	CTK Co., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501	Report No.: CTK-2021-03421 Page (61) / (88) Pages

ANT1, 802.11ax_HE20_26T_High

	CTKCO, LTA. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501	Report No.: CTK-2021-03421	
Page (62) / (88) Pages			

ANT2, 802.11ax_HE20_26T_High

CTK Co., Ltd.	CTK Co., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501	Report No.: CTK-2021-03421 Page (63) / (88) Pages

4.5 Radiated Emission

Test Location

$\boxtimes 10 \mathrm{~m} \mathrm{SAC}$ (test distance: $\square 10 \mathrm{~m}, \boxtimes 3 \mathrm{~m}$)
$\boxtimes 3 \mathrm{~m} \mathrm{SAC}$ (test distance : 3 m)

Test Procedures

KDB 558074-Section 8.5, 8.6
ANSI C63.10-2013 - Section 11.11, 11.12
RSS-Gen - Section 6.13

1) In the frequency range of 9 kHz to 30 MHz , magnetic field is measured with Loop Antenna. The Test Antenna is positioned with its plane vertical at 1 m distance from the EUT. The center of the Loop Test Antenna is 1 m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
2) In the frequency rage above $30 \mathrm{MHz}, \mathrm{Bi}-\mathrm{Log}$ Test Antenna(30 MHz to 1 GHz) and Horn Test Antenna(above 1 GHz) are used. Test Antenna is 3 m away from the EUT. Test Antenna height is carried from 1 m to 4 m above the ground to determine the maximum value of the field strength. The emissions levels at both horizontal and vertical polarizations should be tested.

Test Settings:

Frequency Range $=9 \mathrm{kHz} \sim 1 \mathrm{GHz}$
a) $\mathrm{RBW}=100 \mathrm{kHz}$ for $\mathrm{f}<1 \mathrm{GHz}, 9 \mathrm{kHz}$ for $\mathrm{f}<30 \mathrm{MHz}$
b) VBW \geq RBW
c) Detector $=$ CISPR Quasi-peak
d) Sweep time = auto couple

- Peak

Frequency Range $=1 \mathrm{GHz} \sim 25 \mathrm{GHz}\left(2.4 \mathrm{GHz} 10^{\text {th }}\right.$ harmonic)
a) $\mathrm{RBW}=1 \mathrm{MHz}$
b) VBW $\geq 3 \times$ RBW
c) Detector $=$ Peak
d) Sweep time = auto
e) Trace mode = max hold

- Average (duty cycle $\geq 98 \%$)

Frequency Range $=1 \mathrm{GHz} \sim 25 \mathrm{GHz}$ ($2.4 \mathrm{GHz} 10^{\text {th }}$ harmonic)
a) $\mathrm{RBW}=1 \mathrm{MHz}$
b) VBW $\geq 3 \times$ RBW
c) Detector $=$ RMS
d) Sweep time = auto
e) Averaging type = power (i.e., RMS)
f) Trace mode $=$ average (at least 100 traces)

CTK Co., Ltd.

(Ho-dong), 113, Yejik-ro, Cheoin-gu,
Yongin-si, Gyeonggi-do, Korea
Tel: +82-31-339-9970

Report No.
CTK-2021-03421
Page (64) / (88) Pages

- Average (duty cycle < 98\%, duty cycle variations are less than $\pm 2 \%$)

Frequency Range $=1 \mathrm{GHz} \sim 25 \mathrm{GHz}$ ($2.4 \mathrm{GHz} 10^{\text {th }}$ harmonic)
a) $\mathrm{RBW}=1 \mathrm{MHz}$
b) VBW $\geq 3 \times$ RBW
c) Detector $=$ RMS
d) Sweep time = auto
e) Averaging type $=$ power (i.e., RMS)
f) Trace mode $=$ average (at least 100 traces)

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100% duty cycle.
If power averaging (RMS) mode, then the applicable correction factor is
$10 \log (1 / x)$, where x is the duty cycle.

Test mode	Duty Cycle Factor (dB)
802.11 b	0.00
802.11 g	0.12
802.11 n _HT20	0.13
802.11 ax HE20_SU	0.31
802.11 ax _HE20_26T	0.24

Limit :

FCC Part 15 § 15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	MHz	MHz	GHz
$0.09-0.11$	$8.37626-8.38675$	$73-74.6$	$399.9-410$	$2690-2900$	$10.6-12.7$
${ }^{1} 0.495-0.505$	$8.41425-8.41475$	$74.8-75.2$	$608-614$	$3260-3267$	$13.25-13.4$
$2.1735-2.1905$	$12.29-12.293$	$108-121.94$	$960-1240$	$3332-3339$	$14.47-14.5$
$4.125-4.128$	$12.51975-12.52025$	$123-138$	$1300-1427$	$3345.8-3358$	$15.35-16.2$
$4.17725-4.17775$	$12.57675-12.57725$	$149.9-150.05$	$1435-1626.5$	$3600-4400$	$17.7-21.4$
$4.20725-4.20775$	$13.36-13.41$	$156.52475-$	$1645.5-1646.5$	$4500-5150$	$22.01-23.12$
$6.215-6.218$	$16.42-16.423$	156.52525		5350.156 .9	$1660-1710$
$6.26775-6.26825$	$16.69475-16.69525$	$162.0125-167.17$	$1718.8-1722.2$	$7250-7750$	$23.6-24$
$6.31175-6.31225$	$16.80425-16.80475$	$167.72-173.2$	$2200-2300$	$8025-8500$	$36.43-36.5$
$8.291-8.294$	$25.5-25.67$	$240-285$	$2310-2390$	$9000-9200$	${ }^{2} \mathrm{Above}$
$8.362-8.366$	$37.5-38.25$	$322-335.4$	$2483.5-2500$	$9300-9500$	

${ }^{1}$ Until February 1, 1999, this restricted band shall be $0.490-0.510 \mathrm{MHz}$.
${ }^{2}$ Above 38.6
§ 15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown is Section 15.209. At frequencies equal to or less than 1000 MHz , compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz , compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions.

The provisions in Section 15.35 apply to these measurements.

CTK Co., Ltd.	CTK Co., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501	Report No.: CTK-2021-03421 Page (65) / (88) Pages

FCC Part 15 § 15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table :

Frequency (MHz)	Field Strength $\mathrm{uV} / \mathrm{m@3m}$	Field Strength $\mathrm{dBuV} / \mathrm{m@}$ 3m	Deasurement Distance (meters)
$0.009-0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	-	300
$0.490-1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	-	30
$1.705-30$	30	-	30
$30-88$	$100^{* *}$	40	3
$88-216$	$150^{* *}$	43.5	3
$216-960$	$200^{* *}$	46	3
Above 960	500	54	3

[^0]Note :

1) For above 1 GHz , the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit.
2) For above 1 GHz , limit field strength of harmonics: $54 \mathrm{dBuV} / \mathrm{m@} 3 \mathrm{~m}$ (AV) and $74 \mathrm{dBuV} / \mathrm{m@} 3 \mathrm{~m}$ (PK)

We have done all test mode.
The worst-case antenna configuration and Test mode are determined to be as follows.

```
802.11b mode : ANT1, ANT2
802.11g mode : ANT1 + ANT2 (MIMO)
802.11n mode : ANT1 + ANT2 (MIMO)
802.11ax mode: ANT1 + ANT2 (MIMO)
```

So the results are only attached worst cases.

	CTK Co., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501	Report No.: CTK-2021-03421 Page (66) / (88) Pages

802.11ax Test RU I ndex for Tones

Mode	Bandwidth (MHz)	Frequency (MHz) (MHz)	Tones	Test RU offset	
				Band Edge	Spurious Emission
802.11ax	20	2412	$26 T$	0	-
				-	4
				-	-
			SU	61	61
		2442	26 T	-	-
				-	4
				-	-
			SU	-	61
		2472	26 T	-	-
				-	4
				8	-
			SU	61	61

	CTKCO., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501	Report No.: CTK-2021-03421 Page (67)/(88) Pages	
CTK Co., Ltd.			

Test Setup:

1) For field strength of emissions from 9 kHz to 30 MHz

2) For field strength of emissions from 30 MHz to 1 GHz

	CTKCO, LTA. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +822-31-339-9970 Fax: +82-31-624-9501	Report No.: CTK-2021-03421 Page (68) /(88) Pages	
CTK Co., Ltd.			

3) For field strength of emissions above 1 GHz

	CTK CO_, Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax:+82-31-624-9501	Report No.: CTK-2021-03421	
CTK Co., Ltd.	Page (69)/(88) Pages		

Test results

1) $9 \mathbf{k H z}$ to $\mathbf{3 0} \mathbf{~ M H z}$

Test mode : Transmitter (Worst Case)

The requirements are:
\boxtimes Complies

Test Data

The emissions 9 kHz to 30 MHz were 20 dB lower than the limit.

Remark :

1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down positon(X, Y axis). The worst emission was found in lie-down position(Y axis) and the worst case was recorded.
2. Result $=$ Reading $+c . f($ Correction factor)
3. Correction factor $=$ Antenna factor + Cable loss +6 dB attenuator - Amp Gain
4. This data is the Peak(PK) value.

CTK Co., Ltd.	CTK Co., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501	Report No.: CTK-2021-03421 Page (70) / (88) Pages

Test mode : Transmitter (simultaneous transmissions BDR + DTS)

The requirements are:
Q Complies
Test Data

Frequency [MHz]	(P)	Reading [dBuV]	$\begin{gathered} \text { c.f } \\ {[\mathrm{dB}(1 / \mathrm{m})]} \end{gathered}$	Level [dB(uV/m)]	$\underset{[\mathrm{dB}(\mathrm{uV} / \mathrm{m})]}{\text { Limit }}$	Margin [dB]

The emissions 9 kHz to 30 MHz were 20 dB lower than the limit.

Remark :

1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X, Y axis). The worst emission was found in lie-down position(Y axis) and the worst case was recorded.
2. Result $=$ Reading $+c . f($ Correction factor $)$
3. Correction factor $=$ Antenna factor + Cable loss +6 dB attenuator - Amp Gain
4. This data is the Peak(PK) value.

	CTK CO., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongi-si, Gyeongi-do, Korea Tel: $+82-31-339-9970$ Fax: +82-31-624-9501	Report No.: CTK-2021-03421 Page (71)/(88) Pages	
CTK Co., Ltd.			

Test mode : Receiver (Worst Case)

The requirements are:
Q Complies
Test Data

The emissions 9 kHz to 30 MHz were 20 dB lower than the limit.

Remark :

1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down positon(X, Y axis). The worst emission was found in lie-down position(Y axis) and the worst case was recorded.
2. Result $=$ Reading $+c . f($ Correction factor)
3. Correction factor $=$ Antenna factor + Cable loss +6 dB attenuator - Amp Gain
4. This data is the Peak(PK) value.

	CTK CO., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongn-si, Gyeonggi-do, Korea Tel: $+82-31-339-9970$ Fax: +82-31-624-9501	Report No.: CTK-2021-03421 Page (72)/(88) Pages	
CTK Co., Ltd.			

2) $\mathbf{3 0} \mathbf{~ M H z}$ to $\mathbf{1 ~ G H z}$

Test mode : Transmitter (Worst Case)

The requirements are:
\boxtimes Complies

Test Data

Remark :

1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down positon(X, Y axis). The worst emission was found in lie-down position(Y axis) and the worst case was recorded.
2. Result $=$ Reading $+\mathrm{c} . \mathrm{f}$ (Correction factor)
3. Correction factor $=$ Antenna factor + Cable loss +6 dB attenuator - Amp Gain

	CTK CO_, Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax:+82-31-624-9501	Report No.: CTK-2021-03421 CTK Co., Ltd.	Page (73)/(88) Pages

Test mode : Transmitter (simultaneous transmissions BDR + DTS)

The requirements are:
【 Complies
Test Data

Remark :

1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X, Y axis). The worst emission was found in lie-down position(Y axis) and the worst case was recorded.
2. Result $=$ Reading $+c . f($ Correction factor $)$
3. Correction factor $=$ Antenna factor + Cable loss +6 dB attenuator - Amp Gain

	CTKCO, LTA. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +822-31-339-9970 Fax: +82-31-624-9501	Report No.: CTK-2021-03421 Page (74)/(88) Pages	
CTK Co., Ltd.			

Test mode: Receiver (Worst Case)
The requirements are:
【 Complies
Test Data

Remark :

1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down positon(X, Y axis). The worst emission was found in lie-down position(Y axis) and the worst case was recorded.
2. Result $=$ Reading $+c . f($ Correction factor $)$
3. Correction factor $=$ Antenna factor + Cable loss +6 dB attenuator - Amp Gain

	CTK CO., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501	Report No.: CTK-2021-03421 Page (75)/(88) Pages	
CTK Co., Ltd.			

3) above 1 GHz

The requirements are:
】 Complies

Test Data

	CTKCO., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501	Report No.: CTK-2021-03421 Page (76)/(88) Pages	
CTK Co., Ltd.			

Test mode : Transmitter (802.11b, ANT1)

Frequency [MHz]	(P)	$\begin{aligned} & \text { Reading } \\ & \text { PK } \\ & \text { [dBuV] } \end{aligned}$	$\begin{gathered} \text { Reading } \\ \mathrm{AV} \\ {[\mathrm{dBuV}]} \end{gathered}$	$\left\|\begin{array}{c} c . f \\ {[\mathrm{~dB}(1 / \mathrm{m})]} \end{array}\right\|$	Level PK [dB(uV/ m)]	Level AV [dB(uV/m)]	Duty Cycle Factor [dB]	Limit PK [dB(uV/m)]	Limit AV [dB(uV/m)]	Margin PK [dB]	Margin AV [dB]
2389.74	H	54.0	-----	-3.1	50.9	-----	-----	74.0	-----	23.1	-----
2389.38	H	-----	43.3	-3.1	-----	40.2	0.0	-----	54.0	-----	13.8
2387.32	V	56.6	-----	-3.1	53.5	--	---	74.0	---	20.5	-----
2387.19	V	---	45.4	-3.1	-----	42.3	0.0	-----	54.0	----	11.7

Mid (2 442 MHz)

The emissions above 1 GHz were 20 dB lower than the limit.

High (2 472 MHz)

Frequency [MHz]	(P)	Reading PK [dBuV]	$\begin{gathered} \text { Reading } \\ \mathrm{AV} \\ {[\mathrm{dBuV}]} \end{gathered}$	$\left\|\begin{array}{c} c . f \\ {[\mathrm{~dB}(1 / \mathrm{m})]} \end{array}\right\|$	Level PK [dB(uV/m)]	Level AV [dB(uV/ m)]	Duty Cycle Factor [dB]	Limit PK [dB(uV/m)]	Limit AV [dB(uV/ m)]	Margin PK [dB]	Margin AV [dB]
2485.81	H	60.0	---	-2.5	57.5	-----	-----	74.0	-----	16.5	-----
2485.32	H	---	50.7	-2.5	-----	48.2	0.0	-----	54.0	-----	5.8
2485.51	V	61.1	---	-2.5	58.6	-----	-----	74.0	-----	15.4	--
2485.51	V	-----	53.3	-2.5	---	50.8	0.0	---	54.0	---	3.2

Remarks

1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position(Y axis) and the worst case was recorded.
2. Peak Result $=$ Reading $+c . f($ Correction factor $)$

Average Result $=$ Reading $+c . f($ Correction factor $)+$ Duty Cycle Factor
3. Correction factor $=$ Antenna factor + Cable loss - Amp Gain

CTK Co., Ltd.

(Ho-dong), 113, Yejik-ro, Cheoin-gu,
Yongin-si, Gyeonggi-do, Korea
Tel: +82-31-339-9970
CTK Co., Ltd.
Fax: +82-31-624-9501

Report No.:
CTK-2021-03421
Page (78) / (88) Pages

Test mode : Transmitter (802.11b, ANT2)
Low (2 412 MHz)

Frequency [MHz]	(P)	$\begin{aligned} & \text { Reading } \\ & \text { PK } \\ & {[\mathrm{dBuV}]} \end{aligned}$	$\begin{aligned} & \text { Reading } \\ & \mathrm{AV} \\ & {[\mathrm{dBuV}]} \end{aligned}$	$\begin{gathered} c . f \\ {[\mathrm{~dB}(1 / \mathrm{m})]} \end{gathered}$	Level PK [dB(uV/m)]	Level AV [dB(uV/m)]	Duty Cycle Factor [dB]	Limit PK [dB(uV/m)]	Limit AV $[\mathrm{dB}(\mathrm{uV} / \mathrm{m})]$	Margin PK [dB]	Margin AV [dB]
2387.60	H	55.0	-----	-3.1	51.9	-----	-----	74.0	-----	22.1	-----
2387.93	H	-----	44.3	-3.1	-----	41.2	0.0	-----	54.0	-----	12.8
2388.39	V	55.5	---	-3.1	52.4	-----	-----	74.0	-----	21.6	-----
2385.33	V	-----	41.3	-3.1	--	38.2	0.0	--	54.0	---	15.8

Mid (2 442 MHz)

The emissions above 1 GHz were 20 dB lower than the limit.

High (2 472 MHz)

Frequency [MHz]	(P)	$\begin{gathered} \text { Reading } \\ \text { PK } \\ {[\mathrm{dBuV}]} \end{gathered}$	$\begin{gathered} \text { Reading } \\ \mathrm{AV} \\ {[\mathrm{dBuV}]} \end{gathered}$	$\left\|\begin{array}{c} c . f \\ {[\mathrm{~dB}(1 / \mathrm{m})]} \end{array}\right\|$	Level PK [dB(uV/m)]	$\begin{gathered} \text { Level AV } \\ {[\mathrm{dB}(\mathrm{uV} / \mathrm{m})]} \end{gathered}$	Duty Cycle Factor [dB]	Limit PK [dB(uV/m)]	Limit AV [dB(uV/ m)]	Margin PK [dB]	Margin AV [dB]
2486.10	H	59.6	-----	-2.5	57.1	-----	-----	74.0	----	16.9	-----
2485.54	H	-----	52.3	-2.5	---	49.8	0.0	---	54.0	-----	4.2
2485.21	V	58.5	-----	-2.5	56.0	-----	-----	74.0	-----	18.0	----
2485.59	V	-----	46.2	-2.5	-----	43.7	0.0	-----	54.0	-----	10.3

Remarks

1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position(Y axis) and the worst case was recorded.
2. Peak Result $=$ Reading $+c . f$ (Correction factor)

Average Result $=$ Reading $+c . f($ Correction factor $)+$ Duty Cycle Factor
3. Correction factor $=$ Antenna factor + Cable loss - Amp Gain

Test mode : Transmitter (802.11g)

Frequency [MHz]	(P)	Reading [dBuV] [dBuV]	Reading AV [dBuV]	$\underset{[\mathrm{dB}(\mathrm{i} / \mathrm{m})]}{\text { c.f }}$	Level PK [dB(uV/m)]	Level AV [dB(uV/ m)]	Duty Cycle Factor [dB]	Limit PK [dB(uV/m)]	$\underset{[\mathrm{dB}(\mathrm{uV} / \mathrm{m})]}{\operatorname{Limit} A V}$	Margin PK [dB]	Margin AV [dB]
2386.22	H	67.8	-----	-3.1	64.7	-----	-----	74.0	-----	9.3	-----
2390.00	H	--	47.5	-3.1	-----	44.4	0.1	-----	54.0	-----	9.5
2385.24	v	70.6	-----	-3.1	67.5	-----	-----	74.0	-----	6.5	-----
2389.82	v	-----	47.7	-3.1	-----	44.6	0.1	-----	54.0	-----	9.3

Mid (2 442 MHz)

The emissions above 1 GHz were 20 dB lower than the limit.

High (2 472 MHz)

Frequency [MHz]	(P)	$\begin{gathered} \text { Reading } \\ \text { PK } \\ {[\mathrm{dBuV}]} \end{gathered}$	$\begin{gathered} \text { Reading } \\ \mathrm{AV} \\ {[\mathrm{dBuV}]} \end{gathered}$	$\left\|\begin{array}{c} c . f \\ {[\mathrm{~dB}(1 / \mathrm{m})]} \end{array}\right\|$	Level PK [dB(uV/m)]	$\begin{gathered} \text { Level AV } \\ {[\mathrm{dB}(\mathrm{uV} / \mathrm{m})]} \end{gathered}$	Duty Cycle Factor [dB]	Limit PK [dB(uV/m)]	Limit AV [dB(uV/ m)]	Margin PK [dB]	Margin AV [dB]
2483.82	H	70.2	-----	-2.5	67.7	-----	-----	74.0	----	6.3	-----
2486.78	H	-----	54.4	-2.5	--	51.9	0.1	---	54.0	-----	2.0
2483.54	V	70.0	-----	-2.5	67.5	-----	-----	74.0	-----	6.5	----
2484.11	V	-----	54.4	-2.5	-----	51.9	0.1	-----	54.0	-----	2.0

Remarks

1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position(Y axis) and the worst case was recorded.
2. Peak Result $=$ Reading $+c . f($ Correction factor $)$

Average Result $=$ Reading $+c . f($ Correction factor $)+$ Duty Cycle Factor
3. Correction factor $=$ Antenna factor + Cable loss - Amp Gain

Test mode : Transmitter (802.11n_HT20)

Frequency [MHz]	(P)	Reading PK [dBuV]	$\begin{gathered} \text { Reading } \\ \text { AV } \\ {[\mathrm{dBuV}]} \end{gathered}$	$\begin{gathered} c . f \\ {[\mathrm{~dB}(1 / \mathrm{m})]} \end{gathered}$	Level PK [dB(uV/m)]	Level AV [dB(uV/m)]	Duty Cycle Factor [dB]	Limit PK [dB(uV/ m)]	$\begin{gathered} \operatorname{Limit} A V \\ {[\mathrm{~dB}(\mathrm{uV} / \mathrm{m})]} \end{gathered}$	Margin PK [dB]	Margin AV [dB]
2383.44	H	67.0	---	-3.1	63.9	-----	-	74.0	-----	10.1	-----
2389.84	H	-----	46.6	-3.1	-----	43.5	0.1	-	54.0	----	10.4
2387.22	V	71.2	-----	-3.1	68.1	--	----	74.0	--	5.9	-----
2389.68	V	-----	45.8	-3.1	---	42.7	0.1	-----	54.0	---	11.2

Mid (2 442 MHz)

The emissions above 1 GHz were 20 dB lower than the limit.

High (2 472 MHz)

Frequency [MHz]	(P)	Reading PK [dBuV]	$\begin{gathered} \text { Reading } \\ \mathrm{AV} \\ {[\mathrm{dBuV}]} \end{gathered}$	$\left\|\begin{array}{c} c . f \\ {[\mathrm{~dB}(1 / \mathrm{m})]} \end{array}\right\|$	Level PK [dB(uV/m)]	Level AV [dB(uV/ m)]	Duty Cycle Factor [dB]	Limit PK [dB(uV/m)]	Limit AV [dB(uV/ m)]	Margin PK [dB]	Margin AV [dB]
2484.72	H	68.4	---	-2.5	65.9	-----	-----	74.0	-----	8.1	-----
2484.73	H	---	52.4	-2.5	-----	49.9	0.1	-----	54.0	-----	4.0
2485.23	V	69.2	---	-2.5	66.7	-----	-----	74.0	-----	7.3	-----
2483.62	V	-----	53.7	-2.5	--	51.2	0.1	---	54.0	----	2.7

Remarks

1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position(Y axis) and the worst case was recorded.
2. Peak Result $=$ Reading $+c . f($ Correction factor $)$

Average Result $=$ Reading $+c . f($ Correction factor) + Duty Cycle Factor
3. Correction factor $=$ Antenna factor + Cable loss - Amp Gain

CTK Co., Ltd.

(Ho-dong), 113, Yejik-ro, Cheoin-gu,
Yongin-si, Gyeonggi-do, Korea
Tel: +82-31-339-9970
Fax: +82-31-624-9501

Report No.:
CTK-2021-03421
Page (81) / (88) Pages

Test mode : Transmitter (802.11ax_HE20_SU)

Frequency [MHz]	(P)	Reading PK [dBuV]	$\begin{gathered} \text { Reading } \\ \text { AV } \\ \text { [dBuV] } \end{gathered}$	$\underset{[\mathrm{dB}(\mathbf{1} / \mathrm{m})]}{\mathrm{c} . \mathrm{f}}$	$\begin{gathered} \text { Level PK } \\ {[\mathrm{dB}(\mathrm{uV} / \mathrm{m})]} \end{gathered}$	$\begin{gathered} \text { Level AV } \\ {[\mathrm{dB}(\mathrm{uV} / \mathrm{m})]} \end{gathered}$	Duty Cycle Factor [dB]	Limit PK [dB(uV/m)]	Limit AV [dB(uV/m)]	Margin PK [dB]	Margin AV [dB]
2387.165	H	66	-----	-3.1	62.9	-----	-----	74	-----	11.1	-----
2388.919	H	-----	48.7	-3.1	-----	45.6	0.3	-----	54	-----	8.1
2388.473	v	70.5	---	-3.1	67.4	-----	-----	74	-----	6.6	-----
2388.315	V	-----	48	-3.1	---	44.9	0.3	---	54	---	8.8

Mid (2 442 MHz)

The emissions above 1 GHz were 20 dB lower than the limit.

High (2 472 MHz)

Frequency [MHz]	(P)	Reading PK [dBuV]	Reading AV [dBuV]	$\begin{gathered} c . f \\ {[\mathrm{~dB}(1 / \mathrm{m})]} \end{gathered}$	$\begin{gathered} \text { Level PK } \\ {[\mathrm{dB}(\mathrm{uV} / \mathrm{m})]} \end{gathered}$	Level AV [dB(uV/m)]	Duty Cycle Factor [dB]	Limit PK [dB(uV/ m)]	Limit AV [dB(uV/ m)]	Margin PK [dB]	Margin AV [dB]
2484.313	H	67.3	---	-2.5	64.8	-----	-----	74	-----	9.2	-----
2483.819	H	-----	52	-2.5	-----	49.5	0.3	-----	54	-----	4.2
2483.769	V	70.1	--	-2.5	67.6	-----	-----	74	-----	6.4	-----
2483.506	V	-----	51.9	-2.5	---	49.4	0.3	--	54	----	4.3

Remarks

1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position(X, Y axis). The worst emission was found in lie-down position(Y axis) and the worst case was recorded.
2. Peak Result $=$ Reading $+\mathrm{c} . \mathrm{f}$ (Correction factor)

Average Result $=$ Reading + c.f(Correction factor) + Duty Cycle Factor
3. Correction factor $=$ Antenna factor + Cable loss - Amp Gain

CTK Co., Ltd.

(Ho-dong), 113, Yejik-ro, Cheoin-gu,
Yongin-si, Gyeonggi-do, Korea
Tel: +82-31-339-9970
Fax: +82-31-624-9501

Report No.:
CTK-2021-03421
Page (82) / (88) Pages

Test mode : Transmitter (802.11ax_HE20_26T)

Frequency [MHz]	(P)	Reading PK [dBuV]		$\underset{[\mathrm{dB}(\mathrm{i} / \mathrm{m})]}{\text { c.f }}$	Level PK [dB(uV/m)]	Level AV $[\mathrm{dB}(\mathrm{uV} / \mathrm{m})]$	Duty Cycle Factor [dB]		$\underset{[\mathrm{dB}(\mathrm{uV} / \mathrm{m})]}{\operatorname{Limit} A V}$	Margin PK [dB]	Margin AV [dB]
2369.79	H	66.7	-----	-3.1	63.6	-----	-----	74.0	-----	10.4	-----
2387.37	H	--	49.4	-3.0	-----	46.6	0.24	-----	54.0	-----	7.4
2368.45	V	69.5	-----	-3.1	66.4	-----	-----	74.0	-----	7.6	-----
2343.61	V	-----	49.7	-3.1	-----	46.8	0.24	--	54.0	----	7.2

Mid (2 442 MHz)

The emissions above 1 GHz were 20 dB lower than the limit.

High (2 472 MHz)

Frequency [MHz]	(P)	$\begin{gathered} \text { Reading } \\ \text { PK } \\ {[\mathrm{dBuV}]} \end{gathered}$	$\begin{gathered} \text { Reading } \\ \text { AV } \\ {[\mathrm{dBuV}]} \end{gathered}$	$\left\|\begin{array}{c} c . f \\ {[\mathrm{~dB}(1 / \mathrm{m})]} \end{array}\right\|$	Level PK [dB(uV/ m)]	$\begin{gathered} \text { Level AV } \\ {[\mathrm{dB}(\mathrm{uV} / \mathrm{m})]} \end{gathered}$	Duty Cycle Factor [dB]	Limit PK [dB(uV/ m)]	$\begin{array}{\|c\|} \text { Limit AV } \\ {[\mathrm{dB}(\mathrm{uV} / \mathrm{m})]} \end{array}$	Margin PK [dB]	Margin AV [dB]
2483.54	H	74.9	-----	-2.5	72.4	-----	-----	74.0	-----	1.6	-----
2483.54	H	-	49.7	-2.5	-----	47.4	0.24	--	54.0	-----	6.6
2483.51	V	71.9	-----	-2.5	69.4	-----	--	74.0	---	4.6	-----
2483.54	V	-----	50.3	-2.5	---	48.0	0.24	----	54.0	---	6.0

Remarks

1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position(Y axis) and the worst case was recorded.
2. Peak Result $=$ Reading $+c . f($ Correction factor $)$

Average Result $=$ Reading $+c . f($ Correction factor) + Duty Cycle Factor
3. Correction factor $=$ Antenna factor + Cable loss - Amp Gain

CTK Co., Ltd.
(Ho-dong), 113, Yejik-ro, Cheoin-gu,
Yongin-si, Gyeonggi-do, Korea
Tel: +82-31-339-9970
Fax: +82-31-624-9501

Report No.:
CTK-2021-03421
Page (83) / (88) Pages

Test mode : Receiver (Worst Case)

	CTK CO,, Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501	Report No.: CTK-2021-03421 Page (84)/(88) Pages	
CTK Co., Ltd.			

Test mode : Receiver (Worst Case)

Frequency [MHz]	(P)	$\begin{gathered} \text { Reading } \\ \text { PK } \\ {[\mathrm{dBuV}]} \end{gathered}$	Reading AV [dBuV]	$\begin{gathered} c . f \\ {[d B(1 / m)]} \end{gathered}$	Level PK [dB(uV/ m)]	Level AV [dB(uV/m)]	Duty Cycle Factor [dB]	Limit PK [dB(uV/m)]	$\underset{[\mathrm{dB}(\mathrm{uV} / \mathrm{m})]}{\operatorname{Limit} A V}$	Margin PK [dB]	Margin AV [dB]

The emissions above 1 GHz were 20 dB lower than the limit.

Remarks

1. The unwanted emission was measured in the following position: EUT stand-up position(Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position(Y axis) and the worst case was recorded.
2. Peak Result $=$ Reading $+c . f($ Correction factor $)$

Average Result $=$ Reading $+c . f($ Correction factor $)+$ Duty Cycle Factor
3. Correction factor $=$ Antenna factor + Cable loss - Amp Gain

CTK Co., Ltd.	CTK Co., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: +82-31-339-9970 Fax: +82-31-624-9501	Report No.: CTK-2021-03421 Page (85) / (88) Pages

4.6 AC Conducted Emissions

Frequency Range of Measurement

150 kHz to 30 MHz

I nstrument Settings

IF Band Width: 9 kHz

Test Procedures

RSS-Gen - Section 8.8

Module has been tested by mounting the End product(Printer).
The EUT was placed on a non-metallic table 0.8 m above the metallic, grounded floor and 0.4 m from the reference ground plane wall. The distance to other metallic surfaces was at least 0.8 m .
Amplitude measurements were performed with a quasi-peak detector and an average detector.

Limit

- 15.207(a)

Frequency (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average**
$0.15 \sim 0.5$	66 to 56^{*}	56 to 46*
$0.5 \sim 5$	56	46
$5 \sim 30$	60	50

* The level decreases linearly with the logarithm of the frequency.
** A linear average detector is required.

Test Results

The requirements are:
X Complies

	CTK CO., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongin-si, Gyeonggi-do, Korea Tel: $+82-31-339-9970$ Fax: +82-31-624-9501	Report No.: CTK-2021-03421 Page (86)/(88) Pages	
CTK Co., Ltd.			

Test Data

[LINE]

3CE_Class B_L1

Final Result 1

Frequency (MHz)	QuasiPeak $(\mathrm{dB} \mu \mathrm{V})$	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit $(\mathrm{dB} \mu \mathrm{V})$
0.168000	49.7	1000.0	9.000	On	L1	9.8	15.3	65.1
0.186000	46.2	1000.0	9.000	On	L1	9.8	18.0	64.2
0.276000	37.6	1000.0	9.000	On	L1	9.8	23.4	60.9
0.388500	37.2	1000.0	9.000	On	L1	10.0	20.9	58.1
0.528000	43.9	1000.0	9.000	On	L1	10.0	12.1	56.0
0.541500	44.3	1000.0	9.000	On	L1	10.0	11.7	56.0

Final Result 2

Frequency (MHz)	CAverage $(\mathrm{dB} \mu \mathrm{V})$	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit $(\mathrm{dB} \mu \mathrm{V})$
0.168000	36.1	1000.0	9.000	On	L1	9.8	18.9	55.1
0.415500	31.8	1000.0	9.000	On	L1	10.0	15.8	47.5
0.532500	39.9	1000.0	9.000	On	L1	10.0	6.1	46.0
0.537000	40.0	1000.0	9.000	On	L1	10.0	6.0	46.0
0.663000	28.4	1000.0	9.000	On	L1	9.9	17.6	46.0
0.829500	27.7	1000.0	9.000	On	L1	9.8	18.3	46.0

	CTK CO., Ltd. (Ho-dong), 113, Yejik-ro, Cheoin-gu, Yongn-si, Gyeonggi-do, Korea Tel: $+82-31-339-9970$ Fax: +82-31-624-9501	Report No.: CTK-2021-03421 Page (87)/(88) Pages	
CTK Co., Ltd.			

[NEUTRAL]

3CE_Class B_N

Final Result 1

Frequency (MHz)	QuasiPeak $(\mathrm{dB} \mu \mathrm{V})$	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit $(\mathrm{dB} \mu \mathrm{V})$
0.150000	51.7	1000.0	9.000	On	N	9.8	14.3	66.0
0.190500	45.9	1000.0	9.000	On	N	9.8	18.2	64.0
0.231000	40.1	1000.0	9.000	On	N	9.8	22.3	62.4
0.420000	35.6	1000.0	9.000	On	N	10.0	21.9	57.4
0.528000	43.8	1000.0	9.000	On	N	10.0	12.2	56.0
0.541500	44.2	1000.0	9.000	On	N	10.0	11.8	56.0

Final Result 2

Frequency (MHz)	CAverage $(\mathrm{dB} \mu \mathrm{V})$	Meas. Time (ms)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit $(\mathrm{dB} \mu \mathrm{V})$
0.159000	36.8	1000.0	9.000	On	N	9.8	18.7	55.5
0.415500	31.1	1000.0	9.000	On	N	10.0	16.5	47.5
0.532500	39.9	1000.0	9.000	On	N	10.0	6.1	46.0
0.537000	39.9	1000.0	9.000	On	N	10.0	6.1	46.0
0.663000	27.4	1000.0	9.000	On	N	9.9	18.6	46.0
0.829500	26.3	1000.0	9.000	On	N	9.8	19.7	46.0

CTK Co., Ltd.

Report No.:
CTK-2021-03421
Page (88) / (88) Pages

APPENDIX A - Test Equipment Used For Tests

	Name of Equipment	Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date
1	Signal Analyzer	Agilent	N9020A	MY50200096	$2021-01-24$	$2022-01-24$
2	Signal Analyzer	Agilent	N9020A	MY50510240	$2021-07-19$	$2022-07-19$
3	Signal Generator	Rohde \& Schwarz	SMB100A	175528	$2021-04-12$	$2022-04-12$
4	EMI Test Receiver	Rohde \& Schwarz	ESCI7	100814	$2020-10-20$	$2021-10-20$
5	Bilog Antenna	Schaffner	CBL6111C	2551	$2020-05-26$	$2022-05-26$
6	Active Loop Antenna	SCHWARZBECK	FMZB 1513	$1513-126$	$2020-05-20$	$2022-05-20$
7	$6 d B$ Attenuator	R\&S	DNF	$272.4110 .50-2$	$2020-10-23$	$2021-10-23$
8	$6 d B$ Attenuator	BIRD	$5 W 6 d B$	1744	$2020-12-16$	$2021-12-16$
9	AMPLIFIER	SONOMA	310	291721	$2021-01-22$	$2022-01-22$
10	EMI Test Receiver	Rohde \& Schwarz	ESU40	100336	$2021-01-12$	$2022-01-12$
11	Preamplifier	Agilent	$8449 B$	$3008 A 01504$	$2020-12-17$	$2021-12-17$
12	Horn Antenna	ETS-Lindgren	3117	00154525	$2020-10-14$	$2021-10-14$
13	Horn Antenna	SCHWARZBECK	BBHA9170	00967	$2021-05-25$	$2022-05-25$
14	Band Reject Filter	Micro Tronics	BRM50702	G233	$2021-01-14$	$2022-01-14$
15	Low Noise Amplifier	TESTEK	TK-PA1840H	$200115-L$	$2021-05-21$	$2022-05-21$
16	LISN	Rohde \& Schwarz	ENV216	101235	$2021-01-12$	$2022-01-12$

	Cable	Manufacturer	Model No.	Serial No.	Check Date
1	RF Cable	Canare Corporation	L-5D2W	N/A	$2021-01-21$
2	RF Cable	Junkosha Inc.	MWX221	1512 S127	$2021-08-04$
3	RF Cable	Junkosha Inc.	MWX221	$2005 S 319$	$2021-08-04$
4	RF Cable	HUBER+SUHNER	SUCOFLEX 102	MY073/2	$2021-06-01$
5	RF Cable	HUBER+SUHNER	SUCOFLEX 104	MY27558/4	$2021-06-01$
6	RF Cable	HUBER+SUHNER	SUCOFLEX 104	N/A	$2021-06-01$
7	RF Cable	HUBER+SUHNER	SUCOFLEX 104	MY27573/4	$2021-06-01$
8	RF Cable	HUBER+SUHNER	SUCOFLEX 106	N/A	$2021-06-01$
9	RF Cable	HUBER+SUHNER	SUCOFLEX 102	$803010 / 2$	$2020-10-16$
10	RF Cable	HUBER+SUHNER	SUCOFLEX 102	$803742 / 2$	$2020-10-16$
11	RF Cable	HUBER+SUHNER	SUCOFLEX 102	MY2374/2	$2021-06-01$
12	RF Cable	HUBER+SUHNER	SUCOFLEX 102	MY4728/2	$2021-06-01$

[^0]: ** Except as provided in 15.209(g).fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands $54-72 \mathrm{MHz}, 76-$ $88 \mathrm{MHz}, 174-216 \mathrm{MHz}, 470-806 \mathrm{MHz}$. However, operation within these frequency bands is permitted under other sections of this Part, e.g.15.231 and 15.241.

