)	PPSD (dB m)	Limit (dB m/500 战)
		5 745	149	MCS8	-0.91	-2.00	1.59	30
	11n_HT20	5 785	157	MCS8	0.19	-1.22	2.55	30
U-NII 3		5 825	165	MCS8	0.44	-1.40	2.63	30
	11n HT40	5 755	151	MCS8	-7.23	-7.59	-4.40	30
	1111_11140	5 795	159	MCS8	-8.87	-7.68	-5.22	30

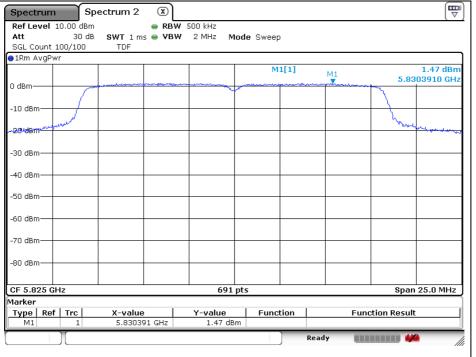
Note :

PPSD = Measured PPSD or Measured PPSD (ANT0+1)

According to KDB 662911 D01 v02r01, power spectral density of each port (ANT0 + ANT1) was combined by using below calculation.

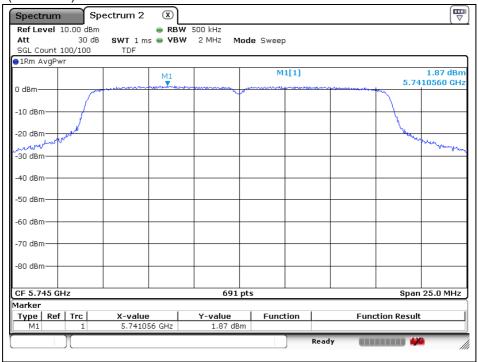
PSD: 10log{10^(ANT0 psd/10)+10^(ANT1 psd/10)}

802.11a (Band 3) - ANT0



Middle Channel (5 785 Mz)

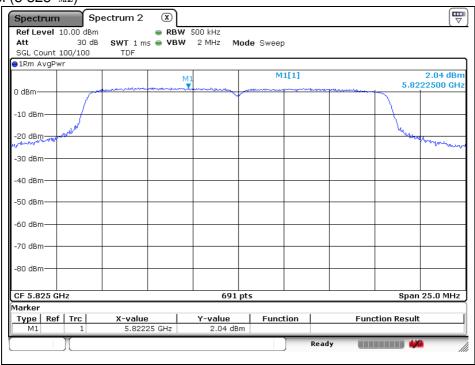
₩ x Spectrum 2 Spectrum Ref Level 10.00 dBm RBW 500 kHz SWT 1 ms 👄 VBW 2 MHz 30 dB Mode Sweep Att SGL Count 100/100 TDF ∋1Rm AvgPwr 1.07 dBm 5.7789940 GHz M1[1] M1 0 dBm -10 dBm -20 dBmm -30 dBm 40 dBm -50 dBm -60 dBm -70 dBm -80 dBm CF 5.785 GHz 691 pts Span 25.0 MHz Marker Type | Ref | Trc | Function Result X-value value Function 5.778994 GHz M1 1 1.07 dBm Ready



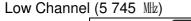
High Channel (5 825 Mz)

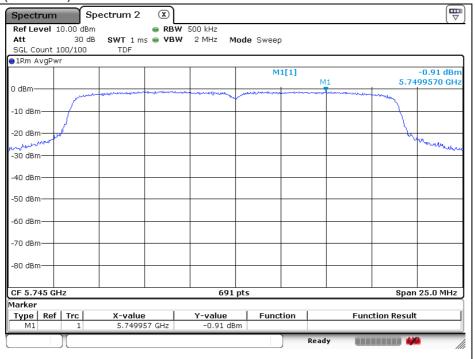
802.11a (Band 3) - ANT1

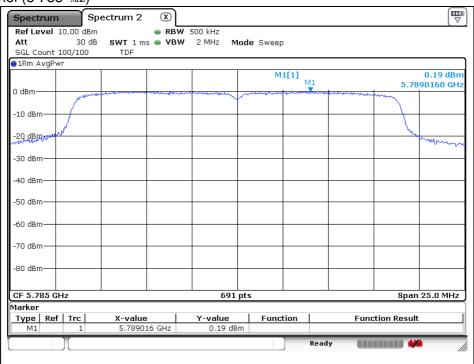
Low Channel (5 745 Mb)



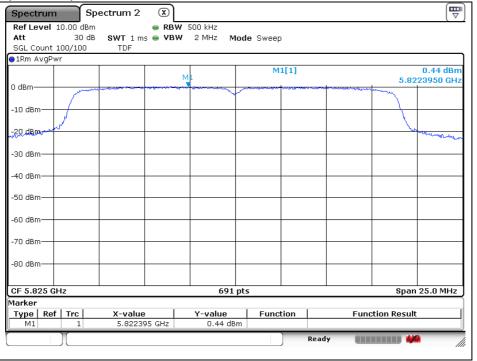
Middle Channel (5 785 Mtz)



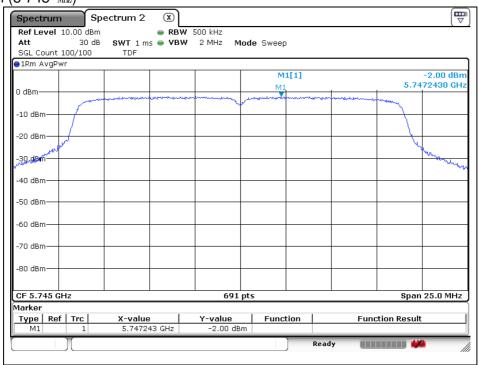

High Channel (5 825 Mz)



802.11n_HT20 (Band 3) - ANT0

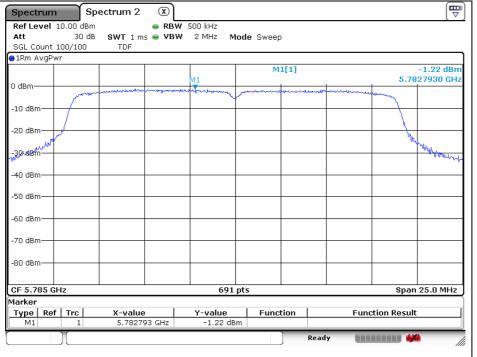


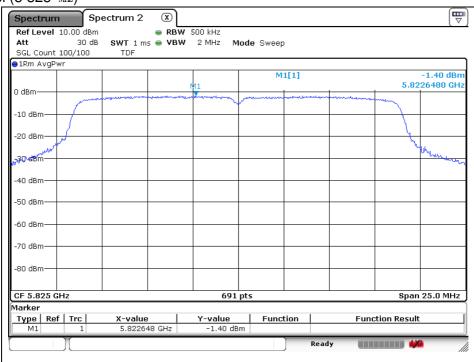
Middle Channel (5 785 Mtz)



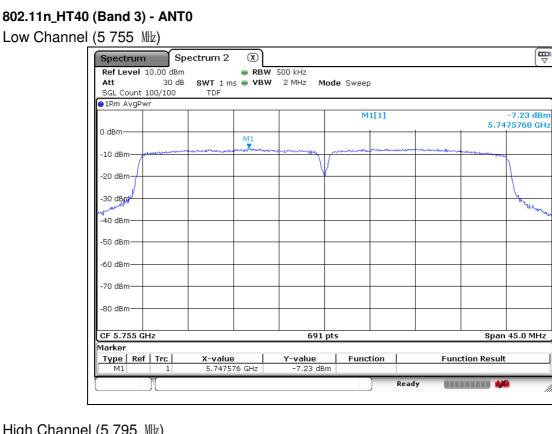
High Channel (5 825 Mz)

802.11n_HT20 (Band 3) - ANT1

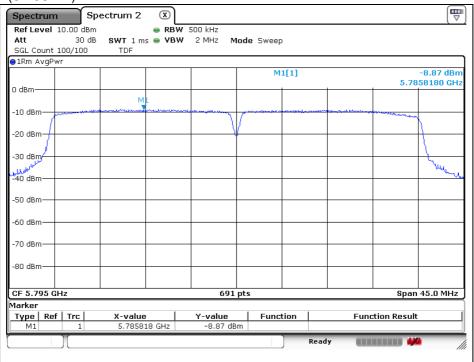

Low Channel (5 745 Mtz)


The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This testreport cannot be reproduced, except in full, without prior written permission of the Company.SGS Korea Co., Ltd. (Gunpo Laboratory)4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807http://www.sgsgroup.kr

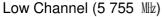
Middle Channel (5 785 Mz)

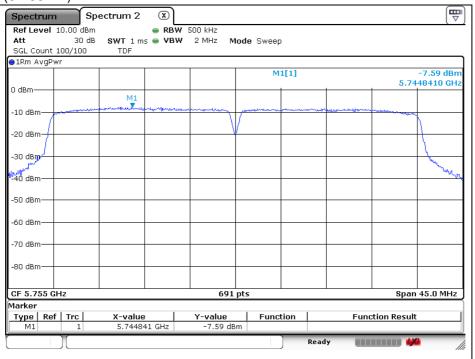


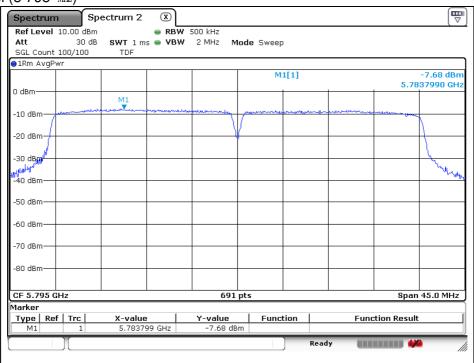
High Channel (5 825 Mlz)



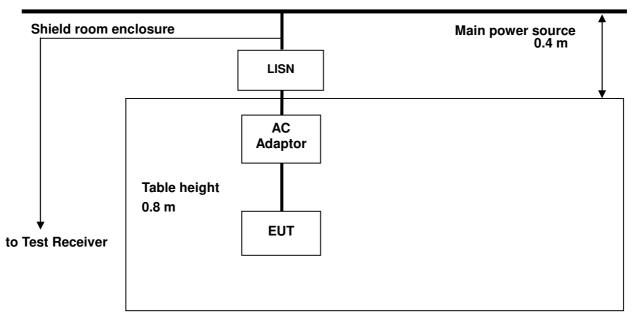
802.11n_HT40 (Band 3) - ANT0




High Channel (5 795 Mtz)



802.11n_HT40 (Band 3) - ANT1


High Channel (5 795 Mz)

7. AC Power Line Conducted Emission

7.1. Test Setup

7.2. Limit

FCC §15.207(a)

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H /50 ohm line impedance stabilization network(LISN).

Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges.

	Conducted limit (dB,/V)				
Frequency of Emission (酏)	Quasi-peak	Average			
0.15 - 0.50	66 - 56*	56 - 46*			
0.50 - 5.00	56	46			
5.00 - 30.0	60	50			

* Decreases with the logarithm of the frequency.

Page: 49 of 52

7.3. Test Procedures

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

AC line conducted emissions from the EUT were measured according to the dictates of ANSI C63.10-2009

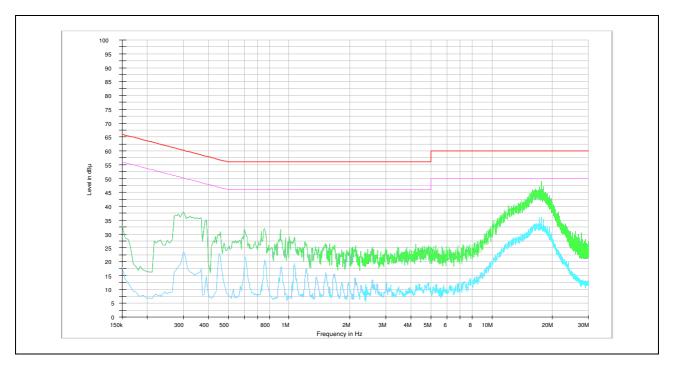
- 1. The test procedure is performed in a 6.5 m × 3.6 m × 3.6 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. The excess power cable between the EUT and the LISN was bundled. All connecting cables of EUT were moved to find the maximum emission.

7.4. Test Results

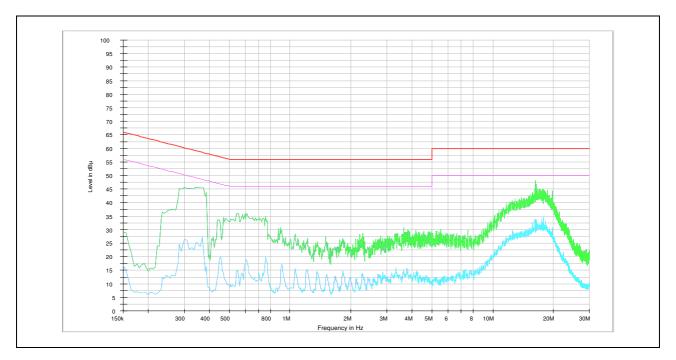
The following table shows the highest levels of conducted emissions on both phase of Hot and Neutral line

Ambient temperature	: (23 ± 1) °C
Relative humidity	: 47 % R.H.
Frequency range	: 0.15 MHz - 30 MHz
Measured Bandwidth	: 9 kHz

FREQ.	LEVEL	.(dB,⊉V)	LINE	LIMIT(dBµN)		MARGIN(dB)	
(MHz)	Q-Peak	Average		Q-Peak	Average	Q-Peak	Average
0.15	28.10	17.30	Ν	66.00	56.00	37.90	38.70
0.30	34.30	22.80	N	60.24	50.24	25.94	27.44
0.46	25.90	22.40	N	56.69	46.69	30.79	24.29
0.60	25.30	19.20	N	56.00	46.00	30.70	26.80
0.76	25.20	19.80	Ν	56.00	46.00	30.80	26.20
17.53	39.10	33.10	N	60.00	50.00	20.90	16.90
0.15	25.30	16.80	Н	66.00	56.00	40.70	39.20
0.31	42.80	25.50	Н	59.97	49.97	17.17	24.47
0.37	43.30	24.90	Н	58.50	48.50	15.20	23.60
0.61	30.50	19.00	Н	56.00	46.00	25.50	27.00
0.76	28.90	19.10	Н	56.00	46.00	27.10	26.90
17.80	38.00	30.90	Н	60.00	50.00	22.00	19.10


Remark;

- 1. Line (H): Hot, Line (N): Neutral.
- 2. All modes of operation were investigated and the worst-case emissions were reported using 11n_HT20 (Band 3), MCS8, high channel.
- 3. Traces shown in plot mad using a peak detector and average detector.
- 4. The limit for Class B device(s) from 150 kl to 30 M₂ are specified in Section of the Title 47 CFR.
- 5. Deviations to the Specifications: None.



Plots of Conducted Power line

Test mode: (Neutral)

Test mode: (Hot)

8. Antenna Requirement

8.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section §15.407 (a) if transmitting antennas of directional gain greater than 6 dB i are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dB i.

8.2. Antenna Connected Construction

Antenna used in this product is Fixed type and peak max gain of antenna as below.

Band	5745 Mb – 5825 Mb		
Mode	11a/n_HT20, HT40		
ANT0 Gain	1.35 dB i		
ANT1 Gain	-0.90 dB i		

Unequal antenna gains, with equal transmit powers. For antenna gains given by $G_1, G_2, ..., G_N$ dB i

(i) If transmit signals are correlated, then Directional gain = $10 \log[(10^{G 1/20} + 10^{G 2/20} + ... + 10^{G N/20})^2/N_{ANT}] dB i [Note the "20"s in the denominator$ of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]

Directional Gain = 3.31 dB i