

CFR 47 FCC PART 15 SUBPART E ISED RSS-247 Issue 3

TEST REPORT

For

Wi-Fi/BT Transceiver

MODEL NUMBER: WCD940M

REPORT NUMBER: 4791021404-RF-4

ISSUE DATE: November 21, 2023

FCC ID:A3LWCD940M IC:649E-WCD940M

Prepared for

FCC: Samsung Electronics Co Ltd 19 Chapin Rd., Building D, Pine Brook New Jersey, 07058 United States

ISED: SAMSUNG ELECTRONICS CO. LTD. 129 Samsung-ro, Yeongtong-gu, Suwon-Si Gyeonggi-do 16677 Korea (Republic Of)

Prepared by

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch

Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China

> Tel: +86 769 22038881 Fax: +86 769 33244054 Website: www.ul.com

The results reported herein have been performed in accordance with the laboratory's terms of accreditation. This report shall not be reproduced except in full without the written approval of the Laboratory. The results in this report apply to the test sample(s) mentioned above at the time of the testing period only and are not to be used to indicate applicability to other similar products.

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	November 21, 2023	Initial Issue	

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
ON TIME AND DUTY CYCLE	ANSI C63.10-2013, Clause 12.2	None; for reporting purposes only.	Pass
6dB AND 26dB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH	KDB 789033 D02 v02r01 Section C.1	FCC Part 15.407 (a)/(e), RSS-247 Issue 3, Clause 6.2.1.2 RSS-Gen Clause 6.7	Pass
CONDUCTED OUTPUT POWER	KDB 789033 D02 v02r01 Section E.3.a (Method PM)	FCC 15.407 (a) RSS-247 Clause 6.2	Pass
POWER SPECTRAL DENSITY	KDB 789033 D02 v02r01 Section F	FCC 15.407 (a) RSS-247 Clause 6.2	Pass
AC POWER LINE CONDUCTED EMISSION	ANSI C63.10-2013, Clause 6.2.	FCC 15.207 RSS-GEN Clause 8.8	Pass
RADIATED EMISSIONS AND BAND EDGE	KDB 789033 D02 v02r01 Section G.3, G.4, G.5, and G.6	FCC 15.407 (b) FCC 15.209 FCC 15.205 RSS-247 Clause 6.2 RSS-GEN Clause 8.9	Pass
FREQUENCY STABILITY	ANSI C63.10-2013, Clause 6.8.	FCC 15.407 (g)	Pass
DYNAMIC FREQUENCY SELECTION (SLAVE)	KDB 905462 D03 Client Without DFS New Rules v01r02	FCC Part 15.407 (h), RSS-247 Issue 3 Clause6.3	Pass
ANTENNA REQUIREMENT	N/A	FCC 47 CFR Part 15.203/ 15.407(a)(1) (2), RSS-Gen Issue 5, Clause 6.8	Pass

Note:

1. N/A: In this whole report not applicable.

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China. *The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART E ISED RSS-247 Issue 3> when <Simple Acceptance> decision rule is applied.

CONTENTS

1.	ATTESTATION OF TEST RESULTS	6
2.	TEST METHODOLOGY	8
3.	FACILITIES AND ACCREDITATION	8
4.	CALIBRATION AND UNCERTAINTY	9
4	4.1. MEASURING INSTRUMENT CALIBRATION	9
4	4.2. MEASUREMENT UNCERTAINTY	9
5.	EQUIPMENT UNDER TEST	10
5	5.1. DESCRIPTION OF EUT	10
5	5.2. CHANNEL LIST	11
5	5.3. MAXIMUM POWER	12
5	5.4. TEST CHANNEL CONFIGURATION	13
5	5.5. THE WORSE CASE POWER SETTING PARAMETER	15
5	5.6. WORST-CASE CONFIGURATIONS	24
5	5.7. DESCRIPTION OF AVAILABLE ANTENNAS	27
5	5.8. SUPPORT UNITS FOR SYSTEM TEST	28
6.	MEASURING EQUIPMENT AND SOFTWARE USED	29
7.	ANTENNA PORT TEST RESULTS	32
••	ANTENNA PORT TEST RESULTS 7.1. ON TIME AND DUTY CYCLE	-
7		
7	7.1. ON TIME AND DUTY CYCLE	32 WIDTH33
7 7 7	7.1. ON TIME AND DUTY CYCLE7.2. 6DB AND 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BAND	32 WIDTH33 35
7 7 7 7	 7.1. ON TIME AND DUTY CYCLE 7.2. 6DB AND 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BAND 7.3. CONDUCTED OUTPUT POWER 	32 WIDTH33 35 38
7 7 7 7 7	 7.1. ON TIME AND DUTY CYCLE	32 WIDTH33 35 38 40
7 7 7 7 7	 7.1. ON TIME AND DUTY CYCLE	32 WIDTH33 35 38 40 42
7 7 7 7 7 7 7 8.	 7.1. ON TIME AND DUTY CYCLE	
7 7 7 7 7 8.	 7.1. ON TIME AND DUTY CYCLE	
7 7 7 7 7 7 7 7 8. 8.	 7.1. ON TIME AND DUTY CYCLE	
7 7 7 7 7 7 7 7 7 8. 8 8. 8	 7.1. ON TIME AND DUTY CYCLE	
7 7 7 7 7 7 7 7 8. 8 8 8 8 8 8 8 8 8 8	 7.1. ON TIME AND DUTY CYCLE	
7 7 7 7 7 7 7 7 8. 8 8 8 8 8 8 8 8 8 8 8	 7.1. ON TIME AND DUTY CYCLE	
7 7 7 7 7 7 7 7 7 7 7 7 7 7 8. 8 8 8 8 8	 7.1. ON TIME AND DUTY CYCLE	
7 7 7 7 7 7 7 7 7 7 7 7 7 8. 8 8 8 8 8 8	 7.1. ON TIME AND DUTY CYCLE	

10.	ANTENNA REQUIREMENT	447
11.	TEST DATA	448
<i>11.1.</i> 11.1.1 11.1.2		448
<i>11.2.</i> 11.2.1 11.2.2		474
<i>11.3.</i> 11.3.1 11.3.2		530
<i>11.4.</i> 11.4.1 11.4.1		556
<i>11.5.</i> 11.5.1 11.5.2		612
<i>11.6.</i> 11.6.1 11.6.2		621
<i>11.7.</i> 11.7.1	APPENDIX D1: MAXIMUM CONDUCTED OUTPUT POWER Test Result	
<i>11.8.</i> 11.8.1	APPENDIX D2: MAXIMUM CONDUCTED OUTPUT POWER OF OFDMA Test Result	
<i>11.9.</i> 11.9.1 11.9.2		659
<i>11.10.</i> 11.10. 11.10.		689
<i>11.11.</i> 11.11.	APPENDIX F: FREQUENCY STABILITY 1. Test Result	
<i>11.12.</i> 11.12. 11.12.		749
11.13.	APPENDIX H: SHUTDOWN TIME	
11.14.	APPENDIX I: NON-OCCUPANCY	757

1. ATTESTATION OF TEST RESULTS

FCC Applicant Information	Samsung Electronics Co Ltd
Company Name:	19 Chapin Rd., Building D, Pine Brook New Jersey, 07058
Address:	United States
ISED Applicant Information	SAMSUNG ELECTRONICS CO. LTD.
Company Name:	129 Samsung-ro, Yeongtong-gu, Suwon-Si Gyeonggi-do 16677
Address:	Korea (Republic Of)
Manufacturer Information 1	Chendu Xuguang Technology Co.,Ltd.
Company Name:	No.86 2nd section, Park Road, Longquanyi Disreict, Chengdu
Address:	City, Sichuan Province, P.R.China
Manufacturer Information 2	CHEMTRONICS CO., LTD.
Company Name:	35, Buk-ri, Namsa-myeon, Cheoin-gu, Yongin-si, Gyeonggi-do,
Address:	Korea
Manufacturer Information 3	CHEMTROVINA COMPANY LIMITED
Company Name:	Nhon Trach 2 - Loc Khang IZ, Hiep Phuoc Town, Nhon Trach
Address:	District, Dong Nai Province, Vietnam
Manufacturer Information 4	
Company Name: Address:	Shenzhen Zowee Technology Co.,Ltd. Block 5, Science & Technology Industrial Park of Privately Owned Enterprises, Pingshan, Xili, Nanshan District, Shenzhen
Company Name:	Block 5, Science & Technology Industrial Park of Privately
Company Name: Address: Company Name:	Block 5, Science & Technology Industrial Park of Privately Owned Enterprises, Pingshan, Xili, Nanshan District, Shenzhen Shenzhen Zowee Smart Manufacturing Co., Ltd Factory 1, Factory 2-3 and Dormitory No. 1 & Dormitory No. 2, No. 149, Tangxiachong Second Industrial Road, Tangxiachong Community, Yanluo Street, Bao'an District, Shenzhen City; Has business premises for production and business activities (Floor 1~5), Block D, Factory 10, Tongfu Road, Tangxiachong

EUT Name:

Sample ID:

Model:

Brand:

EUT Information

Wi-Fi/BT Transceiver WCD940M Samsung Sample Received Date: September 27, 2023 Sample Status: Normal 6637995 Date of Tested: October 14, 2023 to November 21, 2023

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 FCC PART 15 SUBPART E ISED RSS-247 Issue 3

PASS

Prepared By:

Lammy Huang

Fanny Huang **Engineer Project Associate**

Approved By:

Spowentino

Stephen Guo **Operations Manager**

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch FORM NO: 10-SL-F0035 This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

Checked By: Verny Sucur

Denny Huang

Senior Project Engineer

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART E ISED RSS-247 Issue 3, ANSI C63.10-2013, CFR 47 FCC Part 2, KDB 789033 D02 v02r01, RSS-GEN Issue 5, KDB414788 D01 Radiated Test Site v01, KDB 662911 D01 Multiple Transmitter Output v02r01, KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02, KDB 905462 D03 UNII clients without radar detection New Rules v01r02, KDB 905462 D04 Operational Modes for DFS Testing New Rules v01 and KDB 905462 D06 802 11 Channel Plans New Rules v02.

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 4102.01)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1187)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	Has been recognized to perform compliance testing on equipment subject
	to the Commission's Declaration of Conformity (DoC) and Certification
	rules
	ISED (Company No.: 21320)
Accreditation	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
Certificate	has been registered and fully described in a report filed with ISED.
	The Company Number is 21320 and the test lab Conformity Assessment
	Body Identifier (CABID) is CN0046.
	VCCI (Registration No.: G-20019, R-20004, C-20012 and T-20011)
	UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch.
	has been assessed and proved to be in compliance with VCCI, the
	Membership No. is 3793.
	Facility Name:
	Chamber D, the VCCI registration No. is G-20019 and R-20004
	Shielding Room B , the VCCI registration No. is C-20012 and T-20011

Note 1:

All tests measurement facilities use to collect the measurement data are located at Building 10, Innovation Technology Park, No. 1, Li Bin Road, Song Shan Lake Hi-Tech Development Zone Dongguan, 523808, People's Republic of China.

Note 2:

The test anechoic chamber in UL Verification Services (Guangzhou) Co., Ltd. Song Shan Lake Branch had been calibrated and compared to the open field sites and the test anechoic chamber is shown to be equivalent to or worst case from the open field site.

Note 3:

For below 30 MHz, lab had performed measurements at test anechoic chamber and comparing to measurements obtained on an open field site. And these measurements below 30 MHz had been correlated to measurements performed on an OFS.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Item	Uncertainty		
Conduction emission	3.62 dB		
Radiated Emission (Included Fundamental Emission) (9 kHz ~ 30 MHz)	2.2 dB		
Radiated Emission (Included Fundamental Emission) (30 MHz ~ 1 GHz)	4.00 dB		
	5.78 dB (1 GHz ~ 18 GHz)		
Radiated Emission (Included Fundamental Emission) (1 GHz to 40 GHz)	5.23 dB (18 GHz ~ 26 GHz)		
	5.37 dB (26 GHz ~ 40 GHz)		
Duty Cycle	±0.028%		
Emission Bandwidth and 99% Occupied Bandwidth	±0.0196%		
Maximum Conducted Output Power	±0.766 dB		
Maximum Power Spectral Density Level	±1.22 dB		
Frequency Stability	±2.76%		
Conducted Band-edge Compliance	±1.328 dB		
Conducted Unwanted Emissions In Non-restricted	±0.746 dB (9 kHz ~ 1 GHz)		
Frequency Bands	±1.328dB (1 GHz ~ 26 GHz)		
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name	Wi-Fi/BT Transceiver	
Model	WCD940M	

Frequency Band:	5150 MHz to 5250 MHz (U-NII-1) 5250 MHz to 5350 MHz (U-NII-2A) 5470 MHz to 5725 MHz (U-NII-2C) 5725 MHz to 5850 MHz (U-NII-3)
RF Classification:	Unlicensed National Information Infrastructure TX (NII)
TPC Function:	Not Support
DFS Operational mode:	Slave without radar detection
Type of Modulation:	IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac: OFDM(256QAM, 64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ax: OFDM(1024QAM, 256QAM, 64QAM, 16QAM, QPSK, BPSK)
Normal Test Voltage:	5 Vdc

5.2. CHANNEL LIST

UNII-1		UNII-1		UNII-1	
(For Bandwidth=20MHz)		(For Bandwidth=40MHz)		(For Bandwidth=80MHz)	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190	42	5210
40	5200	46	5230		
44	5220				
48	5240				

UNII-2A		UNII-2A		UNII-2A	
(For Bandwidth=20MHz)		(For Bandwidth=40MHz)		(For Bandwidth=80MHz)	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	54	5270	58	5290
56	5280	62	5310		
60	5300				
64	5320				

UNII-2C (For Bandwidth=20MHz)		UNII-2C (For Bandwidth=40MHz)		UNII-2C	
(For Bandwid	ath=20MHZ)	(For Bandwi	ath=40MHZ)	(For Bandwidth=80MHz)	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	102	5510	106	5530
104	5520	110	5550	122	*5610
108	5540	118	*5590	/	/
112	5560	126	*5630		
116	5580	134	5670		
120	*5600	/	/		
124	*5620				
128	*5640				
132	5660				
136	5680				
140	5700				

* Note: Not operational in Canada.

UNII-3 (For Bandwidth=20MHz)		UNII-3 (For Bandwidth=40MHz)		UNII-3 (For Bandwidth=80MHz)	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755	155	5775
153	5765	159	5795		
157	5785				
161	5805				
165	5825				

Straddle Test Channel Configuration			
Bandwidth Test Channel Number Frequency			
20 MHz CH 144		5720 MHz	
40 MHz	CH 142	5710 MHz	
80 MHz	CH 138	5690 MHz	

5.3. MAXIMUM POWER

IEEE Std. 802.11	Frequency (MHz)	Maximum Average Conducted Power (dBm)
a SISO		20.89
n HT20 MIMO		22.62
n HT40 MIMO	5180 ~ 5825	22.87
ac VHT80 MIMO		21.43
ax HE20 MIMO		22.92
ax HE40 MIMO		22.36
ax HE80 MIMO		21.70

5.4. TEST CHANNEL CONFIGURATION

UNII-1 Test Channel Configuration			
IEEE Std.	Test Channel Number	Frequency	
802.11a	CH 36(Low Channel), CH 40(MID Channel), CH 48(High Channel)	5180 MHz, 5200 MHz, 5240 MHz	
802.11n HT20	CH 36(Low Channel) CH 40(MID Channel)		
802.11n HT40	CH 38(Low Channel), CH 46(High Channel)	5190 MHz, 5230 MHz	
802.11ac VHT80	CH 42(Low Channel)	5210 MHz	
802.11ax HE20 CH 36(Low Channel), CH 40(MID Channel), CH 48(High Channel)		5180 MHz, 5200 MHz, 5240 MHz	
802.11ax HE40	CH 38(Low Channel), CH 46(High Channel)		
802.11ax HE80 CH 42(Low Channel)		5210 MHz	

UNII-2A Test Channel Configuration			
IEEE Std.	IEEE Std. Test Channel Number		
802.11a	CH 52(Low Channel), CH 56(MID Channel), CH 64(High Channel)	5260 MHz, 5280 MHz, 5320 MHz	
802.11n HT20 CH 52(Low Channel), CH 56(MID Channel), CH 64(High Channel)		5260 MHz, 5280 MHz, 5320 MHz	
802.11n HT40	CH 54(Low Channel), CH 62(High Channel)	5270 MHz, 5310 MHz	
802.11ac VHT80	CH 58(Low Channel)	5290 MHz	
802.11ax HE20 CH 52(Low Channel), CH 56(MID Channel), CH 64(High Channel)		5260 MHz, 5280 MHz, 5320 MHz	
802.11ax HE40	CH 54(Low Channel), CH 62(High Channel)	5270 MHz, 5310 MHz	
802.11ax HE80 CH 58(Low Channel)		5290 MHz	

UNII-2C Test Channel Configuration			
IEEE Std.	Test Channel Number	Frequency	
802.11a	CH 100(Low Channel), CH 116(MID Channel), CH 140(High Channel)	5500 MHz, 5580 MHz, 5700 MHz	
802.11n HT20	CH 100(Low Channel), CH 116(MID Channel), CH 140(High Channel)	5500 MHz, 5580 MHz, 5700 MHz	
802.11n HT40	802.11n HT40 CH 102(Low Channel), CH 110(MID Channel), CH 134(High Channel)		
802.11ac VHT80	CH 102(Low Channel), CH 122(High Channel)	5530 MHz, 5610 MHz	
802.11ax HE20 CH 100(Low Channel), CH 116(MID Channel), CH 140(High Channel)		5500 MHz, 5580 MHz, 5700 MHz	
802.11ax HE40 CH 102(Low Channel), CH 110(MID Channel), CH 134(High Channel)		5510 MHz, 5550 MHz, 5670 MHz	
802.11ax HE80 CH 102(Low Channel), CH 122(High Channel)		5530 MHz, 5610 MHz	

UNII-3 Test Channel Configuration			
IEEE Std.	IEEE Std. Test Channel Number		
802.11a	CH 149(Low Channel), CH 157(MID Channel), CH 165(High Channel)	5745 MHz, 5785 MHz, 5825 MHz	
802.11n HT20	CH 149(Low Channel) CH 157(MID Channel)		
802.11n HT40	CH 151(Low Channel), CH 159(High Channel)	5755MHz, 5795MHz	
802.11ac VHT80	CH 155(Low Channel)	5775 MHz	
802.11ax HE20 CH 149(Low Channel), CH 157(MID Channel), CH 165(High Channel)		5745 MHz, 5785 MHz, 5825 MHz	
802.11ax HE40	.11ax HE40 CH 151(Low Channel), CH 159(High Channel)		
802.11ax HE80 CH 155(Low Channel)		5775 MHz	

Straddle Test Channel Configuration				
IEEE Std.	Frequency			
802.11a	CH 144	5720 MHz		
802.11n HT20	CH 144	5720 MHz		
802.11n HT40	CH 142	5710 MHz		
802.11ac VHT80	CH 138	5690 MHz		
802.11ax HE20	CH 144	5720 MHz		
802.11ax HE40	CH 142	5710 MHz		
802.11ax HE80	CH 138	5690 MHz		

5.5. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter		
Test Software	QA tool	

Mode	Freq(MHz)	Dec value from QA		
		ANT1	ANT2	
	5180	15	12.5	
	5200	15	12.5	
	5240	15	12.5	
	5260	15	15	
	5280	15	15	
	5320	15	15	
	5500	15	15	
802.11a	5580	15	15	
	5700	15	15	
	5720-2C	15	15	
	5720-3	15	15	
	5745	15	15	
	5785	15	15	
	5825	15	15	
	5180	7.5		
	5200	7.5		
	5240	7.5		
	5260	15		
	5280	15		
	5320	15		
000 44 0014	5500	10		
802.11n 20M	5580	1	0	
	5700	10		
	5720-2C		0	
	5720-3		0	
	5745		5	
	5785	1	5	
	5825	1	5	
	5190	1'	1.5	
	5230	11.5		
	5270	1	5	
	5310	1	15	
802.11n 40M	5510	15		
	5550	15		
	5670	1	5	
	5710-2C	1	5	

	5710-3	15
	5755	15
	5795	15
	5210	14
	5290	14
	5530	14
802.11ac 80M	5610	14
	5690-2C	14
	5690-3	14
	5775	15

Mode	Freq(MHz)	RU size	RU Index	Dec value from QA 2TX
			0	0
		26	4	0
			8	0
			37	2.5
	5180	52	38	2.5
			40	2.5
		100	53	5
		106	54	5
		242	61	7.5
			0	0
		26	4	0
			8	0
			37	2.5
	5200	52	38	2.5
			40	2.5
		100	53	5
		106	54	5
		242	61	7.5
			0	0
		26 <u>4</u> 8	4	0
802.11ax 20M			8	0
			37	2.5
	5240	52	38	2.5
			40	2.5
		106	53	5
			54	5
		242	61	7.5
			0	5
		26	4	5
			8	5
			37	7.5
	5260	52	38	7.5
			40	7.5
			53	12.5
		106	54	12.5
		242	61	15
	<u></u>		0	5
		26	4	5
	5280	20	8	5
			37	7.5
		52	38	7.5

		40	7.5
	106	53	12.5
	106	54	12.5
	242	61	15
		0	5
	26	4	5
		8	5
		37	7.5
5320	52	38	7.5
		40	7.5
	100	53	12.5
	106	54	12.5
	242	61	15
		0	5
	26	4	5
		8	5
		37	5
5500	52	38	5
		40	5
	100	53	7.5
	106	54	7.5
	242	61	12.5
		0	2.5
	26	4	2.5
		8	2.5
		37	5
5580	52	38	5
		40	5
	106	53	7.5
	106	54	7.5
	242	61	12.5
		0	5
	26	4	5
		8	5
		37	7.5
5700	52	38	7.5
		40	7.5
	400	53	10
	106	54	10
	242	61	12.5
5720-2C	242	61	12.5
5720-3	242	61	12.5
5745	26	0	15

			4	15
			8	15
			37	15
		52	38	15
			40	15
		100	53	15
		106	54	15
		242	61	15
			0	15
		26	4	15
			8	15
			37	15
	5785	52	38	15
			40	15
			53	15
		106	54	15
		242	61	15
			0	12.5
		26	4	12.5
			8	12.5
			37	12.5
	5825	52	38	12.5
			40	12.5
			53	12.5
		106	54	12.5
		242	61	12.5
			0	1.5
		26	8	1.5
			17	1.5
			37	4
		52	40	4
	5400		44	4
	5190		53	6.5
802.11ax 40M		106	54	6.5
002.11ax 4010			56	6.5
		242	61	9
			62	9
		484	65	14
			0	1.5
	5230	26	8	1.5
			17	1.5
		52	37	4

40 4 44 4 44 4 53 6.5 56 6.5 242 61 9 65 14 9 242 65 14 9 484 65 14 9 26 8 6.5 26 8 6.5 107 6.5 17 52 40 9 52 40 9 52 40 9 53 11.5 115 106 54 11.5 56 11.5 14 242 62 14 484 65 14 65 14 14 242 62 14 66 15.5 14 53 11.5 16 54 15.5 16 14 9 52 40 9 <th></th> <th></th> <th>1</th> <th></th> <th>I</th>			1		I
53 6.5 106 54 6.5 56 6.5 6.5 242 62 9 484 65 14 62 9 484 65 484 65 14 62 9 484 65 106 54 15 26 8 6.5 37 9 9 52 40 9 444 9 9 533 11.5 106 54 11.5 56 106 54 11.5 242 61 14 484 65 14 484 65 14 5310 52 40 9 5310 52 40 9 5310 53 11.5 56 56 11.5 56 11.5 26 8 6.5 14				40	4
106 54 6.5 242 61 9 242 61 9 62 9 9 484 65 14 0 6.5 14 26 8 6.5 17 6.5 17 52 40 9 52 40 9 52 40 9 52 40 9 52 40 9 52 40 9 52 40 9 52 61 11.5 106 54 11.5 242 62 14 484 65 14 484 65 14 484 65 14 61 14 9 5310 106 53 11.5 56 11.5 56 11.5 242 61 14 9 <td></td> <td></td> <td></td> <td></td> <td></td>					
56 6.5 242 61 9 62 9 62 9 484 65 14 0 6.5 26 8 6.5 14 0 6.5 14 0 6.5 17 6.5 17 6.5 37 9 52 40 9 5270 52 40 9 9 52 40 9 9 115 56 11.5 56 11.5 56 106 54 11.5 56 11.5 242 61 14 9 6.5 116 56 14 14 9 6.5 5310 52 40 9 15 106 54 11.5 5310 52 40 9 11.5 56 11.5 54 11.5 56 11.5 56 14 14 <td></td> <td></td> <td></td> <td>53</td> <td>6.5</td>				53	6.5
242 61 9 484 65 14 0 6.5 14 26 8 6.5 17 6.5 37 9 52 40 9 52 40 9 52 40 9 52 40 9 53 11.5 106 53 11.5 566 11.5 242 61 14 484 65 14 484 65 14 484 65 14 484 65 14 484 65 14 53 11.5 106 54 11.5 56 17 6.5 53 11.5 106 54 11.5 56 11.5 56 14 9 6.5 14 9 6.5 <tr< td=""><td></td><td></td><td>106</td><td>54</td><td>6.5</td></tr<>			106	54	6.5
242 62 9 484 65 14 0 6.5 26 8 6.5 17 6.5 17 6.5 37 9 52 40 9 444 9 52 40 9 444 9 52 61 11.5 106 54 11.5 242 62 14 484 65 14 484 65 14 484 65 14 5310 26 8 6.5 5310 52 40 9 5310 52 40 9 5310 53 11.5 56 117 6.5 11.5 56 11.5 56 106 54 11.5 56 11.5 56 5510 26 8 <td< td=""><td></td><td></td><td></td><td>56</td><td>6.5</td></td<>				56	6.5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			242	61	9
$5270 + \frac{26}{5270} + \frac{26}{52} + \frac{26}{8} + \frac{6.5}{6.5} + \frac{37}{9} + \frac{37}{9} + \frac{37}{9} + \frac{37}{9} + \frac{37}{9} + \frac{33}{11.5} + \frac{53}{56} + \frac{11.5}{56} + \frac{56}{11.5} + \frac{242}{62} + \frac{61}{14} + \frac{484}{65} + \frac{65}{14} + \frac{484}{65} + \frac{65}{14} + \frac{484}{65} + \frac{65}{14} + \frac{65}{17} + \frac{6.5}{66} + \frac{37}{9} + \frac{37}{9} + \frac{9}{52} + \frac{37}{40} + \frac{9}{9} + \frac{53}{11.5} + \frac{242}{62} + \frac{61}{14} + \frac{484}{11.5} + \frac{61}{56} + \frac{11.5}{106} + \frac{61}{56} + \frac{14}{14} + \frac{65}{56} + \frac{11.5}{56} + \frac{56}{56} + $			242	62	9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			484	65	14
$\begin{array}{ c c c c c c } & 17 & 6.5 \\ \hline & 37 & 9 \\ \hline & 52 & 40 & 9 \\ \hline & 44 & 9 \\ \hline & 63 & 11.5 \\ \hline & 106 & 54 & 11.5 \\ \hline & 106 & 56 & 11.5 \\ \hline & 242 & 61 & 14 \\ \hline & 484 & 665 & 14 \\ \hline & 17 & 6.5 \\ \hline & 11.5 \\ \hline & 56 & 11.5 \\ \hline & 51 & 11 \\ \hline & 10 & 10 $				0	6.5
$5270 \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$			26	8	6.5
5270 52 40 9 5270 61 11.5 106 54 11.5 56 11.5 56 242 61 14 484 65 14 484 65 14 484 65 14 484 65 14 7 6.5 6.5 26 8 6.5 17 6.5 37 5310 52 40 9 5310 53 11.5 5310 53 11.5 5310 53 11.5 5310 53 11.5 106 54 11.5 242 61 14 484 65 14 484 65 14 55 17 6.5 5510 55 37 9 5510 53 11.5 56 1				17	6.5
$5270 \qquad 44 \qquad 9 \\ 533 \qquad 11.5 \\ 106 \qquad 53 \qquad 11.5 \\ 56 \qquad 11.5 \\ 242 \qquad 61 \qquad 14 \\ 484 \qquad 65 \qquad 14 \\ 242 \qquad 62 \qquad 14 \\ 484 \qquad 65 \qquad 14 \\ 26 \qquad 8 \qquad 6.5 \\ 17 \qquad 6.5 \\ 37 \qquad 9 \\ 52 \qquad 40 \qquad 9 \\ 44 \qquad 9 \\ 5310 \qquad 53 \qquad 11.5 \\ 106 \qquad 54 \qquad 11.5 \\ 66 \qquad 11.5 \\ 242 \qquad 61 \qquad 14 \\ 484 \qquad 65 \qquad 14 \\ 242 \qquad 61 \qquad 14 \\ 484 \qquad 65 \qquad 14 \\ 484 \qquad 65 \qquad 14 \\ 484 \qquad 65 \qquad 14 \\ 65 \qquad 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 15 \\ 1$				37	9
$5270 \\ 5270 \\ 106 \\ 53 \\ 11.5 \\ 56 \\ 11.5 \\ 242 \\ 62 \\ 14 \\ 484 \\ 65 \\ 14 \\ 484 \\ 65 \\ 14 \\ 484 \\ 65 \\ 14 \\ 65 \\ 14 \\ 65 \\ 17 \\ 6.5 \\ 6.5 \\ 17 \\ 6.5 \\ 6.5 \\ 17 \\ 6.5 \\ 6.5 \\ 17 \\ 6.5 \\ 44 \\ 9 \\ 65 \\ 11.5 \\ 66 \\ 11.5 \\ 66 \\ 11.5 \\ 66 \\ 11.5 \\ 66 \\ 11.5 \\ 66 \\ 11.5 \\ 66 \\ 11.5 \\ 66 \\ 11.5 \\ 66 \\ 11.5 \\ 66 \\ 11.5 \\ 66 \\ 11.5 \\ 66 \\ 11.5 \\ 66 \\ 11.5 \\ 66 \\ 11.5 \\ 66 \\ 11.5 \\ 66 \\ 11.5 \\ 66 \\ 11.5 \\ 65 \\ 17 \\ 6.5 \\ 17 \\ 6.5 \\ 17 \\ 6.5 \\ 17 \\ 6.5 \\ 17 \\ 6.5 \\ 17 \\ 6.5 \\ 17 \\ 6.5 \\ 17 \\ 6.5 \\ 11 \\ 65 \\ 11 \\ 14 \\ 484 \\ 65 \\ 11 \\ 14 \\ 484 \\ 9 \\ 5510 \\ 106 \\ 54 \\ 11.5 \\ 56 \\ 11.5 \\ 106 \\ 11.5 \\ 106 \\ 56 \\ 11.5 \\ 106 \\ 56 \\ 11.5 \\ 106 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$			52	40	9
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5070		44	9
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		5270		53	11.5
$\begin{array}{ c c c c c c c c } \hline & 56 & 11.5 \\ \hline 242 & 61 & 14 \\ \hline & 242 & 62 & 14 \\ \hline & & 65 & 14 \\ \hline & & & 65 \\ \hline & & & & 6.5 \\ \hline & & & & & 6.5 \\ \hline & & & & & & 6.5 \\ \hline & & & & & & & 6.5 \\ \hline & & & & & & & & & & \\ \hline & & & & & &$			106	54	11.5
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				56	11.5
$\begin{array}{ c c c c c c c c } & 242 & 62 & 14 \\ \hline 484 & 65 & 14 \\ \hline 484 & 65 & 14 \\ \hline 484 & 65 & 14 \\ \hline 0 & 6.5 \\ \hline 17 & 6.5 \\ \hline 17 & 6.5 \\ \hline 17 & 6.5 \\ \hline 40 & 9 \\ \hline 44 & 9 \\ \hline 5310 & 53 & 11.5 \\ \hline 106 & 54 & 11.5 \\ \hline 56 & 11.5 \\ \hline 242 & 61 & 14 \\ \hline 242 & 61 & 14 \\ \hline 484 & 65 & 14 \\ \hline 242 & 62 & 14 \\ \hline 484 & 65 & 14 \\ \hline 242 & 61 & 14 \\ \hline 106 & 6.5 \\ \hline 17 & 5.5 \\ \hline 106 & 54 & 11.5 \\ \hline 56 & 11.5 \\ \hline 56 & 11.5 \\ \hline 242 & 61 & 14 \\ \hline \end{array}$				-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			242		14
$5310 \begin{array}{c ccccccccccccccccccccccccccccccccccc$			484		14
5310 = 52 = 52 = 52 = 52 = 52 = 52 = 52 = 5			26		
$5310 \begin{array}{ c c c c c c c } & 17 & 6.5 \\ & 37 & 9 \\ \hline 52 & 40 & 9 \\ \hline 52 & 40 & 9 \\ \hline 44 & 9 \\ \hline 53 & 11.5 \\ \hline 106 & 54 & 11.5 \\ \hline 56 & 11.5 \\ \hline 242 & 61 & 14 \\ \hline 242 & 61 & 14 \\ \hline 484 & 65 & 14 \\ \hline 26 & 8 & 6.5 \\ \hline 17 & 5.5 \\ \hline 106 & 54 & 11.5 \\ \hline 56 & 11.5 \\ \hline 106 & 54 & 11.5 \\ \hline 566 & 11.5 \\ \hline 56 & 11.5 \\ \hline 106 & 54 & 11.5 \\ \hline 56 & 11.5 \\ \hline 106 & 54 & 11.5 \\ \hline 56 & 11.5 \\ \hline 106 & 54 & 11.5 \\ \hline 56 & 11.5 \\ \hline 106 & 54 & 11.5 \\ \hline 56 & 11.5 \\ \hline $				8	
$5310 \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$5310 \begin{array}{cccccccccccccccccccccccccccccccccccc$					
$5310 \begin{array}{c ccccccccccccccccccccccccccccccccccc$			52		
$5310 \\ 106 \\ 53 \\ 106 \\ 54 \\ 11.5 \\ 56 \\ 11.5 \\ 56 \\ 11.5 \\ 61 \\ 14 \\ 62 \\ 14 \\ 65 \\ 14 \\ 65 \\ 14 \\ 65 \\ 14 \\ 65 \\ 14 \\ 65 \\ 14 \\ 65 \\ 16 \\ 17 \\ 6.5 \\ 17 \\ 6.5 \\ 17 \\ 6.5 \\ 17 \\ 6.5 \\ 17 \\ 6.5 \\ 17 \\ 9 \\ 5510 \\ 55 \\ 106 \\ 52 \\ 44 \\ 9 \\ 53 \\ 11.5 \\ 56 \\ 11.5 \\ 11.5 \\ 11.5 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		5310			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			106		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	
$\begin{array}{ c c c c c } \hline & 484 & 65 & 14 \\ & 0 & 6.5 \\ \hline & 26 & 8 & 6.5 \\ \hline & 17 & 6.5 \\ \hline & 17 & 6.5 \\ \hline & 5510 & 52 & 40 & 9 \\ \hline & 52 & 40 & 9 \\ \hline & 52 & 40 & 9 \\ \hline & 44 & 9 \\ \hline & 53 & 11.5 \\ \hline & 106 & 54 & 11.5 \\ \hline & 56 & 11.5 \\ \hline & 56 & 11.5 \\ \hline & 61 & 14 \\ \hline \end{array}$			242		
$5510 \qquad \begin{array}{c c} 0 & 6.5 \\ \hline 8 & 6.5 \\ \hline 17 & 6.5 \\ \hline 37 & 9 \\ 52 & 40 & 9 \\ \hline 44 & 9 \\ \hline 53 & 11.5 \\ \hline 106 & 54 & 11.5 \\ \hline 56 & 11.5 \\ \hline 56 & 11.5 \\ \hline 242 & 61 & 14 \\ \end{array}$			484		
$5510 \qquad \begin{array}{c ccccccccccccccccccccccccccccccccccc$				-	
$5510 \qquad \begin{array}{c cccc} & & & & & & & & & & & & & & & & & $			26		
$5510 \qquad 5510 \qquad 52 \qquad \frac{37}{40} \qquad 9 \\ 5510 \qquad 5510 \qquad \frac{52}{44} \qquad 9 \\ 106 \qquad 53 \qquad 11.5 \\ 54 \qquad 11.5 \\ 56 \qquad 11.5 \\ 56 \qquad 11.5 \\ 61 \qquad 14 \\ 14 \\ 54 \qquad 56 \\ 56 \qquad 14 \\ 56 \qquad 56 \\ $			_		
$5510 \qquad 52 \qquad 40 \qquad 9 \\ 44 \qquad 9 \\ 106 \qquad 53 \qquad 11.5 \\ 56 \qquad 11.5 \\ 56 \qquad 11.5 \\ 242 \qquad 61 \qquad 14$					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			52		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		5510			
106 54 11.5 56 11.5 242 61 14					
56 11.5 242 61 14			106		
242 61 14					
242				-	
			242		

		484	65	14
			0	6.5
		26	8	6.5
			17	6.5
			37	9
		52	40	9
			44	9
	5550		53	11.5
		106	54	11.5
			56	11.5
		0.40	61	14
		242	62	14
		484	65	14
			0	6.5
		26	8	6.5
			17	6.5
			37	9
		52	40	9
			44	9
	5670	53 106 54	53	11.5
				11.5
			56	11.5
		242 -	61	14
			62	14
		484	65	14
	5710-2C	484	65	14
	5710-3	484	65	14
		26	0	14
			8	14
			17	14
			37	14
		52	40	14
			44	14
	5755		53	14
		106	54	14
			56	14
			61	14
		242	62	14
		484	65	14
			0	14
		26	8	14
	5795	20	17	14

	1			
			40	14
			44	14
			53	14
		106	54	14
			56	14
		242	61	14
		242	62	14
		484	65	14
			0	-1
		26	17	-1
			36	-1
			37	1.5
		52	44	1.5
			52	1.5
			53	6.5
	5210	106	56	6.5
			60	6.5
			61	9
		242	62	9
			64	9
		484 -	65	14
			66	14
		996	67	14
		26	0	4
			17	4
000.44			36	4
802.11ax 80M		52	37	9
			44	9
			52	9
			53	11.5
	5290	106	56	11.5
			60	11.5
			61	14
		242	62	14
			64	14
		404	65	14
		484	66	14
		996	67	14
			0	6.5
		26	17	6.5
	5500		36	6.5
	5530		37	9
		52	44	9
			52	9

			53	11.5	
		106	56	11.5	
			60	11.5	
			61	14	
		242	62	14	
			64	14	
		10.1	65	14	
		484	66	14	
		996	67	14	
			0	6.5	
		26	17	6.5	
			36	6.5	
			37	9	
		52	44 9		
			52	9	
			53	11.5	
	5610	106	56	11.5	
			60	11.5	
		242	61	14	
			62		
			64	14 14	
		484 -	65	14	
			66	14	
		996	67	14	
-	5690-2C	996	67	14	
-	5690-3	996	67	14	
-			0	14	
		26	17	14	
			36	14	
			37	14	
		52	44	14	
			52	14	
			53	14	
	5775	106	56	14	
5775	0.70		60	14	
1					
			61	14	
		242	61 62	14	
		242	62	14	
			62 64	14 14	
		242 484	62	14	

5.6. WORST-CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.5.

Worst case Data Rates declared by the customer:

802.11a 20 mode: 6 Mbps 802.11n HT20 mode: MCS0 802.11n HT40 mode: MCS0 802.11ac VHT20 mode: MCS0 802.11ac VHT40 mode: MCS0 802.11ac VHT80 mode: MCS0 802.11ax HE20 mode: MCS0 802.11ax HE40 mode: MCS0 802.11ax HE80 mode: MCS0

802.11a only support SISO mode. 802.11n HT20/HT40/ac VHT20/VHT40/VHT80/ax HE20/HE40/HE80 support SISO and MIMO mode.

802.11ac VHT20 and VHT40 mode are different from 802.11nHT20 and HT40 only in control messages, so for these 4 modes, only 802.11n HT20 and 802.11n HT40 worst case power modes radiated emission test data are recorded in the report .

The EUT has 2 separate antennas which correspond to 2 separate antenna ports. Core 1 and Core 2 correspond to antenna 0 and antenna 1 respectively.

The measured additional path loss was included in any path loss calculations for all RF cable used during tested.

Radiated emissions tests were performed with the MIMO modes. These were found to be the worst modulation scheme with regards to emissions after preliminary investigations and, as this mode emits the highest conducted output power level, it was deemed to be the worst case.

The EUT support Cyclic Shift Diversity(CDD), Space Time Coding(STBC), Spartial Division Multiplexing(SDM) modes. They use the same conducted power per chain in any given mode, so we only chose the worst case mode CDD for final testing. Worst-case selection criteria for 802.11ax test items:

802.11ax support OFDMA full RU tone and partial Single RU tone, investigation has been done on all the possible configurations for searching the worst cases, only the worst-case mode data recorded in this report.

Mode	Tones number in RU	RF offset
		0
	26T	4
		8
		37
HE20	52T	38
		40
	1067	53
	1061	54
	242T / SU note1	61 / -
		0
	26T 52T	9
		17
		37
	52T	41
		44
HE40		53
	52T HE40 106T 242T	54
		56
	0497	61
	2421	62
	484T / SU note1	63 / -
		0
	26T	18
	52T 106T 242T / SU note1 26T 52T 52T 106T 242T 484T / SU note1	36
		37
	52T	45
		52
		53
HE80	106T	57
		60
		61
	242T	62
		64
	4047	65
	4841	66
	966T / SU note1	67 / -

Note1.

Full RU(Resource Unit) mode and SU(Single Unit) mode have no difference in physical waveform. This report has been reported the full RU mode with highest output power in MIMO.

Note2.

For the 6dB Bandwidth, it was tested on the lowest tones and highest tones.

Note3.

For the PSD, OBW and 26dBW, it was tested all the tones on middle channel and preformed the spot check on low channel and high channel.

Note4.

For radiated band edge, full test for highest tones, sport check for the lowest offset for low channel and highest offset for high channel.

Note5.

For radiated emission, full test for highest tones, sport check for lowest offset of low channel for each tone.

5.7. DESCRIPTION OF AVAILABLE ANTENNAS

Frequency Band	Antenna 0 Gain (dBi)	Antenna 1 Gain (dBi)	Antenna Type
UNII1	1.82	1.28	
UNII2A	2.54	1.41	DCP Antonno
UNII2C	1.73	0.42	PCB Antenna
UNII3	-0.7	-1.39	

The EUT support Cyclic Shift Diversity(CDD) mode.

MIMO output power port and MIMO PSD port summing were performed in accordance with KDB 662911 D01. For the CDD results the Directional Gain was calculated in accordance with the following mothed.

For output power measurements:

Directional gain= GANT + Array Gain

 G_{ANT} : equal to the gain of the antenna having the highest gain

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$

Frequency Band	Directional Gain (dBi)
UNII1	1.82
UNII2A	2.54
UNII2C	1.73
UNII3	-0.7

For power spectral density (PSD) measurements:

Directional gain= GANT + Array Gain

Array Gain = 10 log(NANT/Nss) dB.

N_{ANT} : number of transmit antennas

Nss : number of spatial streams, The worst case directional gain will occur when Nss = 1

Frequency Band	Directional Gain (dBi)
UNII1	4.83
UNII2A	5.55
UNII2C	4.73
UNII3	2.31

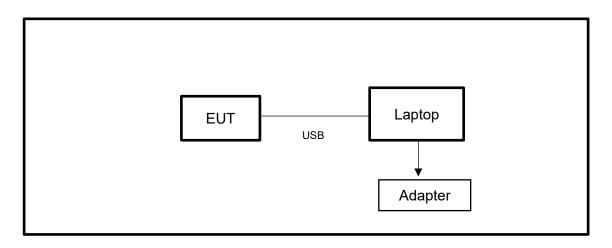
5.8. SUPPORT UNITS FOR SYSTEM TEST

SUPPORT EQUIPMENT

Item	Equipment	Brand Name	Model Name	Remark
1	PC	Lenovo	E42-80	/
2	AC Adaptor	Lenovo	MACS-1201001202	Input: 100-240 V~50/60 Hz, 0.35 A Output: DC 12V1A

I/O CABLES

Cable No	Port	Connector Type	Cable Type	Cable Length(m)	Remarks
1	USB	/	/	1.0	/


ACCESSORIES

Item	Accessory	Brand Name	Model Name	Description
/	/	/	/	/

TEST SETUP

The EUT can work in engineering mode with a software through a Laptop.

SETUP DIAGRAM FOR TESTS

6. MEASURING EQUIPMENT AND SOFTWARE USED

R&S TS 8997 Test System									
Equipment Manu			turer	Model	No.	Serial No.	Last C	Cal.	Due. Date
Power sensor, Power Meter R&			6	OSP1	20	100921	Mar.31,	2023	Mar.30,2024
Vector Signal Genera	tor	R&S	6	SMBV1	00A	261637	Oct.12,	2023	Oct.11, 2024
Signal Generator		R&S	6	SMB10	00A	178553	Oct.12,	2023	Oct.11, 2024
Signal Analyzer		R&S	6	FSV4	10	101118	Oct.12,	2023	Oct.11, 2024
Software									
Description Manu			Manuf	acturer		Nam	е		Version
For R&S TS 8997 Test System R			hde &	Schwa	Z	EMC	32		10.60.10
Tonsend RF Test System									
Equipment	Man	ufacturer	Мос	del No.	S	Serial No.	Last C	Cal.	Due. Date
Wideband Radio Communication Tester		R&S	СМ	W500		155523	Oct.12,	2023	Oct.11, 2024
Wireless Connectivity Tester		R&S CMW		W270	120	1.0002N75- 102	Sep.25,	2023	Sep.24, 2024
PXA Signal Analyzer	Ke	eysight	N9	030A	ΜY	/55410512	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysight	N5	182B	MΥ	/56200284	Oct.12,	2023	Oct.11, 2024
MXG Vector Signal Generator	Ke	eysight	N5	172B	MY	/56200301	Oct.12,	2023	Oct.11, 2024
DC power supply	Ke	eysight	E3	642A	ΜY	/55159130	Oct.12,	2023	Oct.11, 2024
Temperature & Humidity Chamber	SAN	NMOOD	SG-8	30-CC-2		2088	Oct.12,	2023	Oct.11, 2024
Attenuator	A	glient	84	495B	28	14a12853	Oct.12,	2023	Oct.11, 2024
RF Control Unit	То	nscend	JSC)806-2	238	380620666	April 18,	2023	April 17, 2024
				Softwa	re				
Description		Manufact	turer			Name			Version
Tonsend SRD Test Sys	tem	Tonser	nd	JS1	120-:	3 RF Test S	ystem		V3.2.22

Conducted Emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
EMI Test Receiver	R&S	ESR3	101961	Oct.13, 2023	Oct.12, 2024
Two-Line V- Network	R&S	ENV216	101983	Oct.13, 2023	Oct.12, 2024
Artificial Mains Networks	Schwarzbeck	NSLK 8126	8126465	Oct.13, 2023	Oct.12, 2024
Software					
I	Description			Name	Version
Test Software	for Conducted	Emissions	Farad	EZ-EMC	Ver. UL-3A1

	Radiated Emissions				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
MXE EMI Receiver	KESIGHT	N9038A	MY56400036	Oct.12, 2023	Oct.11, 2024
Hybrid Log Periodic Antenna	TDK	HLP-3003C	130959	Aug.02, 2021	Aug.01, 2024
Preamplifier	HP	8447D	2944A09099	Oct.12, 2023	Oct.11, 2024
EMI Measurement Receiver	R&S	ESR26	101377	Oct.12, 2023	Oct.11, 2024
Horn Antenna	TDK	HRN-0118	130940	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-0118	TRS-305- 00067	Oct.12, 2023	Oct.11, 2024
Horn Antenna	Schwarzbeck	BBHA9170	697	July 20, 2021	July 19, 2024
Preamplifier	TDK	PA-02-2	TRS-307- 00003	Oct.12, 2023	Oct.11, 2024
Preamplifier	TDK	PA-02-3	TRS-308- 00002	Oct.12, 2023	Oct.11, 2024
Loop antenna	Schwarzbeck	1519B	00008	Dec.14, 2021	Dec.13, 2024
Preamplifier	TDK	PA-02-001- 3000	TRS-302- 00050	Oct.12, 2023	Oct.11, 2024
High Pass Filter	Wi	WHKX10- 2700-3000- 18000-40SS	23	Oct.12, 2023	Oct.11, 2024
Highpass Filter	Wainwright	WHKX10- 5850-6500- 1800-40SS	4	Oct.12, 2023	Oct.11, 2024
Band Reject Filter	Wainwright	WRCJV12- 5695-5725- 5850-5880- 40SS	4	Oct.12, 2023	Oct.11, 2024
Band Reject Filter	Wainwright	WRCJV20- 5120-5150- 5350-5380- 60SS	2	Oct.12, 2023	Oct.11, 2024

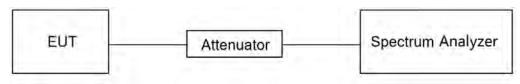
Band Reject Filter	Wainwright	WRCJV20- 5440-5470- 5725-5755- 60SS	1	Oct.12, 2023	Oct.11, 2024
Band Reject Filter	Wainwright	WRCJV8- 2350-2400- 2483.5- 2533.5-40SS	4	Oct.12, 2023	Oct.11, 2024
Band Reject Filter	Wainwright	WRCD5- 1879- 1879.85- 1880.15- 1881-40SS	1	Oct.12, 2023	Oct.11, 2024
Notch Filter	Wainwright	WHJ10-882- 980-7000- 40SS	1	Oct.12, 2023	Oct.11, 2024
		So	ftware		
	Description		Manufacturer	Name	Version
Test Software	e for Radiated E	Emissions	Farad	EZ-EMC	Ver. UL-3A1

Other Instrument					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Temperature humidity probe	OMEGA	ITHX-SD-5	18470007	Oct.12, 2023	Oct.11, 2024
Barometer	Yiyi	Baro	N/A	Oct.12, 2023	Oct.11, 2024
Attenuator	Agilent	8495B	2814a12853	Oct.12, 2023	Oct.11, 2024

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE

LIMITS


None; for reporting purposes only.

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.B.

The zero-span mode on a spectrum analyzer or EMI receiver, if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

TEST SETUP

TEST ENVIRONMENT

Temperature	26.1°C	Relative Humidity	58%
Atmosphere Pressure	101.2kPa	Test Voltage	DC 5V

TEST DATE / ENGINEER

Test Date	October 17, 2023	Test By	Walker Yuan
		· · _ J	

TEST RESULTS

Please refer to section "Test Data" - Appendix D

7.2. 6DB AND 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

	CFR 47 FCC Part15, Subpart E ISED RSS-247 ISSUE 3	
Test Item	Limit	Frequency Range (MHz)
26 dB Emission Bandwidth	For reporting purposes only.	5150 ~ 5250
26 dB Emission Bandwidth	For reporting purposes only.	5250 ~ 5350
26 dB Emission Bandwidth	For reporting purposes only.	5470 ~ 5725 (For FCC) 5470 ~ 5600 (For ISED) 5650 ~ 5725 (For ISED)
6 dB Emission Bandwidth	The minimum 6 dB emission bandwidth shall be 500 kHz.	5725 ~ 5850
99 % Occupied Bandwidth	For reporting purposes only.	5150 ~ 5825 (For ISED)

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.C1. for 26 dB Emission Bandwidth; section II.C2. for 6 dB Emission Bandwidth; section II.D. for 99 % Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	For 6 dB Emission Bandwidth: RBW=100 kHz For 26 dB Emission bandwidth: approximately 1 % of the EBW. For 99 % Occupied Bandwidth: approximately 1 % ~ 5 % of the OBW.
VBW	For 6 dB Bandwidth: ≥ 3*RBW For 26 dB Bandwidth: >3*RBW For 99 % Bandwidth: >3*RBW
Trace	Max hold
Sweep	Auto couple

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6/26 dB relative to the maximum level measured in the fundamental emission.

Calculation for 99 % Bandwidth of UNII-2C and UNII-3 Straddle Channel:

For Example: Fundamental Frequency: 5720 MHz

99 % OBW: 21.00 MHz

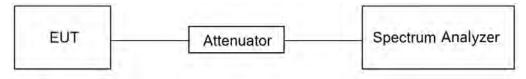
Turning Frequency: 5725 MHz

99 % Bandwidth of UNII-2C Band Portion = (5725-(5720-(21.00/2)) = 15.50 MHz

99 % Bandwidth of UNII-3 Band Portion = (5720+(21.00/2)-5725) = 5.50 MHz

Calculation for 26 dB Bandwidth of UNII-2C Straddle Channel:

For Example: Fundamental frequency: 5720 MHz


26 dB BW: 20.00 MHz FL: 5710.16 MHz FH: 5730.16 MHz Turning Frequency: 5725 MHz 26 dB Bandwidth of UNII-2C Band Portion = 5725-5710.16=14.84 MHz

Calculation for 6dB Bandwidth of UNII-3 Straddle Channel:

For Example: Fundamental frequency: 5720 MHz

6 dB BW: 16.44 MHz FL: 5711.76 MHz FH: 5728.2 MHz Turning Frequency: 5725 MHz 6 dB Bandwidth of UNII-3 band Portion = 5728.2-5725=3.2 MHz

TEST SETUP

TEST ENVIRONMENT

Temperature	26.1°C	Relative Humidity	58%
Atmosphere Pressure	101.2kPa	Test Voltage	DC 5V

TEST DATE / ENGINEER

Test Date October 16, 2023	Test By	Walker Yuan
----------------------------	---------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix A1&A2&A3

7.3. CONDUCTED OUTPUT POWER

LIMITS

CFR 47 FCC Part15, Subpart E				
Test Item	Limit	Frequency Range (MHz)		
Conducted Output Power	 Outdoor Access Point: 1 W (30 dBm) Indoor Access Point: 1 W (30 dBm) Fixed Point-To-Point Access Points: 1 W (30 dBm) Client Devices: 250 mW (24 dBm) 	5150 ~ 5250		
	Shall not exceed the lesser of 250 mW (24dBm) or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.	5250 ~ 5350 5470 ~ 5725		
	Shall not exceed 1 Watt (30 dBm).	5725 ~ 5850		

ISED RSS-247 ISSUE 3					
Test Item	Limit	Frequency Range (MHz)			
Conducted Output Power or e.i.r.p.	The maximum e.i.r.p. shall not exceed 200 mW (23 dBm) or 10 + 10 log ₁₀ B, dBm, whichever power is less. B is the 99 % emission bandwidth in megahertz.	5150 ~ 5250			
	a. The maximum conducted output power shall not exceed 250 mW (24 dBm) or $11 + 10 \log_{10}B$ dBm, whichever is less. b. The maximum e.i.r.p. shall not exceed 1.0 W (30 dBm) or 17 + 10 log_{10}B dBm, whichever is less. B is the 99 % emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.	5250 ~ 5350 5470 ~ 5600 5650 ~ 5725			
	Shall not exceed 1 Watt (30 dBm). The e.i.r.p. shall not exceed 4 W	5725 ~ 5850			

Note:

The above limits are based upon the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.E.

Method SA-2 (trace averaging across ON and OFF times of the EUT transmissions, followed by duty cycle correction.):

(a) Measure the duty cycle D of the transmitter output signal.

- (b) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.
- (c) Set RBW = 1 MHz.
- (d) Set VBW ≥ 3 MHz.

(e) Number of points in sweep \geq [2 × span / RBW]. (This gives bin-to-bin spacing \leq RBW / 2, so that narrowband signals are not lost between frequency bins.)

(f) Sweep time = auto.

(g) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode. (h) Do not use sweep triggering. Allow the sweep to "free run."

(i) Trace average at least 100 traces in power averaging (rms) mode; however, the number of traces to be averaged shall be increased above 100 as needed such that the average accurately represents the true average over the ON and OFF periods of the transmitter.

j) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function with band limits set equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum.

k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average over both the ON and OFF times of the transmission). For example, add [10 log (1 / 0.25)] = 6 dB if the duty cycle is 25%.

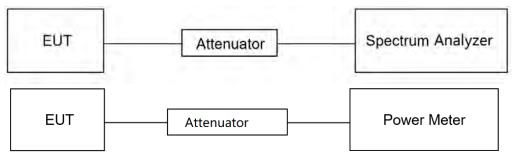
Method PM (Measurement using an RF average power meter):

(i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied:

a. The EUT is configured to transmit continuously or to transmit with a constant duty cycle.

b. At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.

c. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.


(ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in II.B.

(iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.

(iv) Adjust the measurement in dBm by adding 10 log (1/x) where x is the duty cycle (e.g., 10 log (1/0.25) if the duty cycle is 25 %).

Note: Method SA-2 was used for straddle channel output power test, and Method PM was used for testing rest channels

TEST SETUP

TEST ENVIRONMENT

Temperature	26.1°C	Relative Humidity	58%
Atmosphere Pressure	101.2kPa	Test Voltage	DC 5V

TEST DATE / ENGINEER

Test Date	October 17, 2023	Test By	Walker Yuan
-----------	------------------	---------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix B

7.4. POWER SPECTRAL DENSITY

LIMITS

CFR 47 FCC Part15, Subpart E		
Test Item	Limit	Frequency Range (MHz)
Power Spectral Density	 Outdoor Access Point: 17 dBm/MHz Indoor Access Point: 17 dBm/MHz Fixed Point-To-Point Access Points: 17 dBm/MHz Client Devices: 11 dBm/MHz 	5150 ~ 5250
Lonoky	11 dBm/MHz	5250 ~ 5350 5470 ~ 5725
	30 dBm/500kHz	5725 ~ 5850

ISED RSS-247 ISSUE 3		
Test Item	Limit	Frequency Range (MHz)
	The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.	5150 ~ 5250
Power Spectral Density	The power spectral density shall not exceed 11 dBm inany 1.0 MHz band.	5250 ~ 5350 5470 ~ 5600 5650 ~ 5725
	30 dBm / 500 kHz	5725 ~ 5850

Note:

The above limits are based upon the maximum antenna gain does not exceed 6 dBi.

If transmitting antennas of directional gain greater than 6 dBi are used, maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

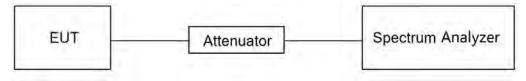
Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.F.

Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test	
Center Frequency		
Detector	RMS	
RBW	1 MHz	
VBW	≥3 × RBW	
Span	Encompass the entire emissions bandwidth (EBW) of the signal	
Trace	Max hold	
Sweep time	Auto	

For U-NII-1, U-NII-2A and U-NII-2C band:

For U-NII-3:



Center Frequency	The center frequency of the channel under test
Detector	RMS
RBW	500 kHz
VBW	≥3 × RBW
Span	Encompass the entire emissions bandwidth (EBW) of the signal
Trace	Max hold
Sweep time	Auto

Allow trace to fully stabilize and use the peak search function on the instrument to find the peak of the spectrum and record its value.

Add $10 \log (1/x)$, where x is the duty cycle, to the peak of the spectrum, the result is the Maximum PSD over 1 MHz / 500 kHz reference bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	26.1°C	Relative Humidity	58%
Atmosphere Pressure	101.2kPa	Test Voltage	DC 5V

TEST DATE / ENGINEER

Test Date	October 16, 2023	Test By	Walker Yuan
-----------	------------------	---------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix C

7.5. FREQUENCY STABILITY

<u>LIMITS</u>

The frequency of the carrier signal shall be maintained within band of operation.

TEST PROCEDURE

1. The EUT was placed inside an environmental chamber as the temperature in the chamber was varied between -20 $^{\circ}$ C ~ 50 $^{\circ}$ C (declared by customer).

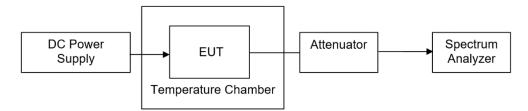
2. The temperature was incremented by 10 °C intervals and the unit allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded.

3. The primary supply voltage is varied from 85 % to 115 % of the nominal value for non handcarried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	10 kHz
VBW	≥3 × RBW
Span	Encompass the entire emissions bandwidth (EBW) of the signal
Trace	Max hold
Sweep time	Auto

Connect the EUT to the spectrum analyzer and use the following settings:

4. While maintaining a constant temperature inside the environmental chamber, turn the EUT on and record the operating frequency at startup, and at 2 minutes, 5minutes, and 10 minutes after the EUT is energized.


5. Allow the trace to stabilize, find the peak value of the power envelope and record the frequency, then calculated the frequency drift.

TEST ENVIRONMENT

	Normal Test Conditions	Extreme Test Conditions
Relative Humidity	20 % ~ 75 %	/
Atmospheric Pressure	100 kPa ~ 102 kPa	/
Tomporatura	T _N (Normal Temperature):	T∟(Low Temperature): -20 °C
Temperature	24.3 °C	T _H (High Temperature): 50 °C
Supply Voltage	V _N (Normal Voltage): DC 5 V	V _L (Low Voltage): DC 4.25 V
Supply Voltage	V _N (Normal Voltage). DC 5 V	V _H (High Voltage): DC 5.75 V

TEST SETUP

TEST ENVIRONMENT

Temperature	26.1°C	Relative Humidity	58%
Atmosphere Pressure	101.2kPa	Test Voltage	DC 5V

TEST DATE / ENGINEER

TEST RESULTS

Please refer to section "Test Data" - Appendix H

7.6. DYNAMIC FREQUENCY SELECTION (SLAVE)

LIMITS

(1) DFS Detection Thresholds

Table 3: DFS Detection Thresholds for Master Devices and Client Devices With Radar Detection

Maximum Transmit Power	Value (See Notes 1, 2, and 3)	
EIRP ≥ 200 milliwatt	-64 dBm	
EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz	-62 dBm	
EIRP < 200 milliwatt that do not meet the		
power	-64 dBm	
spectral density requirement		
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response. Note3: EIRP is based on the highest antenna gain. For MIMO devices refer to KDB Publication 662911 D01		

(2) DFS Response Requirements

Table 4: DFS Response Requirement Values

Parameter	Value	
Non-occupancy period	Minimum 30 minutes	
Channel Availability Check Time	60 seconds	
Channel Move Time	10 seconds	
	See Note 1.	
	200 milliseconds + an aggregate of 60	
Channel Closing Transmission Time	milliseconds over	
	remaining 10 second period.	
	See Notes 1 and 2.	
LI NII Detection Bondwidth	Minimum 100% of the U-NII 99% transmission	
U-NII Detection Bandwidth	power bandwidth. See Note 3.	

Note 1: Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required facilitating a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Note 3: During the U-NII Detection Bandwidth detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

APPLICABILITY OF DFS REQUIREMENTS

A U-NII network will employ a DFS function to detect signals from radar systems and to avoid cochannel operation with these systems. This applies to the 5250-5350 MHz and/or 5470-5725 MHz bands.

Within the context of the operation of the DFS function, a U-NII device will operate in either Master Mode or Client Mode. U-NII devices operating in Client Mode can only operate in a network controlled by a U-NII device operating in Master Mode.

		Operational M	lode
Requirement	Master	Client Without	Client With Radar
		Radar Detection	Detection
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

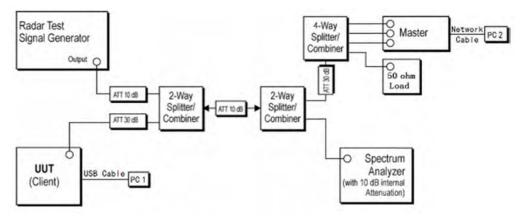
Table 1: Applicability of DFS Requirements Prior to Use of a Channel

Table 2: Applicability	of DES	requirements	durina r	normal operation
1000Σ . Applicablin		requiremento	uuning i	

	Operatior	nal Mode
Requirement	Master Device or Client with Radar Detection	⊠ Client Without Radar Detection
DFS Detection Threshold	Yes	Not required
Channel Closing Transmission Time	Yes	Yes
Channel Move Time	Yes	Yes
U-NII Detection Bandwidth	Yes	Not required

Additional requirements for devices with multiple bandwidth modes	Master Device or Client with Radar Detection	Client Without Radar Detection
U-NII Detection Bandwidth and Statistical Performance Check	All BW modes must be tested	Not required
Channel Move Time and Channel Closing Transmission Time	Test using widest BW mode available	Test using the widest BW mode available for the link
All other tests	Any single BW mode	Not required
Note: Frequencies selected for statist frequencies within the radar detection detection bandwidth. For 802.11 devic bonded 20 MHz channels and the cha	bandwidth and frequencies i ces it is suggested to select f	near the edge of the radar

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.


PARAMETERS OF RADAR TEST WAVEFORMS

This section provides the parameters for required test waveforms, minimum percentage of successful detections, and the minimum number of trials that must be used for determining DFS conformance. Step intervals of 0.1 microsecond for Pulse Width, 1 microsecond for PRI, 1 MHz for chirp width and 1 for the number of pulses will be utilized for the random determination of specific test waveforms.

Radar Type	Pulse Width (µsec)	PRI (µsec)	Number of Pulses	Minimum Percentage of Successful Detection	Minimum Number of Trials
Q	1	1428	18	See Note 1	See Note 1
		Test A	(1)		
1	Ţ	Test B	$\begin{array}{c} \text{Roundup} \\ \left(\frac{19 \cdot 10^{\prime\prime}}{\text{PRJ}_{\text{pare}}} \right) \end{array}$	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (F	Radar Types 1-4	3		80%	120
and ch Test A: 15 ui Test B: 15 ui	nannel closing ti nique PRI value: nique PRI value:	me tests. s randomly se s randomly se	lected from the list of 23	n bandwidth test, channe PRI values in Table 5a. of 518-3066 µsec, with a A	

A minimum of 30 unique waveforms are required for each of the Short Pulse Radar Types 2 through 4. If more than 30 waveforms are used for Short Pulse Radar Types 2 through 4, then each additional waveform must also be unique and not repeated from the previous waveforms. If more than 30 waveforms are used for Short Pulse Radar Type 1, then each additional waveform is generated with Test B and must also be unique and not repeated from the previous waveforms in Tests A or B. Test aggregate is average of the percentage of successful detections of short pulse radar types 1-4.

TEST SETUP

TEST ENVIRONMENT

Temperature	26.1℃	Relative Humidity	58%
Atmosphere Pressure	101.2kPa	Test Voltage	DC 5V

UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch This report shall not be reproduced except in full, without the written approval of UL Verification Services (Guangzhou) Co., Ltd, Song Shan Lake Branch.

TEST DATE / ENGINEER

Test Date	October 17, 2023	Test By	Walker Yuan
-----------	------------------	---------	-------------

TEST RESULTS

Please refer to section "Test Data" - Appendix E&F&G

8. RADIATED TEST RESULTS

LIMITS

Refer to CFR 47 FCC §15.205, §15.209 and §15.407 (b).

Refer to ISED RSS-GEN Clause 8.9, Clause 8.10 and ISED RSS-247 6.2.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radia	ated outside of the specified frequence	cy bands above 30) MHz
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Stren (dBuV/m)	-
		Quasi-l	Peak
30 - 88	100	40	
88 - 216	150	43.	5
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
	300	74	54

FCC Emissio	ns radiated outside of the specified fre	equency bands below 30 MHz
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

ISED General field strength limits at frequencies below 30 MHz

	Table 6 – General field strength limits at freque	ncies below 30 MHz
Frequency	Magnetic field strength (H-Field) (µA/m)	Measurement distance (m)
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands refer to ISED RSS-GEN Clause 8.10

lHz	MHz	GHz
.090 - 0.110	149.9 - 150.05	9.0 - 9.2
.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
.1735 - 2.1905	158.7 - 158.9	10.6 - 12.7
.020 - 3.026	162.0125 - 167.17	13.25 - 13.4
.125 - 4.128	167.72 - 173.2	14.47 - 14.5
.17725 - 4.17775	240 - 285	15.35 - 16.2
20725 - 4.20775	322 - 335.4	17.7 - 21.4
.677 - 5.683	399.9 - 410	22.01 - 23.12
.215 - 6.218	608 - 614	23.6 - 24.0
.28775 - 6.26825	960 - 1427	31.2 - 31.8
.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
.291 - 8.294	1645.5 - 1646.5	Above 38.6
362 - 8.366	1680 - 1710	
37625 - 8.38675	1718.8 - 1722.2	
41425 - 8.41475	2200 - 2300	
2.29 - 12.293	2310 - 2390	
2.51975 - 12.52025	2483.5 - 2500	
2.57675 - 12.57725	2655 - 2900	
3.36 - 13.41	3260 - 3267	
6.42 - 16.423	3332 - 3339	
8.69475 - 16.69525	3345.8 - 3358	
8.80425 - 16.80475	3500 - 4400	
5.5 - 25.67	4500 - 5150	
7.5 - 38.25	5350 - 5460	
3 - 74.6	7250 - 7750	
4.8 - 75.2	8025 - 8500	
08 - 138		

Note 1: Certain frequency bands listed in table 7 and in bands above 38.6 GHz are designated for licence-exempt applications. These frequency bands and the requirements that apply to related devices are set out in the 200 and 300 series of RSSs.

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

Limits of unwanted/undesirable emission out of the restricted bands refer to CFR 47 FCC §15.407 (b) and ISED RSS-247 6.2.

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1GHz)						
Frequency Range	EIRP Limit	Field Strength Limit				
(MHz)		(dBuV/m) at 3 m				
5150~5250 MHz						
5250~5350 MHz	PK: -27 (dBm/MHz)	PK:68.2(dBµV/m)				
5470~5725 MHz						
	PK: -27 (dBm/MHz) *1	PK: 68.2(dBµV/m) *1				
5725~5850 MHz	PK: 10 (dBm/MHz) *2	PK: 105.2 (dBµV/m) *2				
3723°3830 Williz	PK: 15.6 (dBm/MHz) *3	PK: 110.8(dBµV/m) *3				
	PK: 27 (dBm/MHz) *4	PK: 122.2 (dBµV/m) *4				
Noto:						

Note:

*1 beyond 75 MHz or more above of the band edge.

*2 below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.

*3 below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

*4 from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at

the band edge.

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyzer

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made

to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X kHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

The setting of the spectrum analyzer

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

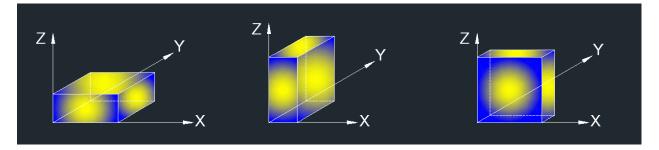
5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

Above 1 GHz

The setting of the spectrum analyzer

RBW	1 MHz
NBW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold

1. The testing follows the guidelines in KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.G.3 ~ II.G.6.


2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1. ON TIME AND DUTY CYCLE.

X axis, Y axis, Z axis positions:

Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: Simultaneous transmission had been evaluated with the 2.4 GHz WiFi, 5 GHz WiFi and BT transmitter and there were no any additional or worse emissions found. Only the worst data was recorded in the test report.

For Restricted Bandedge:

Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. PK=Peak: Peak detector.

4. AV=Average: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

7. Both horizontal and vertical have been tested, only the worst data was recorded in the report.

8. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (9 kHz ~ 30 MHz): Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All 3 polarizations (Horizontal, Face-on and Face-off) of the loop antenna had been tested, but only the worst data recorded in the report.

4. All modes have been tested, but only the worst data was recorded in the report.

5. dBuA/m= dBuV/m- 20Log10[120π] = dBuV/m- 51.5

For Radiate Spurious Emission (30 MHz ~ 1 GHz): Note:

1. Result Level = Read Level + Correct Factor.

2. If the peak values are less than the QP limit, the QP result is deemed to comply with QP limit.

3. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (1 GHz ~ 7 GHz):

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for Band reject filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27 dBm/MHz (68.2 dBuV/m) limit.

9. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious Emission (7 GHz ~ 18 GHz): Note:

1. Peak Result = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed to comply with average limit.

3. Peak: Peak detector.

4. AVG: VBW=1/Ton, where: Ton is the transmitting duration.

5. For the transmitting duration, please refer to clause 7.1.

6. Filter losses were only considered in the spurious frequency bands and the authorized band was not corrected for High Pass Filter losses.

7. Proper operation of the transmitter prior to adding the filter to the measurement chain.

8. Since non-restricted band peak emissions are less than the average limit, they also comply with the -27 dBm/MHz (68.2 dBuV/m) limit.

9. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (18 GHz ~ 26 GHz): Note:

1. Measurement = Reading Level + Correct Factor.

2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed

to comply with average limit.

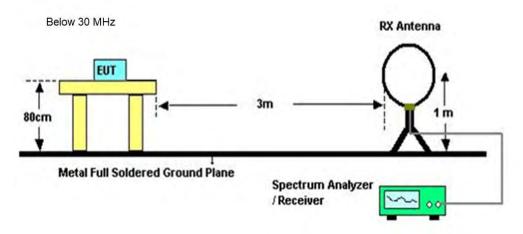
3. Peak: Peak detector.

4. All modes have been tested, but only the worst data was recorded in the report.

For Radiate Spurious emission (26 GHz ~ 40 GHz):

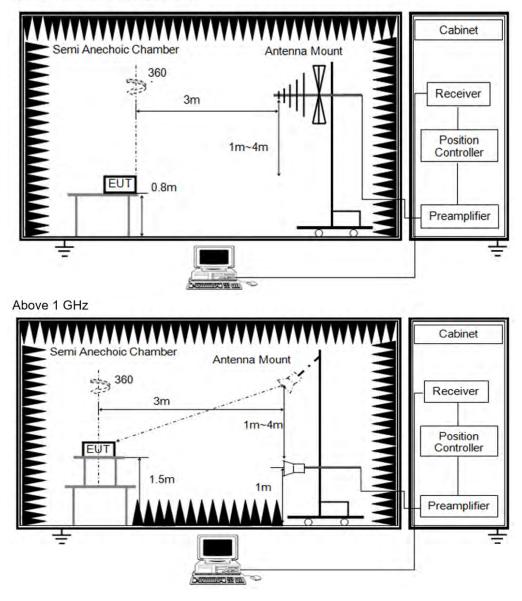
Note:

1. Measurement = Reading Level + Correct Factor.


2. If the peak values are less than the average limit of 54 dBuV/m, the average result is deemed

to comply with average limit.

3. Peak: Peak detector.


4. All modes have been tested, but only the worst data was recorded in the report.

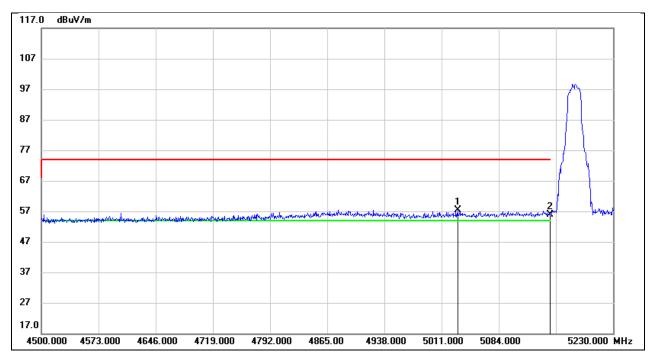
TEST SETUP

Below 1 GHz and above 30 MHz

TEST ENVIRONMENT

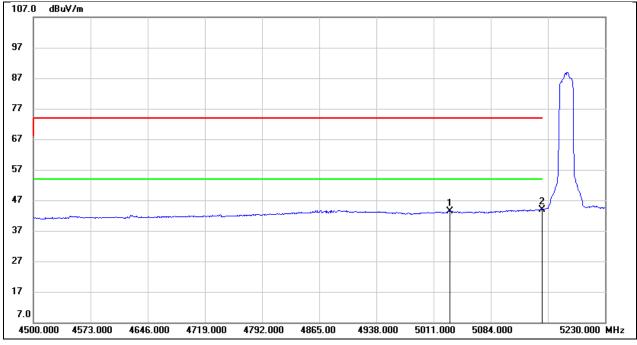
Temperature	25.1°C	Relative Humidity	63%
Atmosphere Pressure	101kPa	Test Voltage	

TEST DATE / ENGINEER

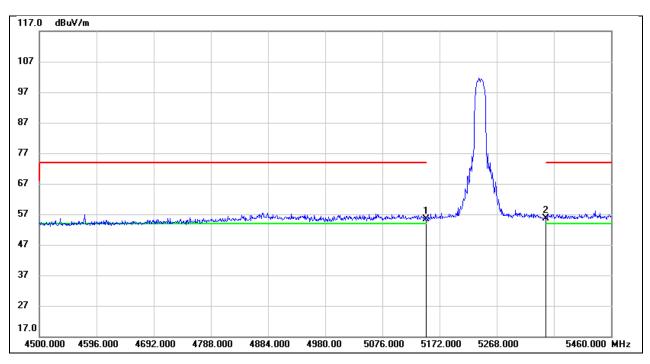

Test DateNovember 8, 2023Test By	Rex Huang
----------------------------------	-----------

TEST RESULTS

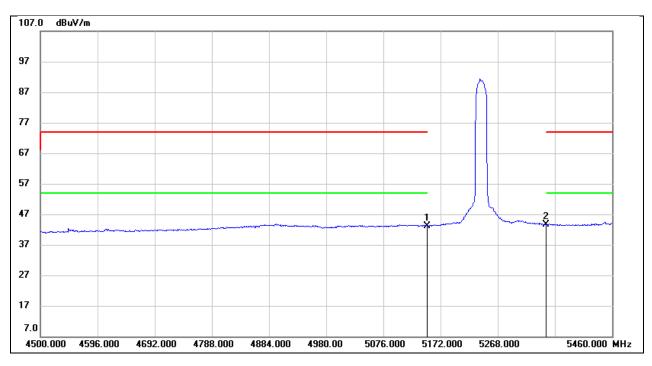
8.1. RESTRICTED BANDEDGE


Test Mode:	802.11a 20 PK	Frequency(MHz):	5180
Polarity:	Horizontal	Test Voltage:	DC 5V

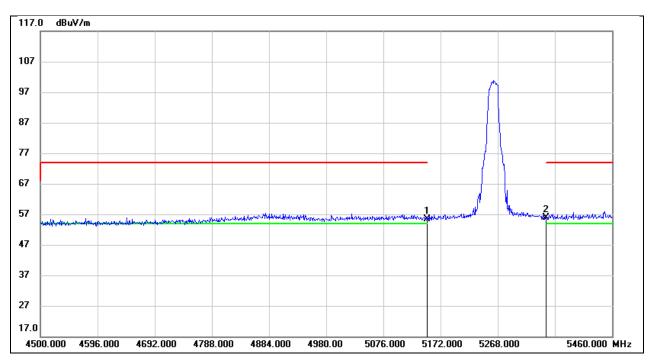
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5031.440	17.15	40.14	57.29	74.00	-16.71	peak
2	5150.000	15.56	40.27	55.83	74.00	-18.17	peak


Test Mode:	802.11a 20 AV	Frequency(MHz):	5180
Polarity:	Horizontal	Test Voltage:	DC 5V

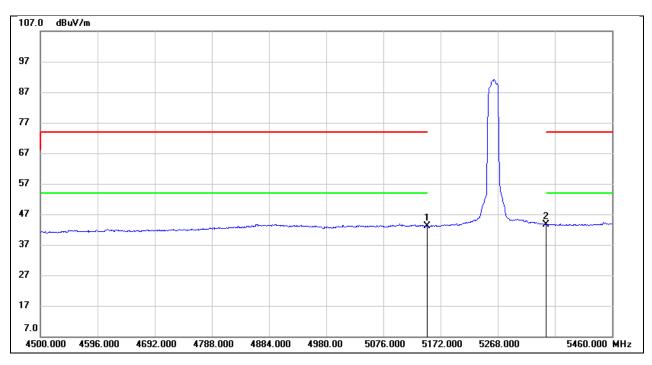
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5031.440	3.16	40.14	43.30	54.00	-10.70	AVG
2	5150.000	3.61	40.27	43.88	54.00	-10.12	AVG


Test Mode:	802.11a 20 PK	Frequency(MHz):	5240
Polarity:	Horizontal	Test Voltage:	DC 5V

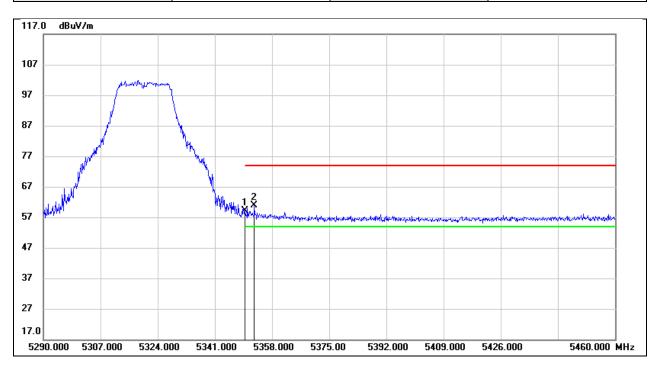
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.22	40.27	55.49	74.00	-18.51	peak
2	5350.000	15.20	40.49	55.69	74.00	-18.31	peak


Test Mode:	802.11a 20 AV	Frequency(MHz):	5240
Polarity:	Horizontal	Test Voltage:	DC 5V

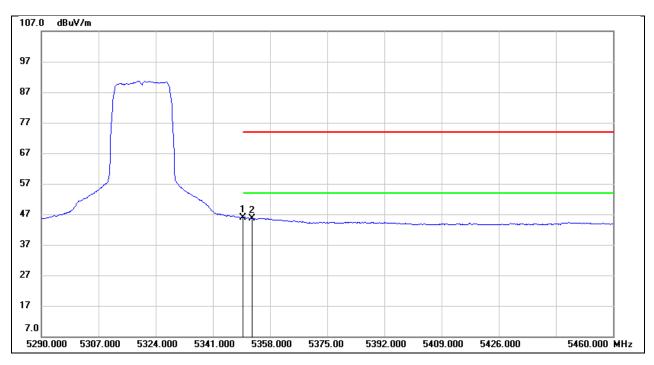
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	2.95	40.27	43.22	54.00	-10.78	AVG
2	5350.000	3.13	40.49	43.62	54.00	-10.38	AVG


Test Mode:	802.11a 20 PK	Frequency(MHz):	5260
Polarity:	Horizontal	Test Voltage:	DC 5V

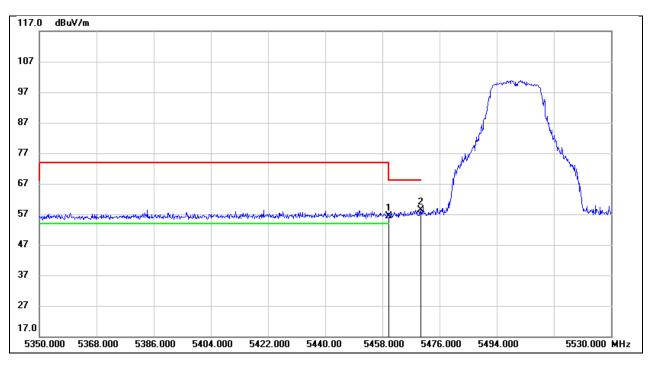
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.02	40.27	55.29	74.00	-18.71	peak
2	5350.000	15.28	40.49	55.77	74.00	-18.23	peak


Test Mode:	802.11a 20 AV	Frequency(MHz):	5260
Polarity:	Horizontal	Test Voltage:	DC 5V

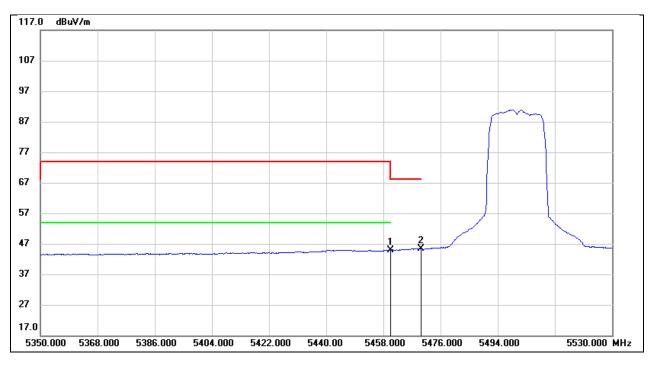
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	2.80	40.27	43.07	54.00	-10.93	AVG
2	5350.000	3.13	40.49	43.62	54.00	-10.38	AVG


Test Mode:	802.11a 20 PK	Frequency(MHz):	5320
Polarity:	Horizontal	Test Voltage:	DC 5V

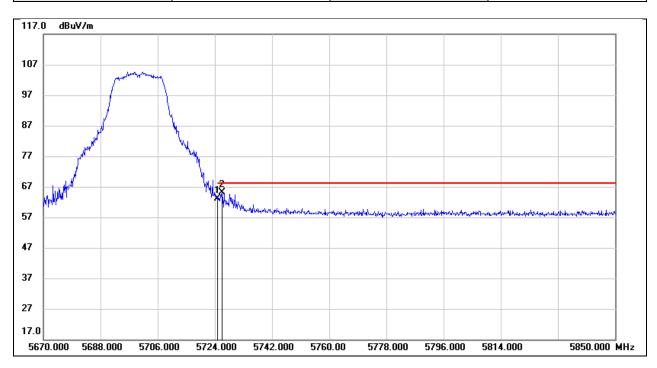
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	18.70	40.49	59.19	74.00	-14.81	peak
2	5352.730	20.32	40.50	60.82	74.00	-13.18	peak


Test Mode:	802.11a 20 AV	Frequency(MHz):	5320
Polarity:	Horizontal	Test Voltage:	DC 5V

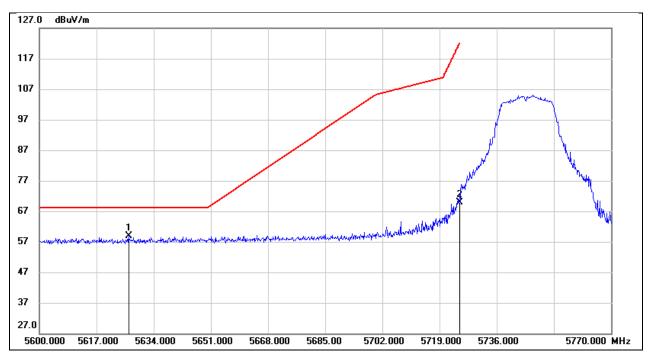
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	5.29	40.49	45.78	54.00	-8.22	AVG
2	5352.730	5.18	40.50	45.68	54.00	-8.32	AVG


Test Mode:	802.11a 20 PK	Frequency(MHz):	5500
Polarity:	Horizontal	Test Voltage:	DC 5V

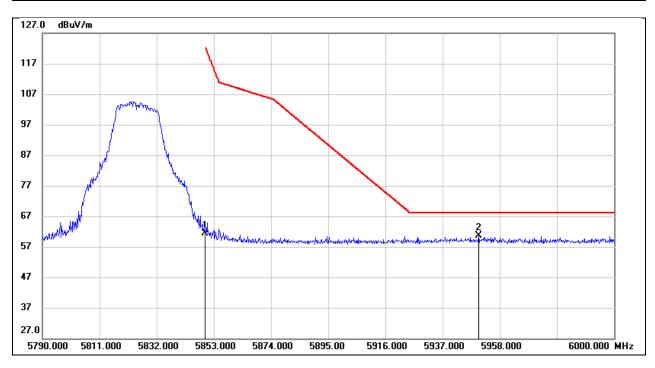
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	15.85	40.62	56.47	68.20	-11.73	peak
2	5470.000	17.77	40.63	58.40	68.20	-9.80	peak


Test Mode:	802.11a 20 AV	Frequency(MHz):	5500
Polarity:	Horizontal	Test Voltage:	DC 5V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	4.32	40.62	44.94	54.00	-9.06	AVG
2	5470.000	4.75	40.63	45.38	/	/	AVG


Test Mode:	802.11a 20 PK	Frequency(MHz):	5700
Polarity:	Horizontal	Test Voltage:	DC 5V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	21.90	41.27	63.17	68.20	-5.03	peak
2	5726.340	23.93	41.27	65.20	68.20	-3.00	peak


Test Mode:	802.11a 20 PK	Frequency(MHz):	5745
Polarity:	Horizontal	Test Voltage:	DC 5V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5626.520	17.87	41.00	58.87	68.20	-9.33	peak
2	5725.000	28.54	41.27	69.81	122.20	-52.39	peak

Test Mode:	802.11a 20 PK	Frequency(MHz):	5825
Polarity:	Horizontal	Test Voltage:	DC 5V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	19.78	41.60	61.38	122.20	-60.82	peak
2	5950.230	18.75	41.87	60.62	68.20	-7.58	peak

Fest Mode:	802.11n HT	802.11n HT20 PK Frequency(MHz): Horizontal Test Voltage:		5180		
Polarity:	Horizontal			DC 5V	DC 5V	
117.0 dBu¥/m						
107						
97						194
37						
<i>n</i>						
57						
7	an a	manthisectures	yundahanshirenjikatenyar	to an	hand have been been been been been been been be	l yatatan
7						
37						
27						
4500.000 4573.000	4646.000 4719.000	4792.000 4	865.00 49	38.000 5011.000	5084.000	5230.000 MH

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5108.090	16.99	40.23	57.22	74.00	-16.78	peak
2	5150.000	15.25	40.27	55.52	74.00	-18.48	peak

Test Mode:	802.	802.11n HT20 AV Frequency(MHz): Horizontal Test Voltage:		5180
Polarity:	Hori			DC 5V
107.0 dBuV/m				
97				
87				
77				
67				
57				
47	^			
37				
27				
17 7.0				
4500.000 4573.000	4646.000 4	719.000 4792.000	4865.00 4938.000 5011.000	5084.000 5230.000 MHz

No.	Frequency	Reading Correct		Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5108.090	3.78	40.23	44.01	54.00	-9.99	AVG
2	5150.000	3.47	40.27	43.74	54.00	-10.26	AVG

Test Mode:	802.11n HT20 PK	Frequency(MHz):	5240
Polarity:	Horizontal Test Voltage: DC 5V		DC 5V
117.0 dBuV/m			
107			
97			Λ
87			
77			
67			
57	a na shin ka anala yakan karka waka ka ka waka ka na shin ka	the second and the second and the second	Marson Hannes - marson and hand
47			
37			
27			
4500.000 4596.000	4692.000 4788.000 4884.000 4	1980.00 5076.000 5172.000	5268.000 5460.000 MHz

No.	Frequency	Reading Correct		Result	Result Limit		Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.31	40.27	55.58	74.00	-18.42	peak
2	5350.000	15.51	40.49	56.00	74.00	-18.00	peak

Test Mode:	802.11n H	IT20 AV	Freq	uency(MH	lz):	5240		
Polarity:	Horizontal		Test Voltage:			DC 5V		
97								
87					- M			
77					-	_		
67								
57					-			
47					}	2		
37								
27								
17								
7.0 4500.000 4596.000	4692.000 4788.000	4884.000	4980.00	5076.000 !	5172.000 5	268.000	5460.000 MHz	

No.	Frequency	Reading	Correct	Correct Result		Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.04	40.27	43.31	54.00	-10.69	AVG
2	5350.000	2.97	40.49	43.46	54.00	-10.54	AVG

17.0 4500.000

4596.000

4692.000

4788.000

5268.000

5460.000 MHz

Test	est Mode:		802.11n HT20 PK		Frequency(MHz):			5260			
Pola	rity:		Horizo	ontal		Test Vol	tage:		DC 5V		
117.0	dBuV/m										
107									A		
97									<u>[]</u>		
87											
77								- 1			
67								M	h.	2	
57	البديسة واليريق حادثهم	ation of the second second second	However by Albert	dage for our down so do the	ntratadiastanatariasa.Asta	appinger and a second	an a	outshouts"	. Well Growt	2 With an and production	
47											
37											
27											

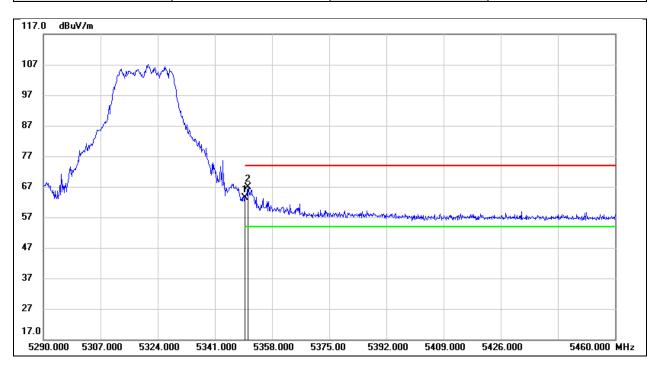
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	16.63	40.27	56.90	74.00	-17.10	peak
2	5350.000	16.64	40.49	57.13	74.00	-16.87	peak

4980.00

5076.000

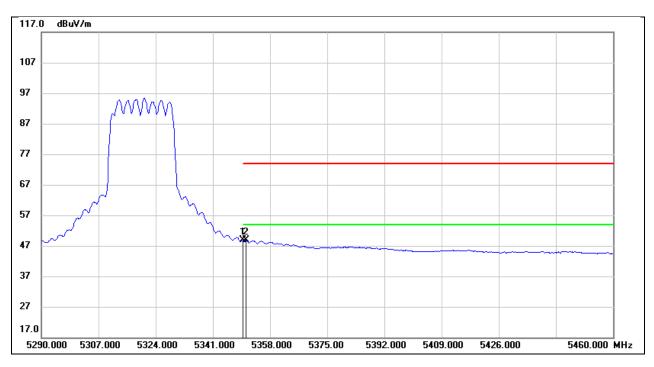
5172.000

4884.000

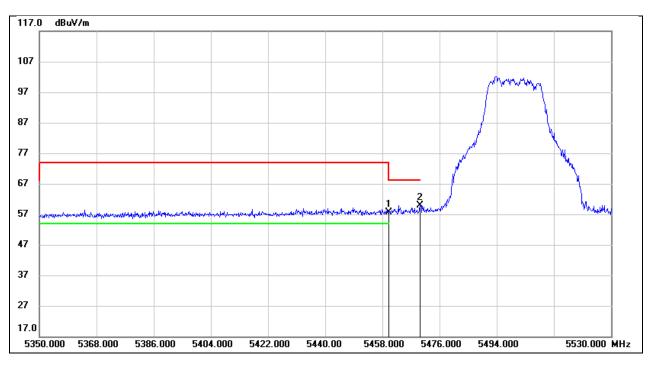


Test Mode:	802.11n HT20 AV	Frequency(MHz):	5260
Polarity:	Horizontal	Test Voltage:	DC 5V
107			
97			/
87			
77			
67			
57			
47		1	2
37			
27			
17.0 4500.000 4596.000 4	1692.000 4788.000 4884.000	4980.00 5076.000 5172.000	5268.000 5460.000 MHz

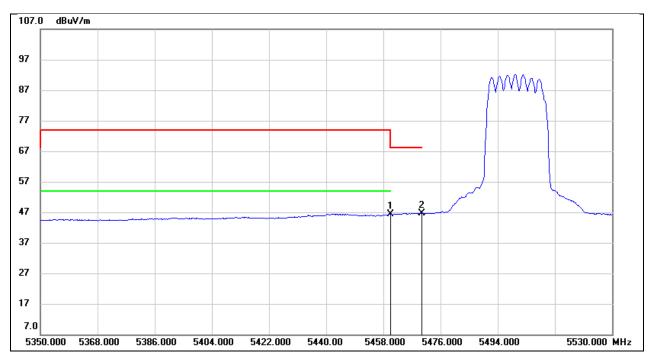
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	4.01	40.27	44.28	54.00	-9.72	AVG
2	5350.000	5.01	40.49	45.50	54.00	-8.50	AVG


Test Mode:	802.11n HT20 PK	Frequency(MHz):	5320
Polarity:	Horizontal	Test Voltage:	DC 5V

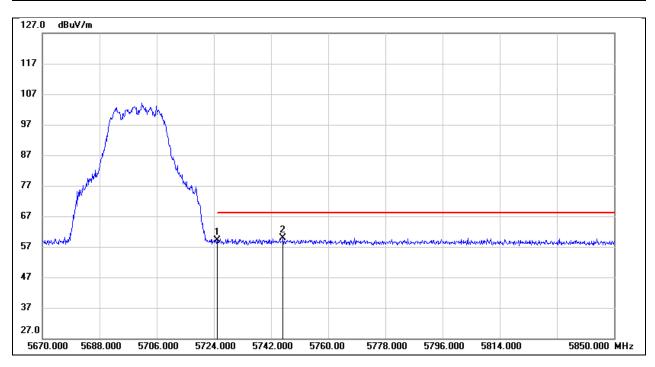
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	22.98	40.49	63.47	74.00	-10.53	peak
2	5350.860	26.36	40.49	66.85	74.00	-7.15	peak


Test Mode:	802.11n HT20 AV	Frequency(MHz):	5320
Polarity:	Horizontal	Test Voltage:	DC 5V

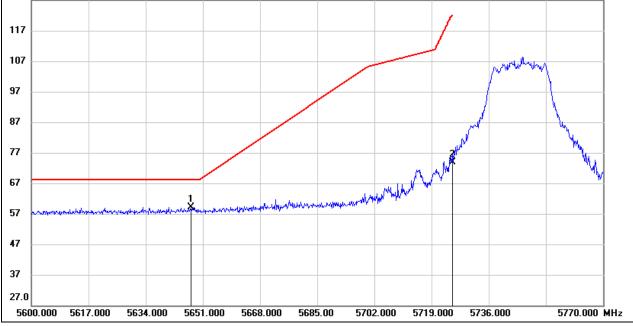
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	8.51	40.49	49.00	54.00	-5.00	AVG
2	5350.860	8.32	40.49	48.81	54.00	-5.19	AVG


Test Mode:	802.11n HT20 PK	Frequency(MHz):	5500
Polarity:	Horizontal	Test Voltage:	DC 5V

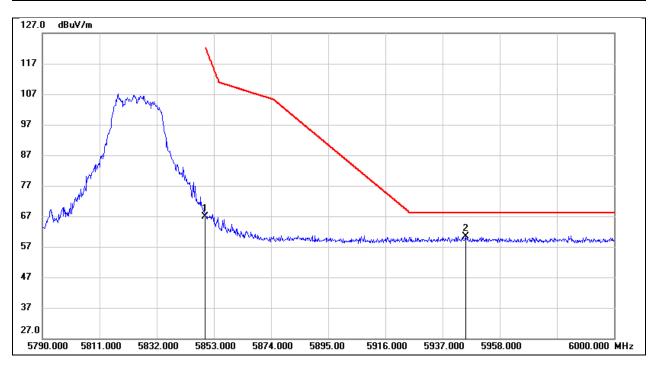
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	16.97	40.62	57.59	68.20	-10.61	peak
2	5470.000	19.24	40.63	59.87	68.20	-8.33	peak


Test Mode:	802.11n HT20 AV	Frequency(MHz):	5500
Polarity:	Horizontal	Test Voltage:	DC 5V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	5.79	40.62	46.41	54.00	-7.59	AVG
2	5470.000	5.92	40.63	46.55	/	/	AVG


Test Mode:	802.11n HT20 PK	Frequency(MHz):	5700
Polarity:	Horizontal	Test Voltage:	DC 5V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	17.88	41.27	59.15	68.20	-9.05	peak
2	5745.780	18.64	41.32	59.96	68.20	-8.24	peak


Test Mode:	802.11n HT20 PK	Frequency(MHz):	5745
Polarity:	Horizontal	Test Voltage:	DC 5V
127.0 dBuV/m			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5647.430	18.11	41.06	59.17	68.20	-9.03	peak
2	5725.000	32.69	41.27	73.96	122.20	-48.24	peak

Test Mode:	802.11n HT20 PK	Frequency(MHz):	5825
Polarity:	Horizontal	Test Voltage:	DC 5V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	25.29	41.60	66.89	122.20	-55.31	peak
2	5945.400	18.62	41.86	60.48	68.20	-7.72	peak

Fest Mode:	802.11n HT40 PK	Frequency(MHz):	5190		
Polarity:	Horizontal	Test Voltage:	DC 5V		
117.0 dBu¥/m					
107					
17					
87					
77					
57					
7 marine and a second and a second	and a second and the second	and the second secon	man and the second s		
17					
37					
27					
	4646.000 4719.000 4792.000	4865.00 4938.000 5011.000	5084.000 5230.000 MH		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.78	40.27	56.05	74.00	-17.95	peak

Fest Mode:	802.11n	HT40 AV	Frequency(M	Hz): 5190)		
Polarity:	Horizont	al	Test Voltage:	DC	DC 5V		
107.0 dBu¥/m							
97							
37							
7							
7							
7							
7							
7							
7							
7.0							
4500.000 4573.000	4646.000 4719.00	0 4792.000	4865.00 4938.000	5011.000 5084.00	0 5230.000 MH		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.88	40.27	44.15	54.00	-9.85	AVG

Test Mode:	802.11n HT40 PK	Frequency(MHz):	5230
Polarity:	Horizontal	Test Voltage:	DC 5V
117.0 dBuV/m			
107			
97			
87			
77			
67			
57	January and the second s	there and the second	Muchannach Zernamon and
47			
37			
27			
4500.000 4596.000	4692.000 4788.000 4884.000	4980.00 5076.000 5172.000	5268.000 5460.000 MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	16.86	40.27	57.13	74.00	-16.87	peak
2	5350.000	15.56	40.49	56.05	74.00	-17.95	peak

Test Mode:	80	2.11n H1	740 AV	Free	quency(M	Hz):	5230	
Polarity:	Но	rizontal		Tes	t Voltage:		DC 5V	
107.0 dBuV/m								
97								
87						10	<u>ر</u>	
77						_	<u> </u>	
67								
57								
47						1	L.	2
37			A					
27								
17								
7.0								
4500.000 4596.000	4692.000	4788.000	4884.000	4980.00	5076.000	5172.000	5268.000	5460.000 MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.87	40.27	44.14	54.00	-9.86	AVG
2	5350.000	3.29	40.49	43.78	54.00	-10.22	AVG

57

47

37

27 17.0 4500.000

4596.000

4692.000

4788.000

Test Mode:	802.11n HT40 PK	Frequency(MHz):	5270
Polarity:	Horizontal	Test Voltage:	DC 5V
1170 ID VI			
117.0 dBuV/m			
107			
97			<u></u>
87			
77			
67			M M
57			M What

ad Back

4884.000

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.55	40.27	55.82	74.00	-18.18	peak
2	5350.000	16.71	40.49	57.20	74.00	-16.80	peak

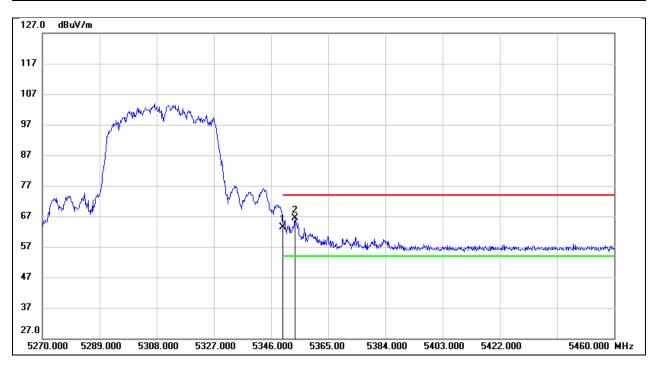
4980.00

5076.000

5172.000

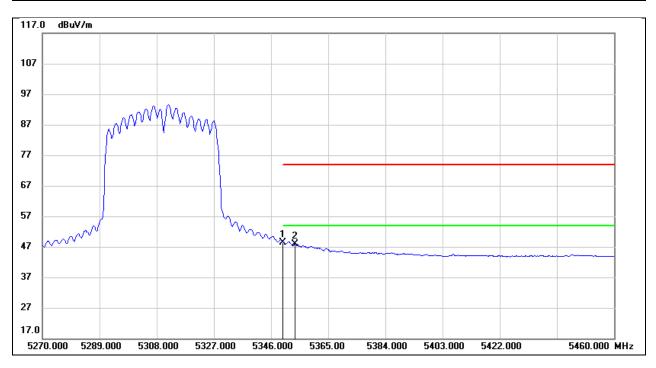
5268.000

5460.000 MHz

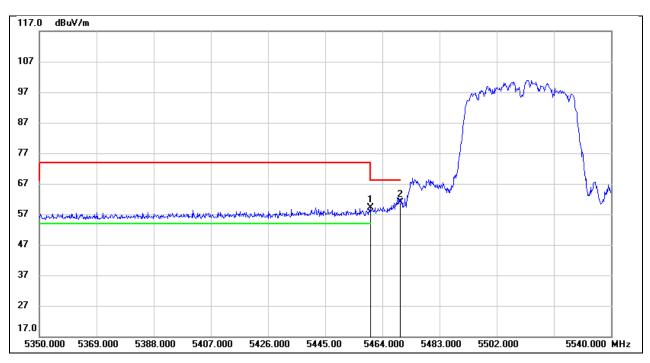


Test Mode:	802	2.11n H1	740 AV	Free	quency(M	IHz):	5270		
Polarity:	Ho	rizontal		Tes	t Voltage:	:	DC 5V	DC 5V	
97									
87							$-\Lambda$		
77									
67									
57									
47								2	
37	•••								
27									
17									
7.0									
4500.000 4596.000	4692.000	4788.000	4884.000	4980.00	5076.000	5172.000	5268.000	5460.000 MHz	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.53	40.27	43.80	54.00	-10.20	AVG
2	5350.000	5.06	40.49	45.55	54.00	-8.45	AVG


Test Mode:	802.11n HT40 PK	Frequency(MHz):	5310
Polarity:	Horizontal	Test Voltage:	DC 5V

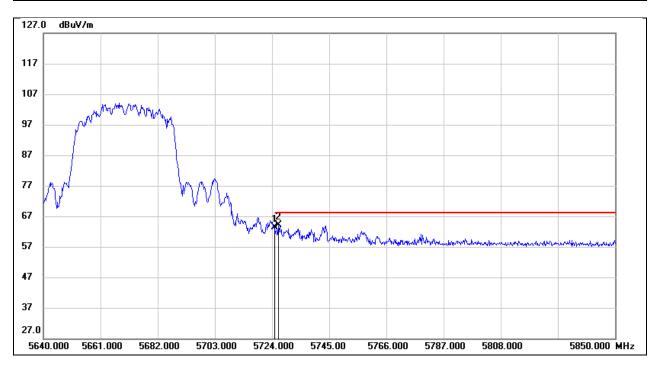
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	23.01	40.49	63.50	74.00	-10.50	peak
2	5353.980	25.98	40.50	66.48	74.00	-7.52	peak


Test Mode:	802.11n HT40 AV	Frequency(MHz):	5310
Polarity:	Horizontal	Test Voltage:	DC 5V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	7.87	40.49	48.36	54.00	-5.64	AVG
2	5353.980	7.34	40.50	47.84	54.00	-6.16	AVG

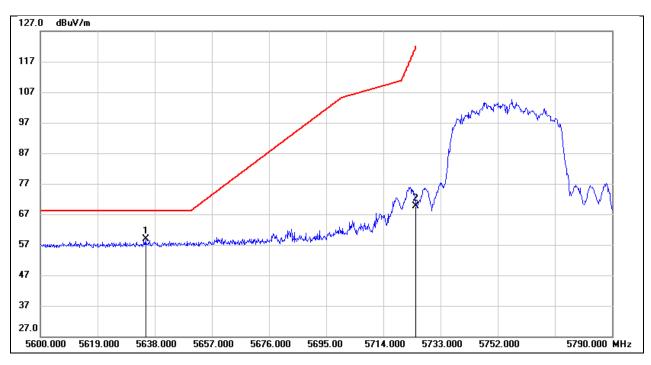
Test Mode:	802.11n HT40 PK	Frequency(MHz):	5510
Polarity:	Horizontal	Test Voltage:	DC 5V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	18.44	40.62	59.06	68.20	-9.14	peak
2	5470.000	20.24	40.63	60.87	68.20	-7.33	peak

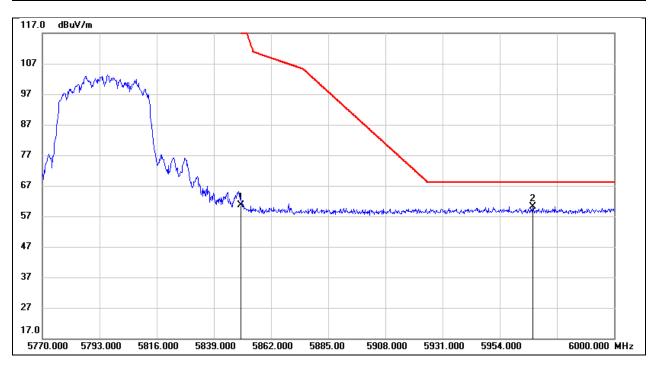


Test Mode:	802.11n HT40 AV	Frequency(MHz):	5510
Polarity:	Horizontal	Test Voltage:	DC 5V
117.0 dBuV/m			
107			
97			
87			MAMAMAN
77			
67			
57		ł ż.	
47			
37			
27 17.0			
5350.000 5369.000	5388.000 5407.000 5426.000	5445.00 5464.000 5483.000	5502.000 5540.000 MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	5.64	40.62	46.26	54.00	-7.74	AVG
2	5470.000	6.54	40.63	47.17	/	/	AVG


Test Mode:	802.11n HT40 PK	Frequency(MHz):	5670
Polarity:	Horizontal	Test Voltage:	DC 5V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	22.20	41.27	63.47	68.20	-4.73	peak
2	5726.310	22.79	41.27	64.06	68.20	-4.14	peak


Test Mode:	802.11n HT40 PK	Frequency(MHz):	5755
Polarity:	Horizontal	Test Voltage:	DC 5V

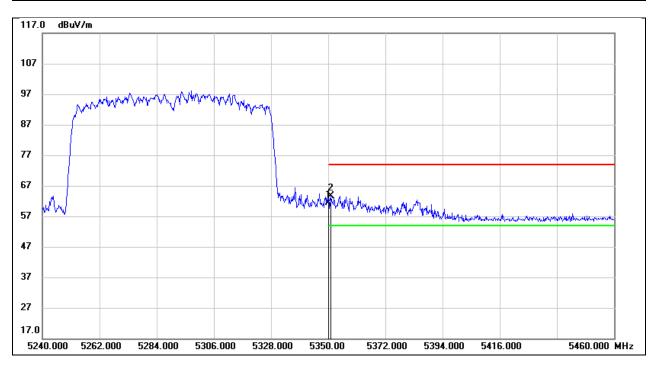
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5634.960	17.91	41.02	58.93	68.20	-9.27	peak
2	5725.000	28.42	41.27	69.69	122.20	-52.51	peak

Test Mode:	802.11n HT40 PK	Frequency(MHz):	5795
Polarity:	Horizontal	Test Voltage:	DC 5V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	19.14	41.60	60.74	122.20	-61.46	peak
2	5967.340	18.21	41.92	60.13	68.20	-8.07	peak

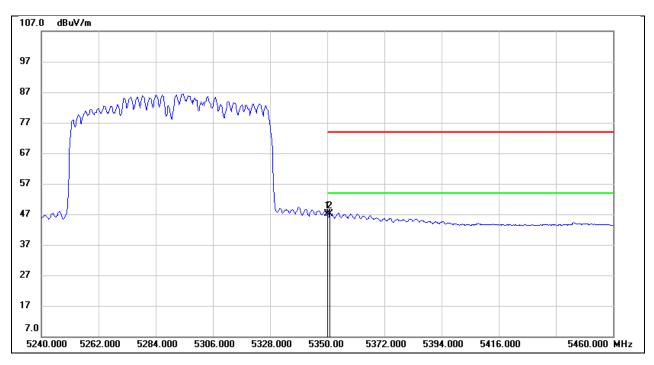
Fest Mode:	802.11ac VHT80 PK	Frequency(MHz):	5210
Polarity:	Horizontal	zontal Test Voltage:	
127.0 dBuV/m	-		
117			
97			produce Altering
77			
57			Ž 1. Viteling
47	and an a straight way and a fail that the start and for the start way that the start of the star	normania and a second and a second and a second	
37			

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	18.12	40.27	58.39	74.00	-15.61	peak
2	5116.200	20.04	40.24	60.28	74.00	-13.72	peak

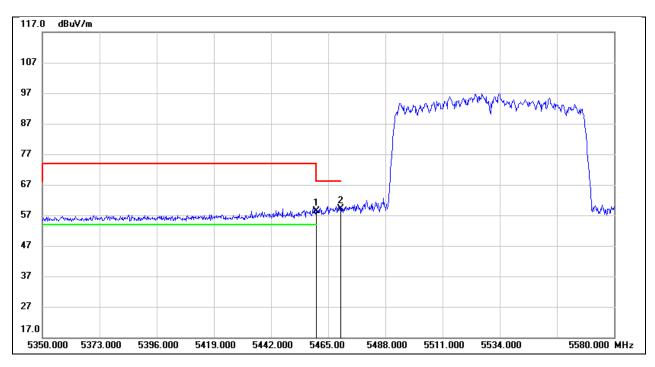


Fest Mode:	802.11ac \	/HT80 AV	0 AV Frequency(MHz): Test Voltage:		5210	
Polarity:	Horizontal				DC 5V	
107.0_dBuV/m						
7						
7						
7					(*****	mult 1
7						
7						
7					1 2	an de sales
7						
7						
7.0						
7.0 4500.000 4579.000	4658.000 4737.000	4816.000 48	95.00 4974.000	5053.000	5132.000	5290.000 MH

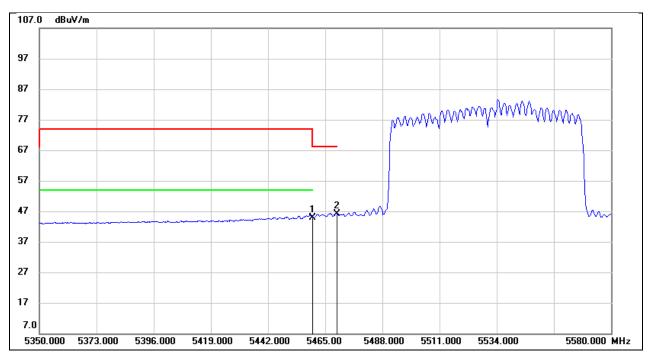
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5116.200	4.21	40.24	44.45	54.00	-9.55	AVG
2	5150.000	5.15	40.27	45.42	54.00	-8.58	AVG


Test Mode:	802.11ac VHT80 PK	Frequency(MHz):	5290
Polarity:	Horizontal	Test Voltage:	DC 5V

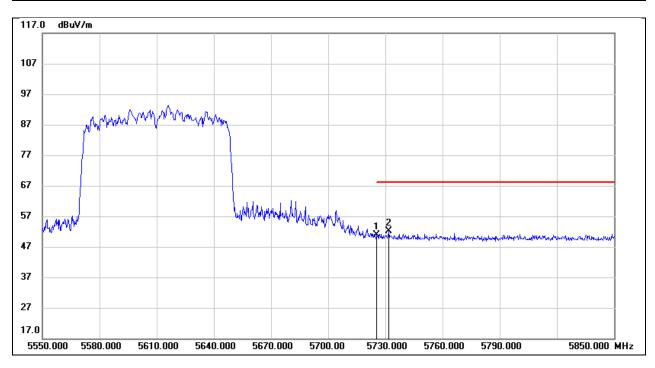
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	20.94	40.49	61.43	74.00	-12.57	peak
2	5351.100	23.12	40.49	63.61	74.00	-10.39	peak


Test Mode:	802.11ac VHT80 AV	Frequency(MHz):	5290
Polarity:	Horizontal	Test Voltage:	DC 5V

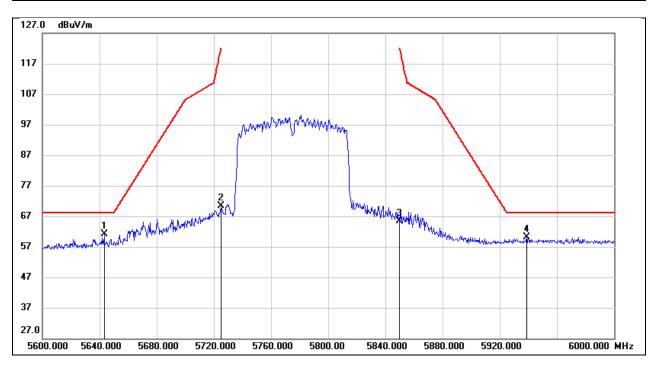
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	6.61	40.49	47.10	54.00	-6.90	AVG
2	5351.100	6.60	40.49	47.09	54.00	-6.91	AVG


Test Mode:	802.11ac VHT80 PK	Frequency(MHz):	5530
Polarity:	Horizontal	Test Voltage:	DC 5V

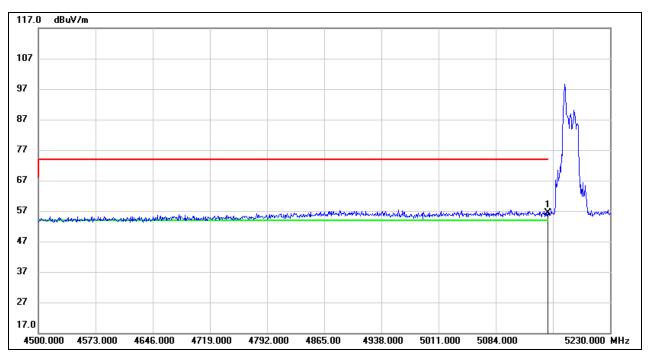
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	17.86	40.62	58.48	68.20	-9.72	peak
2	5470.000	18.60	40.63	59.23	68.20	-8.97	peak


Test Mode:	802.11ac VHT80 AV	Frequency(MHz):	5530
Polarity:	Horizontal	Test Voltage:	DC 5V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	4.27	40.62	44.89	54.00	-9.11	AVG
2	5470.000	5.38	40.63	46.01	/	/	AVG


Test Mode:	802.11ac VHT80 PK	Frequency(MHz):	5610
Polarity:	Horizontal	Test Voltage:	DC 5V

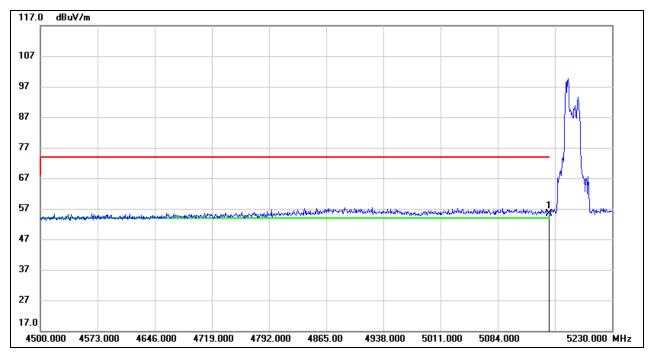
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	17.56	33.43	50.99	68.20	-17.21	peak
2	5731.800	18.80	33.43	52.23	68.20	-15.97	peak


Test Mode:	802.11ac VHT80 PK	Frequency(MHz):	5775
Polarity:	Horizontal	Test Voltage:	DC 5V

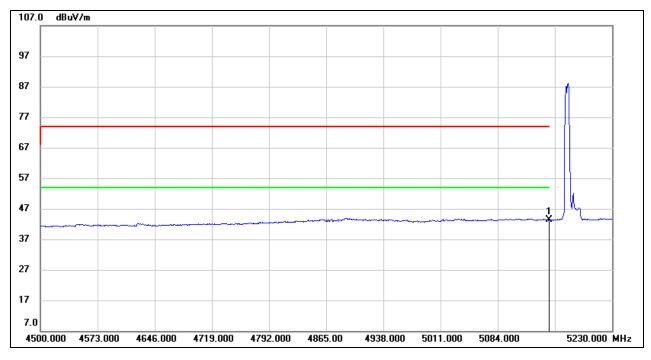
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5643.200	20.18	41.04	61.22	68.20	-6.98	peak
2	5725.000	29.00	41.27	70.27	122.20	-51.93	peak
3	5850.000	23.89	41.60	65.49	122.20	-56.71	peak
4	5938.800	18.20	41.84	60.04	68.20	-8.16	peak


Lest Mode.	802.11ax HE20 PK (26Tone Ru0)	Frequency(MHz):	5180
Polarity:	Horizontal	Test Voltage:	DC 5V

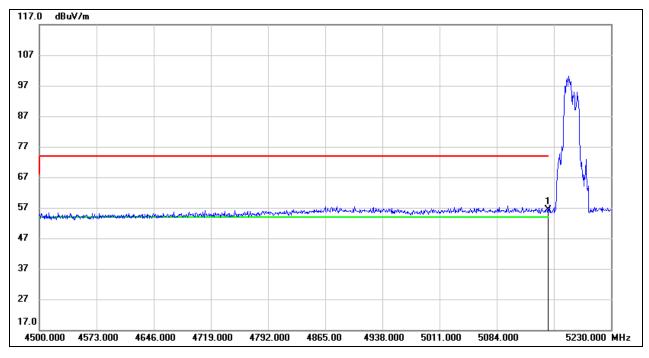
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	16.09	40.27	56.36	74.00	-17.64	peak


Lest Mode.	802.11ax HE20 AV (26Tone Ru0)	Frequency(MHz):	5180
Polarity:	Horizontal	Test Voltage:	DC 5V

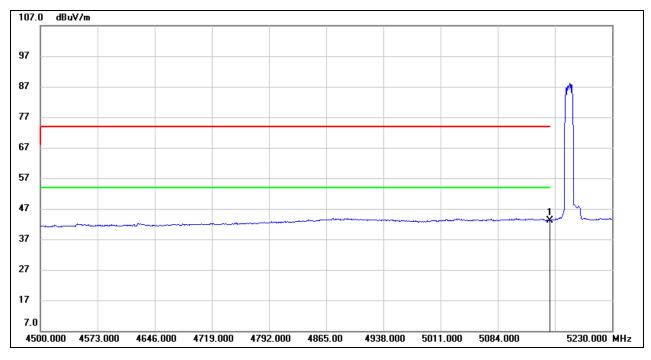
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	2.87	40.27	43.14	54.00	-10.86	AVG


Lest Mode.	802.11ax HE20 PK (52Tone Ru37)	Frequency(MHz):	5180
Polarity:	Horizontal	Test Voltage:	DC 5V

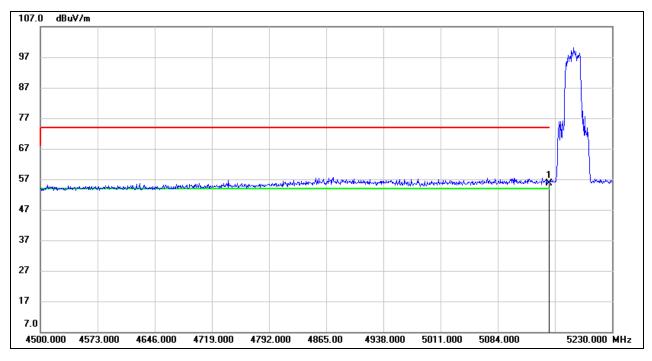
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.17	40.27	55.44	74.00	-18.56	peak


Lest Mode.	802.11ax HE20 AV (52Tone Ru37)	Frequency(MHz):	5180
Polarity:	Horizontal	Test Voltage:	DC 5V

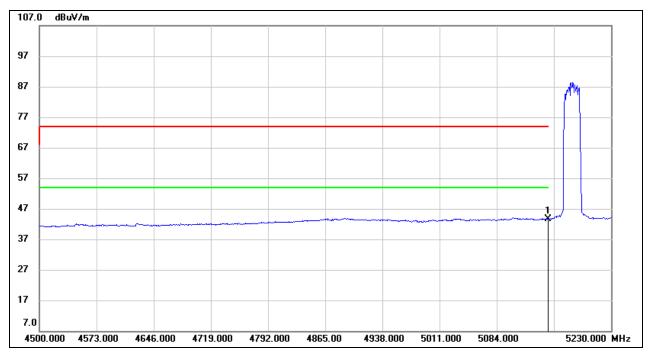
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.02	40.27	43.29	54.00	-10.71	AVG


Lest Mode.	802.11ax HE20 PK (106Tone Ru53)	Frequency(MHz):	5180
Polarity:	Horizontal	Test Voltage:	DC 5V

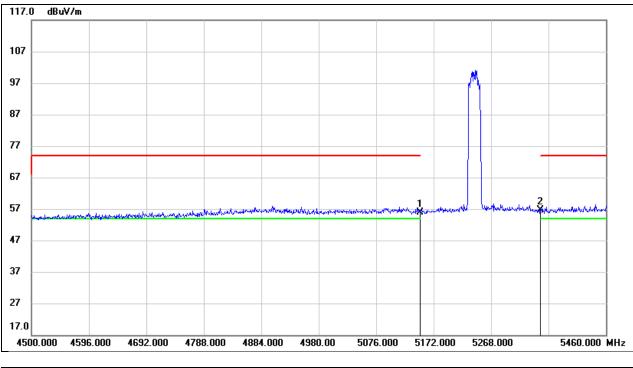
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	16.08	40.27	56.35	74.00	-17.65	peak


Lest Mode.	802.11ax HE20 AV (106Tone Ru53)	Frequency(MHz):	5180
Polarity:	Horizontal	Test Voltage:	DC 5V

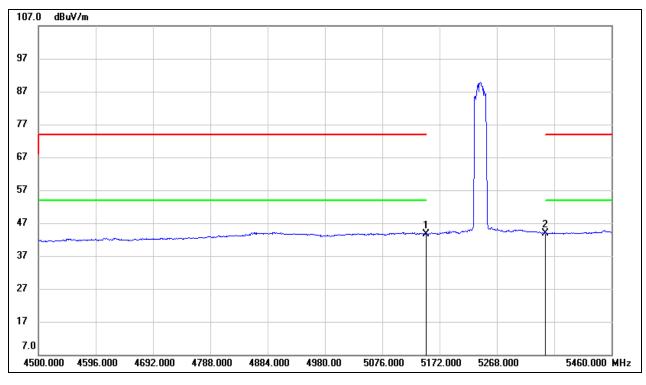
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	2.94	40.27	43.21	54.00	-10.79	AVG


Lest Mode.	802.11ax HE20 PK (242Tone Ru61)	Frequency(MHz):	5180
Polarity:	Horizontal	Test Voltage:	DC 5V

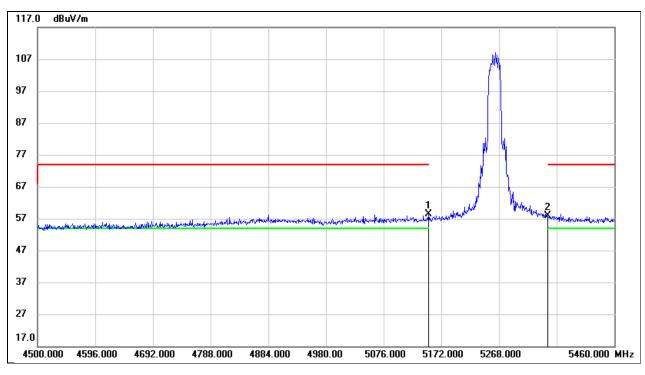
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.41	40.27	55.68	74.00	-18.32	peak


Lest Mode.	802.11ax HE20 AV (242Tone Ru61)	Frequency(MHz):	5180
Polarity:	Horizontal	Test Voltage:	DC 5V

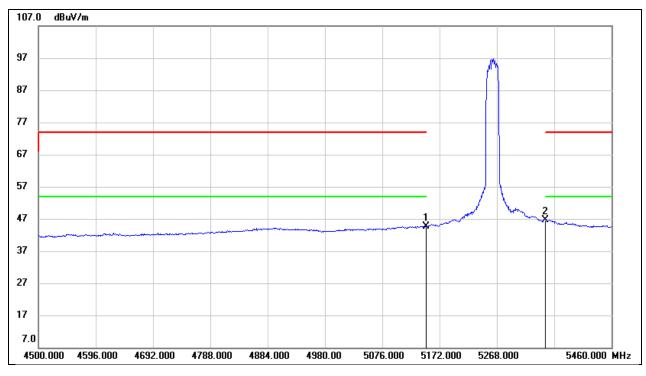
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.25	40.27	43.52	54.00	-10.48	AVG


Lest Mode.	802.11ax HE20 Peak (242Tone Ru61)	Frequency(MHz):	5240
Polarity:	Horizontal	Test Voltage:	DC 5V

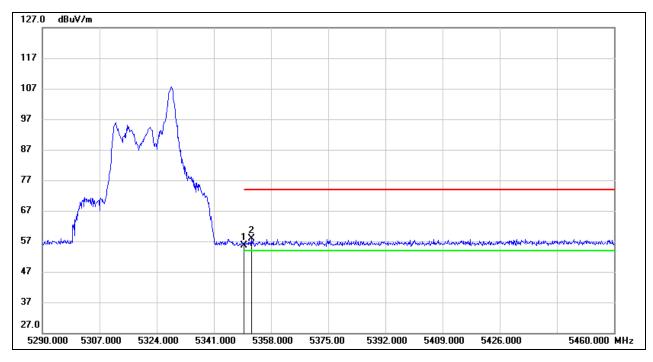
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.55	40.27	55.82	74.00	-18.18	peak
2	5350.000	16.05	40.49	56.54	74.00	-17.46	peak


Lest Mode.	802.11ax HE20 AVG (242Tone Ru61)	Frequency(MHz):	5240
Polarity:	Horizontal	Test Voltage:	DC 5V

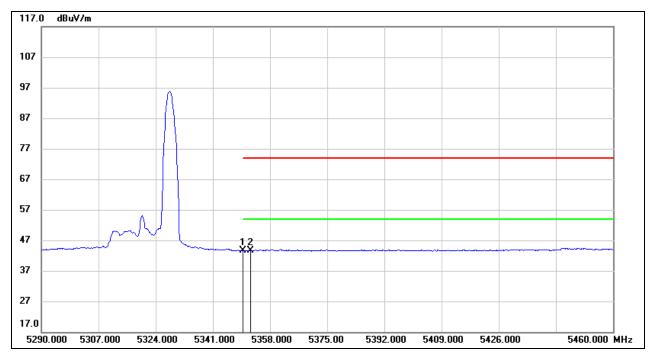
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.47	40.27	43.74	54.00	-10.26	AVG
2	5350.000	3.34	40.49	43.83	54.00	-10.17	AVG


Lest Mode.	802.11ax HE20 Peak (242Tone Ru61)	Frequency(MHz):	5260
Polarity:	Horizontal	Test Voltage:	DC 5V

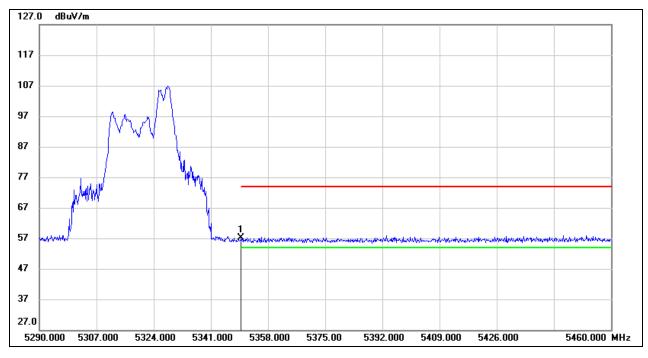
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	18.23	40.27	58.50	74.00	-15.50	peak
2	5350.000	17.34	40.49	57.83	74.00	-16.17	peak


Lest Mode.	802.11ax HE20 AVG (242Tone Ru61)	Frequency(MHz):	5260
Polarity:	Horizontal	Test Voltage:	DC 5V

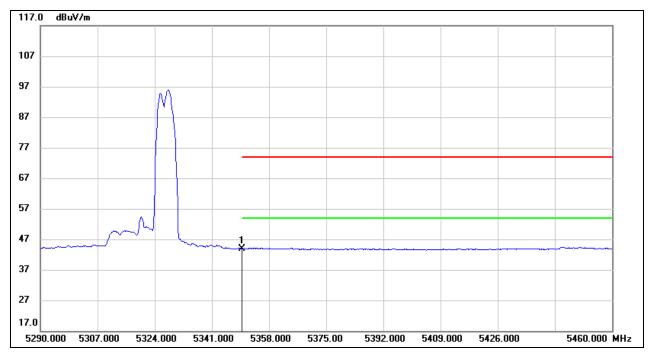
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	4.26	40.27	44.53	54.00	-9.47	AVG
2	5350.000	6.05	40.49	46.54	54.00	-7.46	AVG


Lest Mode.	802.11ax HE20 PK (26Tone Ru8)	Frequency(MHz):	5320
Polarity:	Horizontal	Test Voltage:	DC 5V

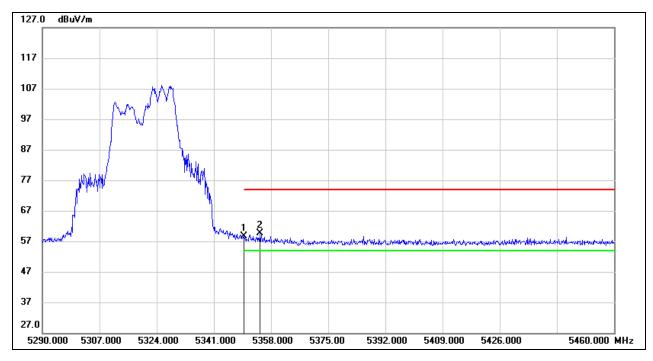
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	15.19	40.49	55.68	74.00	-18.32	peak
2	5352.220	17.37	40.49	57.86	74.00	-16.14	peak


Lest Mode.	802.11ax HE20 AV (26Tone Ru8)	Frequency(MHz):	5320
Polarity:	Horizontal	Test Voltage:	DC 5V

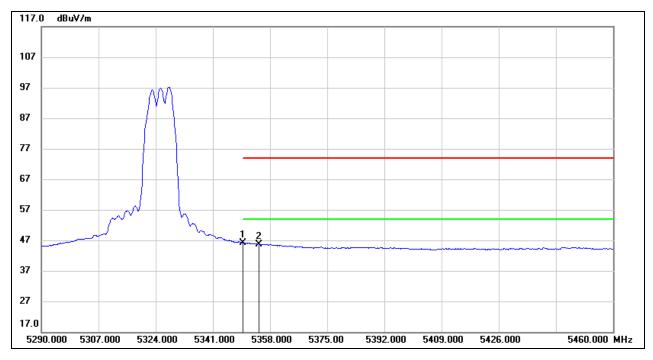
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	3.25	40.49	43.74	54.00	-10.26	AVG
2	5352.220	3.09	40.49	43.58	54.00	-10.42	AVG


Lest Mode.	802.11ax HE20 PK (52Tone Ru40)	Frequency(MHz):	5320
Polarity:	Horizontal	Test Voltage:	DC 5V

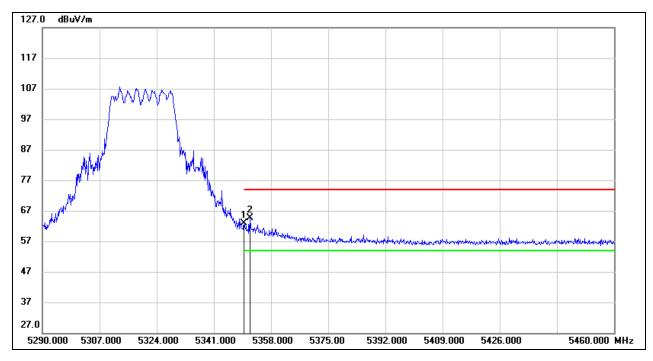
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	16.57	40.49	57.06	74.00	-16.94	peak


Lest Mode.	802.11ax HE20 AV (52Tone Ru40)	Frequency(MHz):	5320
Polarity:	Horizontal	Test Voltage:	DC 5V

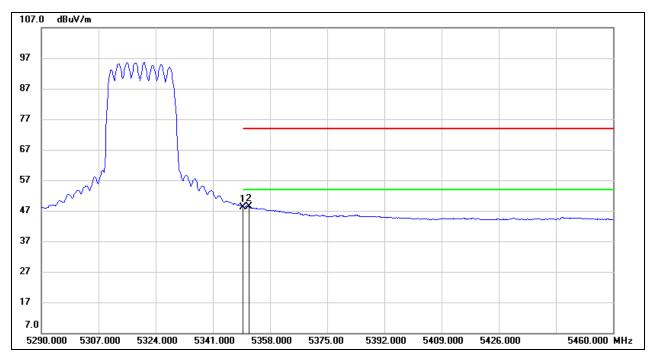
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	3.39	40.49	43.88	54.00	-10.12	AVG


Lest Mode.	802.11ax HE20 PK (106Tone Ru54)	Frequency(MHz):	5320
Polarity:	Horizontal	Test Voltage:	DC 5V

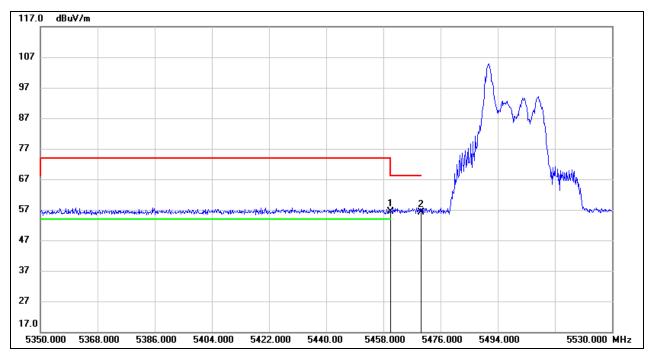
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	18.20	40.49	58.69	74.00	-15.31	peak
2	5354.770	19.13	40.50	59.63	74.00	-14.37	peak


Lest Mode.	802.11ax HE20 AV (106Tone Ru54)	Frequency(MHz):	5320
Polarity:	Horizontal	Test Voltage:	DC 5V

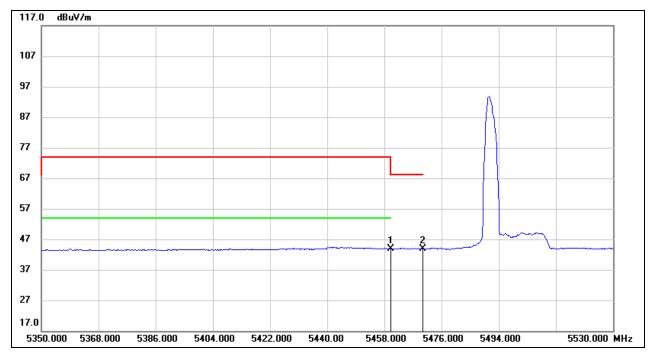
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	5.64	40.49	46.13	54.00	-7.87	AVG
2	5354.770	5.13	40.50	45.63	54.00	-8.37	AVG


Lest Mode.	802.11ax HE20 PK (242Tone Ru61)	Frequency(MHz):	5320
Polarity:	Horizontal	Test Voltage:	DC 5V

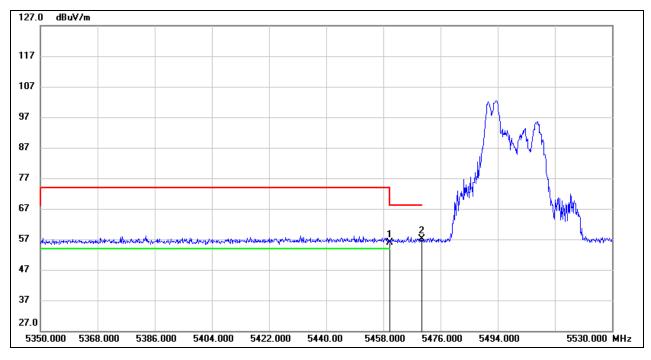
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	22.37	40.49	62.86	74.00	-11.14	peak
2	5351.710	24.02	40.49	64.51	74.00	-9.49	peak


LAST MODE.	802.11ax HE20 AV (242Tone Ru61)	Frequency(MHz):	5320
Polarity:	Horizontal	Test Voltage:	DC 5V

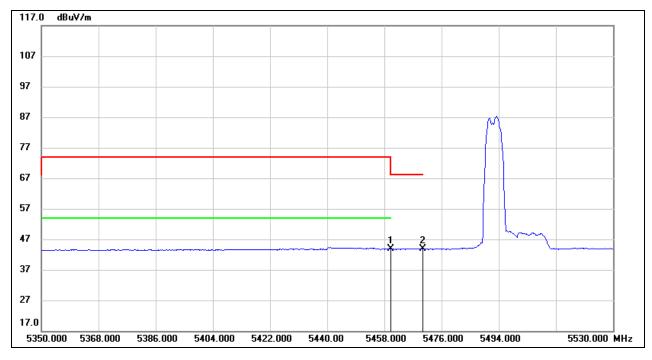
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	7.69	40.49	48.18	54.00	-5.82	AVG
2	5351.710	7.85	40.49	48.34	54.00	-5.66	AVG


LAST MODE.	802.11ax HE20 PK (26Tone Ru0)	Frequency(MHz):	5500
Polarity:	Horizontal	Test Voltage:	DC 5V

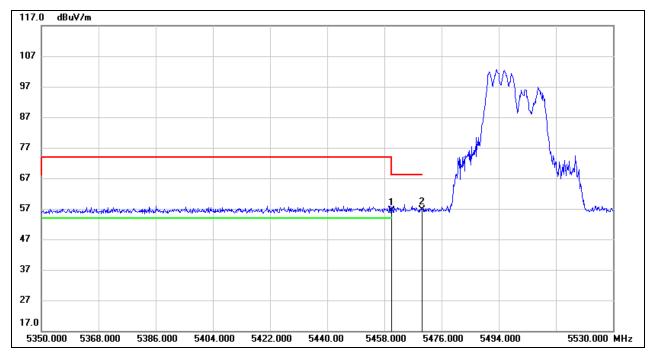
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	15.80	40.62	56.42	68.20	-11.78	peak
2	5470.000	15.40	40.63	56.03	68.20	-12.17	peak


Lest Mode.	802.11ax HE20 AV (26Tone Ru0)	Frequency(MHz):	5500
Polarity:	Horizontal	Test Voltage:	DC 5V

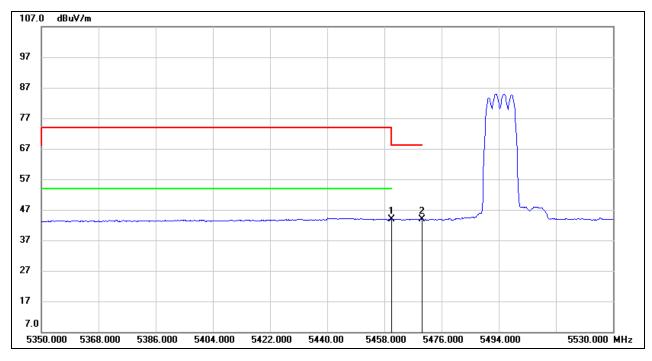
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	3.24	40.62	43.86	54.00	-10.14	AVG
2	5470.000	3.32	40.63	43.95	/	/	AVG


LAST MODE.	802.11ax HE20 PK (52Tone Ru37)	Frequency(MHz):	5500
Polarity:	Horizontal	Test Voltage:	DC 5V

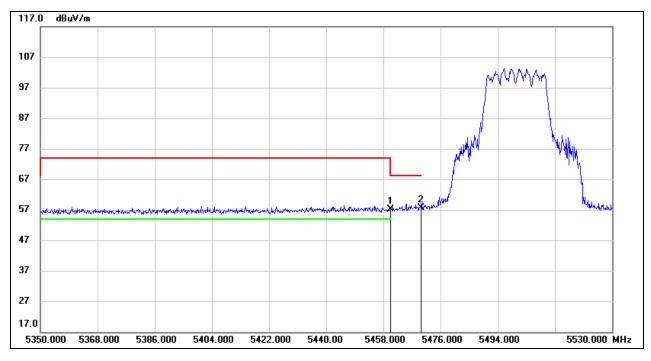
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	15.36	40.62	55.98	68.20	-12.22	peak
2	5470.000	16.62	40.63	57.25	68.20	-10.95	peak


Lest Mode.	802.11ax HE20 AV (52Tone Ru37)	Frequency(MHz):	5500
Polarity:	Horizontal	Test Voltage:	DC 5V

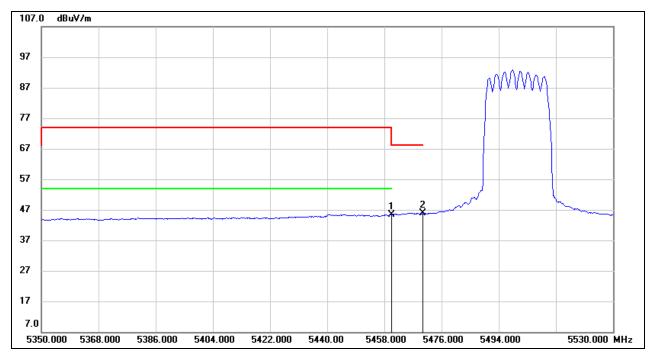
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	3.27	40.62	43.89	54.00	-10.11	AVG
2	5470.000	3.27	40.63	43.90	/	/	AVG


Lest Mode.	802.11ax HE20 PK (106Tone Ru53)	Frequency(MHz):	5500
Polarity:	Horizontal	Test Voltage:	DC 5V

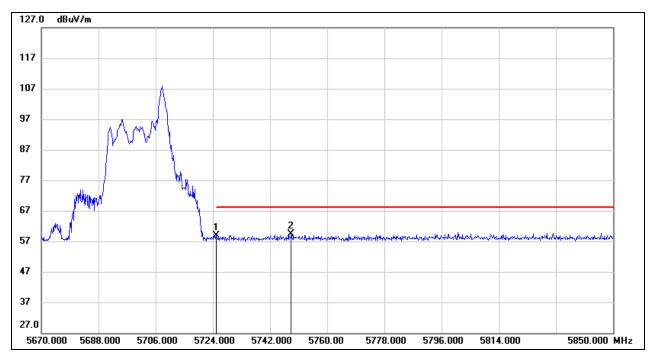
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	15.71	40.62	56.33	68.20	-11.87	peak
2	5470.000	16.10	40.63	56.73	68.20	-11.47	peak


Lest Mode.	802.11ax HE20 AV (106Tone Ru53)	Frequency(MHz):	5500
Polarity:	Horizontal	Test Voltage:	DC 5V

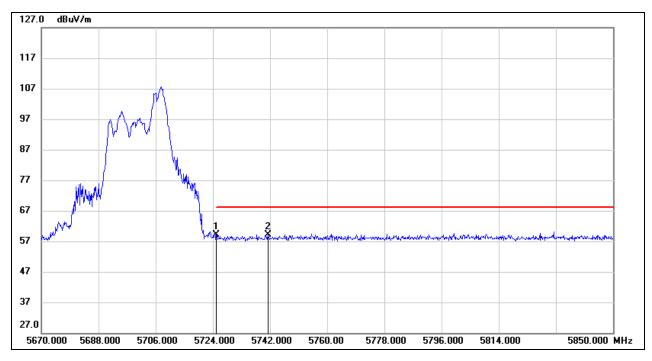
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	3.26	40.62	43.88	54.00	-10.12	AVG
2	5470.000	3.26	40.63	43.89	/	/	AVG


Lest Mode.	802.11ax HE20 PK (242Tone Ru61)	Frequency(MHz):	5500
Polarity:	Horizontal	Test Voltage:	DC 5V

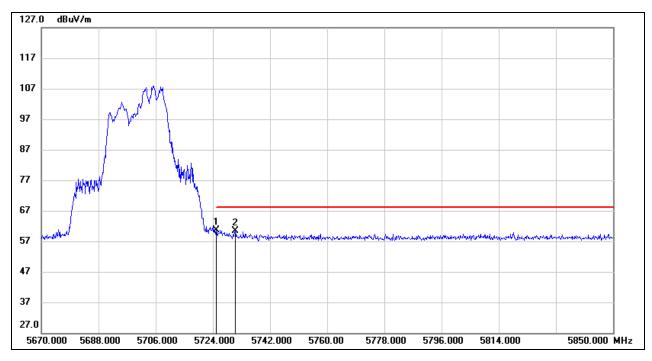
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	16.60	40.62	57.22	68.20	-10.98	peak
2	5470.000	17.10	40.63	57.73	68.20	-10.47	peak


Lest Mode.	802.11ax HE20 AV (242Tone Ru61)	Frequency(MHz):	5500
Polarity:	Horizontal	Test Voltage:	DC 5V

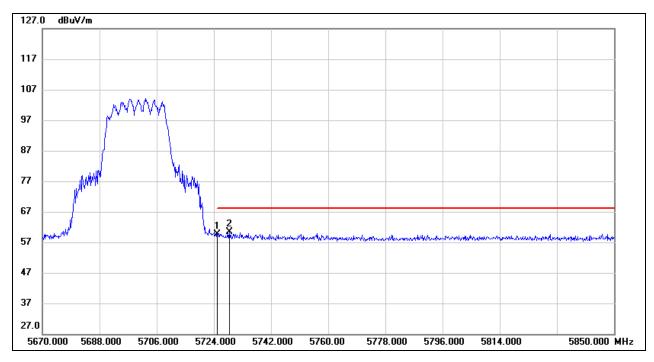
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	4.83	40.62	45.45	54.00	-8.55	AVG
2	5470.000	5.24	40.63	45.87	/	/	AVG


Lest Mode.	802.11ax HE20 PK (26Tone Ru8)	Frequency(MHz):	5700
Polarity:	Horizontal	Test Voltage:	DC 5V

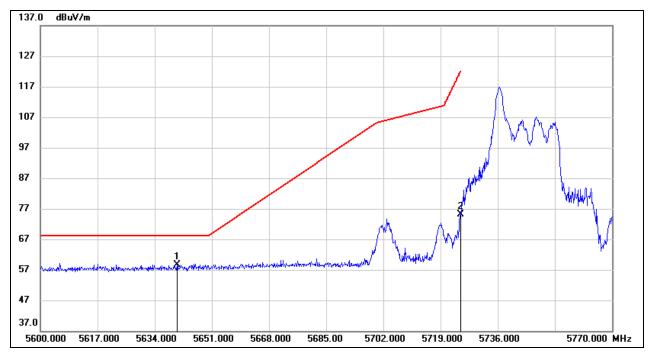
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	17.51	41.27	58.78	68.20	-9.42	peak
2	5748.660	17.98	41.33	59.31	68.20	-8.89	peak


Lest Mode.	802.11ax HE20 PK (52Tone Ru40)	Frequency(MHz):	5700
Polarity:	Horizontal	Test Voltage:	DC 5V

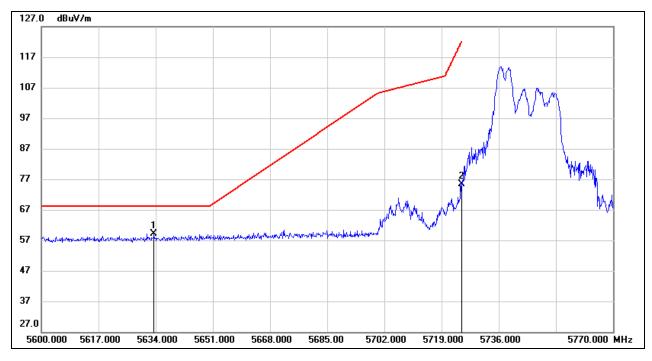
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	17.87	41.27	59.14	68.20	-9.06	peak
2	5741.280	17.92	41.31	59.23	68.20	-8.97	peak


Lest Mode.	802.11ax HE20 PK (106Tone Ru54)	Frequency(MHz):	5700
Polarity:	Horizontal	Test Voltage:	DC 5V

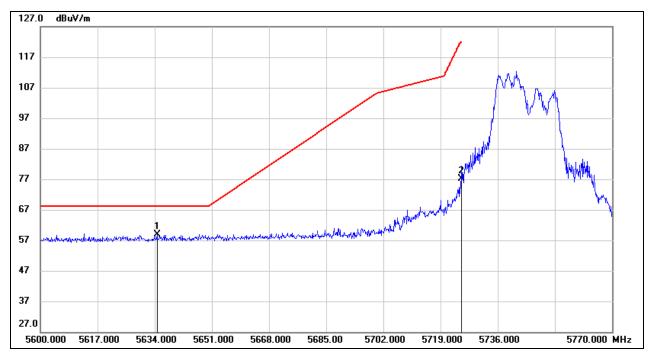
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	19.41	41.27	60.68	68.20	-7.52	peak
2	5731.020	19.05	41.28	60.33	68.20	-7.87	peak


Lest Mode.	802.11ax HE20 PK (242Tone Ru61)	Frequency(MHz):	5700
Polarity:	Horizontal	Test Voltage:	DC 5V

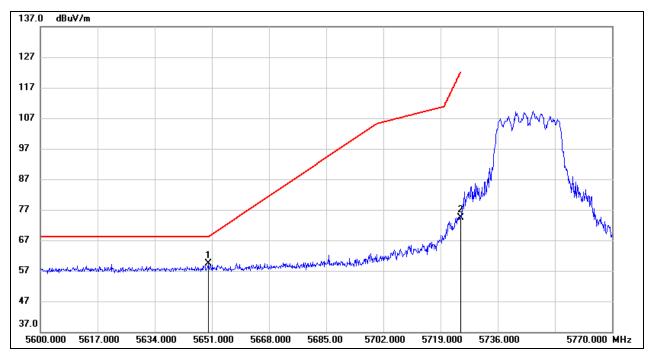
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	18.31	41.27	59.58	68.20	-8.62	peak
2	5728.860	19.11	41.27	60.38	68.20	-7.82	peak


Lest Mode.	802.11ax HE20 PK (26Tone Ru0)	Frequency(MHz):	5745
Polarity:	Horizontal	Test Voltage:	DC 5V

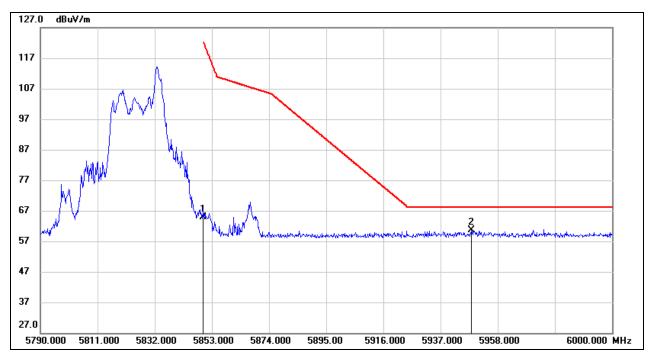
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5640.630	17.68	41.04	58.72	68.20	-9.48	peak
2	5725.000	33.93	41.27	75.20	122.20	-47.00	peak


Lest Mode.	802.11ax HE20 PK (52Tone Ru37)	Frequency(MHz):	5745
Polarity:	Horizontal	Test Voltage:	DC 5V

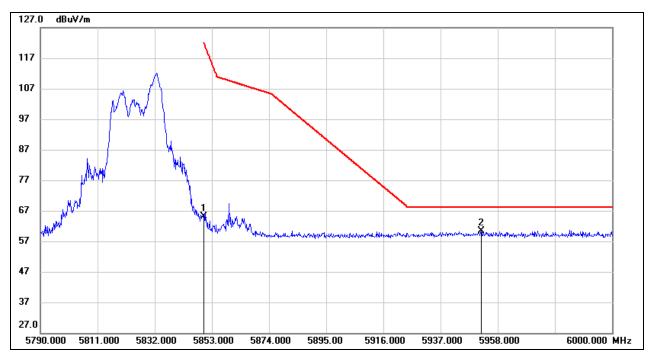
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5633.490	18.16	41.01	59.17	68.20	-9.03	peak
2	5725.000	34.09	41.27	75.36	122.20	-46.84	peak


Lest Mode.	802.11ax HE20 PK (106Tone Ru53)	Frequency(MHz):	5745
Polarity:	Horizontal	Test Voltage:	DC 5V

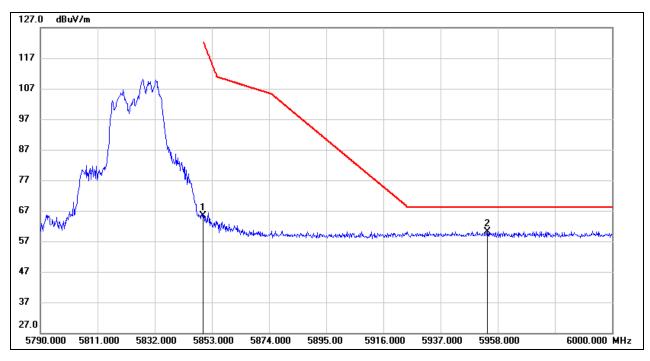
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5634.680	17.74	41.02	58.76	68.20	-9.44	peak
2	5725.000	35.76	41.27	77.03	122.20	-45.17	peak


Lest Mode.	802.11ax HE20 PK (242Tone Ru61)	Frequency(MHz):	5745
Polarity:	Horizontal	Test Voltage:	DC 5V

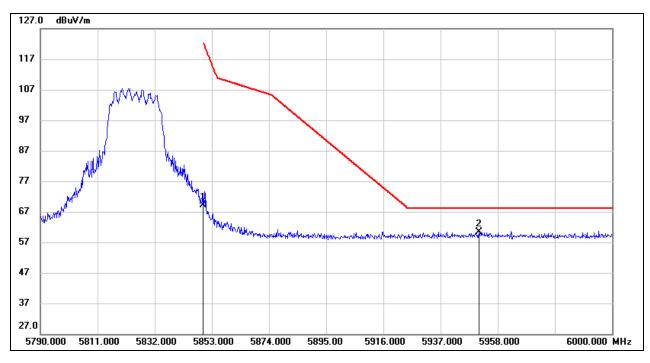
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5649.980	18.24	41.06	59.30	68.20	-8.90	peak
2	5725.000	33.16	41.27	74.43	122.20	-47.77	peak


Lest Mode.	802.11ax HE20 PK (26Tone Ru8)	Frequency(MHz):	5825
Polarity:	Horizontal	Test Voltage:	DC 5V

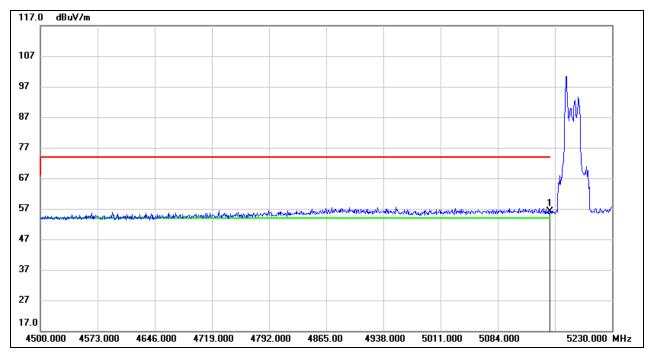
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	23.34	41.60	64.94	122.20	-57.26	peak
2	5948.340	18.82	41.86	60.68	68.20	-7.52	peak


Lest Mode.	802.11ax HE20 PK (52Tone Ru40)	Frequency(MHz):	5825
Polarity:	Horizontal	Test Voltage:	DC 5V

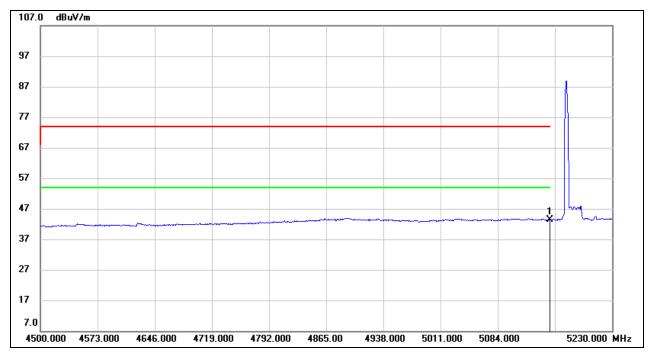
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	23.48	41.60	65.08	122.20	-57.12	peak
2	5951.910	18.48	41.87	60.35	68.20	-7.85	peak


Test Mode:	802.11ax HE20 PK (106Tone Ru54)	Frequency(MHz):	5825
Polarity:	Horizontal	Test Voltage:	DC 5V

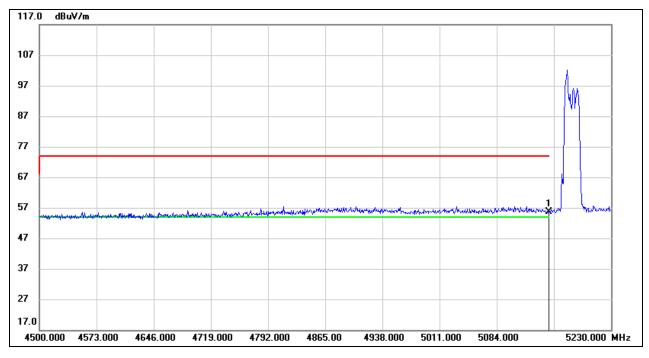
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	23.73	41.60	65.33	122.20	-56.87	peak
2	5954.220	18.34	41.87	60.21	68.20	-7.99	peak


Test Mode:	802.11ax HE20 PK (242Tone Ru61)	Frequency(MHz):	5825
Polarity:	Horizontal	Test Voltage:	DC 5V

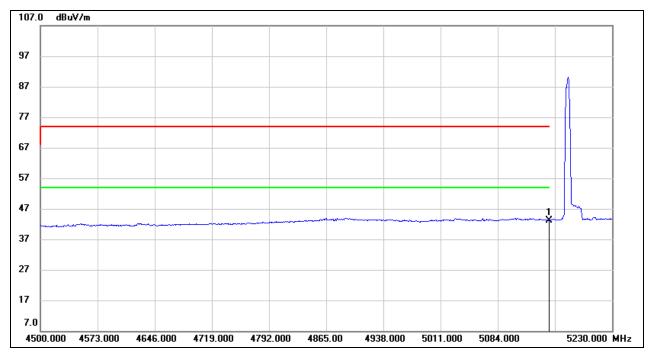
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	27.60	41.60	69.20	122.20	-53.00	peak
2	5951.070	18.40	41.87	60.27	68.20	-7.93	peak


LAST MODE.	802.11ax HE40 PK (26Tone Ru0)	Frequency(MHz):	5190
Polarity:	Horizontal	Test Voltage:	DC 5V

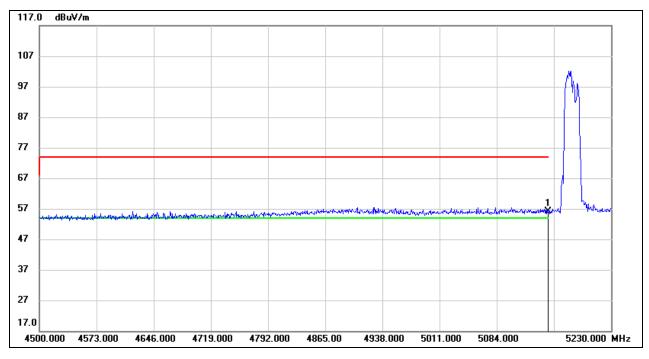
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.90	40.27	56.17	74.00	-17.83	peak


Lest Mode.	802.11ax HE40 AV (26Tone Ru0)	Frequency(MHz):	5190
Polarity:	Horizontal	Test Voltage:	DC 5V

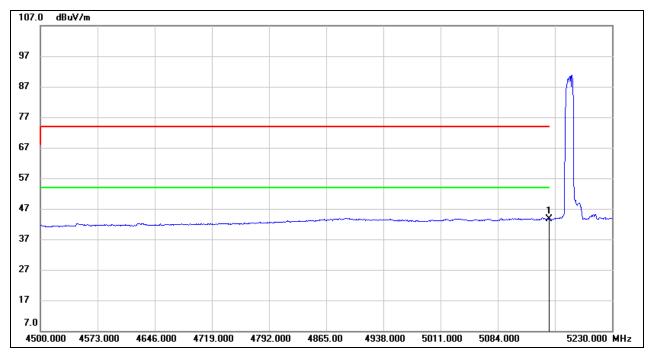
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.15	40.27	43.42	54.00	-10.58	AVG


Lest Mode.	802.11ax HE40 PK (52Tone Ru37)	Frequency(MHz):	5190
Polarity:	Horizontal	Test Voltage:	DC 5V

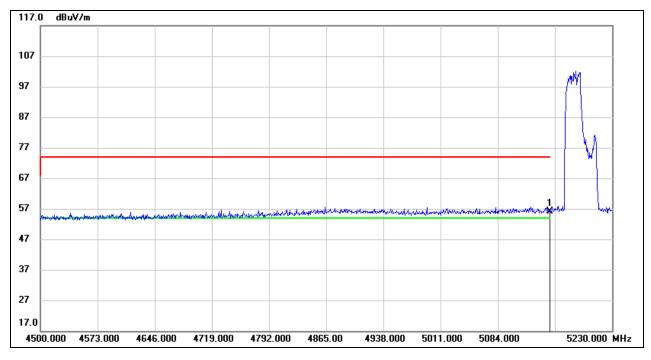
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.39	40.27	55.66	74.00	-18.34	peak


Lest Mode.	802.11ax HE40 AV (52Tone Ru37)	Frequency(MHz):	5190
Polarity:	Horizontal	Test Voltage:	DC 5V

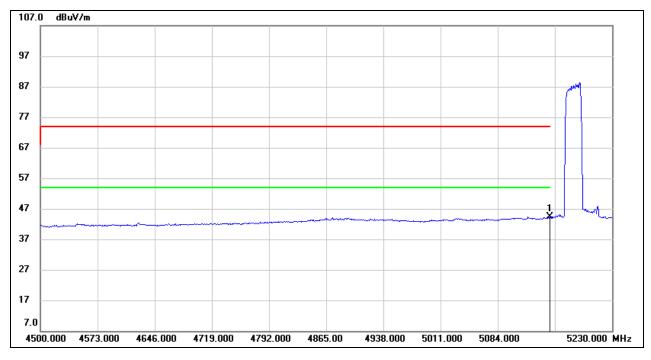
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	2.95	40.27	43.22	54.00	-10.78	AVG


LAST MODE.	802.11ax HE40 PK (106Tone Ru53)	Frequency(MHz):	5190
Polarity:	Horizontal	Test Voltage:	DC 5V

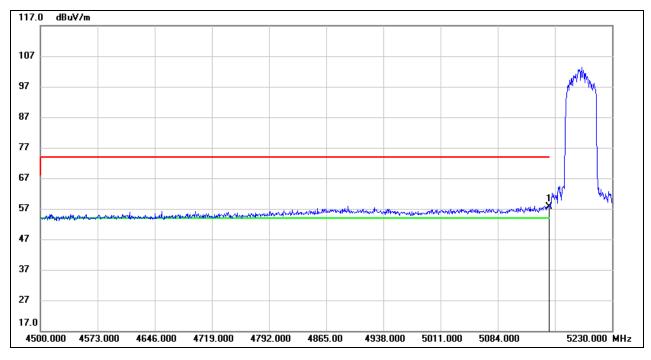
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.87	40.27	56.14	74.00	-17.86	peak


Lest Mode.	802.11ax HE40 AV (106Tone Ru53)	Frequency(MHz):	5190
Polarity:	Horizontal	Test Voltage:	DC 5V

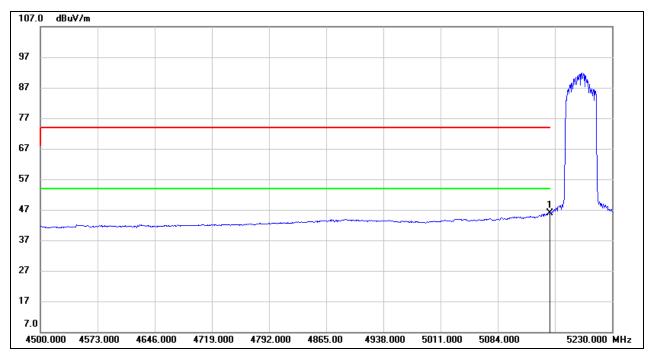
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.34	40.27	43.61	54.00	-10.39	AVG


Lest Mode.	802.11ax HE40 PK (242Tone Ru61)	Frequency(MHz):	5190
Polarity:	Horizontal	Test Voltage:	DC 5V

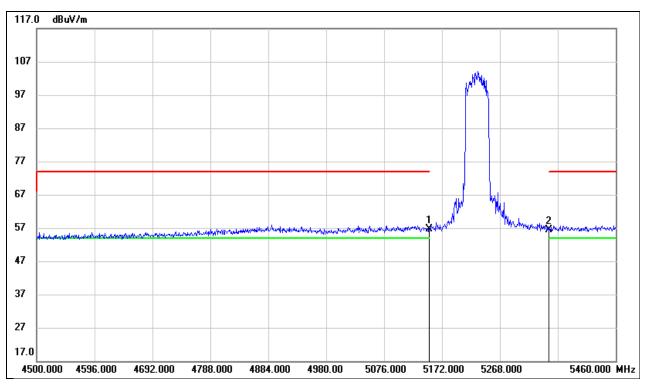
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	15.89	40.27	56.16	74.00	-17.84	peak


Lest Mode.	802.11ax HE40 AV (242Tone Ru61)	Frequency(MHz):	5190
Polarity:	Horizontal	Test Voltage:	DC 5V

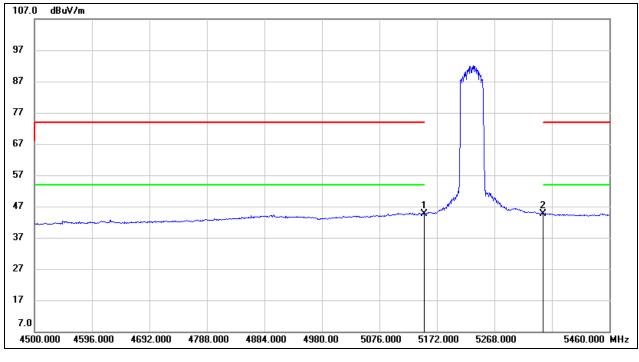
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	4.02	40.27	44.29	54.00	-9.71	AVG


Lest Mode.	802.11ax HE40 PK (484Tone Ru65)	Frequency(MHz):	5190
Polarity:	Horizontal	Test Voltage:	DC 5V

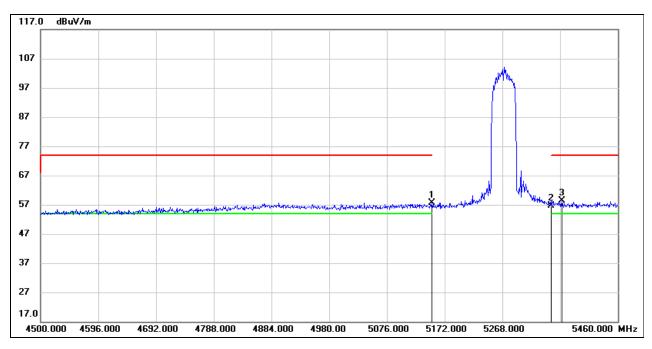
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	17.27	40.27	57.54	74.00	-16.46	peak


Lest Mode.	802.11ax HE40 AV (484Tone Ru65)	Frequency(MHz):	5190
Polarity:	Horizontal	Test Voltage:	DC 5V

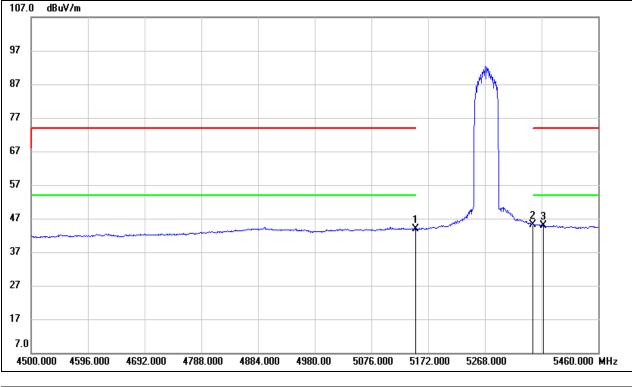
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	5.63	40.27	45.90	54.00	-8.10	AVG


Lest Mode.	802.11ax HE40 PK (484Tone Ru65)	Frequency(MHz):	5230
Polarity:	Horizontal	Test Voltage:	DC 5V

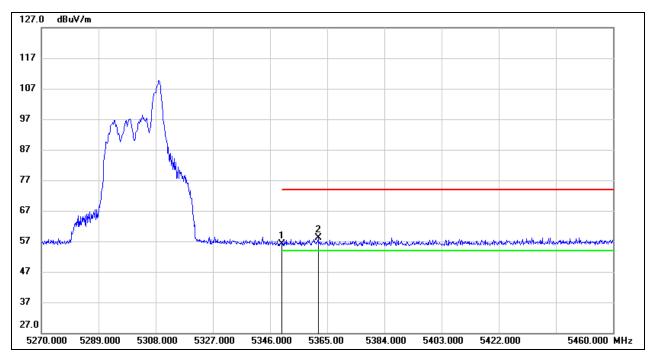
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	16.43	40.27	56.70	74.00	-17.30	peak
2	5350.000	15.84	40.49	56.33	74.00	-17.67	peak


Lest Mode.	802.11ax HE40 AV (484Tone Ru65)	Frequency(MHz):	5230
Polarity:	Horizontal	Test Voltage:	DC 5V

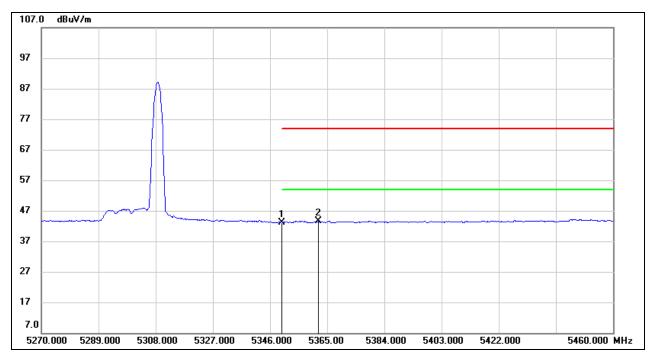
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	4.40	40.27	44.67	54.00	-9.33	AVG
2	5350.000	4.26	40.49	44.75	54.00	-9.25	AVG


Lest Mode.	802.11ax HE40 PK (484Tone Ru65)	Frequency(MHz):	5270
Polarity:	Horizontal	Test Voltage:	DC 5V

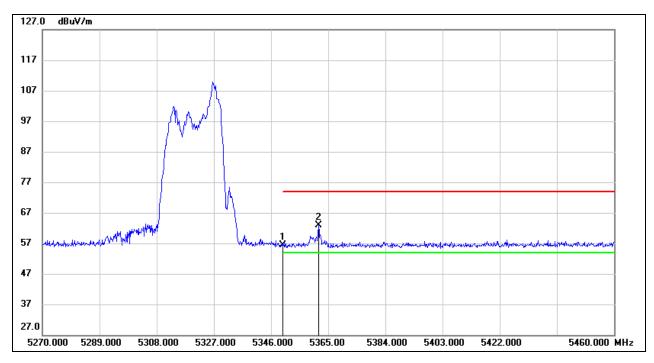
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	17.30	40.27	57.57	74.00	-16.43	peak
2	5350.000	16.10	40.49	56.59	74.00	-17.41	peak
3	5366.880	17.93	40.51	58.44	74.00	-15.56	peak


Lest Mode.	802.11ax HE40 AV (484Tone Ru65)	Frequency(MHz):	5270
Polarity:	Horizontal	Test Voltage:	DC 5V

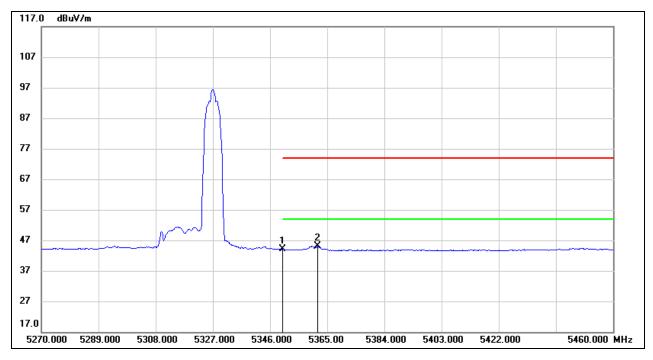
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5150.000	3.69	40.27	43.96	54.00	-10.04	AVG
2	5350.000	4.63	40.49	45.12	54.00	-8.88	AVG
3	5366.880	4.35	40.51	44.86	54.00	-9.14	AVG


Lest Mode.	802.11ax HE40 PK (26Tone Ru17)	Frequency(MHz):	5310
Polarity:	Horizontal	Test Voltage:	DC 5V

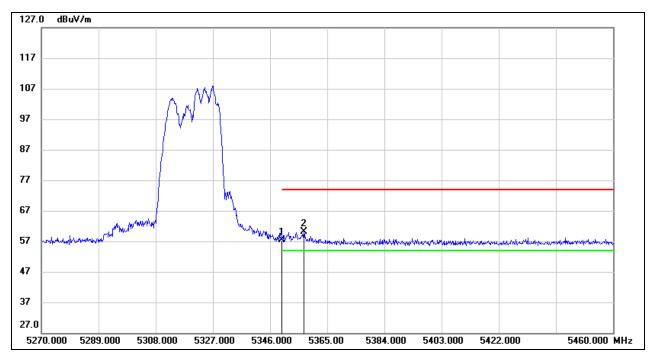
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	15.60	40.49	56.09	74.00	-17.91	peak
2	5361.960	17.62	40.50	58.12	74.00	-15.88	peak


Lest Mode.	802.11ax HE40 AV (26Tone Ru17)	Frequency(MHz):	5310
Polarity:	Horizontal	Test Voltage:	DC 5V

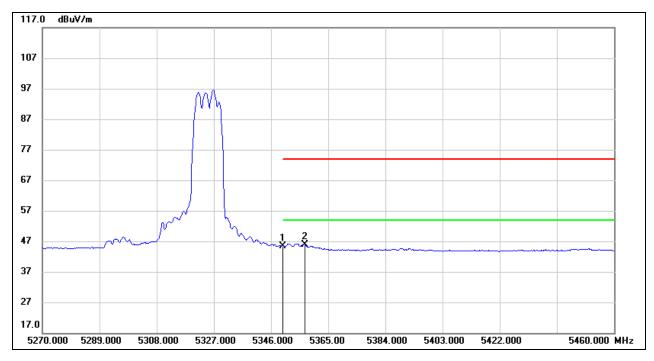
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	2.73	40.49	43.22	54.00	-10.78	AVG
2	5361.960	3.01	40.50	43.51	54.00	-10.49	AVG


Lest Mode.	802.11ax HE40 PK (52Tone Ru44)	Frequency(MHz):	5310
Polarity:	Horizontal	Test Voltage:	DC 5V

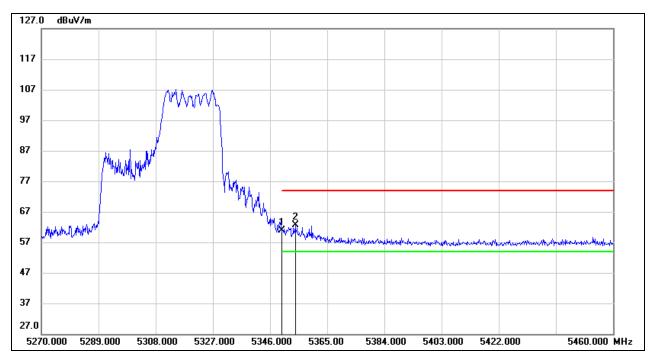
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	15.80	40.49	56.29	74.00	-17.71	peak
2	5361.770	22.30	40.50	62.80	74.00	-11.20	peak


Lest Mode.	802.11ax HE40 AV (52Tone Ru44)	Frequency(MHz):	5310
Polarity:	Horizontal	Test Voltage:	DC 5V

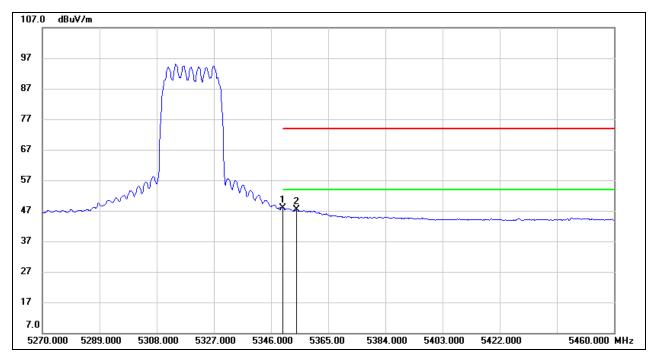
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	3.63	40.49	44.12	54.00	-9.88	AVG
2	5361.770	4.55	40.50	45.05	54.00	-8.95	AVG


Lest Mode.	802.11ax HE40 PK (106Tone Ru56)	Frequency(MHz):	5310
Polarity:	Horizontal	Test Voltage:	DC 5V

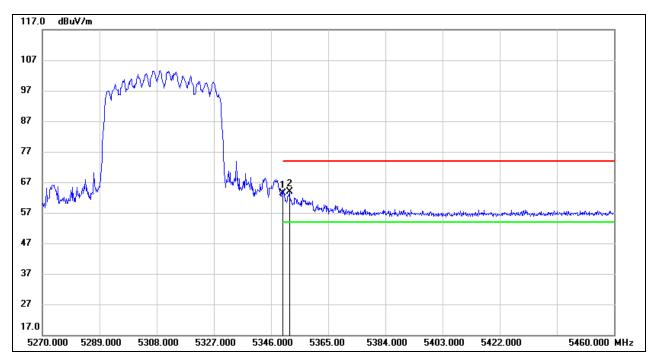
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	16.92	40.49	57.41	74.00	-16.59	peak
2	5357.210	19.72	40.50	60.22	74.00	-13.78	peak


Lest Mode.	802.11ax HE40 AV (106Tone Ru56)	Frequency(MHz):	5310
Polarity:	Horizontal	Test Voltage:	DC 5V

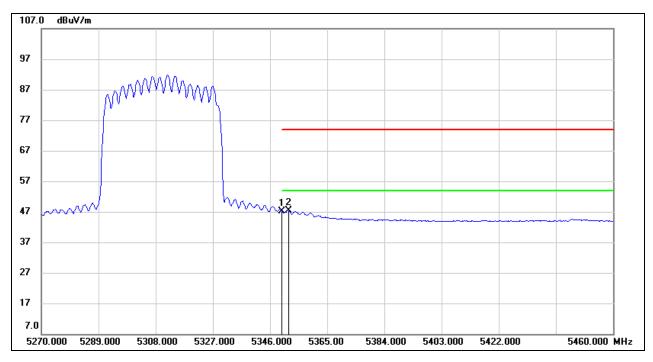
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	4.93	40.49	45.42	54.00	-8.58	AVG
2	5357.210	5.45	40.50	45.95	54.00	-8.05	AVG


LAST MODE.	802.11ax HE40 PK (242Tone Ru62)	Frequency(MHz):	5310
Polarity:	Horizontal	Test Voltage:	DC 5V

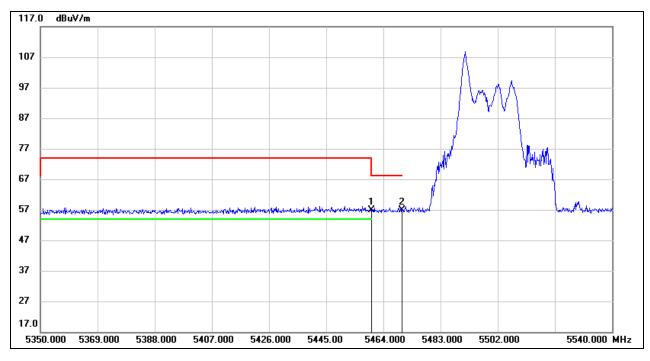
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	20.51	40.49	61.00	74.00	-13.00	peak
2	5354.360	22.20	40.50	62.70	74.00	-11.30	peak


Lest Mode.	802.11ax HE40 AV (242Tone Ru62)	Frequency(MHz):	5310
Polarity:	Horizontal	Test Voltage:	DC 5V

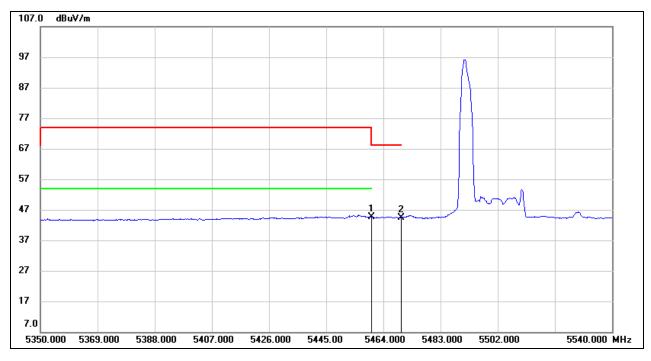
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	7.32	40.49	47.81	54.00	-6.19	AVG
2	5354.360	6.81	40.50	47.31	54.00	-6.69	AVG


Lest Mode.	802.11ax HE40 PK (484Tone Ru65)	Frequency(MHz):	5310
Polarity:	Horizontal	Test Voltage:	DC 5V

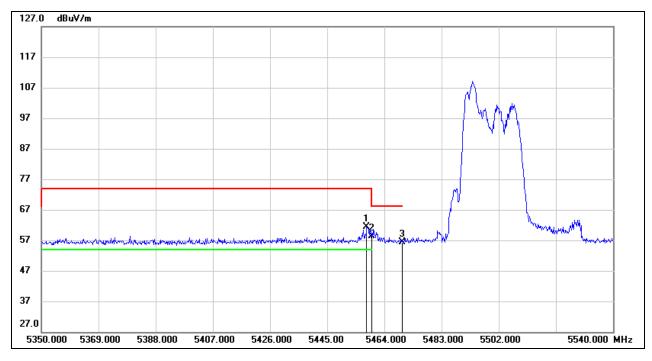
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	22.99	40.49	63.48	74.00	-10.52	peak
2	5352.080	23.37	40.49	63.86	74.00	-10.14	peak


Test Mode:	802.11ax HE40 AV (484Tone Ru65)	Frequency(MHz):	5310
Polarity:	Horizontal	Test Voltage:	DC 5V

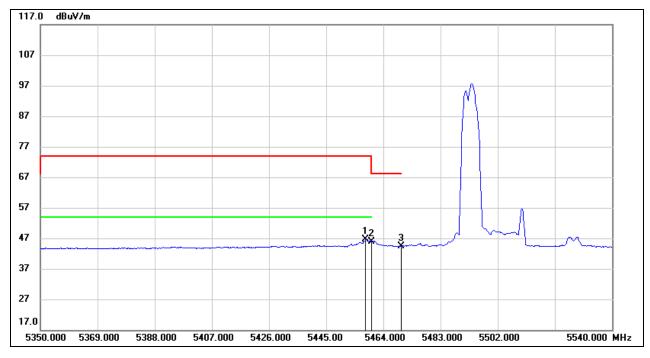
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5350.000	6.53	40.49	47.02	54.00	-6.98	AVG
2	5352.080	6.91	40.49	47.40	54.00	-6.60	AVG


LAST MODE.	802.11ax HE40 PK (26Tone Ru0)	Frequency(MHz):	5510
Polarity:	Horizontal	Test Voltage:	DC 5V

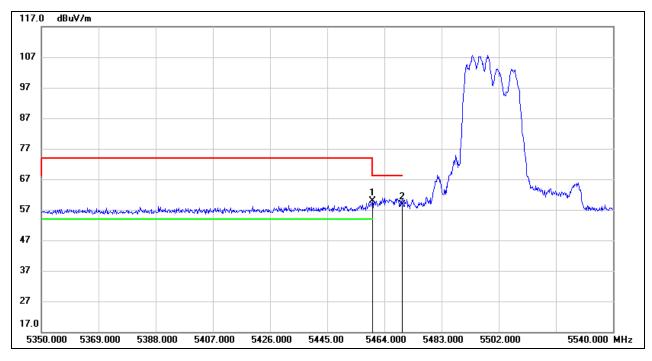
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	16.37	40.62	56.99	68.20	-11.21	peak
2	5470.000	16.28	40.63	56.91	68.20	-11.29	peak


Lest Mode.	802.11ax HE40 AV (26Tone Ru0)	Frequency(MHz):	5510
Polarity:	Horizontal	Test Voltage:	DC 5V

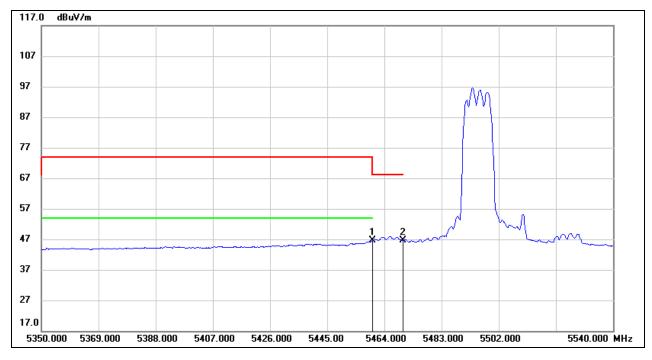
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	3.98	40.62	44.60	54.00	-9.40	AVG
2	5470.000	3.80	40.63	44.43	/	/	AVG


Lest Mode.	802.11ax HE40 PK (52Tone Ru37)	Frequency(MHz):	5510
Polarity:	Horizontal	Test Voltage:	DC 5V

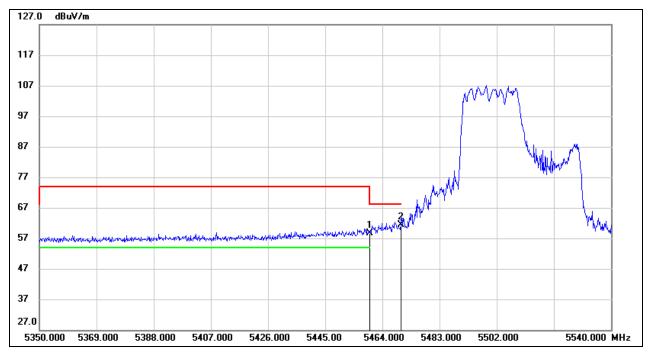
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5458.110	20.66	40.62	61.28	74.00	-12.72	peak
2	5460.000	17.86	40.62	58.48	68.20	-9.72	peak
3	5470.000	15.71	40.63	56.34	68.20	-11.86	peak


Lest Mode.	802.11ax HE40 AV (52Tone Ru37)	Frequency(MHz):	5510
Polarity:	Horizontal	Test Voltage:	DC 5V

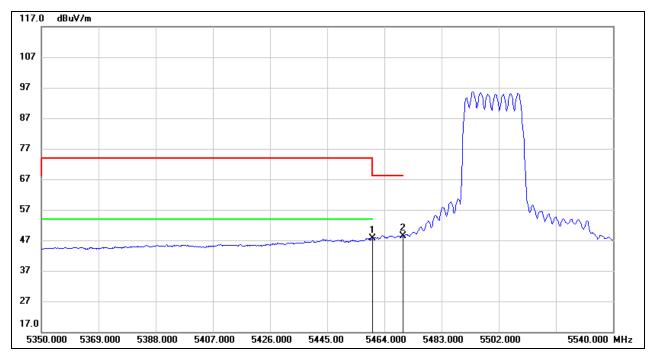
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5458.110	6.00	40.62	46.62	54.00	-7.38	AVG
2	5460.000	5.35	40.62	45.97	54.00	-8.03	AVG
3	5470.000	3.77	40.63	44.40	/	/	AVG


LAST MODE.	802.11ax HE40 PK (106Tone Ru53)	Frequency(MHz):	5510
Polarity:	Horizontal	Test Voltage:	DC 5V

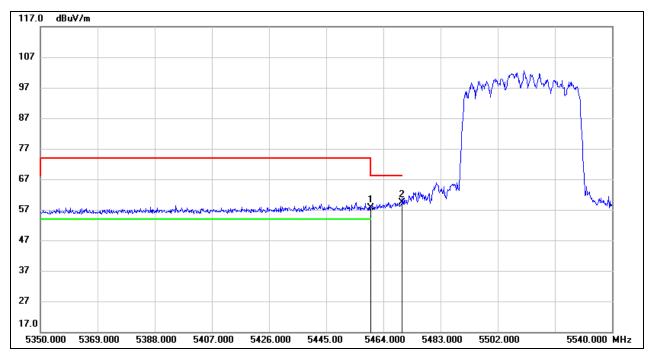
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	19.21	40.62	59.83	68.20	-8.37	peak
2	5470.000	17.96	40.63	58.59	68.20	-9.61	peak


Lest Mode.	802.11ax HE40 AV (106Tone Ru53)	Frequency(MHz):	5510
Polarity:	Horizontal	Test Voltage:	DC 5V

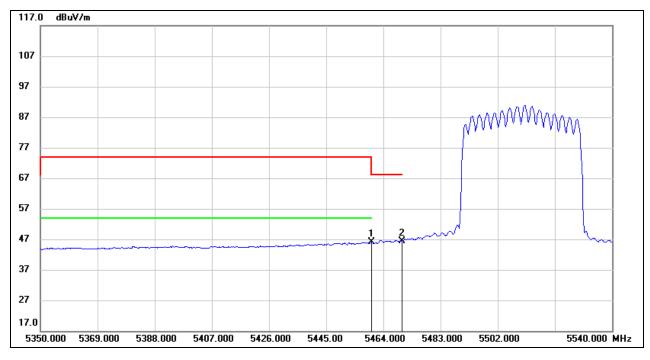
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	5.92	40.62	46.54	54.00	-7.46	AVG
2	5470.000	6.04	40.63	46.67	/	/	AVG


LAST MODE.	802.11ax HE40 PK (242Tone Ru61)	Frequency(MHz):	5510
Polarity:	Horizontal	Test Voltage:	DC 5V

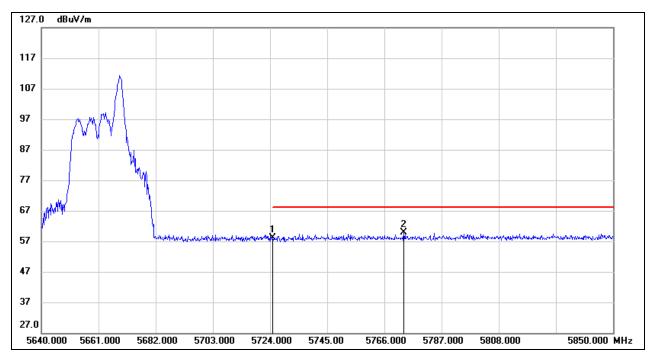
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	18.07	40.62	58.69	68.20	-9.51	peak
2	5470.000	20.77	40.63	61.40	68.20	-6.80	peak


LAST MODE.	802.11ax HE40 AV (242Tone Ru61)	Frequency(MHz):	5510
Polarity:	Horizontal	Test Voltage:	DC 5V

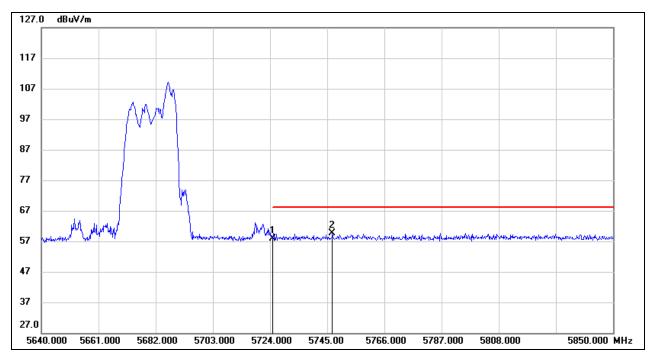
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	6.94	40.62	47.56	54.00	-6.44	AVG
2	5470.000	7.73	40.63	48.36	/	/	AVG


LAST MODE.	802.11ax HE40 PK (484Tone Ru65)	Frequency(MHz):	5510
Polarity:	Horizontal	Test Voltage:	DC 5V

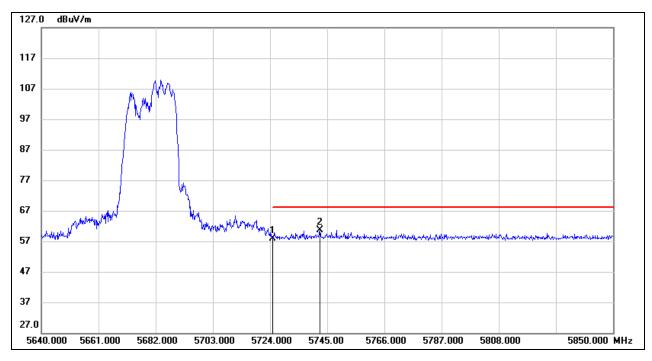
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	17.06	40.62	57.68	68.20	-10.52	peak
2	5470.000	18.76	40.63	59.39	68.20	-8.81	peak


Lest Mode.	802.11ax HE40 AV (484Tone Ru65)	Frequency(MHz):	5510
Polarity:	Horizontal	Test Voltage:	DC 5V

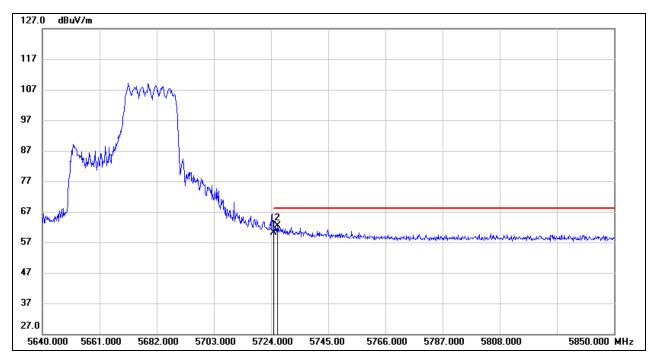
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5460.000	5.56	40.62	46.18	54.00	-7.82	AVG
2	5470.000	5.87	40.63	46.50	/	/	AVG


LAST MODE.	802.11ax HE40 PK (26Tone Ru17)	Frequency(MHz):	5670
Polarity:	Horizontal	Test Voltage:	DC 5V

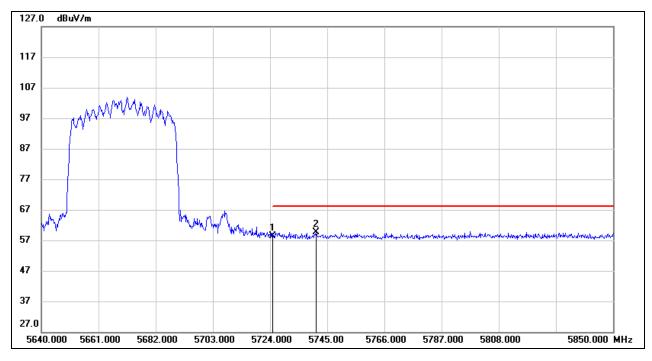
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	16.81	41.27	58.08	68.20	-10.12	peak
2	5773.140	18.43	41.39	59.82	68.20	-8.38	peak


Lest Mode.	802.11ax HE40 PK (52Tone Ru44)	Frequency(MHz):	5670
Polarity:	Horizontal	Test Voltage:	DC 5V

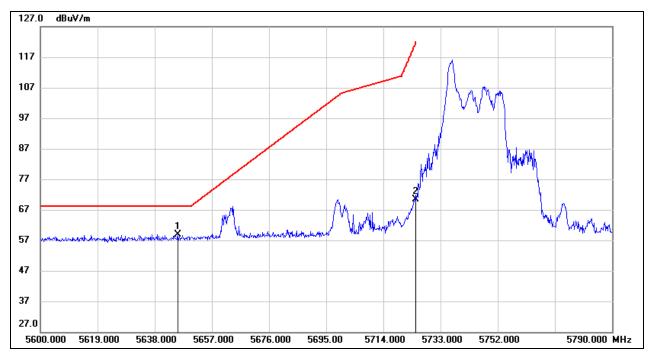
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	16.70	41.27	57.97	68.20	-10.23	peak
2	5746.890	18.32	41.32	59.64	68.20	-8.56	peak


Lest Mode.	802.11ax HE40 PK (106Tone Ru56)	Frequency(MHz):	5670
Polarity:	Horizontal	Test Voltage:	DC 5V

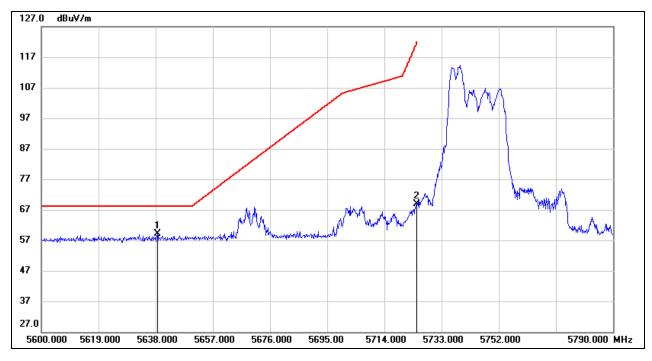
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	16.66	41.27	57.93	68.20	-10.27	peak
2	5742.270	19.27	41.31	60.58	68.20	-7.62	peak


Lest Mode.	802.11ax HE40 PK (242Tone Ru62)	Frequency(MHz):	5670
Polarity:	Horizontal	Test Voltage:	DC 5V

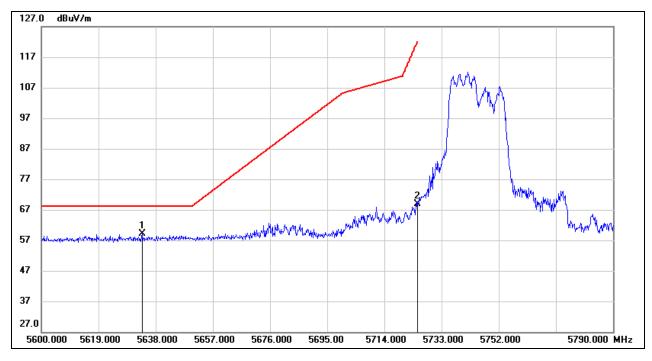
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	18.90	41.27	60.17	68.20	-8.03	peak
2	5726.310	21.01	41.27	62.28	68.20	-5.92	peak


Lest Mode.	802.11ax HE40 PK (484Tone Ru65)	Frequency(MHz):	5670
Polarity:	Horizontal	Test Voltage:	DC 5V

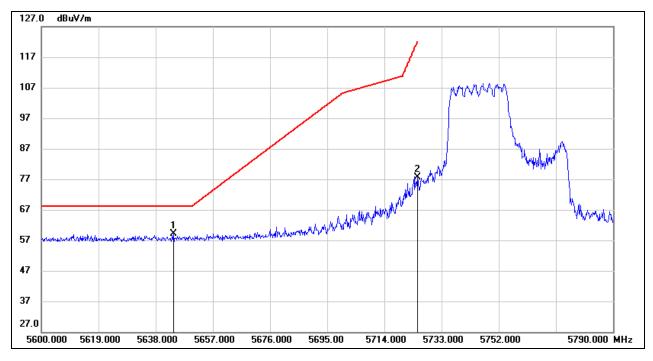
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5725.000	17.06	41.27	58.33	68.20	-9.87	peak
2	5740.800	18.23	41.30	59.53	68.20	-8.67	peak


Lest Mode.	802.11ax HE40 PK (26Tone Ru0)	Frequency(MHz):	5755
Polarity:	Horizontal	Test Voltage:	DC 5V

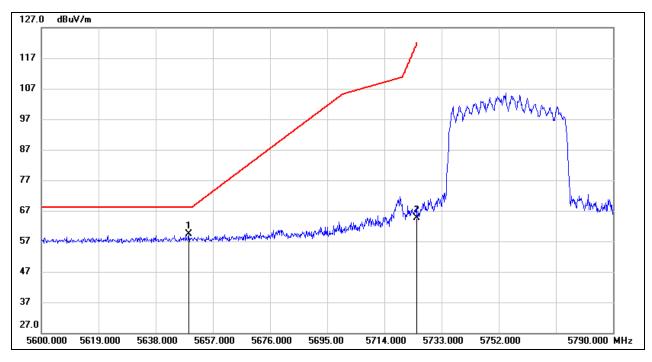
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5645.600	17.87	41.05	58.92	68.20	-9.28	peak
2	5725.000	29.00	41.27	70.27	122.20	-51.93	peak


Lest Mode.	802.11ax HE40 PK (52Tone Ru37)	Frequency(MHz):	5755
Polarity:	Horizontal	Test Voltage:	DC 5V

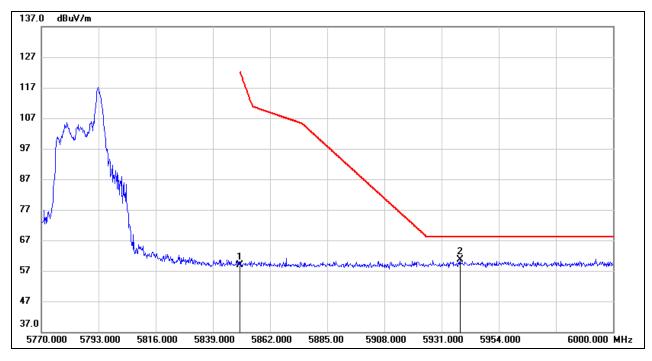
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5638.570	18.07	41.03	59.10	68.20	-9.10	peak
2	5725.000	27.66	41.27	68.93	122.20	-53.27	peak


Lest Mode.	802.11ax HE40 PK (106Tone Ru53)	Frequency(MHz):	5755
Polarity:	Horizontal	Test Voltage:	DC 5V

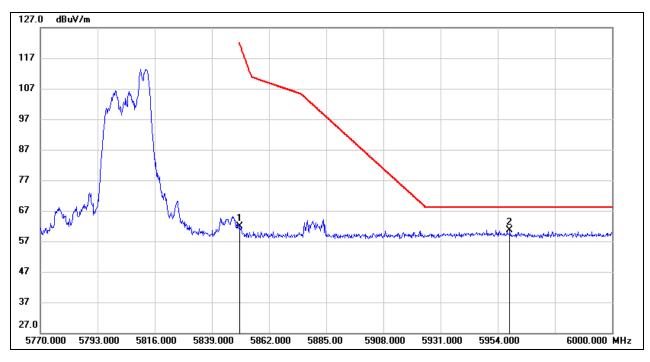
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5633.440	18.08	41.01	59.09	68.20	-9.11	peak
2	5725.000	27.73	41.27	69.00	122.20	-53.20	peak


Lest Mode.	802.11ax HE40 PK (242Tone Ru61)	Frequency(MHz):	5755
Polarity:	Horizontal	Test Voltage:	DC 5V

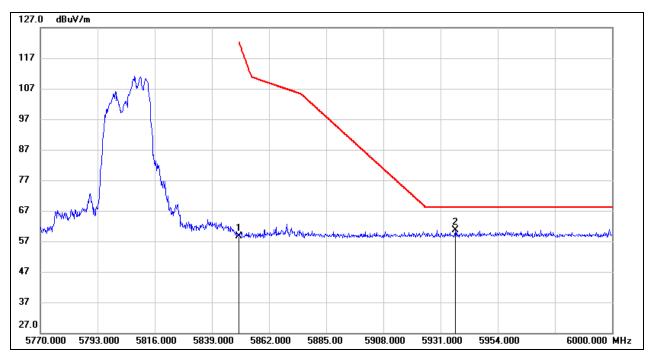
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5643.890	18.09	41.04	59.13	68.20	-9.07	peak
2	5725.000	36.29	41.27	77.56	122.20	-44.64	peak


Test Mode:	802.11ax HE40 PK (484Tone Ru65)	Frequency(MHz):	5755
Polarity:	Horizontal	Test Voltage:	DC 5V

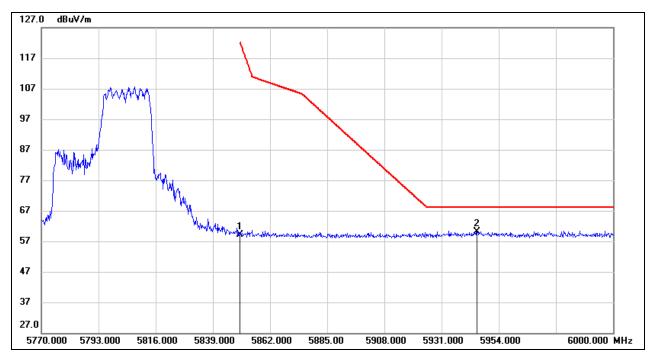
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5649.020	18.32	41.06	59.38	68.20	-8.82	peak
2	5725.000	23.28	41.27	64.55	122.20	-57.65	peak


Lest Mode.	802.11ax HE40 PK (26Tone Ru17)	Frequency(MHz):	5795
Polarity:	Horizontal	Test Voltage:	DC 5V

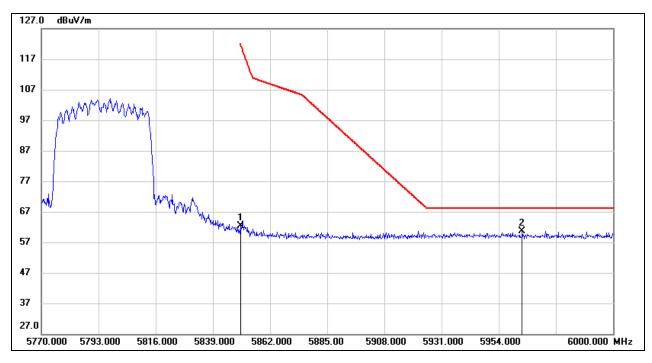
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	17.37	41.60	58.97	122.20	-63.23	peak
2	5938.360	18.71	41.84	60.55	68.20	-7.65	peak


Lest Mode.	802.11ax HE40 PK (52Tone Ru44)	Frequency(MHz):	5795
Polarity:	Horizontal	Test Voltage:	DC 5V

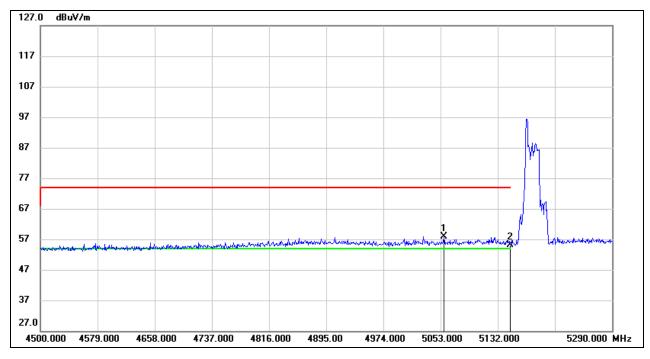
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	20.17	41.60	61.77	122.20	-60.43	peak
2	5958.830	18.83	41.89	60.72	68.20	-7.48	peak


Test Mode:	802.11ax HE40 PK (106Tone Ru56)	Frequency(MHz):	5795
Polarity:	Horizontal	Test Voltage:	DC 5V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	17.09	41.60	58.69	122.20	-63.51	peak
2	5936.980	18.77	41.83	60.60	68.20	-7.60	peak


Lest Mode.	802.11ax HE40 PK (242Tone Ru62)	Frequency(MHz):	5795
Polarity:	Horizontal	Test Voltage:	DC 5V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	17.41	41.60	59.01	122.20	-63.19	peak
2	5945.260	18.35	41.86	60.21	68.20	-7.99	peak


Test Mode:	802.11ax HE40 PK (484Tone Ru65)	Frequency(MHz):	5795
Polarity:	Horizontal	Test Voltage:	DC 5V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5850.000	20.77	41.60	62.37	122.20	-59.83	peak
2	5963.430	18.64	41.90	60.54	68.20	-7.66	peak

Lest Mode.	802.11ax HE80 PK (26Tone Ru0)	Frequency(MHz):	5210
Polarity:	Horizontal	Test Voltage:	DC 5V

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	5057.740	17.63	40.18	57.81	74.00	-16.19	peak
2	5150.000	14.91	40.27	55.18	74.00	-18.82	peak