

9.10 Maximum Permissible Exposure

RF Exposure Limit

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environmental of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

Limits for Maximum	Permissible Ex	(MPE)

Frequency	Electric Field	Magnetic Field	Power Density	Average Time		
Range (MHz)	Strength (V/m)	Strength (A/m)	(mW/cm²)	(Minutes)		
(A) Limits for Occupational / Control Exposure						
30 - 300	6.14	0.163	1.0	6		
300 - 1500			F/300	6		
1500 - 100000			5	6		
(B) Limits for General Population / Uncontrolled Exposure						
30 - 300	27.5	0.073	0.2	30		
300 - 1500			F/1500	30		
1500 - 100000			1	30		

F = Frequency (MHz)

Fries Formula

Fries transmission formula : Pd = (Pout * G) / (4 * π * r²) r = $\sqrt{((Pout * G) / 4 * \pi * Pd)}$

Where

Pd = Power density in mW/cm²

Pout = Output power to antenna in mW

G = Gain of antenna in linear scale

 $\pi = 3.1416$

r = Distance between observation point center of the radiator in cm

Pd is the limit of MPE, 1 mW/cm². If we know the Maximum Gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

The maximum antenna gain is 3.26dBi or 2.118(Numeric)

Output power into antenna and RF Exposure Distance
--

Frequency	Output power to	Antenna Gain	RF Exposure
(MHz)	Antenna (mW)	(Numeric)	Distance (cm)
5765	37.67	2.118	2.52

MPE Safe Distance = 2.52cm