

Page 1 of 44

TEST REPORT

Test Report No.:	SKTTRT-091211-015			
Applicant:	SAMSUNG ELECTR	ONICS CO., LTD.		
Applicant Address:	#416, Maetan3-Dong, Yeo	ongtong-Gu, Suwon City, G	yunggi-Do, South Korea	
FCC Grantee	SAMSUNG ELECTR	ONICS CO LTD		
FCC Grantee Address	118600 Broadwick St. Rai	ncho Dominguez California	i	
Manufacturer:	SAMSUNG ELECTRO-MECHANICS CO., LTD.			
Manufacturer Address:	#314, Maetan3-Dong, Yeongtong-Gu, Suwon City, Gyunggi-Do, South Korea			
Device Under Test:	2.4 GHz WLAN Module			
FCC ID: IC:	A3LSWL-2920U 649E-SWL2920U	Model Name:	CLX-NWA20L	
Brand/Trade Name:	SAMSUNG			
Receipt No.:	SKTEU09-1179	Date of receipt:	November 13, 2009	
Date of Issue:	December 11, 2009			
Location of Testing:	SK TECH CO., LTD. #820-2, Wolmoon-ri, Wab	ou-up, Namyangju-si, Kyung	ggi-do, 472-905 South Korea	
Test Procedure:	ANSI C63.4-2003			
Test Specification:	47CFR, FCC Part 15 Rules, RSS-210 Issue 7 (June 2007)			
FCC Equipment Class: IC Equipment Category:	DTS - Part 15 Digital Transmission System RSS-210 Issue 7 – Category I Equipment, Annex 8			
Test Result:	The above-mentioned device has been tested and passed.			

December 11, 2009

December 11, 2009

Signature

Date

Signature

Date

Other Aspects:

Abbreviations:

 \cdot OK, Pass = passed/complied \cdot Fail = failed \cdot N/A = not applicable

- This test report is not permitted to copy partly and entirely without our permission.
- This test result is dependent on only equipment to be used.
- This test result is based on a single evaluation of submitted samples of the above mentioned.

Page 2 of 44

>> CONTENTS <<

1. GENERAL ······················4
2. TEST SITE4
2.1 Location
2.2 List of Test and Measurement Instruments5
2.3 Test Date5
2.4 Test Environment5
3. DESCRIPTION OF THE EQUIPMENT UNDER TEST6
3.1 Rating and Physical Characteristics6
3.2 Equipment Modifications6
3.3 Submitted Documents6
4. MEASUREMENT CONDITIONS ····································
4.1 Description of test configuration
4.2 List of Peripherals ······7
4.3 Type of Used Cables ······7
4.4 Uncertainty ······7
5. TEST AND MEASUREMENTS ·····8
5.1 ANTENNA REQUIREMENT ······8
5.1.1 Regulation
5.1.2 Result
5.2 6dB BANDWIDTH9
5.2.1 Regulation ·····9
5.2.2 Test Procedure
5.2.3 Test Results
Table 1: Measured values of the 6dB Bandwidth
Figure 1: Plot of the 6dB Bandwidth
Figure 2: Plot of the Occupied Bandwidth (99%)
5.3 MAXIMUM PEAK OUTPUT POWER ····· 14
5.3.1 Regulation
5.3.2 Test Procedure 14
5.3.3 Test Results 14
Table 2: Measured values of the Maximum Peak Conducted Output Power
(Continued)

Page 3 of 44

5.4 SPURI	OUS EMISSION, BAND EDGE, AND RESTRICTED BANDS	15
	gulation ·····	
5.4.2 Tes	t Procedure ·····	15
5.4.3 Tes	t Results ·····	17
Table	3: Measured values of the field strength of spurious emission (Radiated) · · · · · · · · · · · · · · · · · · ·	17
Figure	3: Plot of the Band Edge (Conducted) ·····	
	4: Plot of the Band Edge (Radiated)·····	
	5: Plot of the Spurious RF conducted emission	
5.5 PEAK	POWER SPECTRAL DENSITY	36
5.5.1 Reg	gulation ·····	36
5.5.2 Tes	t Procedure ····	36
5.5.3 Tes	t Results	36
Table	4: Measured values of the Peak Power Spectral Density	36
Figure	6: Plot of the Peak Power Spectral Density	
	WER LINE CONDUCTED EMISSIONS	
•	gulation	
	t Procedure · · · · · · · · · · · · · · · · · · ·	
5.6.3 Tes	t Results ·····	40
Table	5: Measured values of the AC Power Line Conducted Emissions	40
Figure	7: Plot of the AC Power Line Conducted Emissions	41
5.7 RECEI	IVER SPURIOUS EMISSIONS	42
5.7.1 Reg	gulation ·····	42
5.7.2 Tes	t Results ·····	42
Table	6: Receiver Spurious Emissions (Radiated) · · · · · · · · · · · · · · · · · · ·	43
	POSURE	
-	gulation ·····	
5.8.2 RF	Exposure Compliance Issue	44

Page 4 of 44

1. GENERAL

These tests were performed using the test procedure outlined in ANSI C63.4, 2003 for intentional radiators, and in accordance with the limits set forth in FCC Part 15.247 for Digital Transmission System, and RSS-210 Annex 8. The EUT (Equipment Under Test) has been shown to be capable of compliance with the applicable technical standards.

We attest to the accuracy of data. All measurements reported herein were performed by SK TECH CO., LTD. and were made under Chief Engineer's supervision.

We assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

2. TEST SITE

SK TECH CO., LTD.

2.1 Location

820-2, Wolmoon-ri, Wabu-up, Namyangju-si, Kyunggi-do, 472-905 South Korea (FCC Registered Test Site Number: 90752)

(OPEN AREA TEST SITE INDUSTRY CANADA NUMBER: 5429A-1)

This test site is in compliance with ISO/IEC 17025 for general requirements for the competence of testing and calibration laboratories.

This laboratory is recognized as a Conformity Assessment Body (CAB) for CAB's Designation Number: **KR0007** by FCC, is accredited by NVLAP for NVLAP Lab. Code: **200220-0**.

Page 5 of 44

2.2 List of Test and Measurement Instruments

No.	Description	Manufacturer	Model #	Serial #	Calibrated until	Used
1	Spectrum Analyzer	Agilent	E4405B	US40520856	2010.07	
2	EMC Spectrum Analyzer	Agilent	E7405A	US40240203	2010.03	\boxtimes
3	EMI Test Receiver	Rohde&Schwarz	ESIB40	100277	2010.02	
4	EMI Test Receiver	Rohde&Schwarz	ESHS10	862970/019	2010.07	
5	Artificial Mains Network	Rohde&Schwarz	ESH3-Z5	836679/018	2010.07	\boxtimes
6	Pre-amplifier	HP	8447F	3113A05153	2010.07	\boxtimes
7	Pre-amplifier	MITEQ	AFS44	1116321	2010.07	
8	Pre-amplifier	MITEQ	AFS44	1116322	2010.03	\boxtimes
9	Power Meter	Agilent	E4417A	MY45100426	2010.07	
10	Power Meter	Agilent	E4418B	US39402176	2010.07	
11	Power Sensor	Agilent	E9327A	MY44420696	2010.07	\boxtimes
12	Power Sensor	Agilent	8482A	MY41094094	2010.07	
13	Attenuator (10dB)	HP	8491B	38067	2010.07	
14	Attenuator (20dB)	Weinschel	44	AH6967	2010.07	
15	High Pass Filter	Wainwright	WHKX3.0/18G	8	2010.07	
16	VHF Precision Dipole Antenna (TX/RX)	Schwarzbeck	VHAP	1014 / 1015	2010.12	
17	UHF Precision Dipole Antenna (TX/RX)	Schwarzbeck	UHAP	989 / 990	2010.12	
18	Loop Antenna	Schwarzbeck	HFH2-Z2	863048/019	2010.11	
19	TRILOG Broadband Antenna	Schwarzbeck	VULB9168	230	2010.07	
20	TRILOG Broadband Antenna	Schwarzbeck	VULB9168	189	2010.09	
21	Horn Antenna	AH Systems	SAS-200/571	304	N/A	
22	Horn Antenna	EMCO	3115	00040723	2010.03	\boxtimes
23	Horn Antenna	EMCO	3115	00056768	2010.09	
24	Horn Antenna	Schwarzbeck	BBHA9170	BBHA9170318	2010.08	
25	Vector Signal Generator	Agilent	E4438C	MY42080359	2010.07	
26	PSG analog signal generator	Agilent	E8257D-520	MY45141255	2010.07	
27	DC Power Supply	HP	6622A	3448A032223	2010.11	
28	DC Power Supply	HP	6268B	2542A-07856	2010.07	
29	Hygro/Thermo Graph	SATO	PC-5000TRH-II	-	2010.07	

2.3 Test Date

Date of Test: November 16, 2009 ~ December 8, 2009

2.4 Test Environment

See each test item's description.

Page 6 of 44

3. DESCRIPTION OF THE EQUIPMENT UNDER TEST

The product specification described herein was obtained from the product data sheet or user's manual.

3.1 Rating and Physical Characteristics

Power source	DC 5.0 V (from USB interface)
Local Oscillator or X-Tal	X-Tal: 30 MHz
Transmit Frequency	IEEE 802.11b: 2412 MHz ~ 2462 MHz (11 channels, 5 MHz step) IEEE 802.11g: 2412 MHz ~ 2462 MHz (11 channels, 5 MHz step) IEEE 802.11n HT20: 2412 MHz ~ 2462 MHz (11 channels, 5 MHz step) IEEE 802.11n HT40: 2422 MHz ~ 2452 MHz (7 channels, 5 MHz step)
Antenna Type	Integral (Fractal antenna on PCB antenna, Peak gain: 2.66 dBi)
Type of Modulation	IEEE 802.11b: DSSS (DBPSK, DQPSK, CCK) IEEE 802.11g/n HT20/40: OFDM(64QAM, 16QAM, QPSK, BPSK)
RF Output power	20.26 dBm PEAK (measured)
External Ports **	USB interface for data communication to a printer and for power source

^{**} The test report for compliance with FCC Part 15B as a digital device was issued with other test report number.

3.2 Equipment Modifications

None

3.3 Submitted Documents

Block diagram

Schematic diagram

Antenna Specification

Part List

User manual

Page 7 of 44

4. MEASUREMENT CONDITIONS

4.1 Description of test configuration

The measurements were taken in continuous transmitting mode using the TEST MODE. For controlling the EUT as TEST MODE, the test program was provided by the applicant.

[System Block Diagram of Test Configuration]

4.2 List of Peripherals

Equipment Type	Manufacturer	Model	S/N
Notebook PC *	DELL	INSPIRON	14791079949
Adaptor* (for Notebook PC)	DELL	LA65NS0-00	CN-0MG532-70166-6BT-004G

^{*} For control of the RF module via USB interface in the EUT.

4.3 Type of Used Cables

	<i>J</i> 1					
#	START		END		CABLE	
π	NAME	I/O PORT	NAME	I/O PORT	LENGTH(m)	SHIELDED
1	EUT	USB	Notebook PC	USB	3.1	NO
2	Notebook PC	DC Input	Adaptor	DC Output	2.0	NO
3	Adaptor	AC Input	AC mains	-	0.8	NO

4.4 Uncertainty

Measurement Item	Combined Standard Uncertainty <i>Uc</i>	Expanded Uncertainty $U = k \times Uc \ (k = 1.96)$
Conducted RF power	± 0.71 dB	± 1.40 dB
Radiated disturbance	± 2.30 dB	± 4.51 dB
Conducted disturbance	± 1.96 dB	± 3.84 dB

Page 8 of 44

5. TEST AND MEASUREMENTS

Summary of Test Results

Requirement	CFR 47 Section	RSS Standards	Report Section	Test Result
Antenna Requirement	15.203, 15.247(b)(4)	RSS-Gen, 7.1.4	5.1	PASS
6dB Bandwidth	15.247(a)(2)	RSS-210, A8.2(a)	5.2	PASS
Maximum Peak Output Power	15.247(b)(3), (4)	RSS-210, A8.4(4)	5.3	PASS
Spurious Emission, Band Edge, and Restricted bands	15.247(d), 15.205(a), 15.209(a)	RSS-210, A8.5 Table 1, 2, and 3	5.4	PASS
Peak Power Spectral Density	15.247(e)	RSS-210, A8.2(b)	5.5	PASS
Conducted Emissions	15.207(a)	RSS-Gen, 7.2.2	5.6	PASS
Receiver Spurious emissions	-	RSS-Gen, 7.2.3	5.7	PASS
RF Exposure	15.247(i), 1.1307(b)(1)	RSS-Gen, 5.5 RSS-102, 2.5	5.8	PASS

5.1 ANTENNA REQUIREMENT

5.1.1 Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1.2 Result: PASS

The transmitter has the integral fractal antenna on the PCB. The directional gain of the antenna is 2.66 dBi.

Page 9 of 44

5.2 6dB BANDWIDTH

5.2.1 Regulation

According to §15.247(a)(2), systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6dB bandwidth shall be at least 500 kHz.

5.2.2 Test Procedure

- 1. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable.
- 2. Set the spectrum analyzer as follows:

 $RBW = 100 \text{ kHz}, VBW \ge RBW$

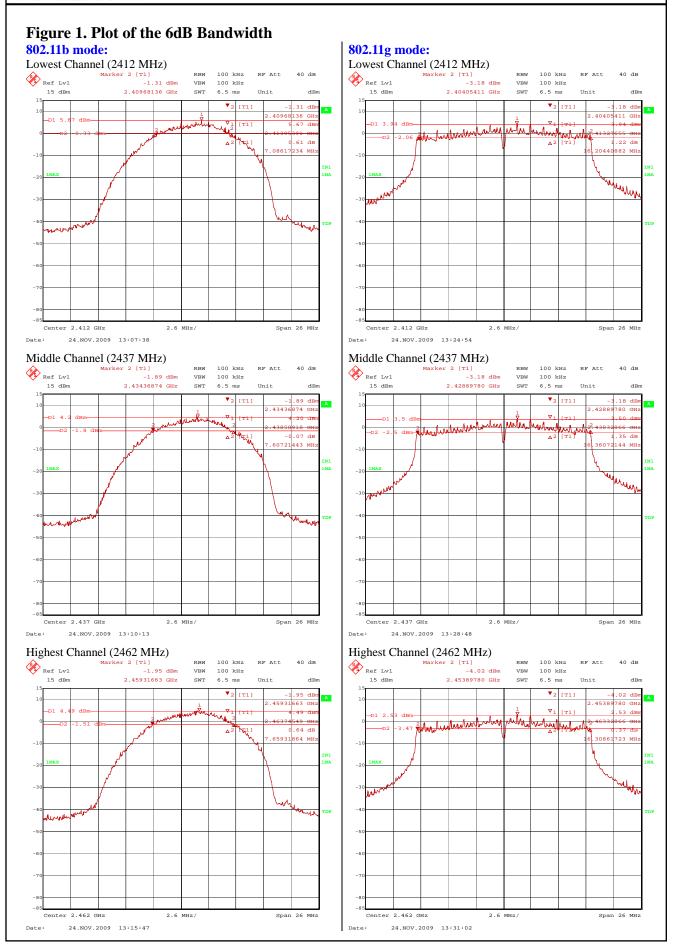
Span >> RBW

 $\overline{Sweep} = auto$

Detector function = peak

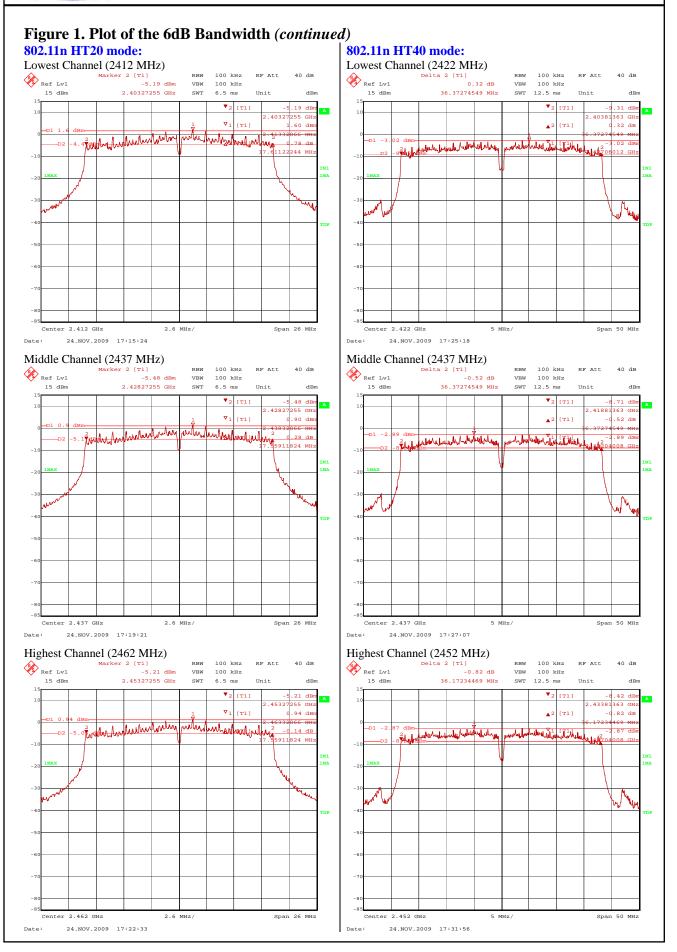
Trace = max hold

- 3. Mark the peak frequency and -6dB (upper and lower) frequency.
- 4. Set the RBW to as close to 1% of the selected span as is possible without being below 1%.
- 5. Set the DETECTOR to sample where practical. [REMARK: the function of the PEAK HOLD was used]
- 6. Measure the 99% occupied bandwidth.
- 7. Repeat until all the rest channels are investigated.

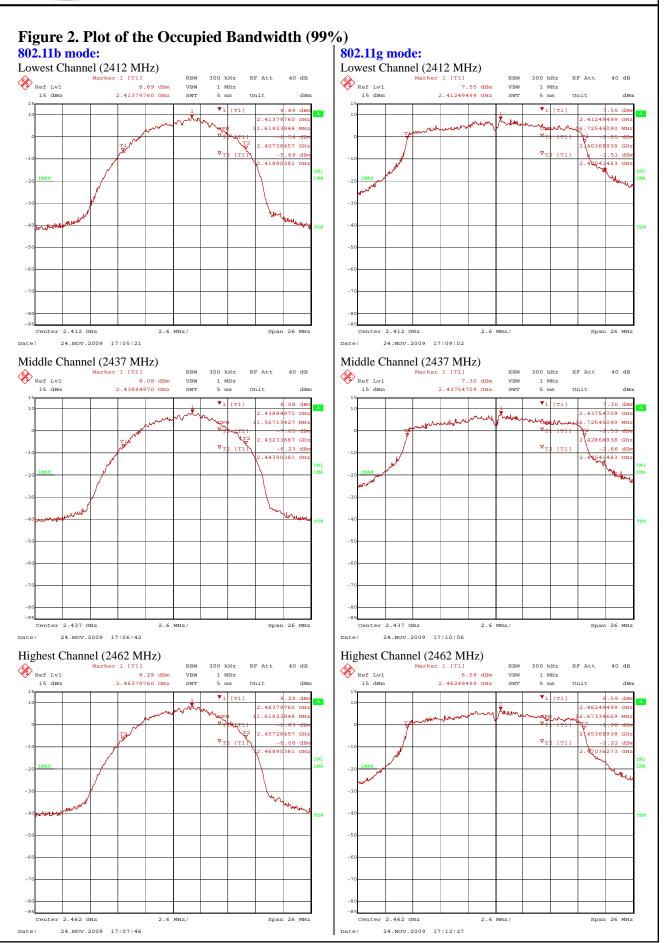

5.2.3 Test Results:

PASS

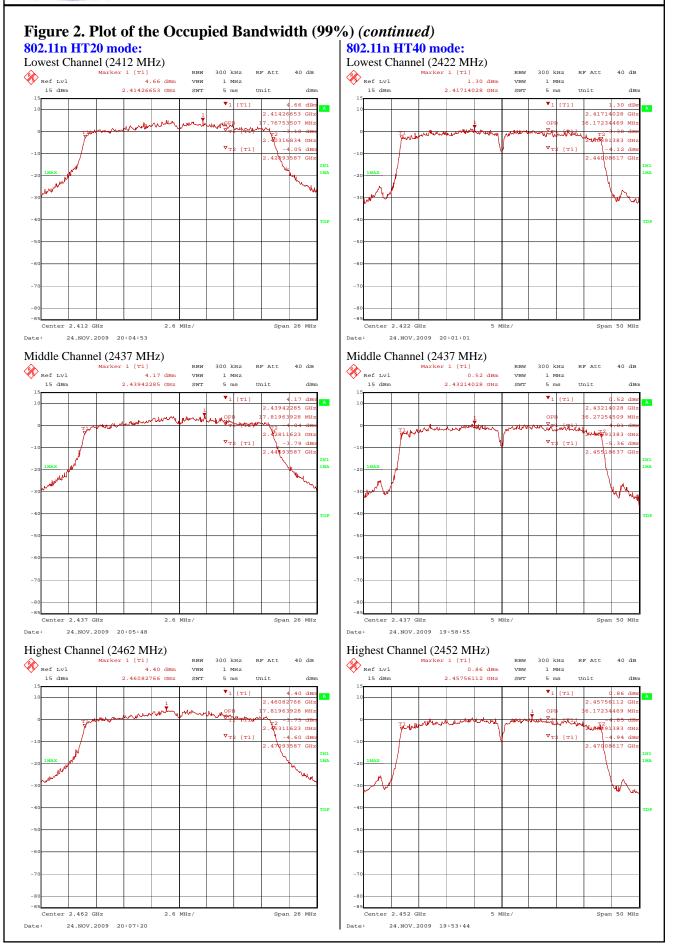
Table 1: M	Table 1: Measured values of the 6dB Bandwidth					
Modulation	Operating frequency	Transfer Rate	Occupied Bandwidth (99%)	6dB Bandwidth	Limit	
	2412 MHz	11 Mbps	11.62 MHz	7.09 MHz	≥ 500 kHz	
802.11b	2437 MHz	11 Mbps	11.57 MHz	7.61 MHz	≥ 500 kHz	
	2462 MHz	11 Mbps	11.62 MHz	7.66 MHz	≥ 500 kHz	
	2412 MHz	54 Mbps	16.73 MHz	16.20 MHz	≥ 500 kHz	
802.11g	2437 MHz	54 Mbps	16.73 MHz	16.36 MHz	≥ 500 kHz	
	2462 MHz	54 Mbps	16.67 MHz	16.31 MHz	≥ 500 kHz	
	2412 MHz	MCS 0~7	17.77 MHz	17.61 MHz	≥ 500 kHz	
802.11n HT20	2437 MHz	MCS 0~7	17.82 MHz	17.56 MHz	≥ 500 kHz	
	2462 MHz	MCS 0~7	17.82 MHz	17.56 MHz	≥ 500 kHz	
	2422 MHz	MCS 0~7	36.17 MHz	36.37 MHz	≥ 500 kHz	
802.11n HT40	2437 MHz	MCS 0~7	36.27 MHz	36.37 MHz	≥ 500 kHz	
	2452 MHz	MCS 0~7	36.17 MHz	36.17 MHz	≥ 500 kHz	



Page 10 of 44



Page 11 of 44



Page 12 of 44

Page 13 of 44

Page 14 of 44

5.3 MAXIMUM PEAK OUTPUT POWER

5.3.1 Regulation

According to §15.247(b)(3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to \$15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.3.2 Test Procedure

Conducted output power measurements were directly made by using Peak-Average power meter with peak power sensor.

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Connect the antenna port of the EUT to RF input on peak power meter via a low loss cable and attenuator.
- 3. Measure the peak output power.

5.3.3 Test Results:

PASS

Table 2: Measured values of the Maximum Peak Conducted Output Power					
Modulation	Operating	Transfer Rate	PEAK I	POWER	Limit
Modulation	Frequency	Transfer Kate	[dBm]	[W]	LIIIII
	2412 MHz		15.13	0.033	1 W
802.11b	2437 MHz	11 Mbps	13.86	0.024	1 W
	2462 MHz		14.40	0.028	1 W
	2412 MHz		20.26	0.106	1 W
802.11g	2437 MHz	54 Mbps	20.17	0.104	1 W
	2462 MHz		18.61	0.073	1 W
	2412 MHz		18.27	0.067	1 W
802.11n HT20	2437 MHz	MCS 0~7	17.81	0.060	1 W
	2462 MHz		17.83	0.061	1 W
	2422 MHz		16.99	0.050	1 W
802.11n HT40	2437 MHz	MCS 0~7	17.73	0.059	1 W
	2452 MHz		17.00	0.050	1 W

Page 15 of 44

5.4 SPURIOUS EMISSIONS, BAND EDGE, AND RESTRICTED BANDS

5.4.1 Regulation

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

According to §15.209(a), for an intentional device, the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the following values:

Frequency (MHz)	requency (MHz) Field strength (μV/m @ 3m) Field strength	
30–88	100	40.0
88–216	150	43.5
216–960	200	46.0
Above 960	500	54.0

According to §15.109(a), for an unintentional device, except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the above table.

5.4.2 Test Procedure

- 1) Band-edge Compliance of RF Conducted Emissions
- 1. Set the spectrum analyzer as follows:

Span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation

 $RBW \ge 1\%$ of the span

 $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

- 2. Allow the trace to stabilize. Set the marker on the emission at the band-edge, or on the highest modulation product outside of the band, if this level is greater than that at the band-edge. Enable the marker-delta function, and then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- 3. Now, using the same instrument settings, enable the hopping function of the EUT. Allow the trace to stabilize. Follow the same procedure listed above to determine if any spurious emissions caused by the hopping function also comply with the specified limit.

^{**} The emission limits shown in the above table are based on measurement instrumentation employing a CISPR quasi-peak detector and above 1000 MHz are based on the average value of measured emissions.

Page 16 of 44

2) Spurious RF Conducted Emissions:

1. Set the spectrum analyzer as follows:

Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.

RBW = 100 kHz $VBW \ge RBW$

Sweep = auto

Detector function = peak

Trace = max hold

2. Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.

3) Spurious Radiated Emissions:

- 1. The preliminary radiated measurements were performed to determine the frequency producing the maximum emissions in an anechoic chamber at a distance of 3 meters for above 30 MHz, and at 1 meter distance for below 30 MHz.
- 2. The EUT was placed on the top of the 0.8-meter height, 1×1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
- 3. The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 9 kHz to 30 MHz using the loop antenna, from 30 to 1000 MHz using the Trilog broadband antenna, and from 1 GHz to tenth harmonic of the highest fundamental frequency using the horn antenna.
- 4. To obtain the final measurement data, the EUT was arranged on a turntable situated on a 4×4 meter at the Open Area Test Site. The EUT was tested at a distance 3 meters.
- 5. Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.
- 6. The EUT is situated in three orthogonal planes (if appropriate)
- 7. The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT.
- 8. If the emission on which a radiated measurement must be made is located at the edge of the authorized band of operation, then the alternative "marker-delta" method may be employed.

4) Marker-Delta Method at the edge of the authorized band of operation:

- 1. Perform an in-band field strength measurement of the fundamental emission using the RBW and detector function as the above Spurious Radiated Emissions test procedure.
- 2. Choose a spectrum analyzer span that encompasses both the peak of the fundamental emission and the band-edge emission under investigation. Set the analyzer RBW to 1% of the total span (but never less than 30 kHz) with a video bandwidth equal to or greater than the RBW. Record the peak levels of the fundamental emission and the relevant band-edge emission (i.e., run several sweeps in peak hold mode). Observe the stored trace and measure the amplitude delta between the peak of the fundamental and the peak of the band-edge emission. This is not a field strength measurement; it is only a relative measurement to determine the amount by which the emission drops at the band-edge relative to the highest fundamental emission level.
- 3. Subtract the delta measured in step (2) from the field strengths measured in step (1). The resultant field strengths (CISPR QP, average, or peak, as appropriate) are then used to determine band-edge compliance as required by Section 15.205.
- 4. The above "delta" measurement technique may be used for measuring emissions that are up to two "standard" bandwidths away from the band-edge, where a "standard" bandwidth is the bandwidth specified by C63.4 for the frequency being measured. For example, for band-edge measurements in the restricted band that begins at 2483.5 MHz, C63.4 specifies a measurement bandwidth of at least 1 MHz. Therefore you may use the "delta" technique for measuring emissions up to 2 MHz removed from the band-edge. Radiated emissions that are removed by more than two "standard" bandwidths must be measured as the above Spurious Radiated Emissions test procedure.

Page 17 of 44

5.4.3 Test Results:

PASS

Band-edge compliance of RF conducted/radiated emissions was shown in the Figure 3 and 4.

NOTE: for conducted measurement, we took the insertion loss of the cable loss into consideration within the measuring instrument. And for radiated measurement, the results were calibrated to the field strength within the measuring instrument; Table 3 contains the correction factors at the operating frequencies such as antenna factor, cable loss, etc.

Spurious RF conducted emissions were shown in the Figure 5.

NOTE: We took the insertion loss of the cable loss into consideration within the measuring instrument.

Table 3: Measured values of the Field strength of spurious emission (Radiated)												
BELOV	V 1 GHz											
Frequency	Receiver Bandwidth	Pol.	Antenna Height	Turn Table	Reading	Amp Gain	ATT	AF	CL	Actual	Limit	Margin
[MHz]	[kHz]	[V/H]	[m]	[degree]	$[dB(\mu V)]$	[dB]	[dB]	dB(1/m)	[dB]	$\left[dB(\mu V/m)\right]$	$\left[dB(\mu V/m)\right]$	[dB]
Average/Po	eak/Quasi- _l	peak da	ata, emissi	ions belo	ow 30 MHz							
	Not applicable; the lowest generated/used frequency is 30 MHz from the crystal											
Quasi-peal	k data, emi	ssions l	below 100	0 MHz (802.11 b/g/ı	n HT20/	HT40 n	node)				
282.50	120	V	1.00	246	51.20	27.75	-	12.49	1.62	37.56	46.00	8.44
282.50	120	Н	3.30	275	50.90	27.75	-	12.49	1.62	37.26	46.00	8.74
285.07*	120	V	1.00	250	54.20	27.75	-	12.49	1.62	40.56	46.00	5.44
285.07*	120	Н	3.70	274	52.70	27.75	1	12.65	1.62	39.06	46.00	6.94
287.65*	120	V	1.00	244	50.10	27.73	ı	12.65	1.62	36.64	46.00	9.36
287.65*	120	Н	3.70	275	50.20	27.73	ı	12.65	1.62	36.74	46.00	9.26
290.09*	120	V	1.00	245	50.50	27.73	ı	13.19	1.62	37.04	46.00	8.96
290.09*	120	Н	3.60	280	50.20	27.73	-	13.87	1.62	36.74	46.00	9.26
307.96*	120	V	1.00	227	49.00	27.79	-	12.49	1.77	36.17	46.00	9.83
307.96*	120	Н	3.70	265	45.20	27.79	-	12.49	1.77	32.37	46.00	13.63
341.00*	120	V	1.00	65	48.70	28.04	1	12.49	1.77	36.30	46.00	9.70
341.00*	120	Н	2.80	257	46.00	28.04	-	12.65	1.77	33.60	46.00	12.40

Margin(dB) = Limit - Actual

[Actual = Reading - Amp Gain + Attenuator + AF + CL]

- 1. H = Horizontal, V = Vertical Polarization
- $2.\ ATT = Attenuation\ (10dB\ pad\ and/or\ Insertion\ Loss\ of\ HPF), AF/CL = Antenna\ Factor\ and\ Cable\ Loss$
- * The spurious emission at the frequency does not fall in the restricted bands.

NOTE: All emissions not reported were more than 20 dB below the specified limit or in the noise floor.

Page 18 of 44

MHz KHz KHz	Table 3:	Table 3: Measured values of the Field strength of spurious emission (Radiated) (continued)													
Frequency Bandwidth Pol. Height Table Reading Gain ATT AF CL Actual Limit Mis [MHz] [kHz] [V/H] [m] [degree] [dB(μV)] [dB] [dB] dB(μm) [dB] [dB(μV/m]] [dB(μV/m]]	ABOVE	E 1 GHz													
AVERAGE data, emissions above 1000 MHz 2414.3 1000 V 1.88 86 96.93 47.05 10.09 27.93 5.28 93.18 PARTICLE 2413.9 1000 H 1.98 165 99.65 47.05 10.09 27.93 5.28 95.90 PARTICLE PARTICLE 99.09 47.05 10.09 27.93 5.28 95.90 PARTICLE PARTICLE PARTICLE 94.90 47.05 10.09 27.93 5.28 95.12 PARTICLE PARTICLE PARTICLE 94.90 47.05 10.09 27.93 5.28 93.42 PARTICLE PARTICLE 47.07 10.09 28.26 5.39 90.77 PARTICLE 47.07 10.09 28.26 5.39 94.99 PARTICLE PARTICLE 47.07 10.09 28.26 5.39 94.99 PARTICLE 47.07 10.09 28.26 5.39 94.99 PARTICLE 47.07 10.09 27.93 5.28 36.24 54.00 1 14.248.	Frequency		Pol.			Reading	-	ATT	AF	CL	Actual	Limit	Margin		
2414.3 1000 V 1.88 86 96.93 47.05 10.09 27.93 5.28 93.18 2413.9 1000 H 1.98 165 99.65 47.05 10.09 27.93 5.28 95.90 2438.8 1000 V 1.88 90 94.90 47.05 10.09 27.93 5.28 93.42 2438.8 1000 H 1.97 171 97.17 47.05 10.09 27.93 5.28 93.42 2463.4 1000 V 1.21 86 94.10 47.07 10.09 28.26 5.39 94.99 2342.1 1000 V 1.88 86 - 47.05 10.09 27.93 5.28 39.49 2342.1 1000 V 1.88 86 - 47.05 10.09 27.93 5.28 39.24 54.00 17.2333.7 1000 H 1.98 165 - 47.05 10.09 27.93 5.28 39.24 54.00 17.248.4 1000 H 1.91 180 - 47.07 10.09 28.26 5.39 39.77 54.00 14.7236.0 1000 V/H 1.0 0 45.75 0.52 35.72 10.30 54.00 54.00 2438.8 1000 V/H 1.0 0 45.68 0.52 36.01 10.30 54.00 2438.8 1000 V/H 1.0 0 45.68 0.52 36.01 10.30 54.00 2438.8 1000 V/H 1.0 0 45.68 0.52 36.01 10.30 54.00 54.00 2438.8 1000 V/H 1.0 0 45.68 0.52 36.01 10.30 54.00 54.00 2438.0 1000 V 1.88 86 90.74 47.05 10.09 27.93 5.28 86.99 2412.6 1000 H 1.98 165 94.62 47.05 10.09 27.93 5.28 89.26 802.11g signs 2462.9 1000 V 1.88 90 90.76 47.05 10.09 27.93 5.28 89.26 802.11g signs 2462.9 1000 V 1.21 86 8.48 47.07 10.09 28.26 5.39 85.15 80.90 1000 V 1.21 86 8.48 47.07 10.09 28.26 5.39 85.15 80.90 1000 V 1.21 86 - 47.05 10.09 27.93 5.28 40.68 54.00 13.2390.0 1000 H 1.91 181 93.10 47.07 10.09 28.26 5.39 39.42 54.00 14.2483.5 1000 H 1.91 181 - 47.07 10.09 28.26 5.39 39.42 54.00 14.2483.5 1000 H 1.91 181 - 47.07 10.09 28.26 5.39 39.42 54.00 14.2483.5 1000 V/H 1.0 0	[MHz]	[kHz]	[V/H]	[m]	[degree]	$[dB(\mu V)]$	[dB]	[dB]	dB(1/m)	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)] \\$	[dB]		
2413.9 1000 H 1.98 165 99.65 47.05 10.09 27.93 5.28 95.90 2438.8 1000 V 1.88 90 94.90 47.05 10.09 27.93 5.28 91.15 Not applicable (802.11b signs) 2438.8 1000 H 1.97 171 97.17 47.05 10.09 27.93 5.28 93.42 802.11b signs) 2463.4 1000 V 1.21 86 94.10 47.07 10.09 28.26 5.39 90.77 90.77 2463.8 1000 H 1.91 180 98.32 47.07 10.09 28.26 5.39 90.77 94.99 90.79 2332.7 1000 H 1.98 165 - 47.05 10.09 27.93 5.28 36.84 54.00 14 2483.8 1000 V 1.98 165 - 47.05 10.09 27.93 5.28 36.74 54.00 14 7236.0 10	AVERAGE	E data, emis	ssions a	above 100	0 MHz										
2438.8 1000 V 1.88 90 94.90 47.05 10.09 27.93 5.28 91.15 Not applicable (802.11b signs) 2438.8 1000 H 1.97 171 97.17 47.05 10.09 27.93 5.28 93.42 (802.11b signs) 2463.4 1000 V 1.21 86 94.10 47.07 10.09 28.26 5.39 90.77 2463.8 1000 H 1.91 180 98.32 47.07 10.09 28.26 5.39 94.99 2342.1 1000 V 1.88 86 - 47.05 10.09 27.93 5.28 36.84 54.00 14 2483.8 1000 V 1.98 165 - 47.05 10.09 27.93 5.28 36.74 54.00 17 2484.4 1000 H 1.91 180 - 47.07 10.09 28.26 5.39 39.77 54.00 -	2414.3	1000	V	1.88	86	96.93	47.05	10.09	27.93	5.28	93.18				
2438.8 1000 H 1.97 171 97.17 47.05 10.09 27.93 5.28 93.42 (802.11b signal signa	2413.9	1000	Н	1.98	165	99.65	47.05	10.09	27.93	5.28	95.90				
2463.4 1000 V 1.21 86 94.10 47.07 10.09 28.26 5.39 90.77 2463.8 1000 H 1.91 180 98.32 47.07 10.09 28.26 5.39 94.99 2342.1 1000 V 1.88 86 - 47.05 10.09 27.93 5.28 36.84 54.00 14 2333.7 1000 H 1.98 165 - 47.05 10.09 27.93 5.28 36.84 54.00 14 2483.8 1000 V 1.98 165 - 47.05 10.09 27.93 5.28 36.74 54.00 14 2484.4 1000 H 1.91 180 - 47.07 10.09 28.26 5.39 39.77 54.00 14 7311.0 1000 V/H 1.0 0 - 45.72 0.52 35.72 10.30 - 54.00 -	2438.8	1000	V	1.88	90	94.90	47.05	10.09	27.93	5.28	91.15	Not appl	icable		
2463.8 1000 H 1.91 180 98.32 47.07 10.09 28.26 5.39 94.99 2342.1 1000 V 1.88 86 - 47.05 10.09 27.93 5.28 36.84 54.00 17 2333.7 1000 H 1.98 165 - 47.05 10.09 27.93 5.28 39.24 54.00 14 2483.8 1000 V 1.98 165 - 47.07 10.09 27.93 5.28 36.74 54.00 17 2484.4 1000 H 1.91 180 - 47.07 10.09 28.26 5.39 39.77 54.00 14 7311.0 1000 V/H 1.0 0 - 45.72 0.52 35.87 10.30 - 54.00 - 7316.0 1000 V 1.88 86 90.74 47.05 10.09 27.93 5.28 86.99	2438.8	1000	Н	1.97	171	97.17	47.05	10.09	27.93	5.28	93.42	(802.11b s	signals)		
2342.1 1000 V 1.88 86 - 47.05 10.09 27.93 5.28 36.84 54.00 17 2333.7 1000 H 1.98 165 - 47.05 10.09 27.93 5.28 39.24 54.00 14 2483.8 1000 V 1.98 165 - 47.05 10.09 27.93 5.28 36.74 54.00 17 2484.4 1000 H 1.91 180 - 47.07 10.09 28.26 5.39 39.77 54.00 14 7311.0 1000 V/H 1.0 0 45.75 0.52 35.87 10.30 54.00 7311.0 1000 V/H 1.0 0 45.68 0.52 36.01 10.30 54.00 7386.0 1000 V 1.88 86 90.74 47.05 10.09 27.93 5.28	2463.4	1000	V	1.21	86	94.10	47.07	10.09	28.26	5.39	90.77				
2333.7	2463.8	1000	Н	1.91	180	98.32	47.07	10.09	28.26	5.39	94.99				
2483.8 1000 V 1.98 165 - 47.05 10.09 27.93 5.28 36.74 54.00 17 2484.4 1000 H 1.91 180 - 47.07 10.09 28.26 5.39 39.77 54.00 14 7236.0 1000 V/H 1.0 0 45.75 0.52 35.72 10.30 54.00 7311.0 1000 V/H 1.0 0 45.68 0.52 35.87 10.30 54.00 7386.0 1000 V/H 1.0 0 45.68 0.52 36.01 10.30 54.00 2413.0 1000 V 1.88 86 90.74 47.05 10.09 27.93 5.28 86.99 2412.6 1000 H 1.98 165 94.62 47.05 10.09 27.93 5.28 87.01 Not	2342.1	1000	V	1.88	86	-	47.05	10.09	27.93	5.28	36.84	54.00	17.16		
2484.4 1000 H 1.91 180 - 47.07 10.09 28.26 5.39 39.77 54.00 14 7236.0 1000 V/H 1.0 0 45.75 0.52 35.72 10.30 54.00 7311.0 1000 V/H 1.0 0 45.72 0.52 35.87 10.30 54.00 7386.0 1000 V/H 1.0 0 45.68 0.52 36.01 10.30 54.00 2413.0 1000 V 1.88 86 90.74 47.05 10.09 27.93 5.28 86.99 2412.6 1000 H 1.98 165 94.62 47.05 10.09 27.93 5.28 87.01 Not applicable (802.11g signs) 2438.0 1000 H 1.97 171 93.01 47.05 10.09 27.93 5.28 87.01	2333.7	1000	Н	1.98	165	-	47.05	10.09	27.93	5.28	39.24	54.00	14.76		
7236.0 1000 V/H 1.0 0 45.75 0.52 35.72 10.30 54.00 7311.0 1000 V/H 1.0 0 45.72 0.52 35.87 10.30 54.00 7386.0 1000 V/H 1.0 0 45.68 0.52 36.01 10.30 54.00 2413.0 1000 V 1.88 86 90.74 47.05 10.09 27.93 5.28 86.99 2412.6 1000 H 1.98 165 94.62 47.05 10.09 27.93 5.28 86.99 2438.0 1000 V 1.88 90 90.76 47.05 10.09 27.93 5.28 87.01 Not applicable (802.11g signs) 2462.9 1000 V 1.21 86 88.48 47.07 10.09 28.26 5.39 85.15 2463.0	2483.8	1000	V	1.98	165	-	47.05	10.09	27.93	5.28	36.74	54.00	17.26		
7311.0 1000 V/H 1.0 0 45.72 0.52 35.87 10.30 54.00 7386.0 1000 V/H 1.0 0 45.68 0.52 36.01 10.30 54.00 2413.0 1000 V 1.88 86 90.74 47.05 10.09 27.93 5.28 86.99 2412.6 1000 H 1.98 165 94.62 47.05 10.09 27.93 5.28 86.99 2438.0 1000 V 1.88 90 90.76 47.05 10.09 27.93 5.28 87.01 Not applicab (802.11g signs) 2438.0 1000 H 1.97 171 93.01 47.05 10.09 27.93 5.28 89.26 Not applicab (802.11g signs) 2462.9 1000 V 1.21 86 88.48 47.07 10.09 28.26 5.39 85.15 2463.0 <td>2484.4</td> <td>1000</td> <td>Н</td> <td>1.91</td> <td>180</td> <td>-</td> <td>47.07</td> <td>10.09</td> <td>28.26</td> <td>5.39</td> <td>39.77</td> <td>54.00</td> <td>14.23</td>	2484.4	1000	Н	1.91	180	-	47.07	10.09	28.26	5.39	39.77	54.00	14.23		
7386.0 1000 V/H 1.0 0 45.68 0.52 36.01 10.30 54.00 2413.0 1000 V 1.88 86 90.74 47.05 10.09 27.93 5.28 86.99 2412.6 1000 H 1.98 165 94.62 47.05 10.09 27.93 5.28 90.87 2438.0 1000 H 1.97 171 93.01 47.05 10.09 27.93 5.28 87.01 Not applicable (802.11g signs) 2438.0 1000 H 1.97 171 93.01 47.05 10.09 27.93 5.28 89.26 Not applicable (802.11g signs) 2462.9 1000 V 1.21 86 88.48 47.07 10.09 28.26 5.39 85.15 2463.0 1000 H 1.91 181 93.10 47.07 10.09 28.26 5.39 89.77 2390.0 1000 <	7236.0	1000	V/H	1.0	0		45.75	0.52	35.72	10.30		54.00			
2413.0 1000 V 1.88 86 90.74 47.05 10.09 27.93 5.28 86.99 2412.6 1000 H 1.98 165 94.62 47.05 10.09 27.93 5.28 90.87 2438.0 1000 V 1.88 90 90.76 47.05 10.09 27.93 5.28 87.01 Not applicab (802.11g signs) 2438.0 1000 H 1.97 171 93.01 47.05 10.09 27.93 5.28 89.26 Not applicab (802.11g signs) 2462.9 1000 V 1.21 86 88.48 47.07 10.09 28.26 5.39 85.15 2463.0 1000 H 1.91 181 93.10 47.07 10.09 28.26 5.39 89.77 2390.0 1000 V 1.88 86 - 47.05 10.09 27.93 5.28 40.68 54.00 13 2390.0 1000 H 1.98 165 - 47.05 10.09 27.93 5.28 43.5	7311.0	1000	V/H	1.0	0		45.72	0.52	35.87	10.30		54.00			
2412.6 1000 H 1.98 165 94.62 47.05 10.09 27.93 5.28 90.87 2438.0 1000 V 1.88 90 90.76 47.05 10.09 27.93 5.28 87.01 Not applicab (802.11g signal (802.11g signa	7386.0	1000	V/H	1.0	0		45.68	0.52	36.01	10.30		54.00			
2412.6 1000 H 1.98 165 94.62 47.05 10.09 27.93 5.28 90.87 2438.0 1000 V 1.88 90 90.76 47.05 10.09 27.93 5.28 87.01 Not applicab (802.11g signal (802.11g signa															
2412.6 1000 H 1.98 165 94.62 47.05 10.09 27.93 5.28 90.87 2438.0 1000 V 1.88 90 90.76 47.05 10.09 27.93 5.28 87.01 Not applicab (802.11g signal (802.11g signa															
2438.0 1000 V 1.88 90 90.76 47.05 10.09 27.93 5.28 87.01 Not applicab (802.11g signs) 2438.0 1000 H 1.97 171 93.01 47.05 10.09 27.93 5.28 89.26 (802.11g signs) 2462.9 1000 V 1.21 86 88.48 47.07 10.09 28.26 5.39 85.15 2463.0 1000 H 1.91 181 93.10 47.07 10.09 28.26 5.39 89.77 2390.0 1000 V 1.88 86 - 47.05 10.09 27.93 5.28 40.68 54.00 13 2390.0 1000 H 1.98 165 - 47.05 10.09 27.93 5.28 43.57 54.00 10 2483.5 1000 V 1.21 86 - 47.07 10.09 28.26 5.39 43.03 54.00 14	2413.0	1000	V	1.88	86	90.74	47.05	10.09	27.93	5.28	86.99				
2438.0 1000 H 1.97 171 93.01 47.05 10.09 27.93 5.28 89.26 (802.11g signal signa	2412.6	1000	Н	1.98	165	94.62	47.05	10.09	27.93	5.28	90.87				
2438.0 1000 H 1.97 171 93.01 47.05 10.09 27.93 5.28 89.26 (802.11g signal signa	2438.0	1000	V	1.88	90	90.76	47.05	10.09	27.93	5.28	87.01	Not appl	icable		
2463.0 1000 H 1.91 181 93.10 47.07 10.09 28.26 5.39 89.77 2390.0 1000 V 1.88 86 - 47.05 10.09 27.93 5.28 40.68 54.00 13 2390.0 1000 H 1.98 165 - 47.05 10.09 27.93 5.28 43.57 54.00 10 2483.5 1000 V 1.21 86 - 47.07 10.09 28.26 5.39 39.42 54.00 14 2483.5 1000 H 1.91 181 - 47.07 10.09 28.26 5.39 43.03 54.00 10 7236.0 1000 V/H 1.0 0 45.75 0.52 35.72 10.30 54.00 - 7311.0 1000 V/H 1.0 0 45.72 0.52 35.87 10.30 54.00 -	2438.0	1000	Н	1.97	171	93.01	47.05	10.09	27.93	5.28	89.26				
2390.0 1000 V 1.88 86 - 47.05 10.09 27.93 5.28 40.68 54.00 13 2390.0 1000 H 1.98 165 - 47.05 10.09 27.93 5.28 43.57 54.00 10 2483.5 1000 V 1.21 86 - 47.07 10.09 28.26 5.39 39.42 54.00 14 2483.5 1000 H 1.91 181 - 47.07 10.09 28.26 5.39 43.03 54.00 10 7236.0 1000 V/H 1.0 0 45.75 0.52 35.72 10.30 54.00 - 7311.0 1000 V/H 1.0 0 45.72 0.52 35.87 10.30 54.00 -	2462.9	1000	V	1.21	86	88.48	47.07	10.09	28.26	5.39	85.15				
2390.0 1000 H 1.98 165 - 47.05 10.09 27.93 5.28 43.57 54.00 10 2483.5 1000 V 1.21 86 - 47.07 10.09 28.26 5.39 39.42 54.00 14 2483.5 1000 H 1.91 181 - 47.07 10.09 28.26 5.39 43.03 54.00 10 7236.0 1000 V/H 1.0 0 45.75 0.52 35.72 10.30 54.00 7311.0 1000 V/H 1.0 0 45.72 0.52 35.87 10.30 54.00	2463.0	1000	Н	1.91	181	93.10	47.07	10.09	28.26	5.39	89.77				
2483.5 1000 V 1.21 86 - 47.07 10.09 28.26 5.39 39.42 54.00 14 2483.5 1000 H 1.91 181 - 47.07 10.09 28.26 5.39 43.03 54.00 10 7236.0 1000 V/H 1.0 0 45.75 0.52 35.72 10.30 54.00 7311.0 1000 V/H 1.0 0 45.72 0.52 35.87 10.30 54.00	2390.0	1000	V	1.88	86	-	47.05	10.09	27.93	5.28	40.68	54.00	13.32		
2483.5 1000 H 1.91 181 - 47.07 10.09 28.26 5.39 43.03 54.00 10 7236.0 1000 V/H 1.0 0 45.75 0.52 35.72 10.30 54.00 7311.0 1000 V/H 1.0 0 45.72 0.52 35.87 10.30 54.00	2390.0	1000	Н	1.98	165	-	47.05	10.09	27.93	5.28	43.57	54.00	10.43		
2483.5 1000 H 1.91 181 - 47.07 10.09 28.26 5.39 43.03 54.00 10 7236.0 1000 V/H 1.0 0 45.75 0.52 35.72 10.30 54.00 7311.0 1000 V/H 1.0 0 45.72 0.52 35.87 10.30 54.00	2483.5	1000	V	1.21	86	-	47.07	10.09	28.26	5.39	39.42	54.00	14.58		
7311.0 1000 V/H 1.0 0 45.72 0.52 35.87 10.30 54.00	2483.5		Н		181	-							10.97		
	7236.0	1000	V/H	1.0	0		45.75	0.52	35.72	10.30		54.00			
7386.0 1000 V/H 1.0 0 45.68 0.52 36.01 10.30 54.00 -	7311.0	1000	V/H	1.0	0		45.72	0.52	35.87	10.30		54.00			
	7386.0	1000	V/H	1.0	0		45.68	0.52	36.01	10.30		54.00			

Margin (dB) = Limit - Actual

 $[Actual = Reading - Amp \ Gain + Attenuator + AF + CL]$

^{1.} H = Horizontal, V = Vertical Polarization

^{2.} ATT = Attenuation (10dB pad and/or Insertion Loss of HPF), AF/CL = Antenna Factor and Cable Loss

NOTE: All emissions not reported were more than 20 dB below the specified limit or in the noise floor.

Remark 1. The measured value at the band-edge plots as shown Figure 4 included all the correction factors; those values are the final ('Actual') values.

^{2. &}quot;---" means the emission level was too low to be measured or in the noise floor.

Page 19 of 44

Frequency	Receiver Bandwidth	Pol.	Antenna Height	Turn Table	Reading	Amp Gain	ATT	AF	CL	Actual	Limit	Margin
[MHz]	[kHz]	[V/H]	[m]	[degree]	[dB(μV)]	[dB]	[dB]	dB(1/m)	[dB]	[dB(µV/m)]	[dB(µV/m)]	[dB]
	E data, emis				[ub(µ+)]	[dD]	[uB]	GD(1/111)	[db]	[αΒ(μ τ/π/)]	[αΒ(μ τ/π/)]	[uD]
2413.3	1000	V	1.88	86	88.11	47.05	10.09	27.93	5.28	84.36		
2413.2	1000	Н	1.98	165	91.99	47.05	10.09	27.93	5.28	88.24		
2435.7	1000	V	1.88	90	87.45	47.05	10.09	27.93	5.28	83.70	Not appl	
2435.7	1000	Н	1.97	171	89.86	47.05	10.09	27.93	5.28	86.11	(802.11n signa	
2463.3	1000	V	1.21	86	88.47	47.07	10.09	28.26	5.39	85.14	Signa	13)
2463.2	1000	Н	1.98	165	91.15	47.07	10.09	28.26	5.39	87.82		
2390.0	1000	V	1.88	86	-	47.05	10.09	27.93	5.28	38.16	54.00	15.84
2390.0	1000	Н	1.98	165	-	47.05	10.09	27.93	5.28	41.06	54.00	12.94
2483.5	1000	V	1.21	86	-	47.07	10.09	28.26	5.39	38.31	54.00	15.69
2483.5	1000	Н	1.98	165	-	47.07	10.09	28.26	5.39	41.64	54.00	12.36
7236.0	1000	V/H	1.0	0		45.75	0.52	35.72	10.30		54.00	
7311.0	1000	V/H	1.0	0		45.72	0.52	35.87	10.30		54.00	
7386.0	1000	V/H	1.0	0		45.68	0.52	36.01	10.30		54.00	
2417.2	1000	V	1.85	85	83.50	47.05	10.09	27.93	5.28	79.75		
2417.0	1000	Н	1.98	164	87.08	47.05	10.09	27.93	5.28	83.33		
2432.1	1000	V	1.88	90	83.01	47.05	10.09	27.93	5.28	79.26	Not appl (802.11n	
2432.1	1000	Н	1.97	171	85.47	47.05	10.09	27.93	5.28	81.72	(802.1111 signa	
2456.4	1000	V	1.21	86	81.02	47.07	10.09	28.26	5.39	77.69		
2458.2	1000	Н	1.98	165	85.39	47.07	10.09	28.26	5.39	82.06		
2390.0	1000	V	1.85	85	-	47.05	10.09	27.93	5.28	41.27	54.00	12.73
2390.0	1000	Н	1.98	164	-	47.05	10.09	27.93	5.28	44.80	54.00	9.2
2483.5	1000	V	1.21	86	-	47.07	10.09	28.26	5.39	39.07	54.00	14.93
2483.5	1000	Н	1.98	165	-	47.07	10.09	28.26	5.39	41.62	54.00	12.38
7266.0	1000	V/H	1.0	0		45.72	0.52	35.87	10.30		54.00	
7311.0	1000	V/H	1.0	0		45.72	0.52	35.87	10.30		54.00	
7356.0	1000	V/H	1.0	0		45.68	0.52	36.01	10.30		54.00	

Margin (dB) = Limit - Actual

[Actual = Reading - Amp Gain + Attenuator + AF + CL]

^{1.} H = Horizontal, V = Vertical Polarization

^{2.} ATT = Attenuation (10dB pad and/or Insertion Loss of HPF), AF/CL = Antenna Factor and Cable Loss

NOTE: All emissions not reported were more than 20 dB below the specified limit or in the noise floor.

Remark 1. The measured value at the band-edge plots as shown Figure 4 included all the correction factors; those values are the final ('Actual') values.

^{2. &}quot;---" means the emission level was too low to be measured or in the noise floor.

Page 20 of 44

ABOVE	1 GHZ											
Frequency	Receiver Bandwidth	Pol.	Antenna Height	Turn Table	Reading	Amp Gain	ATT	AF	CL	Actual	Limit	Margir
[MHz]	[kHz]	[V/H]	[m]	[degree]	[dB(µV)]	[dB]	[dB]	dB(1/m)	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]
PEAK data	a, emissions	s above	2 1000 MF	Iz								
2414.3	1000	V	1.88	86	105.46	47.05	10.09	27.93	5.28	101.71		
2413.9	1000	Н	1.98	165	108.00	47.05	10.09	27.93	5.28	104.25		
2438.8	1000	V	1.88	90	103.22	47.05	10.09	27.93	5.28	99.47	Not appl	icable
2438.8	1000	Н	1.97	171	105.46	47.05	10.09	27.93	5.28	101.71	(802.11b s	
2463.4	1000	V	1.21	86	102.93	47.07	10.09	28.26	5.39	99.60		
2463.8	1000	Н	1.91	180	106.61	47.07	10.09	28.26	5.39	103.28		
2342.1	1000	V	1.88	86	-	47.05	10.09	27.93	5.28	54.38	74.00	19.62
2389.5	1000	Н	1.98	165	-	47.05	10.09	27.93	5.28	52.53	74.00	21.47
2483.8	1000	V	1.21	86	-	47.07	10.09	28.26	5.39	51.06	74.00	22.94
2484.7	1000	Н	1.91	180	-	47.07	10.09	28.26	5.39	53.80	74.00	20.20
7236.0	1000	V/H	1.0	0		45.75	0.52	35.72	10.30		74.00	
7311.0	1000	V/H	1.0	0		45.72	0.52	35.87	10.30		74.00	
7386.0	1000	V/H	1.0	0		45.68	0.52	36.01	10.30		74.00	
2413.0	1000	V	1.88	86	103.22	47.05	10.09	27.93	5.28	99.47		
2412.6	1000	Н	1.98	165	108.56	47.05	10.09	27.93	5.28	104.81		
2438.0	1000	V	1.88	90	103.80	47.05	10.09	27.93	5.28	100.05	Not appl	
2438.0	1000	Н	1.97	171	105.74	47.05	10.09	27.93	5.28	101.99	(802.11g s	signals)
2462.9	1000	V	1.21	86	101.04	47.07	10.09	28.26	5.39	97.71		
2463.0	1000	Н	1.91	181	105.83	47.07	10.09	28.26	5.39	102.50		
2390.0	1000	V	1.88	86	-	47.05	10.09	27.93	5.28	58.04	74.00	15.96
2389.5	1000	Н	1.98	165	-	47.05	10.09	27.93	5.28	62.59	74.00	11.41
2483.5	1000	V	1.21	86	-	47.07	10.09	28.26	5.39	55.62	74.00	18.38
2483.6	1000	Н	1.91	181	-	47.07	10.09	28.26	5.39	63.35	74.00	10.65
7236.0	1000	V/H	1.0	0		45.75	0.52	35.72	10.30		74.00	
7311.0	1000	V/H	1.0	0		45.72	0.52	35.87	10.30		74.00	
7386.0	1000	V/H	1.0	0		45.68	0.52	36.01	10.30		74.00	

Margin (dB) = Limit - Actual

 $[Actual = Reading - Amp \ Gain + Attenuator + AF + CL]$

^{1.} H = Horizontal, V = Vertical Polarization

^{2.} ATT = Attenuation (10dB pad and/or Insertion Loss of HPF), AF/CL = Antenna Factor and Cable Loss

NOTE: All emissions not reported were more than 20 dB below the specified limit or in the noise floor.

Remark 1. The measured value at the band-edge plots as shown Figure 4 included all the correction factors; those values are the final ('Actual') values.

^{2. &}quot;---" means the emission level was too low to be measured or in the noise floor.

Page 21 of 44

		value	es of the	Field s	strength o	f spuri	ious er	nission	(Rad	iated) (co	ntinued)	
ABOVE	Receiver	Pol.	Antenna	Turn	Dandina	Amp	ATT	AF	CI	A atual	Limit	Manair
Frequency	Bandwidth	Pol.	Height	Table	Reading	Gain	All	АГ	CL	Actual	Limit	Margii
[MHz]	[kHz]	[V/H]	[m]	[degree]	$[dB(\mu V)]$	[dB]	[dB]	dB(1/m)	[dB]	$\left[dB(\mu V/m)\right]$	$\left[dB(\mu V/m)\right]$	[dB]
PEAK data	a, emissions	s above	2 1000 ME	Iz								
2413.3	1000	V	1.88	86	101.04	47.05	10.09	27.93	5.28	97.29		
2413.2	1000	Н	1.98	165	104.79	47.05	10.09	27.93	5.28	101.04		
2435.7	1000	V	1.88	90	100.75	47.05	10.09	27.93	5.28	97.00	Not appl (802.11n	
2435.7	1000	Н	1.97	171	103.13	47.05	10.09	27.93	5.28	99.38	(802.1111 signa	
2463.3	1000	V	1.21	86	100.57	47.07	10.09	28.26	5.39	97.24	C	,
2463.2	1000	Н	1.98	165	104.10	47.07	10.09	28.26	5.39	100.77		
2389.0	1000	V	1.88	86	-	47.05	10.09	27.93	5.28	54.70	74.00	19.30
2389.5	1000	Н	1.98	165	-	47.05	10.09	27.93	5.28	59.65	74.00	14.35
2483.5	1000	V	1.21	86	-	47.07	10.09	28.26	5.39	53.72	74.00	20.28
2483.6	1000	Н	1.98	165	-	47.07	10.09	28.26	5.39	59.99	74.00	14.01
7236.0	1000	V/H	1.0	0		45.75	0.52	35.72	10.30		74.00	
7311.0	1000	V/H	1.0	0		45.72	0.52	35.87	10.30		74.00	
7386.0	1000	V/H	1.0	0		45.68	0.52	36.01	10.30		74.00	
2417.2	1000	V	1.85	85	97.08	47.05	10.09	27.93	5.28	93.33		
2417.0	1000	Н	1.98	164	101.27	47.05	10.09	27.93	5.28	97.52		
2432.1	1000	V	1.88	90	97.17	47.05	10.09	27.93	5.28	93.42	Not appl	
2432.1	1000	Н	1.97	171	99.65	47.05	10.09	27.93	5.28	95.90	(802.11n signa	
2456.4	1000	V	1.21	86	95.59	47.07	10.09	28.26	5.39	92.26	8	/
2458.2	1000	Н	1.98	165	100.38	47.07	10.09	28.26	5.39	97.05		
2389.2	1000	V	1.85	85	-	47.05	10.09	27.93	5.28	59.50	74.00	14.50
2389.4	1000	Н	1.98	164	-	47.05	10.09	27.93	5.28	65.03	74.00	8.97
2483.5	1000	V	1.21	86	-	47.07	10.09	28.26	5.39	55.28	74.00	18.72
2483.5	1000	Н	1.98	165	-	47.07			5.39	60.18	74.00	13.82
7236.0	1000	V/H	1.0	0		45.75	0.52	35.72	10.30		74.00	
7311.0	1000	V/H	1.0	0		45.72	0.52	35.87	10.30		74.00	
7386.0	1000	V/H	1.0	0		45.68	0.52	36.01	10.30		74.00	

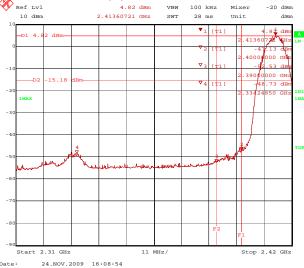
Margin (dB) = Limit - Actual

 $[Actual = Reading - Amp \ Gain + Attenuator + AF + CL]$

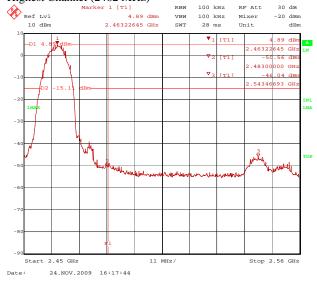
^{1.} H = Horizontal, V = Vertical Polarization

^{2.} ATT = Attenuation (10dB pad and/or Insertion Loss of HPF), AF/CL = Antenna Factor and Cable Loss

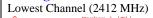
NOTE: All emissions not reported were more than 20 dB below the specified limit or in the noise floor.

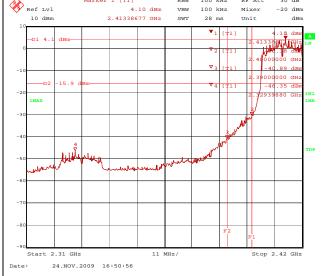

Remark 1. The measured value at the band-edge plots as shown Figure 4 included all the correction factors; those values are the final ('Actual') values.

^{2. &}quot;---" means the emission level was too low to be measured or in the noise floor.



Page 22 of 44

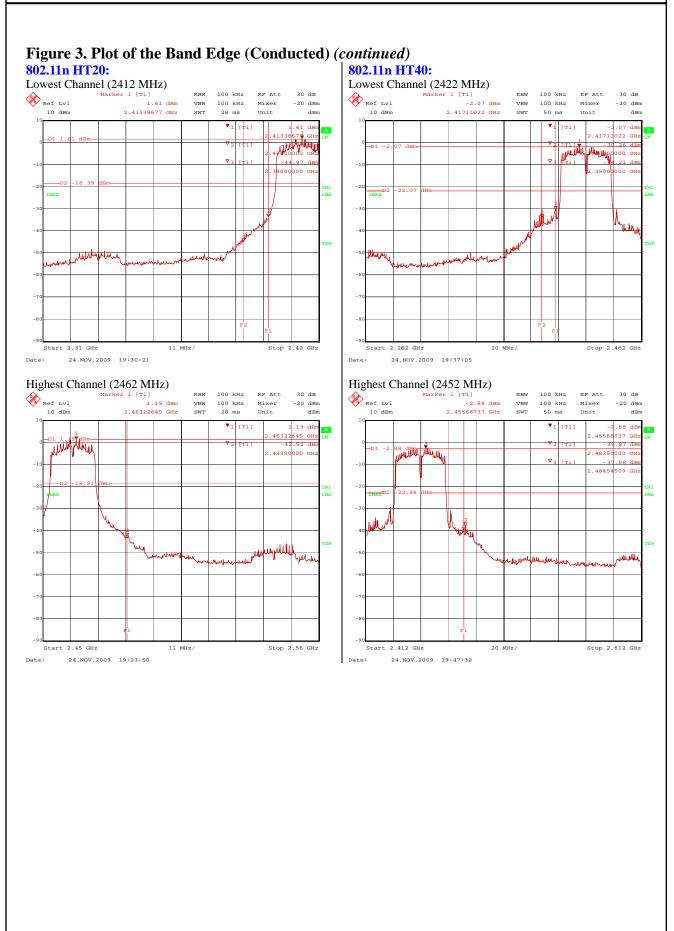




Highest Channel (2462 MHz)

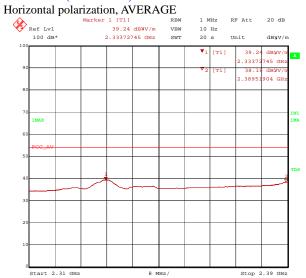


802.11g mode:

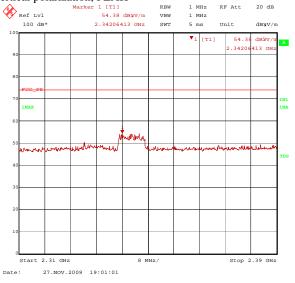


Highest Channel (2462 MHz)

Page 23 of 44

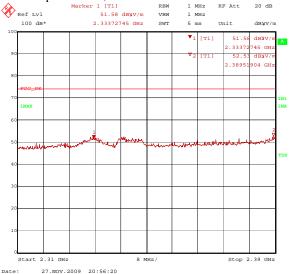


Page 24 of 44



802.11b mode: LOWER band edge - operating the Lowest Channel (2412 MHz)

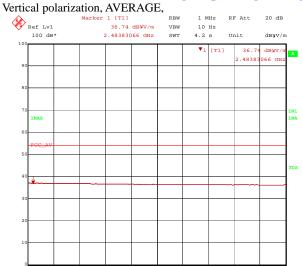
Vertical polarization, PEAK

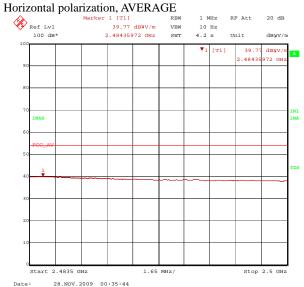

27.NOV.2009 19:07:46

Horizontal polarization, PEAK

27.NOV.2009 21:01:42

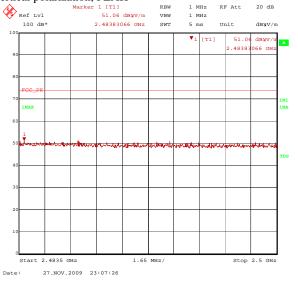
Date:

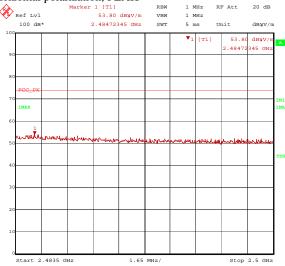




Page 25 of 44

Figure 4. Plot of the Band Edge (Radiated) (continued)

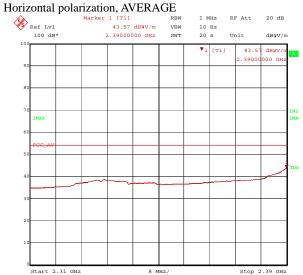

802.11b mode: UPPER band edge - operating the Highest Channel (2462 MHz)


Vertical polarization, PEAK

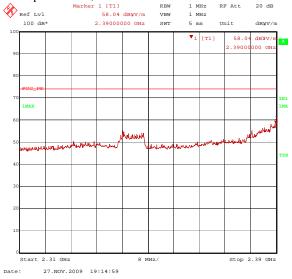
27.NOV.2009 23:13:05

Horizontal polarization, PEAK

28.NOV.2009 00:30:02

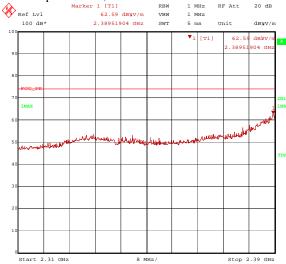


Page 26 of 44



802.11g mode: LOWER band edge - operating the Lowest Channel (2412 MHz)

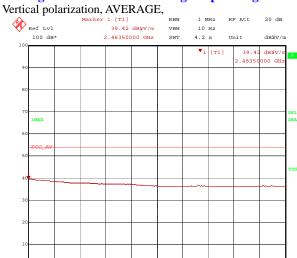
Vertical polarization, PEAK

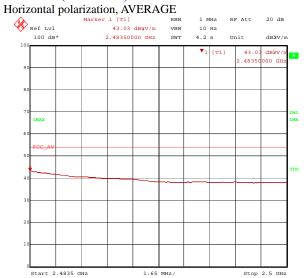

27.NOV.2009 19:20:12

Horizontal polarization, PEAK

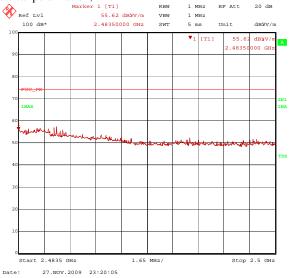
27.NOV.2009 21:47:00

27.NOV.2009 21:40:49

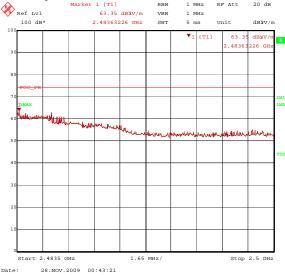




Page 27 of 44

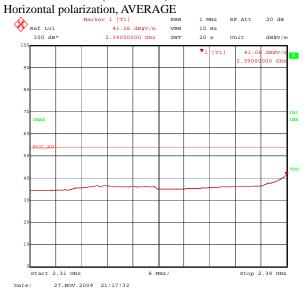

Figure 4. Plot of the Band Edge (Radiated) (continued)

802.11g mode: UPPER band edge - operating the Highest Channel (2462 MHz)



Vertical polarization, PEAK

Horizontal polarization, PEAK



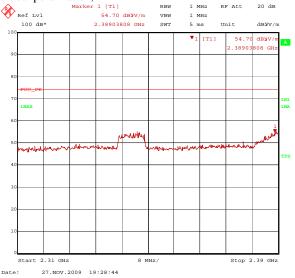
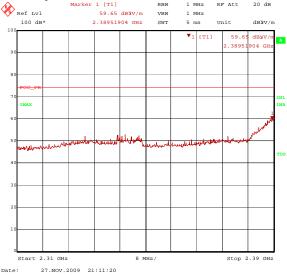

Page 28 of 44

Figure 4. Plot of the Band Edge (Radiated) (continued)


802.11n HT20 mode: LOWER band edge - operating the Lowest Channel (2412 MHz)

Vertical polarization, PEAK

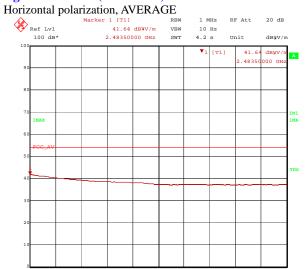
Horizontal polarization, PEAK

Page 29 of 44

802.11n HT20 mode: UPPER band edge - operating the Highest Channel (2462 MHz)

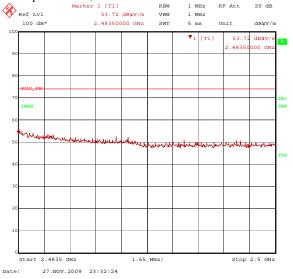
Vertical polarization, AVERAGE,

Marker 1 [TI] RBM 1 MHz RF Att 20 dB


Ref Lv1 38.31 dByV/m VBM 10 Hz

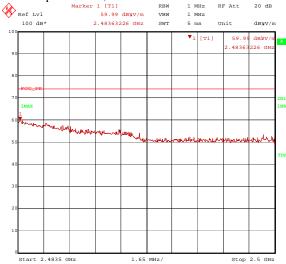
100 dB* 2.48350000 GHz SWT 4.2 s Unit dByV/m

90 V1 [TI] 38.31 dByV/m


2.48350000 GHz

100 LBMX 1 MAX 1 MAX

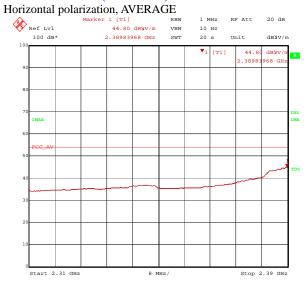
Vertical polarization, PEAK


27.NOV.2009 23:38:42

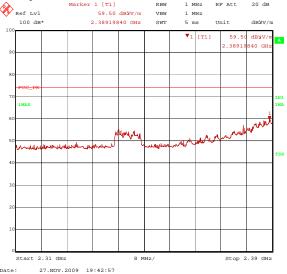
Horizontal polarization, PEAK

28.NOV.2009 01:05:17

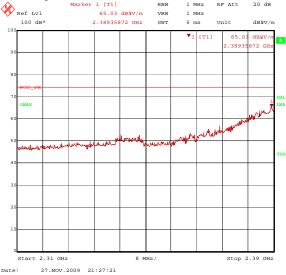
28.NOV.2009 00:57:06



Page 30 of 44


Figure 4. Plot of the Band Edge (Radiated) (continued)

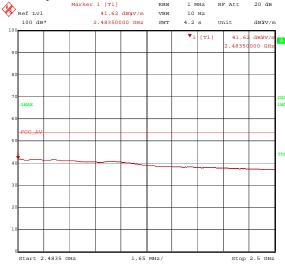
802.11n HT40 mode: LOWER band edge - operating the Lowest Channel (2422 MHz)



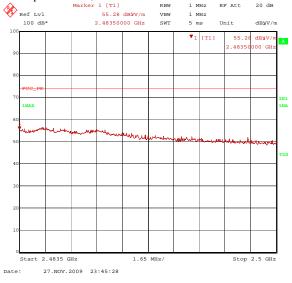
Vertical polarization, PEAK

Horizontal polarization, PEAK

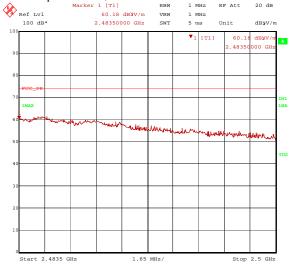
Page 31 of 44


Figure 4. Plot of the Band Edge (Radiated) (continued)

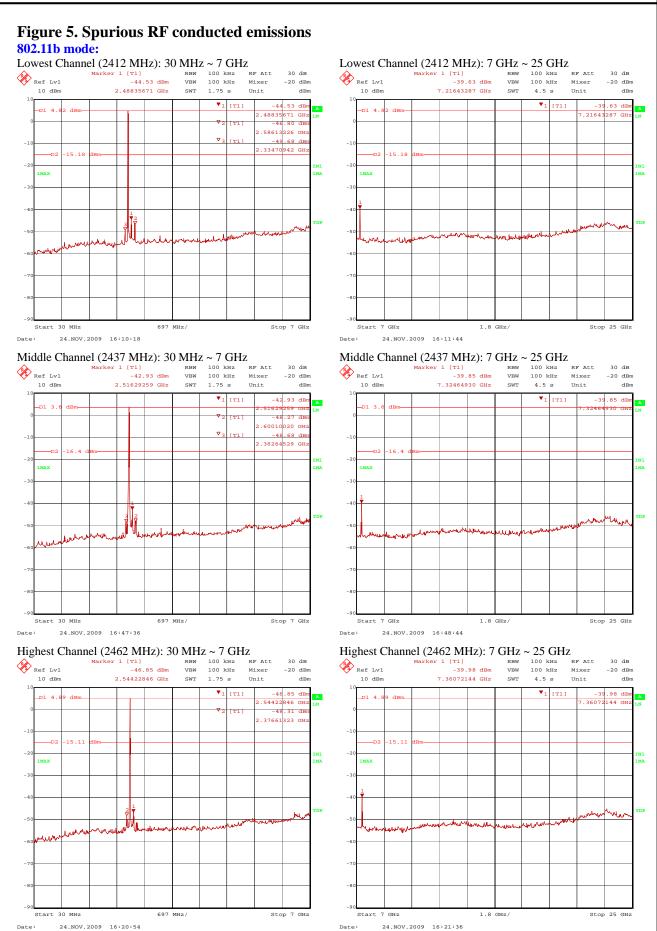
802.11n HT40 mode: UPPER band edge - operating the Highest Channel (2452 MHz)


Vertical polarization, AVERAGE, Marker 1 [T1] 39.07 dBWV/m Ref Lvl 10 Hz

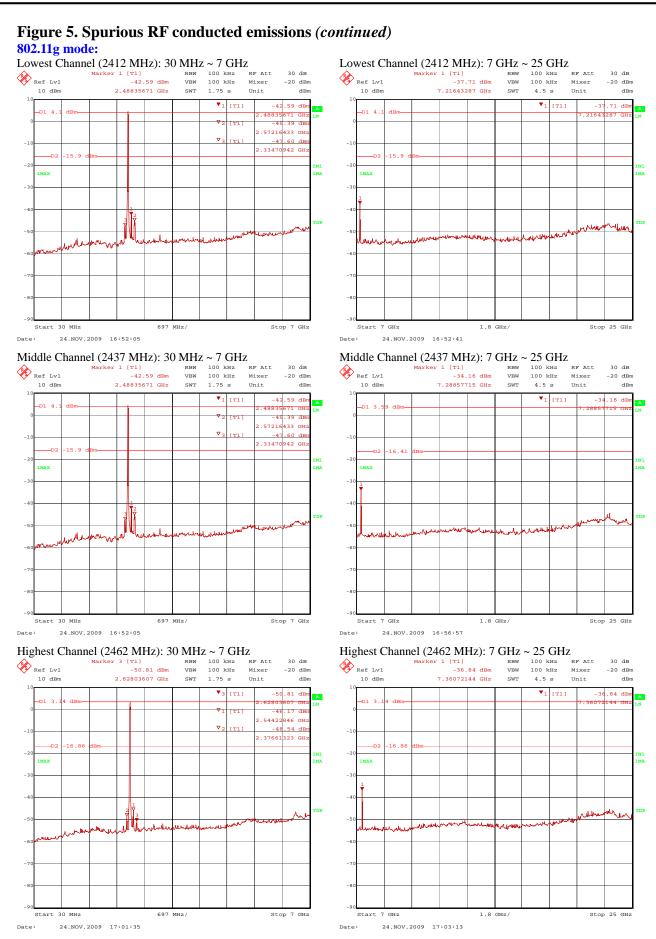
Start 2.4835 GHz


Horizontal polarization, AVERAGE

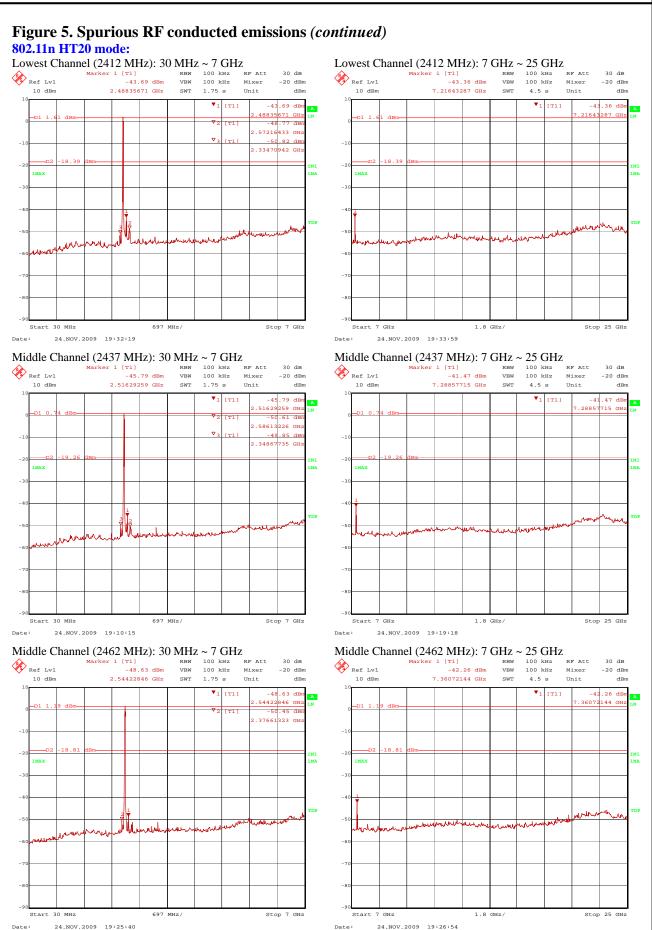
Vertical polarization, PEAK



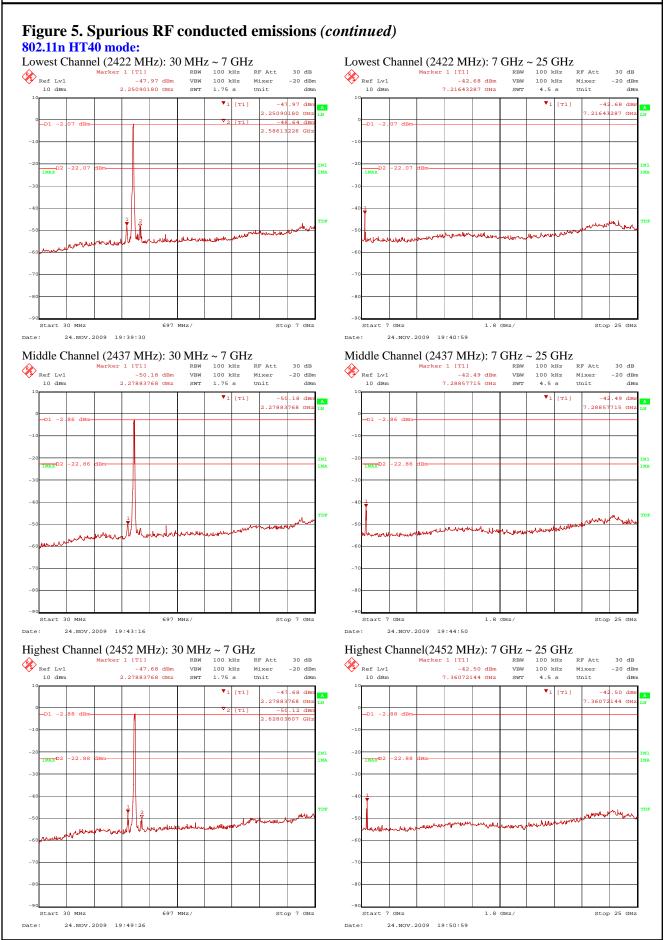
Horizontal polarization, PEAK



Page 32 of 44



Page 33 of 44



Page 34 of 44

Page 35 of 44

Page 36 of 44

5.5 PEAK POWER SPECTRAL DENSITY

5.5.1 Regulation

According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

5.5.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Connect the antenna port of the EUT to RF input on the spectrum analyzer via a low loss cable and attenuator.
- 3. Turn on the EUT and locate and zoom in on emission peak(s) within the passband.
- 4. Set the spectrum analyzer as follows:

 $RBW = 3 \text{ kHz}, VBW \ge RBW$

Span = 1.5 MHz

Sweep = 500 seconds

Detector function = peak

Trace = max hold

5. Measure the highest amplitude appearing on spectral display and record the level to calculate results.

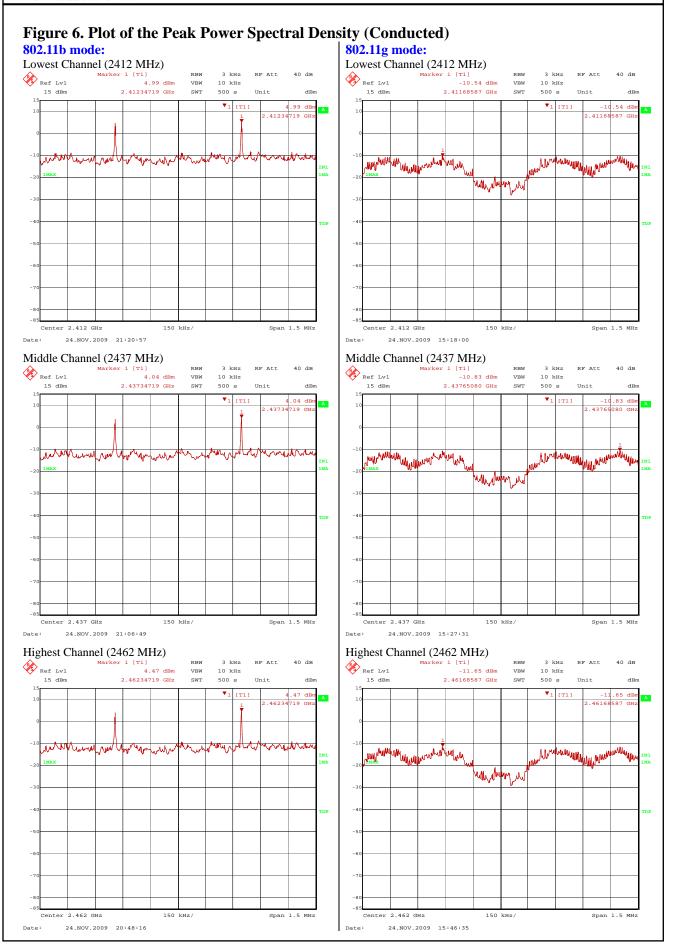
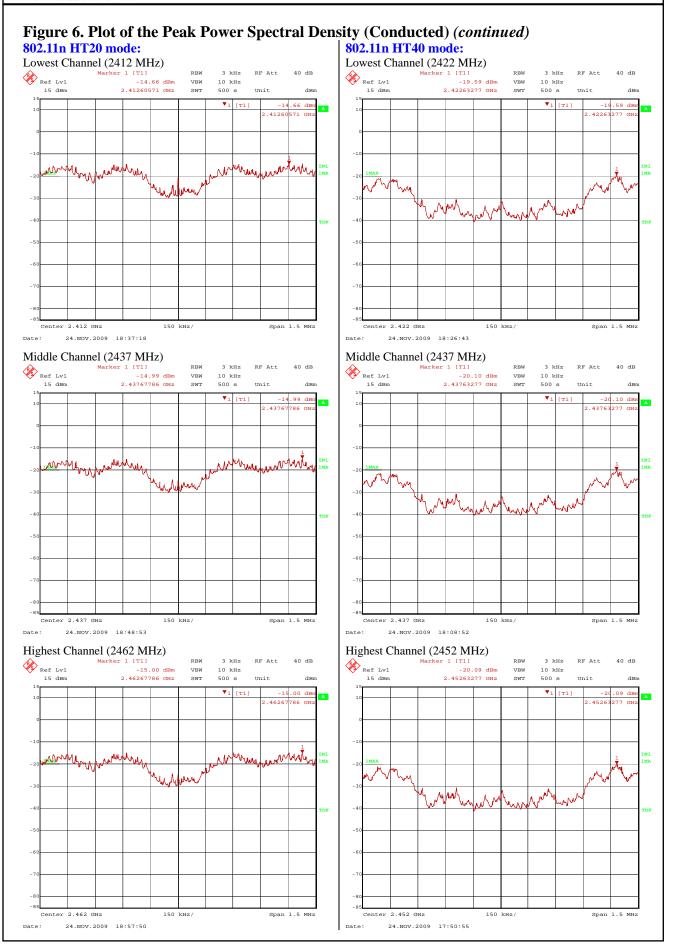

5.5.3 Test Results: PASS

Table 4: N	Table 4: Measured values of the Peak Power Spectral Density (Conducted)											
Modulation	Operating frequency	Transfer Rate	Reading (PPSD)	Limit								
	2412 MHz	11 Mbps	4.99 dBm	8.0 dBm								
802.11b	2437 MHz	11 Mbps	4.04 dBm	8.0 dBm								
	2462 MHz	11 Mbps	4.47 dBm	8.0 dBm								
	2412 MHz	54 Mbps	-10.54 dBm	8.0 dBm								
802.11g	2437 MHz	54 Mbps	-10.83 dBm	8.0 dBm								
	2462 MHz	54 Mbps	-11.65 dBm	8.0 dBm								
	2412 MHz	MCS 0~7	-14.66 dBm	8.0 dBm								
802.11n HT20	2437 MHz	MCS 0~7	-14.99 dBm	8.0 dBm								
	2462 MHz	MCS 0~7	-15.00 dBm	8.0 dBm								
	2422 MHz	MCS 0~7	-19.59 dBm	8.0 dBm								
802.11n HT40	2437 MHz	MCS 0~7	-20.10 dBm	8.0 dBm								
	2452 MHz	MCS 0~7	-20.09 dBm	8.0 dBm								

 $NOTE: We took the insertion\ loss\ of\ the\ cable\ loss\ into\ consideration\ within\ the\ measuring\ instrument.$



Page 37 of 44

Page 38 of 44

Page 39 of 44

5.6 AC POWER LINE CONDUCTED EMISSIONS

5.6.1 Regulation

According to §15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a $50\mu\text{H}/50\Omega$ line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency of emission (MHz)	Conducted	limit (dBµV)
Frequency of emission (MHZ)	Qausi-peak	Average
0.15 - 0.5	66 to 56 *	56 to 46 *
0.5 – 5	56	46
5 – 30	60	50

^{*} Decreases with the logarithm of the frequency.

According to §15.107(a), for unintentional device, except for Class A digital devices, line conducted emission limits are the same as the above table.

5.6.2 Test Procedure

- 1. The EUT was placed on a wooden table of size, 1 m by 1.5 m, raised 80 cm in which is located 40 cm away from the vertical wall and 1.5m away from the side wall of the shielded room.
- 2. Each current-carrying conductor of the EUT power cord was individually connected through a $50\Omega/50\mu H$ LISN, which is an input transducer to a Spectrum Analyzer or an EMI/Field Intensity Meter, to the input power source.
- 3. Exploratory measurements were made to identify the frequency of the emission that had the highest amplitude relative to the limit by operating the EUT in a range of typical modes of operation, cable position, and with a typical system equipment configuration and arrangement. Based on the exploratory tests of the EUT, the one EUT cable configuration and arrangement and mode of operation that had produced the emission with the highest amplitude relative to the limit was selected for the final measurement.
- 4. The final test on all current-carrying conductors of all of the power cords to the equipment that comprises the EUT (but not the cords associated with other non-EUT equipment is the system) was then performed over the frequency range of 0.15 MHz to 30 MHz.
- 5. The measurements were made with the detector set to PEAK amplitude within a bandwidth of 10 kHz or to QUASI-PEAK and AVERAGE within a bandwidth of 9 kHz. The EUT was in transmitting mode during the measurements.

Page 40 of 44

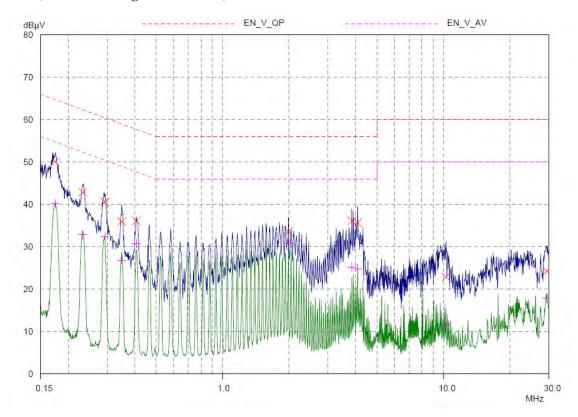
5.6.3 Test Results:

PASS

F	D 12		CE	CI	A - (1	T :	N/ '
Frequency [MHz]	Reading [dBµV]	L/N	CF [dB]	CL [dB]	Actual [dBµV]	Limit [dBµV]	Margin [dB]
[1/11/2]	[05]				·	[@5#+]	[42]
		,		SI-PEAK			1
0.175	50.07	L	0.35	0.05	50.47	64.74	14.27
0.233	42.84	L	0.29	0.05	43.18	62.35	19.17
0.293	40.57	L	0.29	0.05	40.91	60.43	19.52
0.350	35.91	L	0.29	0.06	36.26	58.97	22.71
0.407	36.07	L	0.25	0.06	36.38	57.71	21.33
1.754	33.41	N	0.28	0.12	33.81	56.00	22.19
3.976	37.73	N	0.37	0.18	38.28	56.00	17.72
4.089	35.69	L	0.61	0.18	36.48	56.00	19.52
			AVI	ERAGE D	ATA		
0.175	40.11	L	0.35	0.05	40.51	54.74	14.23
0.232	33.89	N	0.28	0.05	34.22	52.39	18.17
0.293	32.47	L	0.29	0.05	32.81	50.43	17.62
0.351	28.19	N	0.27	0.06	28.52	48.94	20.42
0.407	30.74	L	0.25	0.06	31.05	47.71	16.66
1.754	30.41	N	0.28	0.12	30.81	46.00	15.19
1.985	30.81	L	0.53	0.12	31.46	46.00	14.54

 $\begin{aligned} & \textbf{Margin} \ (\textbf{dB}) = \textbf{Limit} - \textbf{Actual} \\ & [\textbf{Actual} = \textbf{Reading} + \textbf{CF} + \textbf{CL}] \\ & L/N = LINE / NEUTRAL \end{aligned}$

CF/CL = Correction Factor and Cable Loss


NOTE: The frequency range was scanned from 150 kHz to 30 MHz. All emissions not reported were more than 20 dB below the specified limit.

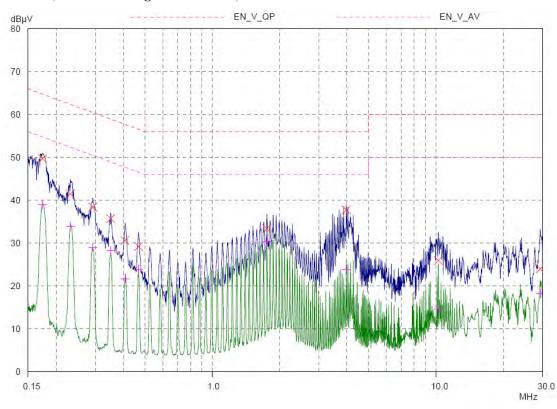

Page 41 of 44

Figure 7. Plot of the AC Power Line Conducted Emissions

Line – PE (Peak and Average detector used)

Neutral – PE (Peak and Average detector used)

Page 42 of 44

5.7 RECEIVER SPURIOUS EMISSIONS

5.7.1 Regulation

According to RSS-Gen 7.2.3, the following receiver spurious emission limits shall be complied with:

(a) If a radiated measurement is made, all spurious emissions shall comply with the limits of Table 1. The resolution bandwidth of the spectrum analyzer shall be 100 kHz for spurious emission measurements below 1.0 GHz, and 1.0 MHz for measurements above 1.0 GHz.

Table 1. Spurious Emission Limit for Receivers

Frequency (MHz)	Field strength (µV/m @ 3m)	Field strength (dBµV/m @ 3m)
30–88	100	40.0
88–216	150	43.5
216–960	200	46.0
Above 960	500	54.0

^{*} Use quasi-peak below 1000 MHz and averaging meter above 1000 MHz.

5.7.2 Test Results: PASS

	5.7.2 Test Results.													
Table 6:	Table 6: Receiver spurious emission (Radiated)													
BELOV	BELOW 1 GHz													
Frequency	Receiver Bandwidth	Pol.	Antenna Height	Turn Table	Reading	Amp Gain	ATT	AF	CL	Actual	Limit	Margin		
[MHz]	[kHz]	[V/H]	[m]	[degree]	$[dB(\mu V)]$	[dB]	[dB]	dB(1/m)	[dB]	$\left[dB(\mu V/m)\right]$	$[dB(\mu V/m)]$	[dB]		
Average/Pe	Average/Peak/Quasi-peak data, emissions below 30 MHz													
	N	ot app	licable; t	he lowe	st generate	d/used j	freque	ncy is 3	0 MHz	from the c	rystal			
Quasi-peak	k data, emi	ssions	below 100	0 MHz (802.11 b/g/r	n HT20/I	HT40 n	node)						
282.50	120	V	1.00	246	51.20	27.75	-	12.49	1.62	37.56	46.00	8.44		
282.50	120	Н	3.30	275	50.90	27.75	-	12.49	1.62	37.26	46.00	8.74		
285.07	120	V	1.00	250	54.20	27.75	-	12.49	1.62	40.56	46.00	5.44		
285.07	120	Н	3.70	274	52.70	27.75	-	12.65	1.62	39.06	46.00	6.94		
287.65	120	V	1.00	244	50.10	27.73	-	12.65	1.62	36.64	46.00	9.36		
287.65	120	Н	3.70	275	50.20	27.73	-	12.65	1.62	36.74	46.00	9.26		
290.09	120	V	1.00	245	50.50	27.73	-	13.19	1.62	37.04	46.00	8.96		
290.09	120	Н	3.60	280	50.20	27.73	-	13.87	1.62	36.74	46.00	9.26		
307.96	120	V	1.00	227	49.00	27.79	-	12.49	1.77	36.17	46.00	9.83		
307.96	120	Н	3.70	265	45.20	27.79	-	12.49	1.77	32.37	46.00	13.63		
341.00	120	V	1.00	65	48.70	28.04	-	12.49	1.77	36.30	46.00	9.70		
341.00	120	Н	2.80	257	46.00	28.04	-	12.65	1.77	33.60	46.00	12.40		

Margin (dB) = Limit – Actual

[Actual = Reading - Amp Gain + Attenuator + AF + CL]

- 1. H = Horizontal, V = Vertical Polarization
- 2. ATT = Attenuation (10dB pad and/or Insertion Loss of HPF), AF/CL = Antenna Factor and Cable Loss

Page 43 of 44

Table 6: Receiver spurious emission (Radiated) (continued)												
ABOVE	E 1 GHz											
Frequency	Receiver Bandwidth	Pol.	Antenna Height	Turn Table	Reading	Amp Gain	ATT	AF	CL	Actual	Limit	Margin
[MHz]	[kHz]	[V/H]	[m]	[degree]	$[dB(\mu V)]$	[dB]	[dB]	dB(1/m)	[dB]	$\left[dB(\mu V/m)\right]$	$[dB(\mu V/m)]$	[dB]
AVERAGI	E data, emis	ssion a	bove 1 GF	Hz (802.1	11 b/g/n HT	20/HT40) mode))				
					No spurio	aus omis	usions t	found				
			T		ivo spurio	us emis	sions j	ouna		Γ		
PEAK data	a, emission	above	1 GHz (80	02.11 b/g	g/n HT20/H	T40 mod	le)					
					No spurio	us emis	sions f	found				
											· · · · · · · · · · · · · · · · · · ·	

Margin (dB) = Limit - Actual

[Actual = Reading - Amp Gain + Attenuator + AF + CL]

- 1. H = Horizontal, V = Vertical Polarization
- $2.\,ATT = Attenuation~(10dB~pad~and/or~Insertion~Loss~of~HPF), AF/CL = Antenna~Factor~and~Cable~Loss~of~HPF), AF/CL = Antenna~Antenna~Antenna~Antenna~Antenna~Antenna~Antenna~Antenna~Antenna~Antenna~Antenna~Antenn$

NOTE: All emissions not reported were more than 20 dB below the specified limit or in the noise floor.

Page 44 of 44

5.8 RF Exposure

5.8.1 Regulation

According to §15.247(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the Commission's guidelines. See § 1.1307(b)(1) of this Chapter.

Limits for Maximum Permissive Exposure: RF exposure is calculated.

Frequency Range	Electric Field Strength [V/m]	Magnetic Field Strength [A/m]	Power Density [mW/cm ²]	Averaging Time [minute]
	Limits for Gene	ral Population/Uncon	trolled Exposure	
0.3 ~ 1.34	614	1.63	*(100)	30
1.34 ~ 30 30 ~ 300	824/f 27.5	2.19/f 0.073	*(180/f ²) 0.2	30 30
300 ~ 1500 1500 ~ 15000	/	/	f/1500 <u>1.0</u>	30 30

f = frequency in MHz,

MPE (Maximum Permissive Exposure) Prediction

Predication of MPE limit at a given distance: Equation from page 18 of OET Bulletin 65, Edition 97-01

$$S = PG/4\pi R^2$$
 S = power density [mW/cm²]

P = power input to antenna [mW]

$$\left(\Rightarrow R = \sqrt{PG/4\pi S} \right)$$
 G = power gain of the antenna in the direction of interest relative to an isotropic radiator

R = distance to the center of radiation of the antenna [cm]

EUT: Maximum peak output power = 106 [mW](= 20.26 dBm) & Antenna gain =1.85 (= 2.66 [dBi])	
100 mW, at 20 cm from an antenna 6 [dBi]	$S = PG/4\pi R^2 = 100 \times 3.98 / (4 \times \pi \times 400)$ = 0.0792 [mW/cm ²] < 1.0 [mW/cm ²]
106 mW, at 20 cm from the antenna 2.66 [dBi]	$S = PG/4\pi R^2 = 0.0390 \text{ [mW/cm}^2] < 1.0 \text{ [mW/cm}^2]$
106 mW, at 4 cm from the antenna 2.66 [dBi]	$S = PG/4\pi R^2 = 0.9753 \text{ [mW/cm}^2] < 1.0 \text{ [mW/cm}^2]$
106 mW, at 2.5 cm from the antenna 2.66 [dBi]	$S = PG/4\pi R^2 = 2.4968 \text{ [mW/cm}^2\text{]}$

5.8.2 RF Exposure Compliance Issue

July 02 TCB Exclusion List: for portable transmitters,

Low threshold [(60/f_{GHZ}
$$\approx$$
 25) mW, d < 2.5 cm, (120/f_{GHZ} \approx 50) mW, d \geq 2.5 cm], and

High threshold [(900/ $f_{GHZ} \approx 370$) mW, d < 20 cm], where f_{GHz} : 2.44, d: distance to a person's body

The users manual for end users must include the following information in a prominent location "IMPORTANT NOTE: To comply with FCC RF exposure compliance requirements, the antenna used for this transmitter must be installed to provide a separation distance of at least 20 cm from all persons and must not be co-located or operating in conjunction with any other antenna or transmitter."

^{* =} Plane-wave equivalent power density