

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com



## MEASUREMENT REPORT FCC Part 22 & 24 / IC RSS-132/RSS-133

#### Applicant Name:

Samsung Electronics Co., Ltd. 416 Maetan 3-Dong, Yeongtong-gu Suwon-si, Gyeonggi-do 443-742, Republic of Korea

## Date of Testing:

08/07/2012 - 09/0/2012 Test Site/Location: PCTEST Lab., Columbia, MD, USA Test Report Serial No.: 0Y1207311082.A3L

## FCC ID:

## A3LSPHL900

## APPLICANT:

## SAMSUNG ELECTRONICS CO., LTD.

Application Type: Model(s): EUT Type: FCC Classification: FCC Rule Part(s): IC Specification(s): Test Procedure(s): Test Device Serial No.:

Certification SPH-L900 Portable Handset PCS Licensed Transmitter Held to Ear (PCE) §2; §22(H), §24(E) RSS-132 Issue 2; RSS-133 Issue 5 ANSI/TIA-603-C-2004, KDB 971168 *identical prototype* [S/N: #10]

|          |                       |                        | ER P/                       | EIRP                      |
|----------|-----------------------|------------------------|-----------------------------|---------------------------|
| Mode     | Tx Frequency<br>(MHz) | Emission<br>Designator | Maximum<br>Power<br>(Watts) | Maximum<br>Power<br>(dBm) |
| CDMA850  | 824.70 - 848.31       | 1M27F9W                | 0.101                       | 20.03                     |
| CDMA1900 | 1851.25 - 1908.75     | 1M28F9W                | 0.279                       | 24.46                     |

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

PCTEST certifies that no party to this application has been subject to a denial of Federal benefits that includes FCC benefits pursuant to Section 5301 of the Anti-Drug Abuse Act of 1988, 21 U.S.C. 862.

Randy Ortanez President



| FCC ID: A3LSPHL900                         |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:                           | Test Dates:            | EUT Type:                                                       |         | Page 1 of 36                    |
| 0Y1207311082.A3L                           | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 1 01 30                    |
| © 2012 PCTEST Engineering Laboratory, Inc. |                        |                                                                 |         | REV 1.6CFI                      |



## TABLE OF CONTENTS

| FCC P | ART 2 | 2 & 24 MEASUREMENT REPORT                           | 3  |
|-------|-------|-----------------------------------------------------|----|
| 1.0   | INTR  | ODUCTION                                            | 4  |
|       | 1.1   | SCOPE                                               | 4  |
|       | 1.2   | TESTING FACILITY                                    | 4  |
| 2.0   | PRO   | DUCT INFORMATION                                    | 5  |
|       | 2.1   | EQUIPMENT DESCRIPTION                               | 5  |
|       | 2.2   | DEVICE CAPABILITIES                                 | 5  |
|       | 2.3   | TEST CONFIGURATION                                  | 5  |
|       | 2.4   | EMI SUPPRESSION DEVICE(S)/MODIFICATIONS             | 5  |
|       | 2.5   | LABELING REQUIREMENTS                               | 5  |
| 3.0   | DESC  | CRIPTION OF TESTS                                   | 6  |
|       | 3.1   | EVALUATION PROCEDURE                                | 6  |
|       | 3.2   | CELLULAR - BASE FREQUENCY BLOCKS                    | 6  |
|       | 3.3   | CELLULAR - MOBILE FREQUENCY BLOCKS                  | 6  |
|       | 3.4   | PCS - BASE FREQUENCY BLOCKS                         | 6  |
|       | 3.5   | PCS - MOBILE FREQUENCY BLOCKS                       | 7  |
|       | 3.6   | OCCUPIED BANDWIDTH                                  | 7  |
|       | 3.7   | SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL | 7  |
|       | 3.8   | RADIATED POWER AND RADIATED SPURIOUS EMISSIONS      | 8  |
|       | 3.9   | PEAK-AVERAGE RATIO                                  | 9  |
|       | 3.10  | FREQUENCY STABILITY / TEMPERATURE VARIATION         | 9  |
| 4.0   | TEST  | FEQUIPMENT CALIBRATION DATA                         | 10 |
| 5.0   | SAM   | PLE CALCULATIONS                                    | 11 |
| 6.0   | TEST  | RESULTS                                             | 12 |
|       | 6.1   | SUMMARY                                             | 12 |
|       | 6.2   | EFFECTIVE RADIATED POWER OUTPUT DATA                | 13 |
|       | 6.3   | EQUIVALENT ISOTROPIC RADIATED POWER OUTPUT DATA     | 13 |
|       | 6.4   | CELLULAR CDMA RADIATED MEASUREMENTS                 | 14 |
|       | 6.5   | PCS CDMA RADIATED MEASUREMENTS                      | 17 |
|       | 6.6   | CELLULAR CDMA FREQUENCY STABILITY MEASUREMENTS      | 20 |
|       | 6.7   | PCS CDMA FREQUENCY STABILITY MEASUREMENTS           | 22 |
| 7.0   | PLOT  | Γ(S) OF EMISSIONS                                   | 24 |
| 8.0   | CON   | CLUSION                                             | 36 |

| FCC ID: A3LSPHL900                                            |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |  |
|---------------------------------------------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|--|
| Test Report S/N:                                              | Test Dates:            | EUT Type:                                                       |         | Page 2 of 36                    |  |
| 0Y1207311082.A3L                                              | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 2 01 30                    |  |
| © 2012 PCTEST Engineering Laboratory, Inc. REV 1.6C 05/18/201 |                        |                                                                 |         |                                 |  |





## MEASUREMENT REPORT FCC Part 22 & 24



## §2.1033 General Information

| APPLICANT:              | Samsung Electronics C  | Co., Ltd.         |                 |             |
|-------------------------|------------------------|-------------------|-----------------|-------------|
| APPLICANT ADDRESS:      | 416 Maetan 3-Dong, Y   | eongtong-gu       |                 |             |
|                         | Suwon-si, Gyeonggi-do  | o, 443-742 , Rep  | oublic of Korea |             |
| TEST SITE:              | PCTEST ENGINEERIN      | NG LABORATO       | RY, INC.        |             |
| TEST SITE ADDRESS:      | 7185 Oakland Mills Ro  | ad, Columbia, M   | 1D 21046 USA    |             |
| FCC RULE PART(S):       | §2; §22(H), §24(E)     |                   |                 |             |
| IC SPECIFICATION(S):    | RSS-132 Issue 2; RSS   | S-133 Issue 5     |                 |             |
| BASE MODEL:             | SPH-L900               |                   |                 |             |
| FCC ID:                 | A3LSPHL900             |                   |                 |             |
| FCC CLASSIFICATION:     | PCS Licensed Transm    | itter Held to Ear | (PCE)           |             |
| MODE:                   | CDMA / EvDO            |                   |                 |             |
| FREQUENCY TOLERANCE:    | ±0.00025 % (2.5 ppm)   |                   |                 |             |
| Test Device Serial No.: | #10                    | Production        | Pre-Production  | Engineering |
| DATE(S) OF TEST:        | 08/07/2012 - 09/0/2012 | 2                 |                 |             |
| TEST REPORT S/N:        | 0Y1207311082.A3L       |                   |                 |             |

## **Test Facility / Accreditations**

#### Measurements were performed at PCTEST Engineering Lab. located in Columbia, MD 21046, U.S.A.



- PCTEST facility is an FCC registered (PCTEST Reg. No. 159966) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451B-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

| FCC ID: A3LSPHL900       |                                            | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------|--------------------------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:         | Test Dates:                                | EUT Type:                                                       |         | Page 3 of 36                    |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012                     | Portable Handset                                                |         | Fage 5 01 50                    |
| © 2012 PCTEST Engineerin | 0 2012 PCTEST Engineering Laboratory, Inc. |                                                                 |         |                                 |





#### INTRODUCTION 1.0

#### 1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

#### 1.2 Testing Facility

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area, (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2003/2009 on February 15, 2012.

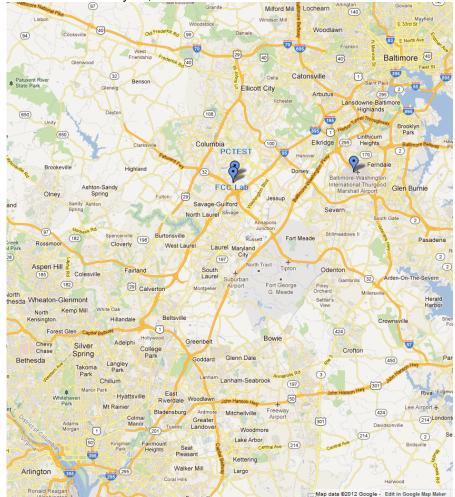



Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

| FCC ID: A3LSPHL900                        |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|-------------------------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:                          | Test Dates:            | EUT Type:                                                       |         | Dogo 4 of 26                    |
| 0Y1207311082.A3L                          | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Page 4 of 36                    |
| © 2012 PCTEST Engineering Laboratory Inc. |                        |                                                                 |         |                                 |



## 2.0 PRODUCT INFORMATION

## 2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSPHL900**. The test data contained in this report pertains only to the emissions due to the EUT's licensed transmitter.

## 2.2 Device Capabilities

This device contains the following capabilities:

850/1900 CDMA/EvDO Rev 0/A (BC0, BC1, BC10), 850/1900 GSM/GPRS/EDGE, 1900 WCDMA/HSPA, Band 25 LTE (5MHz BW), 802.11a/b/g/n WLAN (DTS/NII), Bluetooth (1x,EDR, LE), NFC

## 2.3 Test Configuration

The Samsung Portable Handset FCC ID: A3LSPHL900 was tested per the guidance of ANSI/TIA-603-C-2004 and KDB 971168. See Section 3.0 of this test report for a description of the radiated and antenna port conducted emissions tests.

## 2.4 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

## 2.5 Labeling Requirements

#### Per 2.925

The FCC identifier shall be permanently affixed to the equipment and shall be readily visible to the purchaser at the time of purchase.

#### Per 15.19; Docket 95-19

In addition to this requirement, a device subject to certification shall be labeled as follows:

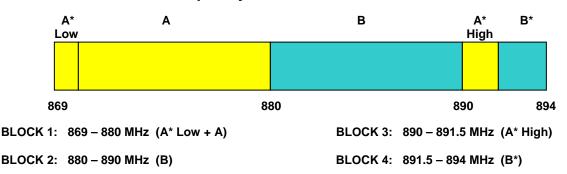
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase. However, when the device is so small wherein placement of the label with specified statement is not practical, only the trade name and FCC ID must be displayed on the device per Section 15.19(b)(2).

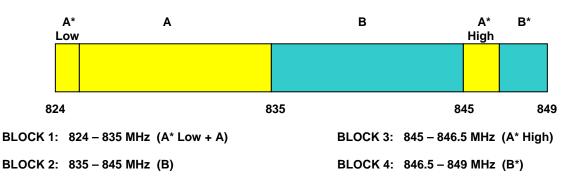
Please see attachment for FCC ID label and label location.

| FCC ID: A3LSPHL900                         |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:                           | Test Dates:            | EUT Type:                                                       |         | Page 5 of 36                    |
| 0Y1207311082.A3L                           | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 5 01 50                    |
| © 2012 PCTEST Engineering Laboratory, Inc. |                        |                                                                 |         | REV 1.6CFI                      |




## 3.0 DESCRIPTION OF TESTS

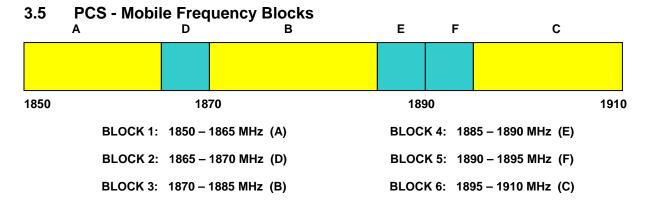
## 3.1 Evaluation Procedure


The measurement procedures described in the "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-C-2004) and "Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems" were used in the measurement of the measurement of the **Samsung Portable Handset FCC ID: A3LSPHL900.** 

Deviation from Measurement Procedure.....None

## 3.2 Cellular - Base Frequency Blocks




## 3.3 Cellular - Mobile Frequency Blocks



#### 3.4 **PCS - Base Frequency Blocks** Е F С D В Α 1930 1950 1970 1990 BLOCK 1: 1930 – 1945 MHz (A) BLOCK 4: 1965 – 1970 MHz (E) BLOCK 2: 1945 - 1950 MHz (D) BLOCK 5: 1970 - 1975 MHz (F) BLOCK 3: 1950 - 1965 MHz (B) BLOCK 6: 1975 – 1990 MHz (C)

| FCC ID: A3LSPHL900       |                                          | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------|------------------------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:         | Test Dates:                              | EUT Type:                                                       |         | Page 6 of 36                    |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012                   | Portable Handset                                                |         | Fage 0 01 30                    |
| © 2012 PCTEST Engineerin | 2012 PCTEST Engineering Laboratory, Inc. |                                                                 |         |                                 |





## 3.6 Occupied Bandwidth

§2.1049, RSS-Gen (4.6.1)

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. The spectrum analyzers' "occupied bandwidth" measurement function was used to record the occupied bandwidth in accordance with KDB 971168.

## **3.7** Spurious and Harmonic Emissions at Antenna Terminal §2.1051, 22.917(a), 24.238(a)(b); RSS-132 (4.5.1), RSS-133 (6.5.1)

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10<sup>th</sup> harmonic. On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least 43 + 10 log(P) dB. Compliance with these provisions is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for Part 22 and 1 MHz or greater for Part 24. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

| FCC ID: A3LSPHL900                         |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:                           | Test Dates:            | EUT Type:                                                       |         | Page 7 of 36                    |
| 0Y1207311082.A3L                           | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage / 01 30                    |
| © 2012 PCTEST Engineering Laboratory, Inc. |                        |                                                                 |         | REV 1.6CFI                      |



#### **3.8** Radiated Power and Radiated Spurious Emissions <u>§22.913(a)(2), 22.917(a), 24.232(c), 24.238(a), RSS-132 (4.5.1.2), RSS-133 (6.5.1)</u>

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. An ETS Lindgren Model 2188 raised turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. A 78cm high PVC support structure is placed on top of the turntable. A <sup>3</sup>/<sub>4</sub>" (~1.9cm) sheet of high density polyethylene is used as the table top and is placed on top of the PVC supports to bring the total height of the table to 80cm.

The equipment under test was transmitting while connected to its integral antenna and is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Radiated power levels are also investigated with the receive antenna horizontally and vertically polarized. The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth, a RMS detector, RBW = 100kHz, VBW = 300kHz, and a 1 second sweep time over a minimum of 10 sweeps, per the guidelines of KDB 971168.

Per the guidance of ANSI/TIA-603-C-2004, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

 $P_{d \, [dBm]} = P_{g \, [dBm]} - cable \ loss \, _{[dB]} + antenna \ gain \, _{[dBd/dBi]}$ 

Where,  $P_d$  is the dipole equivalent power,  $P_g$  is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to  $P_{g \ [dBm]}$  – cable loss  $_{[dB]}$ .

The calculated  $P_d$  levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of 43 + 10log<sub>10</sub>(Power [Watts]) specified in 22.917(a) and 24.238(a).

| FCC ID: A3LSPHL900       |                                            | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------|--------------------------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:         | Test Dates:                                | EUT Type:                                                       |         | Page 8 of 36                    |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012                     | Portable Handset                                                |         | Fage o UI So                    |
| © 2012 PCTEST Engineerin | 0 2012 PCTEST Engineering Laboratory, Inc. |                                                                 |         |                                 |



### 3.9 Peak-Average Ratio §24.232(d), RSS-133 (6.4)

A peak to average ratio measurement is performed at the conducted port of the EUT. For CDMA signals, the spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

## **3.10** Frequency Stability / Temperature Variation §2.1055, 22.355, 24.235, RSS-132 (4.3), RSS-133 (6.3)

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-C-2004. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Specification – For Part 22, the frequency stability of the transmitter shall be maintained within  $\pm 0.00025\%$  ( $\pm 2.5$  ppm) of the center frequency. For Part 24, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

#### Time Period and Procedure:

1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).

2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.

3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A sufficient stabilization period at each temperature shall be used prior to each frequency requirement.

| FCC ID: A3LSPHL900       |                                            | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------|--------------------------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:         | Test Dates:                                | EUT Type:                                                       |         | Page 9 of 36                    |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012                     | Portable Handset                                                |         | Fage 9 01 30                    |
| © 2012 PCTEST Engineerin | © 2012 PCTEST Engineering Laboratory, Inc. |                                                                 |         |                                 |



## 4.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

| Manufacturer    | Model     | Description                            | Cal Date   | Cal Interval | Cal Due    | Serial Number |
|-----------------|-----------|----------------------------------------|------------|--------------|------------|---------------|
| -               | LTx1      | Licensed Transmitter Cable Set         | 1/25/2012  | Annual       | 1/25/2013  | N/A           |
| -               | RE1       | Radiated Emissions Cable Set (UHF/EHF) | 7/10/2012  | Annual       | 7/10/2013  | N/A           |
| -               | RE2       | Radiated Emissions Cable Set (VHF/UHF) | 2/13/2012  | Annual       | 2/13/2013  | N/A           |
| Agilent         | 8447D     | Broadband Amplifier                    | 5/8/2012   | Annual       | 5/8/2013   | 1937A03348    |
| Agilent         | E8257D    | (250kHz-20GHz) Signal Generator        | 4/5/2012   | Annual       | 4/5/2013   | MY45470194    |
| Agilent         | N9020A    | MXA Signal Analyzer                    | 10/10/2011 | Annual       | 10/10/2012 | US46470561    |
| Espec           | ESX-2CA   | Environmental Chamber                  | 4/4/2012   | Annual       | 4/4/2013   | 17620         |
| ETS Lindgren    | 3117      | 1-18 GHz DRG Horn (Medium)             | 7/22/2011  | Biennial     | 7/22/2013  | 125518        |
| ETS Lindgren    | 3160-09   | 18-26.5 GHz Standard Gain Horn         | 5/30/2012  | Biennial     | 5/30/2014  | 135427        |
| ETS Lindgren    | 3164-08   | Quad Ridge Horn Antenna                | 10/1/2010  | Biennial     | 10/1/2012  | 128337        |
| Mini-Circuits   | VHF-1200+ | High Pass Filter                       | 1/15/2012  | Annual       | 1/15/2013  | 30923         |
| Mini-Circuits   | VHF-3100+ | High Pass Filter                       | 1/15/2012  | Annual       | 1/15/2013  | 30841         |
| Rohde & Schwarz | CMU200    | Base Station Simulator                 | N/A        |              | N/A        | 836536/0005   |
| Rohde & Schwarz | TS-PR18   | 1-18 GHz Pre-Amplifier                 | 6/26/2012  | Annual       | 6/26/2013  | 100071        |
| Rohde & Schwarz | TS-PR26   | 18-26.5 GHz Pre-Amplifier              | 5/30/2012  | Annual       | 5/30/2013  | 100040        |
| Rohde & Schwarz | ESU26     | EMI Test Receiver                      | 12/15/2011 | Annual       | 12/15/2012 | 100342        |
| Schwarzbeck     | UHA 9105  | Dipole Antenna (400 - 1GHz) Rx         | 11/14/2011 | Biennial     | 11/14/2013 | 9105-2404     |
| Sunol           | JB5       | Bi-Log Antenna (30M - 5GHz)            | 1/26/2012  | Biennial     | 1/26/2014  | A051107       |

Table 4-1. Test Equipment

## NOTE:

Test equipment showing a calibration date of "N/A" was used only to maintain a link with the EUT and not for calibrated measurements.

| FCC ID: A3LSPHL900       |                                            | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |  |
|--------------------------|--------------------------------------------|-----------------------------------------------------------------|---------|---------------------------------|--|
| Test Report S/N:         | Test Dates:                                | EUT Type:                                                       |         | Page 10 of 36                   |  |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012                     | Portable Handset                                                |         | Fage 10 01 30                   |  |
| © 2012 PCTEST Engineerin | © 2012 PCTEST Engineering Laboratory, Inc. |                                                                 |         |                                 |  |



## 5.0 SAMPLE CALCULATIONS

## **Emission Designator**

#### Emission Designator = 1M25F9W

CDMA BW = 1.25 MHz F = Frequency Modulation 9 = Composite Digital Info W = Combination (Audio/Data) (Measured at the 99.75% power bandwidth)

## **Spurious Radiated Emission - PCS Band**

## Example: Channel 25 PCS Mode 2<sup>nd</sup> Harmonic (3702.50 MHz)

The receive spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 3702.50 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.50 dBm so this harmonic was 25.50 dBm - (-24.80) = 50.3 dBc.

| FCC ID: A3LSPHL900                         |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |  |
|--------------------------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|--|
| Test Report S/N:                           | Test Dates:            | EUT Type:                                                       |         | Page 11 of 36                   |  |
| 0Y1207311082.A3L                           | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 11 01 50                   |  |
| © 2012 PCTEST Engineering Laboratory, Inc. |                        |                                                                 |         |                                 |  |



## 6.0 TEST RESULTS

## 6.1 Summary

| Company Name:       | Samsung Electronics Co., Ltd.              |
|---------------------|--------------------------------------------|
| FCC ID:             | A3LSPHL900                                 |
| FCC Classification: | PCS Licensed Transmitter Held to Ear (PCE) |
| Mode(s):            | <u>CDMA / EvDO</u>                         |

| FCC Part<br>Section(s)             | RSS Sections                         | Test Description                            | Test Limit                                                                                  | Test<br>Condition | Test<br>Result | Reference                |  |  |  |
|------------------------------------|--------------------------------------|---------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|----------------|--------------------------|--|--|--|
| TRANSMITTER MODE (TX)              |                                      |                                             |                                                                                             |                   |                |                          |  |  |  |
| 2.1049,<br>22.917(a),<br>24.238(a) | RSS-Gen (4.6.1)<br>RSS-133 (2.3)     | Occupied Bandwidth                          | N/A                                                                                         |                   | PASS           | Section 7.0              |  |  |  |
| 2.1051,<br>22.917(a),<br>24.238(a) | RSS-132 (4.5.1.2)<br>RSS-133 (6.5.1) | Band Edge / Conducted<br>Spurious Emissions | < 43 + 10log <sub>10</sub> (P[Watts]) at<br>Band Edge and for all out-of-<br>band emissions |                   | PASS           | Section 7.0              |  |  |  |
| 24.232(d)                          | RSS-133 (6.4)                        | Peak-Average Ratio                          | < 13 dB                                                                                     | CONDUCTED         | PASS           | Section 7.0              |  |  |  |
| 2.1046                             | RSS-132 (4.4)<br>RSS-133 (4.1)       | Transmitter Conducted<br>Output Power       | N/A                                                                                         |                   | PASS           | RF<br>Exposure<br>Report |  |  |  |
| 22.913(a)(2)                       | RSS-132 (4.4)                        | Effective Radiated Power                    | < 7 Watts max. ERP                                                                          |                   | PASS           | Section 6.2              |  |  |  |
| 24.232(c)                          | RSS-133 (6.4)<br>[SRSP-510 (5.1.2)]  | Equivalent Isotropic<br>Radiated Power      | < 2 Watts max. EIRP                                                                         | RADIATED          | PASS           | Section 6.3              |  |  |  |
| 2.1053,<br>22.917(a),<br>24.238(a) | RSS-132 (4.5.1.2)<br>RSS-133 (6.5.1) | Undesirable Emissions                       | < 43 + 10log <sub>10</sub> (P[Watts]) for all out-of-band emissions                         |                   | PASS           | Sections<br>6.4, 6.5     |  |  |  |
| 2.1055, 22.355,<br>24.235          | RSS-132 (4.3)<br>RSS-133 (6.3)       | Frequency Stability                         | < 2.5 ppm (Part 22)<br>Emission must remain in band<br>(Part 24)                            |                   | PASS           | Sections<br>6.6, 6.7     |  |  |  |

#### Table 6-1. Summary of Test Results

#### Notes:

1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.

2) The analyzer plots shown in Section 7.0 were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.

3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.

| FCC ID: A3LSPHL900                         |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |  |
|--------------------------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|--|
| Test Report S/N:                           | Test Dates:            | EUT Type:                                                       |         | Page 12 of 36                   |  |
| 0Y1207311082.A3L                           | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 12 01 30                   |  |
| © 2012 PCTEST Engineering Laboratory, Inc. |                        |                                                                 |         |                                 |  |



### 6.2 Effective Radiated Power Output Data §22.913(a)(2), RSS-132 (4.4)

| Frequency<br>[MHz] | Mode    | Battery<br>Type | Sub stit ute<br>Level<br>[dBm] | Antenna<br>Gain<br>[dBd] | Pol<br>[H/V] | ERP<br>[dBm] | ER P<br>[Watts] | ER P<br>Limit<br>[dBm] | Margin<br>[dB] |
|--------------------|---------|-----------------|--------------------------------|--------------------------|--------------|--------------|-----------------|------------------------|----------------|
| 824.70             | CDMA850 | Standard        | 15.200                         | 4.66                     | Н            | 19.86        | 0.097           | 38.45                  | -18.59         |
| 836.52             | CDMA850 | Standard        | 15.230                         | 4.80                     | Н            | 20.03        | 0.101           | 38.45                  | -18.42         |
| 848.31             | CDMA850 | Standard        | 14.770                         | 4.95                     | Н            | 19.72        | 0.094           | 38.45                  | -18.73         |

Table 6-2. Effective Radiated Power Output Data

# 6.3 Equivalent Isotropic Radiated Power Output Data §24.232(c), RSS-133 (6.4) [SRSP-510 (5.1.2)]

| Frequency<br>[MHz] | Mode     | Battery<br>Type | Substitute<br>Level<br>[dBm] | Antenna<br>Gain<br>[dBi] | Pol<br>[H/V] | EIRP<br>[dBm] | EIRP<br>[Watts] | EIRP<br>Limit<br>[dBm] | Margin<br>[dB] |
|--------------------|----------|-----------------|------------------------------|--------------------------|--------------|---------------|-----------------|------------------------|----------------|
| 1851.25            | CDMA1900 | Standard        | 15.900                       | 8.56                     | Н            | 24.46         | 0.279           | 33.01                  | -8.55          |
| 1880.00            | CDMA1900 | Standard        | 14.940                       | 8.55                     | Н            | 23.49         | 0.223           | 33.01                  | -9.52          |
| 1908.75            | CDMA1900 | Standard        | 13.960                       | 8.53                     | Н            | 22.49         | 0.178           | 33.01                  | -10.52         |

Table 6-3. Equivalent Isotropic Radiated Power Output Data

## NOTES:

1. This device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits.

2. This unit was tested with its standard battery.

| FCC ID: A3LSPHL900       |                                            | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |  |  |
|--------------------------|--------------------------------------------|-----------------------------------------------------------------|---------|---------------------------------|--|--|
| Test Report S/N:         | Test Dates:                                | EUT Type:                                                       |         | Page 13 of 36                   |  |  |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012                     | Portable Handset                                                |         | Fage 13 01 30                   |  |  |
| © 2012 PCTEST Engineerin | © 2012 PCTEST Engineering Laboratory, Inc. |                                                                 |         |                                 |  |  |



## 6.4 Cellular CDMA Radiated Measurements §2.1053, 22.917(a), RSS-132 (4.5.1.2)

## Field Strength of SPURIOUS Radiation

| OPERATING FREQUENCY:   |                     | MHz    |       |   |
|------------------------|---------------------|--------|-------|---|
| CHANNEL:               | 101                 | _      |       |   |
| MEASURED OUTPUT POWER: | 19.86               | dBm =  | 0.097 | W |
| MODULATION SIGNAL:     | CDMA                |        |       |   |
| DISTANCE:              | 3                   | meters |       |   |
| LIMIT:                 | 43 + 10 log10 (W) = | 32.86  | dBc   |   |

| FREQUENCY<br>(MHz) | LEVEL @<br>ANTENNA<br>TERMINALS<br>(dBm) | SUBSTITUTE<br>ANTENNA GAIN<br>(dBd) | SPURIOUS<br>EMISSION<br>LEVEL<br>(dBm) | POL<br>(H/V) | (dBc) |
|--------------------|------------------------------------------|-------------------------------------|----------------------------------------|--------------|-------|
| 1649.40            | -38.41                                   | 2.59                                | -35.83                                 | Н            | 55.69 |
| 2474.10            | -49.47                                   | 2.89                                | -46.58                                 | Н            | 66.44 |
| 3298.80            | -54.07                                   | 5.45                                | -48.61                                 | Н            | 68.47 |
| 4123.50            | -50.24                                   | 7.05                                | -43.19                                 | Н            | 63.04 |
| 4948.20            | -55.46                                   | 7.87                                | -47.60                                 | Н            | 67.46 |

Table 6-4. Radiated Spurious Data (Cellular CDMA Mode – Ch. 1013)

#### NOTES:

1. This device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits.

2. This unit was tested with its standard battery.

| FCC ID: A3LSPHL900       |                                            | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |  |  |
|--------------------------|--------------------------------------------|-----------------------------------------------------------------|---------|---------------------------------|--|--|
| Test Report S/N:         | Test Dates:                                | EUT Type:                                                       |         | Page 14 of 36                   |  |  |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012                     | Portable Handset                                                |         | Fage 14 01 50                   |  |  |
| © 2012 PCTEST Engineerin | © 2012 PCTEST Engineering Laboratory, Inc. |                                                                 |         |                                 |  |  |



### Cellular CDMA Radiated Measurements (Cont'd) §2.1053, 22.917(a), RSS-132 (4.5.1.2)

## Field Strength of SPURIOUS Radiation

| OPERATING FREQUENCY:   | 836.52              |        | MHz            |
|------------------------|---------------------|--------|----------------|
| CHANNEL:               | 384                 |        | _              |
| MEASURED OUTPUT POWER: | 20.03               | dBm =  | <u>0.101</u> W |
| MODULATION SIGNAL:     | CDMA                | _      |                |
| DISTANCE:              | 3                   | meters |                |
| LIMIT:                 | 43 + 10 log10 (W) = | 33.03  | dBc            |

| FREQUENCY<br>(MHz) | LEVEL @<br>ANTENNA<br>TERMINALS<br>(dBm) | SUBSTITUTE<br>ANTENNA GAIN<br>(dBd) | SPURIOUS<br>EMISSION<br>LEVEL<br>(dBm) | POL<br>(H/V) | (dBc) |
|--------------------|------------------------------------------|-------------------------------------|----------------------------------------|--------------|-------|
| 1673.04            | -39.23                                   | 2.34                                | -36.89                                 | Н            | 56.92 |
| 2509.56            | -49.71                                   | 2.84                                | -46.87                                 | Н            | 66.91 |
| 3346.08            | -53.99                                   | 5.64                                | -48.34                                 | Н            | 68.38 |
| 4182.60            | -55.52                                   | 7.14                                | -48.38                                 | н            | 68.41 |
| 5019.12            | -48.44                                   | 7.97                                | -40.48                                 | Н            | 60.51 |

Table 6-5. Radiated Spurious Data (Cellular CDMA Mode – Ch. 384)

#### NOTES:

1. This device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits.

2. This unit was tested with its standard battery.

| FCC ID: A3LSPHL900       |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:         | Test Dates:            | EUT Type:                                                       |         | Page 15 of 36                   |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Faye 13 01 30                   |
| © 2012 PCTEST Engineerin | ig Laboratory, Inc.    |                                                                 |         | REV 1.6CFI                      |



### Cellular CDMA Radiated Measurements (Cont'd) §2.1053, 22.917(a), RSS-132 (4.5.1.2)

## Field Strength of SPURIOUS Radiation

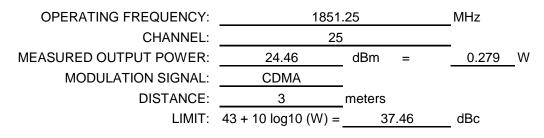
| OPERATING FREQUENCY:   | 848.                | 31     | MHz            |
|------------------------|---------------------|--------|----------------|
| CHANNEL:               | 777                 | 7      | _              |
| MEASURED OUTPUT POWER: | 19.72               | dBm =  | <u>0.094</u> W |
| MODULATION SIGNAL:     | CDMA                |        |                |
| DISTANCE:              | 3                   | meters |                |
| LIMIT:                 | 43 + 10 log10 (W) = | 32.72  | dBc            |

| FREQUENCY<br>(MHz) | LEVEL @<br>ANTENNA<br>TERMINALS<br>(dBm) | SUBSTITUTE<br>ANTENNA GAIN<br>(dBd) | SPURIOUS<br>EMISSION<br>LEVEL<br>(dBm) | POL<br>(H/V) | (dBc) |
|--------------------|------------------------------------------|-------------------------------------|----------------------------------------|--------------|-------|
| 1696.62            | -36.02                                   | 2.09                                | -33.93                                 | Н            | 53.64 |
| 2544.93            | -42.79                                   | 3.16                                | -39.63                                 | Н            | 59.34 |
| 3393.24            | -54.64                                   | 5.83                                | -48.81                                 | Н            | 68.52 |
| 4241.55            | -52.92                                   | 7.24                                | -45.68                                 | Н            | 65.40 |
| 5089.86            | -52.07                                   | 8.02                                | -44.05                                 | Н            | 63.76 |

Table 6-6. Radiated Spurious Data (Cellular CDMA Mode – Ch. 777)

#### NOTES:

1. This device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits.


2. This unit was tested with its standard battery.

| FCC ID: A3LSPHL900                         |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG    | Reviewed by:<br>Quality Manager |
|--------------------------------------------|------------------------|-----------------------------------------------------------------|------------|---------------------------------|
| Test Report S/N:                           | Test Dates:            | EUT Type:                                                       |            | Page 16 of 36                   |
| 0Y1207311082.A3L                           | 08/07/2012 - 09/0/2012 | Portable Handset                                                |            | Fage 10 01 30                   |
| © 2012 PCTEST Engineering Laboratory, Inc. |                        |                                                                 | REV 1.6CFI |                                 |



## 6.5 PCS CDMA Radiated Measurements §2.1053, 24.238(a), RSS-133 (6.5.1)

## Field Strength of SPURIOUS Radiation



| FREQUENCY<br>(MHz) | LEVEL @<br>ANTENNA<br>TERMINALS<br>(dBm) | SUBSTITUTE<br>ANTENNA GAIN<br>(dBi) | SPURIOUS<br>EMISSION<br>LEVEL<br>(dBm) | POL<br>(H/V) | (dBc) |
|--------------------|------------------------------------------|-------------------------------------|----------------------------------------|--------------|-------|
| 3702.50            | -43.60                                   | 8.40                                | -35.20                                 | Н            | 59.66 |
| 5553.75            | -46.57                                   | 10.62                               | -35.95                                 | Н            | 60.41 |
| 7405.00            | -43.02                                   | 11.82                               | -31.19                                 | Н            | 55.65 |
| 9256.25            | -48.46                                   | 13.30                               | -35.16                                 | Н            | 59.62 |
| 11107.50           | -49.39                                   | 13.50                               | -35.89                                 | Н            | 60.35 |

Table 6-7. Radiated Spurious Data (PCS CDMA Mode - Ch. 25)

#### NOTES:

1. This device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits.

2. This unit was tested with its standard battery.

| FCC ID: A3LSPHL900                         |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG    | Reviewed by:<br>Quality Manager |
|--------------------------------------------|------------------------|-----------------------------------------------------------------|------------|---------------------------------|
| Test Report S/N:                           | Test Dates:            | EUT Type:                                                       |            | Page 17 of 36                   |
| 0Y1207311082.A3L                           | 08/07/2012 - 09/0/2012 | Portable Handset                                                |            | Fage 17 01 30                   |
| © 2012 PCTEST Engineering Laboratory, Inc. |                        |                                                                 | REV 1.6CFI |                                 |



### PCS CDMA Radiated Measurements (Cont'd) §2.1053, 24.238(a), RSS-133 (6.5.1)

## Field Strength of SPURIOUS Radiation

| OPERATING FREQUENCY:   | 1880                | MHz    |                |
|------------------------|---------------------|--------|----------------|
| CHANNEL:               | 600                 | )      | _              |
| MEASURED OUTPUT POWER: | 23.49               | dBm =  | <u>0.223</u> W |
| MODULATION SIGNAL:     | CDMA                |        |                |
| DISTANCE:              | 3                   | meters |                |
| LIMIT:                 | 43 + 10 log10 (W) = | 36.49  | dBc            |

| FREQUENCY<br>(MHz) | LEVEL @<br>ANTENNA<br>TERMINALS<br>(dBm) | SUBSTITUTE<br>ANTENNA GAIN<br>(dBi) | SPURIOUS<br>EMISSION<br>LEVEL<br>(dBm) | POL<br>(H/V) | (dBc) |
|--------------------|------------------------------------------|-------------------------------------|----------------------------------------|--------------|-------|
| 3760.00            | -47.10                                   | 8.42                                | -38.68                                 | Н            | 62.17 |
| 5640.00            | -50.05                                   | 10.66                               | -39.39                                 | Н            | 62.88 |
| 7520.00            | -45.30                                   | 11.92                               | -33.38                                 | Н            | 56.86 |
| 9400.00            | -50.43                                   | 13.24                               | -37.19                                 | Н            | 60.68 |
| 11280.00           | -51.30                                   | 13.49                               | -37.81                                 | Н            | 61.30 |

Table 6-8. Radiated Spurious Data (PCS CDMA Mode - Ch. 600)

#### NOTES:

1. This device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits.

2. This unit was tested with its standard battery.

| FCC ID: A3LSPHL900                         |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG    | Reviewed by:<br>Quality Manager |
|--------------------------------------------|------------------------|-----------------------------------------------------------------|------------|---------------------------------|
| Test Report S/N:                           | Test Dates:            | EUT Type:                                                       |            | Page 18 of 36                   |
| 0Y1207311082.A3L                           | 08/07/2012 - 09/0/2012 | Portable Handset                                                |            | Fage to 01 50                   |
| © 2012 PCTEST Engineering Laboratory, Inc. |                        |                                                                 | REV 1.6CFI |                                 |



### PCS CDMA Radiated Measurements (Cont'd) §2.1053, 24.238(a), RSS-133 (6.5.1)

## Field Strength of SPURIOUS Radiation

| OPERATING FREQUENCY:   | 1908                | .75    | MHz            |
|------------------------|---------------------|--------|----------------|
| CHANNEL:               | 117                 | 5      | _              |
| MEASURED OUTPUT POWER: | 22.49               | dBm =  | <u>0.178</u> W |
| MODULATION SIGNAL:     | CDMA                |        |                |
| DISTANCE:              | 3                   | meters |                |
| LIMIT:                 | 43 + 10 log10 (W) = | 35.49  | dBc            |

| FREQUENCY<br>(MHz) | LEVEL @<br>ANTENNA<br>TERMINALS<br>(dBm) | SUBSTITUTE<br>ANTENNA GAIN<br>(dBi) | SPURIOUS<br>EMISSION<br>LEVEL<br>(dBm) | POL<br>(H/V) | (dBc) |
|--------------------|------------------------------------------|-------------------------------------|----------------------------------------|--------------|-------|
| 3817.50            | -46.17                                   | 8.57                                | -37.60                                 | Н            | 60.09 |
| 5726.25            | -47.23                                   | 10.69                               | -36.54                                 | Н            | 59.04 |
| 7635.00            | -45.18                                   | 12.06                               | -33.12                                 | Н            | 55.61 |
| 9543.75            | -48.15                                   | 13.20                               | -34.95                                 | Н            | 57.45 |
| 11452.50           | -54.18                                   | 13.42                               | -40.76                                 | Н            | 63.25 |

Table 6-9. Radiated Spurious Data (PCS CDMA Mode – Ch. 1175)

#### NOTES:

1. This device was tested under all R.C.s and S.O.s and the worst case is reported with RC3/SO55 with "All Up" power control bits.

2. This unit was tested with its standard battery.

| FCC ID: A3LSPHL900       |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:         | Test Dates:            | EUT Type:                                                       |         | Page 19 of 36                   |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Faye 19 01 30                   |
| © 2012 PCTEST Engineerin | g Laboratory, Inc.     |                                                                 |         | REV 1.6CFI                      |



# 6.6 Cellular CDMA Frequency Stability Measurements §2.1055, 22.355, RSS-132 (4.3)

OPERATING FREQUENCY: 836,520,000 Hz

CHANNEL: \_\_\_\_\_\_\_ 384\_\_\_\_\_\_

REFERENCE VOLTAGE: 3.7 VDC

DEVIATION LIMIT: <u>± 0.00025</u> % or 2.5 ppm

| VOLTAGE<br>(%) | POWER<br>(VDC) | TEMP<br>(°C) | FREQUENCY<br>(Hz) | Freq. Dev.<br>(Hz) | Deviation<br>(%) |
|----------------|----------------|--------------|-------------------|--------------------|------------------|
| 100 %          | 3.70           | + 20 (Ref)   | 836,520,003       | 3                  | 0.000000         |
| 100 %          |                | - 30         | 836,520,015       | 15                 | 0.000002         |
| 100 %          |                | - 20         | 836,520,010       | 10                 | 0.000001         |
| 100 %          |                | - 10         | 836,520,004       | 4                  | 0.000000         |
| 100 %          |                | 0            | 836,520,017       | 17                 | 0.000002         |
| 100 %          |                | + 10         | 836,520,022       | 22                 | 0.000003         |
| 100 %          |                | + 20         | 836,520,005       | 5                  | 0.000001         |
| 100 %          |                | + 30         | 836,520,013       | 13                 | 0.000002         |
| 100 %          |                | + 40         | 836,520,008       | 8                  | 0.000001         |
| 100 %          |                | + 50         | 836,520,011       | 11                 | 0.000001         |
| 115 %          | 4.26           | + 20         | 836,520,012       | 12                 | 0.000001         |
| BATT. ENDPOINT | 3.41           | + 20         | 836,520,009       | 9<br>Mada Ch 3     | 0.000001         |

Table 6-10. Frequency Stability Data (Cellular CDMA Mode – Ch. 384)

| FCC ID: A3LSPHL900       |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:         | Test Dates:            | EUT Type:                                                       |         | Page 20 of 36                   |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 20 01 30                   |
| © 2012 PCTEST Engineerin | ig Laboratory, Inc.    |                                                                 |         | REV 1.6CFI                      |



# Cellular CDMA Frequency Stability Measurements (Cont'd) §2.1055, 22.355, RSS-132 (4.3)

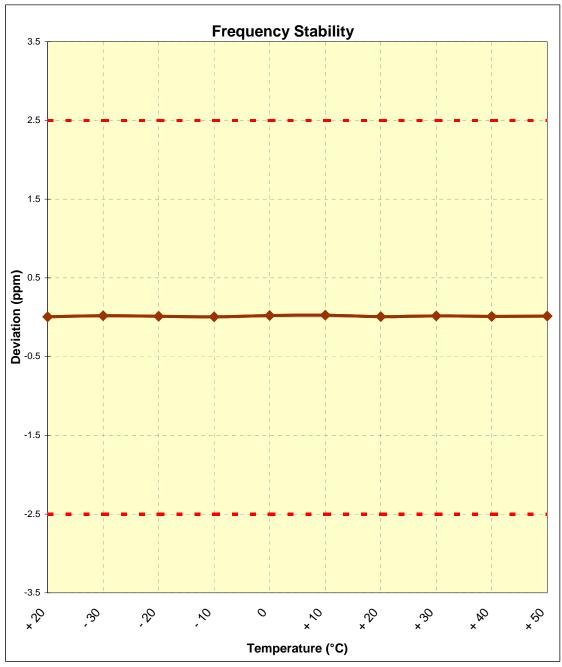



Figure 6-1. Frequency Stability Graph (Cellular CDMA Mode – Ch. 384)

| FCC ID: A3LSPHL900       |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:         | Test Dates:            | EUT Type:                                                       |         | Page 21 of 36                   |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 21 01 50                   |
| © 2012 PCTEST Engineerin | ig Laboratory, Inc.    |                                                                 |         | REV 1.6CFI                      |



# 6.7 PCS CDMA Frequency Stability Measurements §2.1055, 24.235, RSS-133 (6.3)

OPERATING FREQUENCY: 1,880,000,000 Hz

CHANNEL: 600

REFERENCE VOLTAGE: 3.7 VDC

| VOLTAGE<br>(%) | POWER<br>(VDC) | TEMP<br>(°C) | FREQUENCY<br>(Hz) | Freq. Dev.<br>(Hz) | Deviation<br>(%) |
|----------------|----------------|--------------|-------------------|--------------------|------------------|
| 100 %          | 3.70           | + 20 (Ref)   | 1,880,000,009     | 9                  | 0.000000         |
| 100 %          |                | - 30         | 1,880,000,017     | 17                 | 0.000001         |
| 100 %          |                | - 20         | 1,880,000,012     | 12                 | 0.000001         |
| 100 %          |                | - 10         | 1,880,000,011     | 11                 | 0.000001         |
| 100 %          |                | 0            | 1,880,000,014     | 14                 | 0.000001         |
| 100 %          |                | + 10         | 1,880,000,005     | 5                  | 0.000000         |
| 100 %          |                | + 20         | 1,880,000,018     | 18                 | 0.000001         |
| 100 %          |                | + 30         | 1,880,000,013     | 13                 | 0.000001         |
| 100 %          |                | + 40         | 1,880,000,020     | 20                 | 0.000001         |
| 100 %          |                | + 50         | 1,880,000,012     | 12                 | 0.000001         |
| 115 %          | 4.26           | + 20         | 1,880,000,016     | 16                 | 0.000001         |
| BATT. ENDPOINT | 3.41           | + 20         | 1,880,000,012     | 12                 | 0.000001         |

Table 6-11. Frequency Stability Data (PCS CDMA Mode - Ch. 600)

| FCC ID: A3LSPHL900       |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:         | Test Dates:            | EUT Type:                                                       |         | Page 22 of 36                   |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 22 01 30                   |
| © 2012 PCTEST Engineerin | ig Laboratory, Inc.    | ·                                                               |         | REV 1.6CFI                      |



# PCS CDMA Frequency Stability Measurements (Cont'd) §2.1055, 24.235, RSS-133 (6.3)

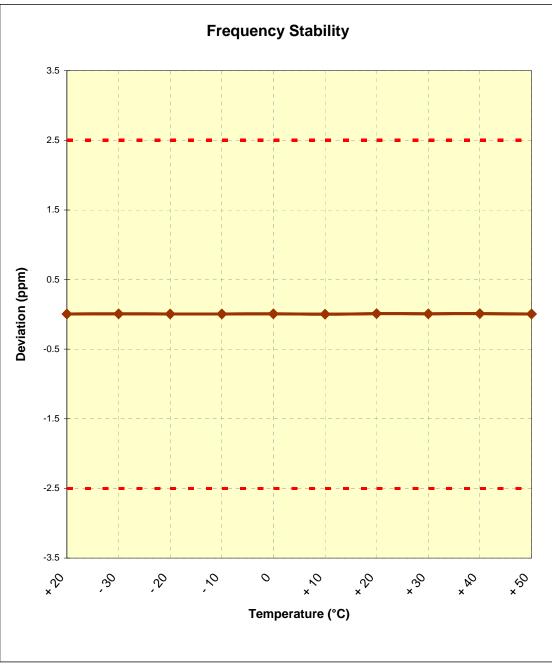
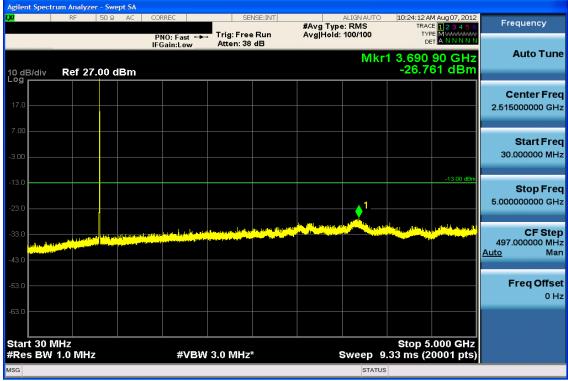
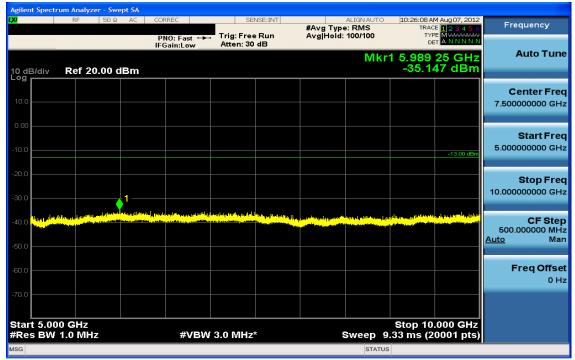




Figure 6-2. Frequency Stability Graph (PCS CDMA Mode – Ch. 600)


| FCC ID: A3LSPHL900       |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:         | Test Dates:            | EUT Type:                                                       |         | Page 23 of 36                   |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 23 01 30                   |
| © 2012 PCTEST Engineerin | ng Laboratory, Inc.    |                                                                 |         | REV 1.6CFI                      |



#### PLOT(S) OF EMISSIONS 7.0







Plot 7-2. Conducted Spurious Plot (Cellular CDMA Mode - Ch. 1013)

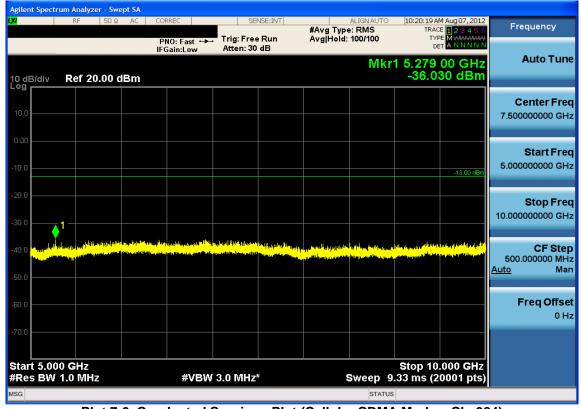
| FCC ID: A3LSPHL900       |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:         | Test Dates:            | EUT Type:                                                       |         | Page 24 of 36                   |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 24 01 50                   |
| © 2012 PCTEST Engineerin | a Laboratory Inc       |                                                                 |         | REV 1 6CEL                      |



| Agilent Spectrum Anal | yzer - Swept SA                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              |          |                             |                 |
|-----------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|-------------------------------------------------------|--------------|----------|-----------------------------|-----------------|
| l <b>XI</b> RF        | 50 Ω AC                         | CORREC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SENS          | E:INT             |                                                       | ALIGN AUTO   |          | M Aug 08, 2012              | Frequency       |
|                       |                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Trig: Free F  |                   | #Avg Type                                             | :RMS         | TRAC     |                             | ricqueriey      |
|                       |                                 | PNO: Wide 😱<br>IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Atten: 36 d   |                   |                                                       |              | DE       | PE MWWWWW<br>ET A N N N N N |                 |
|                       |                                 | IFGam.Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Theorem our a | 5                 |                                                       |              |          |                             | Auto Tune       |
|                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       | IVIKE        | 1 824.0  | 00 MHz<br>75 dBm            |                 |
| 10 dB/div Ref         | f 25.00 dBm                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              | -14.0    | 75 aBm                      |                 |
|                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              |          |                             |                 |
|                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              |          |                             | Center Freq     |
| 15.0                  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              |          | I                           | 824.000000 MHz  |
|                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              |          |                             |                 |
| 5.00                  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | al and the second | Man elementer and | al commences |          | Wardingham                  |                 |
| 5.00                  |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | <u>م</u> مر       |                                                       |              |          |                             | Start Freq      |
|                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | 1                 |                                                       |              |          |                             |                 |
| -5.00                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               | /                 |                                                       |              |          |                             | 823.000000 MHz  |
|                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <sup>_</sup>  |                   |                                                       |              |          |                             |                 |
| -15.0                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>y</u>      |                   |                                                       |              |          | -13.00 dBm                  |                 |
| -13.0                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | /             |                   |                                                       |              |          |                             | Stop Freq       |
|                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              |          |                             | 825.000000 MHz  |
| -25.0                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              |          |                             |                 |
|                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m (           |                   |                                                       |              |          |                             |                 |
| -35.0                 | والمتلسم فيعد الأحرق وروا حراقه | water load and a start of the s | w have        |                   |                                                       |              |          |                             | CF Step         |
| -35.0 Margahthanshra  | Supreme of the local sector     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              |          |                             | 200.000 kHz     |
|                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              |          |                             | <u>Auto</u> Man |
| -45.0                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              |          |                             |                 |
|                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              |          |                             |                 |
| -55.0                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              |          |                             | Freq Offset     |
|                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              |          |                             | 0 Hz            |
|                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              |          |                             |                 |
| -65.0                 |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              |          |                             |                 |
|                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              |          |                             |                 |
|                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              |          |                             |                 |
| Center 824.00         |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              | Span 2   | .000 MHz                    |                 |
| #Res BW 13 k          | Hz                              | #VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 39 kHz        |                   |                                                       | #Sweep       | 3.00 s ( | 1001 pts)                   |                 |
| MSG                   |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       | STATUS       |          |                             |                 |
|                       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                   |                                                       |              |          |                             |                 |



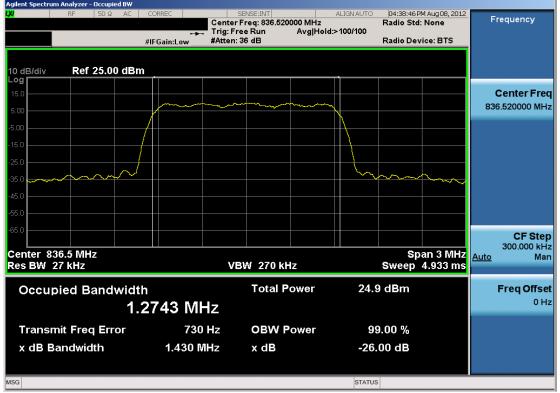


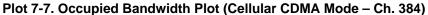

Plot 7-4. 4MHz Span Plot (Cellular CDMA Mode – Ch. 1013)

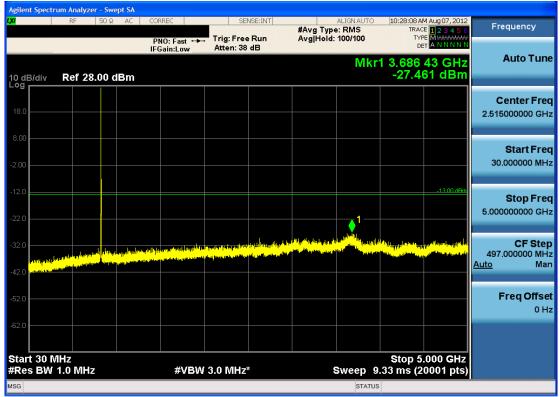
| FCC ID: A3LSPHL900       |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:         | Test Dates:            | EUT Type:                                                       |         | Page 25 of 36                   |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 25 01 50                   |
| © 2012 PCTEST Engineerin | ng Laboratory, Inc.    |                                                                 |         | REV 1.6CFI                      |



| Agilent Spectrum Ai     |             |                   | CORREC                    | SE                       | NSE:INT | #Avg Typ  | ALIGN AUTO<br>e: RMS | TRAC                 | M Aug 07, 2012<br>E 1 2 3 4 5 6 | Frequency                                 |
|-------------------------|-------------|-------------------|---------------------------|--------------------------|---------|-----------|----------------------|----------------------|---------------------------------|-------------------------------------------|
|                         |             |                   | PNO: Fast ↔<br>IFGain:Low | - Trig: Fre<br>Atten: 38 |         | Avg Hold: |                      | TYF<br>DE<br>1 3.632 |                                 | Auto Tune                                 |
| 0 dB/div Re             | f 28.00 d   | Bm                |                           |                          |         |           |                      | -26.8                | 52 dBm                          | <b>Center Fre</b><br>2.515000000 GH       |
| 2.00                    |             |                   |                           |                          |         |           |                      |                      |                                 | Start Fre<br>30.000000 MH                 |
| 22.0                    |             |                   |                           |                          |         |           | 1                    |                      | -13.00 dBm                      | <b>Stop Fre</b><br>5.000000000 G⊦         |
| i2.0<br>Magnath at 1997 | an dia mang | durch de problemi |                           |                          |         |           |                      |                      |                                 | CF Ste<br>497.000000 M⊢<br><u>Auto</u> Ma |
| 2.0                     |             |                   |                           |                          |         |           |                      |                      |                                 | Freq Offso<br>0 ⊦                         |
| itart 30 MHz            | B 41 1-     |                   | 43 (D)                    |                          |         |           |                      |                      | .000 GHz                        |                                           |
| Res BW 1.0              | IWIAZ       |                   | #VBV                      | / 3.0 MHz                |         |           | Sweep 9.<br>STATUS   |                      | 0001 pts)                       |                                           |





Plot 7-6. Conducted Spurious Plot (Cellular CDMA Mode - Ch. 384)

| FCC ID: A3LSPHL900       |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:         | Test Dates:            | EUT Type:                                                       |         | Page 26 of 36                   |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 20 01 30                   |
| © 2012 PCTEST Engineerin | a Laboratory. Inc.     |                                                                 |         | REV 1.6CFI                      |









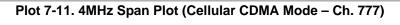
#### Plot 7-8. Conducted Spurious Plot (Cellular CDMA Mode – Ch. 777)

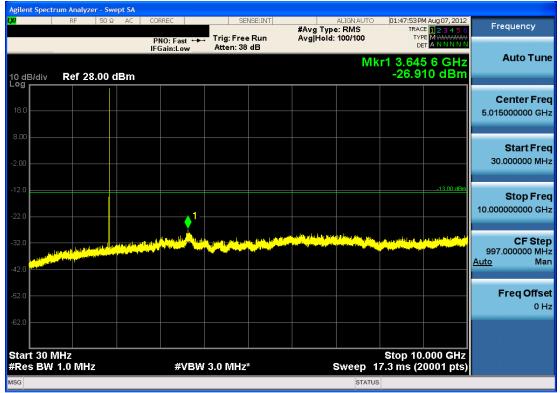
| FCC ID: A3LSPHL900       |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:         | Test Dates:            | EUT Type:                                                       |         | Page 27 of 36                   |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 27 01 30                   |
| © 2012 PCTEST Engineerin | a Laboratory Inc       |                                                                 |         | REV 1 6CE                       |



| Agilent Spectru            |          |                  |                           |           |   |                       |           |                |                                         |                                 |
|----------------------------|----------|------------------|---------------------------|-----------|---|-----------------------|-----------|----------------|-----------------------------------------|---------------------------------|
|                            | RF 5     | ΟΩ AC            | CORREC                    |           |   | #Avg Typ<br>Avg Hold: |           | TRAC           | M Aug 07, 2012<br>E 123456<br>E M WWWWW | Frequency                       |
|                            |          |                  | PNO: Fast ↔<br>IFGain:Low | Atten: 30 |   | Avginoid:             | 100/100   | DI             | ANNNN                                   |                                 |
| 10 dB/div                  | Ref 20.0 | 0 dBm            |                           |           |   |                       | Mkr       | 6.938<br>-34.9 | 00 GHz<br>47 dBm                        | Auto Tune                       |
| -09                        |          |                  |                           |           |   |                       |           |                |                                         | Center Fred                     |
| 10.0                       |          |                  |                           |           |   |                       |           |                |                                         | 7.50000000 GHz                  |
| 0.00                       |          |                  |                           |           |   |                       |           |                |                                         |                                 |
| 10.0                       |          |                  |                           |           |   |                       |           |                | 40.00 10                                | Start Free<br>5.000000000 GH:   |
|                            |          |                  |                           |           |   |                       |           |                | -13.00 dBm                              |                                 |
| -20.0                      |          |                  |                           |           |   |                       |           |                |                                         | Stop Free                       |
| 30.0                       |          |                  |                           | i         |   |                       |           |                |                                         | 10.00000000 GH                  |
| 40.0 <b>(19.1 - 19.1</b> ) |          | a dillanda diba. |                           |           |   |                       |           |                |                                         | CF Ste                          |
| 50.0                       |          |                  |                           |           |   |                       |           |                |                                         | 500.000000 MH<br><u>Auto</u> Ma |
| 50.0                       |          |                  |                           |           |   |                       |           |                |                                         |                                 |
| 60.0                       |          |                  |                           |           |   |                       |           |                |                                         | Freq Offse                      |
| 70.0                       |          |                  |                           |           |   |                       |           |                |                                         |                                 |
|                            |          |                  |                           |           |   |                       |           |                |                                         |                                 |
| Start 5.000<br>Res BW 1    |          |                  | #VBV                      | V 3.0 MHz | * |                       | Sweep _9. | Stop 10        | .000 GHz<br>0001 pts)                   |                                 |
| SG                         |          |                  |                           |           |   |                       | STATUS    |                |                                         |                                 |







#### Plot 7-10. Band Edge Plot (Cellular CDMA Mode – Ch. 777)

| FCC ID: A3LSPHL900       |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:         | Test Dates:            | EUT Type:                                                       |         | Page 28 of 36                   |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 20 01 50                   |
| © 2012 PCTEST Engineerin | REV 1.6CFI             |                                                                 |         |                                 |



| igilent Spectru        | m Analyzer - S | Swept SA    |                |                           |                |           |                |                                                                  |               |
|------------------------|----------------|-------------|----------------|---------------------------|----------------|-----------|----------------|------------------------------------------------------------------|---------------|
|                        | RF             | 50 Ω - AC - | CORREC         | SENSE:INT                 |                | ALIGNAUTO |                | M Aug 08, 2012                                                   | Frequency     |
|                        |                |             | PNO: Wide 🖵    | Trig: Free Run            | #AVg I}        | /pe: RMS  | Tì             | CE <b>1 2 3 4 5</b> 6<br>PE M <del>WWWWW</del><br>ET A N N N N N |               |
|                        |                |             | IFGain:Low     | Atten: 36 dB              |                |           | 0              | ET A N N N N N                                                   |               |
|                        |                |             |                |                           |                | Mk        | 1 850 (        | 20 MHz                                                           | Auto Tur      |
|                        | D-6.05         | 00 40       |                |                           |                |           | -31            | 72 dBm                                                           |               |
| 10 dB/div<br>_og       | Rel 25.        | 00 dBm      |                |                           |                |           |                |                                                                  |               |
|                        |                |             |                |                           |                |           |                |                                                                  | Center Fre    |
| 15.0                   |                |             |                |                           |                |           |                |                                                                  |               |
| 10.0                   |                |             |                |                           |                |           |                |                                                                  | 852.000000 MH |
|                        |                |             |                |                           |                |           |                |                                                                  |               |
| 5.00                   |                |             |                |                           |                |           |                |                                                                  | Otherst Free  |
|                        |                |             |                |                           |                |           |                |                                                                  | Start Fre     |
| -5.00                  |                |             |                |                           |                |           |                |                                                                  | 850.000000 MH |
|                        |                |             |                |                           |                |           |                | -13.00 dBm                                                       |               |
| -15.0                  |                |             |                |                           |                |           |                | -13.00 GBM                                                       |               |
|                        |                |             |                |                           |                |           |                |                                                                  | Stop Fre      |
|                        |                |             |                |                           |                |           |                |                                                                  | 854.000000 MH |
| ·25.0 <mark>  1</mark> |                |             |                |                           |                |           |                |                                                                  |               |
| Lown.                  |                |             |                |                           |                |           |                |                                                                  | CF Ste        |
| 35.0                   | Marian I       |             |                |                           |                |           |                |                                                                  | 400.000 kH    |
|                        |                |             | and            |                           |                |           |                |                                                                  | Auto Ma       |
| 45.0                   |                |             | and the second | will a weather a standard | amount and the |           |                |                                                                  |               |
|                        |                |             |                |                           |                | ~         | and the second | Married Married                                                  |               |
| 55.0                   |                |             |                |                           |                |           |                |                                                                  | Freq Offs     |
|                        |                |             |                |                           |                |           |                |                                                                  | 0 H           |
| ar a                   |                |             |                |                           |                |           |                |                                                                  |               |
| 65.0                   |                |             |                |                           |                |           |                |                                                                  |               |
|                        |                |             |                |                           |                |           |                |                                                                  |               |
|                        | 000 844-       |             |                |                           |                |           | Ctop 954       |                                                                  |               |
| Start 850.<br>#Res BW  |                |             | #\/B\//        | 300 kHz                   |                | #Swoot    | Stop 834       | .000 MHz<br>(1001 pts)                                           |               |
|                        | TUUKHZ         |             | #VBVV          | 300 KHZ                   |                | #Sweep    | 5.00 S         | (1001 pts)                                                       |               |
| ISG                    |                |             |                |                           |                | STATUS    |                |                                                                  |               |





Plot 7-12. Conducted Spurious Plot (PCS CDMA Mode - Ch. 25)

| FCC ID: A3LSPHL900                         |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |  |
|--------------------------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|--|
| Test Report S/N:                           | Test Dates:            | EUT Type:                                                       |         | Page 29 of 36                   |  |
| 0Y1207311082.A3L                           | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 29 01 30                   |  |
| © 2012 PCTEST Engineering Laboratory, Inc. |                        |                                                                 |         |                                 |  |



| SG                                    |                                                                                                                 |                      |                        |            |                                                                                                                 |                                     | STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                  |                                                                                                                 |                           |
|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------|------------------------|------------|-----------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------|
| itart 10.0<br>Res BW                  | 000 GHz<br>1.0 MHz                                                                                              |                      | #VB                    | W 3.0 MHz  | ĸ                                                                                                               |                                     | Sweep 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Stop 20.<br>5.3 ms <u>(</u> 2                                                                                    | .000 GHz<br>0001 pts)                                                                                           |                           |
|                                       |                                                                                                                 |                      |                        |            |                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 |                           |
| 70.0                                  |                                                                                                                 |                      |                        |            |                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 |                           |
| 50.0                                  |                                                                                                                 |                      |                        |            |                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 | Freq Offse                |
| 50.0                                  |                                                                                                                 |                      |                        |            |                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 |                           |
| <b>Mathematic</b>                     | and the state of the |                      |                        |            |                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 | 1.000000000 GH<br>Auto Ma |
| in n <mark>hadar<sup>ih</sup>n</mark> | and on the design of the state of the                                                                           | n en en der se filte | Land the second second |            | The second se | kal po kade anti dalla<br>Programma | an en                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | and the second | alling and a second                                                                                             | CF Ste                    |
| 30.0                                  |                                                                                                                 |                      |                        |            | lut.                                                                                                            |                                     | a and the set of the s | فالافتان منابر التسبيا                                                                                           | and the state of the | 20.00000000 GH            |
| 20.0                                  |                                                                                                                 |                      |                        |            |                                                                                                                 |                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                                                                                                 | Stop Fre                  |
| 10.0                                  |                                                                                                                 |                      |                        |            |                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  | -13.00 dBm                                                                                                      |                           |
| 10.0                                  |                                                                                                                 |                      |                        |            |                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 | Start Fre                 |
| 0.00                                  |                                                                                                                 |                      |                        |            |                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 |                           |
| 10.0                                  |                                                                                                                 |                      |                        |            |                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 | 15.00000000 GH            |
|                                       |                                                                                                                 |                      |                        |            |                                                                                                                 |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |                                                                                                                 | Center Fre                |
| 0 dB/div                              | Ref 20.0                                                                                                        | 0 dBm                |                        |            |                                                                                                                 |                                     | IVINI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -29.20                                                                                                           | 61 dBm                                                                                                          |                           |
|                                       |                                                                                                                 |                      | IFGain:Low             | Atten: 30  | dB                                                                                                              |                                     | Mice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                  | <b>0 GHz</b>                                                                                                    | Auto Tur                  |
|                                       |                                                                                                                 |                      | PNO: Fast ←            | Trig: Free | e Run                                                                                                           | #Avg Typ<br>Avg Hold                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TRAC<br>TYP                                                                                                      | E 123456<br>E M WWWWWW<br>T A N N N N N                                                                         | Frequency                 |
|                                       |                                                                                                                 | Swept SA             | CORREC                 | SEI        | NSE:INT                                                                                                         |                                     | ALIGN AUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 01:48:26 Pf                                                                                                      | 4 Aug 07, 2012                                                                                                  | _                         |





## Plot 7-14. Band Edge Plot (PCS CDMA Mode - Ch. 25)


| FCC ID: A3LSPHL900       |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:         | Test Dates:            | EUT Type:                                                       |         | Page 30 of 36                   |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 30 01 30                   |
| © 2012 PCTEST Engineerin | a Laboratory Inc       |                                                                 |         | REV 1 6CEI                      |

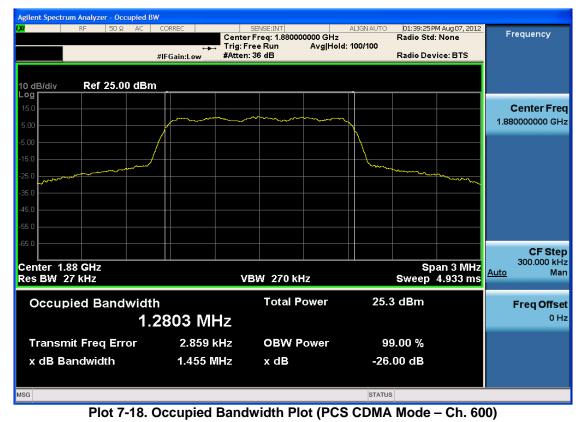
2012 PCTEST Engineering Laboratory, Inc.



|                | RF      | 50 Ω AC | CORREC   |        | SE        | NSE:INT |          | ALIGN AUTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 | M Aug 07, 2012                      | Frequency              |           |
|----------------|---------|---------|----------|--------|-----------|---------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------|------------------------|-----------|
|                |         |         | PNO: Wi  |        | rig: Free |         | #Avg Typ | e: RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRA(<br>TY      | CE 123456<br>PE MWWWWW<br>ET ANNNNN | Frequency              | <u> </u>  |
|                |         |         | IFGain:L | ow A   | Atten: 36 | dB      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                     | Auto T                 |           |
| 0 dB/div<br>og | Ref 25. | 00 dBm  |          |        |           |         |          | Mkr1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.848 9<br>-14. | 96 GHz<br>82 dBm                    | Auton                  | un        |
| °9             |         |         |          |        |           |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                     | Center F               | Fre       |
| 15.0           |         |         |          |        |           |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                     | 1.847000000            |           |
|                |         |         |          |        |           |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                     |                        |           |
| 5.00           |         |         |          |        |           |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                     | Start F                | Fre       |
| 5.00           |         |         |          |        |           |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                     | 1.845000000            |           |
|                |         |         |          |        |           |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | -13.00 0                            |                        |           |
| 5.0            |         |         |          |        |           |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 | مسيل                                | Stop F                 | Fre       |
| 25.0           |         |         |          |        |           |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                     | 1.849000000            |           |
| .3.0           |         |         |          |        |           |         |          | and a start of the |                 |                                     |                        |           |
| 5.0            |         |         |          |        |           |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                     | CF S                   | Ste       |
|                |         |         |          |        |           |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                     | 400.000<br><u>Auto</u> | JK⊦<br>Ma |
| 5.0            |         |         |          |        |           |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                     |                        |           |
| 5.0            |         |         |          |        |           |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                     | Freq Of                | ffs       |
|                |         |         |          |        |           |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                     |                        | 0 H       |
| 5.0            |         |         |          |        |           |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                     |                        |           |
|                |         |         |          |        |           |         |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                 |                                     |                        |           |
|                | 5000 GH |         |          |        |           |         |          | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | top 1.84        | 9000 GHz                            |                        |           |
| Res BW         | 1.0 MHz |         | #        | VBW 3. | 0 WIHz    |         |          | #Sweep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.00 s (        | (1001 pts)                          |                        |           |



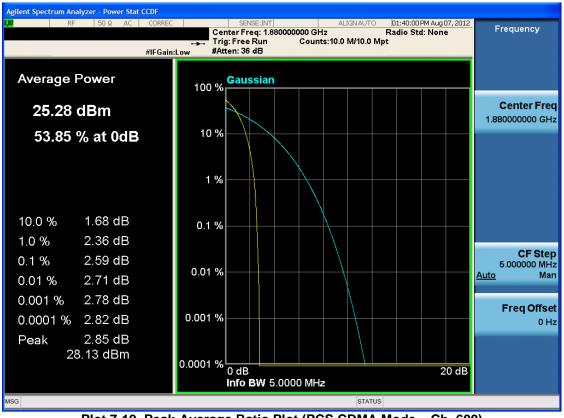



Plot 7-16. Conducted Spurious Plot (PCS CDMA Mode - Ch. 600)

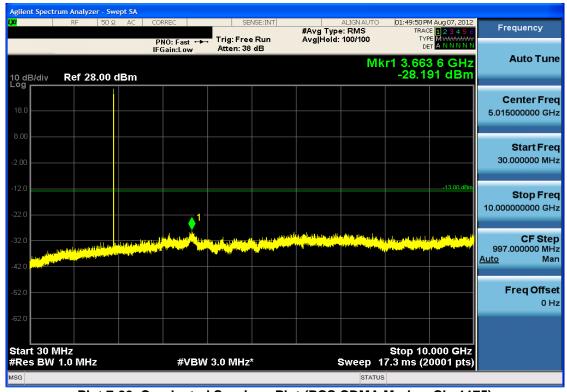
| FCC ID: A3LSPHL900       |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |  |
|--------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|--|
| Test Report S/N:         | Test Dates:            | EUT Type:                                                       |         | Page 31 of 36                   |  |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Page 31 01 36                   |  |
| © 2012 PCTEST Engineerin | a Laboratory, Inc.     | •                                                               |         | REV 1.6CF                       |  |



|                         | m Analyzer - S<br>RF 50 | Ω AC | CORREC                    | SE        | NSE:INT    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALIGN AUTO |                              | M Aug 07, 2012                                                    | Frequency                                  |
|-------------------------|-------------------------|------|---------------------------|-----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------|-------------------------------------------------------------------|--------------------------------------------|
|                         |                         |      | PNO: Fast ←<br>IFGain:Low | Trig: Fre |            | #Avg Typ<br>Avg Hold                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | TY                           | CE <b>1 2 3 4 5</b> 6<br>PE M <del>WWWWWW</del><br>ET A N N N N N | Trequency                                  |
| ) dB/div                | Ref 20.00               | dBm  | IFGam.Low                 |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mkr        | 1 17.34<br>-29.1             | 7 0 GHz<br>27 dBm                                                 | Auto Tun                                   |
| 0.0                     |                         |      |                           |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                              |                                                                   | Center Fre<br>15.000000000 GH              |
| 0.0                     |                         |      |                           |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                              | -13.00 dBm                                                        | Start Fre<br>10.000000000 GH               |
| 0.0                     |                         |      |                           |           | eterter gl | Inductor of the state of the st |            | ustali, jingak               |                                                                   | <b>Stop Fre</b><br>20.000000000 GH         |
| 0.0 <b>William Will</b> |                         |      |                           |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                              |                                                                   | CF Ste<br>1.000000000 G⊦<br><u>Auto</u> Ma |
| D.0                     |                         |      |                           |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                              |                                                                   | Freq Offso<br>0 ⊦                          |
| tart 10.00<br>Res BW 1  |                         |      | #VB                       | W 3.0 MHz | *          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sweep_2    | Stop 20<br>5.3 ms <u> (2</u> | 0.000 GHz<br>20001 pts)                                           |                                            |
| G                       |                         |      |                           |           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATUS     |                              |                                                                   |                                            |







| FCC ID: A3LSPHL900       |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |  |
|--------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|--|
| Test Report S/N:         | Test Dates:            | EUT Type:                                                       |         | Dogo 22 of 26                   |  |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Page 32 of 36                   |  |
| © 2012 PCTEST Engineerin | a Laboratory Inc       |                                                                 |         | REV 1 6CF                       |  |

2012 PCTEST Engineering Laboratory, Inc.

PCTEST







Plot 7-20. Conducted Spurious Plot (PCS CDMA Mode - Ch. 1175)

| FCC ID: A3LSPHL900                         |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |  |
|--------------------------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|--|
| Test Report S/N:                           | Test Dates:            | EUT Type:                                                       |         | Page 33 of 36                   |  |
| 0Y1207311082.A3L                           | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 33 01 30                   |  |
| © 2012 PCTEST Engineering Laboratory. Inc. |                        |                                                                 |         |                                 |  |



| gilent Spectrum Analyzer -<br>RF 50 | IORREC                     | SE                               | NSE:INT    |                            | ALIGN AUTO |                | M Aug 07, 2012                                  | _                                                 |
|-------------------------------------|----------------------------|----------------------------------|------------|----------------------------|------------|----------------|-------------------------------------------------|---------------------------------------------------|
|                                     | PNO: Fast ↔⊷<br>IFGain:Low | Trig: Free<br>Atten: 30          |            | #Avg Typ<br>Avg Hold:      |            | TY             | CE 123456<br>PE MWWWWWW<br>ET ANNNNN            | Frequency                                         |
| 0 dB/div Ref 20.00                  | FGam:Low                   | Atten. oo                        |            |                            | Mkr        | 17.38<br>-29.4 | 4 5 GHz<br>05 dBm                               | Auto Tune                                         |
| 10.0                                |                            |                                  |            |                            |            |                |                                                 | Center Free<br>15.000000000 GH                    |
| 10.0                                |                            |                                  |            |                            |            |                | -13.00 dBm                                      | Start Fre<br>10.000000000 GH                      |
| 30.0                                |                            | الم العلم المراجع الم            | Stated and | neg la, et hitta kan ad et |            |                | a la tha an | <b>Stop Fre</b><br>20.000000000 GH                |
|                                     |                            | a Japan ( Alexandra ( Alexandra) |            |                            |            |                |                                                 | <b>CF Ste</b><br>1.000000000 GH<br><u>Auto</u> Ma |
| 70.0                                |                            |                                  |            |                            |            |                |                                                 | <b>Freq Offse</b><br>0 H                          |
| Start 10.000 GHz<br>Res BW 1.0 MHz  | #VBW                       | 3.0 MHz                          | *          |                            | Sweep 2    |                | .000 GHz<br>20001 pts)                          |                                                   |
| SG                                  |                            |                                  |            |                            | STATUS     |                |                                                 |                                                   |





© 2012 PCTEST Engineering Laboratory, Inc.



| RF 50 Ω /                          | AC CORREC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SENSE:INT                      | ALIGNAUTO<br>#Avg Type: RMS | 01:52:19 PM Aug 07, 2012                             | Frequency                                    |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------|------------------------------------------------------|----------------------------------------------|
|                                    | PNO: Wide 😱<br>IFGain:Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Trig: Free Run<br>Atten: 36 dB | #Avg Type: KINS             | TRACE 1 2 3 4 5 6<br>TYPE MWWWWWW<br>DET A N N N N N |                                              |
| dB/div Ref 25.00 dB                | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | Mkr1                        | 1.911 004 GHz<br>-16.26 dBm                          | Auto Tur                                     |
| 5.0                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                             |                                                      | Center Fre<br>1.913000000 GH                 |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                             |                                                      | <b>Start Fr</b><br>1.911000000 Gi            |
| .0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                             | -13.00 dBm                                           | <b>Stop Fr</b><br>1.915000000 G              |
| .0                                 | and the second |                                |                             |                                                      | <b>CF Ste</b><br>400.000 kl<br><u>Auto</u> M |
| .0                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                |                             |                                                      | Freq Offs<br>0                               |
| art 1.911000 GHz<br>tes BW 1.0 MHz | #VBW :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0 MHz                        | S<br>#Sweep                 | top 1.915000 GHz<br>3.00 s (1001 pts)                |                                              |

Plot 7-23. 4MHz Span Plot (PCS CDMA Mode – Ch. 1175)

| FCC ID: A3LSPHL900       |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:         | Test Dates:            | EUT Type:                                                       |         | Page 35 of 36                   |
| 0Y1207311082.A3L         | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 35 01 50                   |
| © 2012 PCTEST Engineerin | ig Laboratory, Inc.    | ·                                                               |         | REV 1.6CF                       |



## 8.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSPHL900** complies with all the requirements of Parts 2, 22, and 24 of the FCC rules and RSS-132 and RSS-133 of the Industry Canada rules.

| FCC ID: A3LSPHL900                         |                        | FCC Pt. 22/24 CDMA / EvDO MEASUREMENT REPORT<br>(CERTIFICATION) | SAMSUNG | Reviewed by:<br>Quality Manager |
|--------------------------------------------|------------------------|-----------------------------------------------------------------|---------|---------------------------------|
| Test Report S/N:                           | Test Dates:            | EUT Type:                                                       |         | Page 36 of 36                   |
| 0Y1207311082.A3L                           | 08/07/2012 - 09/0/2012 | Portable Handset                                                |         | Fage 30 01 30                   |
| © 2012 PCTEST Engineering Laboratory, Inc. |                        |                                                                 |         |                                 |