

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. 410.290.6652 / Fax 410.290.6654 http://www.pctestlab.com

MEASUREMENT REPORT FCC Part 24 & 27 LTE

Applicant Name:

Samsung Electronics, Co. Ltd. 129, Samsung-ro, Maetan dong, Yeongtong-gu, Suwon-si Gyeonggi-do 443-742, Korea Date of Testing: 7/8-7/16/2014 Test Site/Location: PCTEST Lab., Columbia, MD, USA Test Report Serial No.: 0Y1407011334.A3L

A3LSPHL520

FCC ID : APPLICANT:

SAMSUNG ELECTRONICS, CO. LTD.

Application Type: FCC Classification: FCC Rule Part(s): Test Procedure(s): EUT Type: Model(s): Test Device Serial No.: Class II Permissive Change: Original Grant Date: Class II Permissive Change PCS Licensed Transmitter Held to Ear (PCE) §2; §24; §27 ANSI/TIA-603-C-2004, KDB 971168 v02r01 Portable Handset SPH-L520 *identical prototype* [S/N: #81, EMC, SAR B41] Please see FCC change document 9/4/2013

				EI	RP
Mode	Tx Frequency (MHz)	Emission Designator	Modulation	Max. Power (W)	Max. Power (dBm)
LTE Band 25	1850.7 - 1914.3	1M13G7D	QPSK	0.090	19.54
LTE Band 25	1850.7 - 1914.3	1M13W7D	16QAM	0.077	18.85
LTE Band 25	1857.5 - 1907.5	13M5G7D	QPSK	0.085	19.31
LTE Band 25	1857.5 - 1907.5	13M5W7D	16QAM	0.073	18.61
LTE Band 25	1860 - 1905	17M9G7D	QPSK	0.089	19.48
LTE Band 25	1860 - 1905	18M0W7D	16QAM	0.072	18.60
LTE Band 41	2499 - 2687.5	4M50G7D	QPSK	0.088	19.47
LTE Band 41	2499 - 2687.5	4M49W7D	16QAM	0.064	18.09

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in §2.947. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

dy Ortanez

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 1 of 56	
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 1 of 56	
© 2014 PCTEST Engineering	© 2014 PCTEST Engineering Laboratory, Inc.			

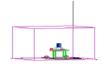


TABLE OF CONTENTS

FCC	PART 2	24 & 27 MEASUREMENT REPORT	3
1.0	INTF	RODUCTION	4
	1.1	SCOPE	4
	1.2	TESTING FACILITY	4
2.0	PRC	DUCT INFORMATION	5
	2.1	EQUIPMENT DESCRIPTION	5
	2.2	DEVICE CAPABILITIES	5
	2.3	EMI SUPPRESSION DEVICE(S)/MODIFICATIONS	5
	2.4	LABELING REQUIREMENTS	5
3.0	DES	CRIPTION OF TESTS	6
	3.1	MEASUREMENT PROCEDURE	6
	3.2	BRS/EBS FREQUENCY RANGE	6
	3.3	PCS - BASE FREQUENCY BLOCKS	
	3.4	PCS - MOBILE FREQUENCY BLOCKS	8
	3.5	RADIATED POWER AND RADIATED SPURIOUS EMISSIONS	9
4.0	TES	T EQUIPMENT CALIBRATION DATA	10
5.0	SAM	IPLE CALCULATIONS	11
6.0	TES	T RESULTS	12
	6.1	SUMMARY	
	6.2	OCCUPIED BANDWIDTH	13
	6.3	SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	
	6.4	BAND EDGE EMISSIONS AT ANTENNA TERMINAL	35
	6.5	PEAK-AVERAGE RATIO	44
	6.6	RADIATED POWER (EIRP)	
	6.7	FREQUENCY STABILITY / TEMPERATURE VARIATION	51
7.0	CON	ICLUSION	56

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 2 of 56
© 2014 PCTEST Engineering	2014 PCTEST Engineering Laboratory, Inc.			V 1.8

MEASUREMENT REPORT FCC Part 24 & 27

§2.1033 General Information

APPLICANT:	Samsung Electronics, Co	. Ltd.		
APPLICANT ADDRESS:	129, Samsung-ro, Maeta	n dong,		
	Yeongtong-gu, Suwon-si,	, Gyeonggi-do 443-74	2, Korea	
TEST SITE:	PCTEST ENGINEERING	LABORATORY, INC		
TEST SITE ADDRESS:	7185 Oakland Mills Road	, Columbia, MD 2104	5 USA	
FCC RULE PART(S):	§2; §24; §27			
BASE MODEL:	SPH-L520			
FCC ID:	A3LSPHL520			
FCC CLASSIFICATION:	PCS Licensed Transmitte	er Held to Ear (PCE)		
Test Device Serial No.:	#81, EMC, SAR B41	Production	Pre-Production	Engineering
DATE(S) OF TEST:	7/8-7/16/2014			
TEST REPORT S/N:	0Y1407011334.A3L			

Test Facility / Accreditations

Measurements were performed at PCTEST Engineering Lab located in Columbia, MD 21046, U.S.A.

AVA		
THE OWNER OF		
	ED LABORATORY	
	INING LABORATORY, INC.	
-	max in the fact of	
6	fle dage	

- PCTEST facility is an FCC registered (PCTEST Reg. No. 159966) test facility with the site description report on file and has met all the requirements specified in Section 2.948 of the FCC Rules and Industry Canada (2451B-1).
- PCTEST Lab is accredited to ISO 17025 by U.S. National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP Lab code: 100431-0) in EMC, FCC and Telecommunications.
- PCTEST Lab is accredited to ISO 17025-2005 by the American Association for Laboratory Accreditation (A2LA) in Specific Absorption Rate (SAR) testing, Hearing Aid Compatibility (HAC) testing, CTIA Test Plans, and wireless testing for FCC and Industry Canada Rules.
- PCTEST Lab is a recognized U.S. Conformity Assessment Body (CAB) in EMC and R&TTE (n.b. 0982) under the U.S.-EU Mutual Recognition Agreement (MRA).
- PCTEST TCB is a Telecommunication Certification Body (TCB) accredited to ISO/IEC Guide 65 by the American National Standards Institute (ANSI) in all scopes of FCC Rules and Industry Canada Standards (RSS).
- PCTEST facility is an IC registered (2451B-1) test laboratory with the site description on file at Industry Canada.
- PCTEST is a CTIA Authorized Test Laboratory (CATL) for AMPS, CDMA, and EvDO wireless devices and for Over-the-Air (OTA) Antenna Performance testing for AMPS, CDMA, GSM, GPRS, EGPRS, UMTS (W-CDMA), CDMA 1xEVDO, and CDMA 1xRTT.

FCC ID: A3LSPHL520	PCTEST	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	MSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 2 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 3 of 56
© 2014 PCTEST Engineering Laboratory, Inc.				V 1.8

INTRODUCTION 1.0

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2 Testing Facility

The map below shows the location of the PCTEST LABORATORY, its proximity to the FCC Laboratory, the Columbia vicinity, the Baltimore-Washington Internt'I (BWI) airport, the city of Baltimore and the Washington, DC area. (See Figure 1-1).

These measurement tests were conducted at the PCTEST Engineering Laboratory, Inc. facility located at 7185 Oakland Mills Road, Columbia, MD 21046. The site coordinates are 39° 10'23" N latitude and 76° 49'50" W longitude. The facility is 0.4 miles North of the FCC laboratory, and the ambient signal and ambient signal strength are approximately equal to those of the FCC laboratory. The detailed description of the measurement facility was found to be in compliance with the requirements of § 2.948 according to ANSI C63.4-2003 on February 15, 2012.

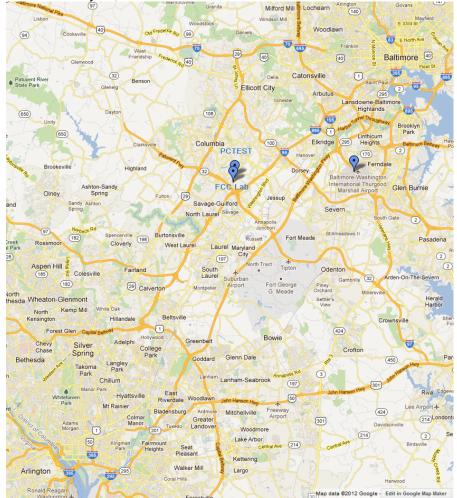


Figure 1-1. Map of the Greater Baltimore and Metropolitan Washington, D.C. area

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 4 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 4 of 56
© 2014 PCTEST Engineering	Laboratory Inc	-		V 1 8

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Handset FCC ID: A3LSPHL520**. The test data contained in this report pertains only to the emissions due to the EUT's LTE function.

2.2 Device Capabilities

This device contains the following capabilities:

850/1900 CDMA (BC0, BC1, BC10), Multi-band LTE, 802.11a/b/g/n WLAN (DTS/NII), Bluetooth (1x, EDR, LE), NFC

2.3 EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and no modifications were made during testing.

2.4 Labeling Requirements

Per 2.925

The FCC identifier shall be permanently affixed to the equipment and shall be readily visible to the purchaser at the time of purchase.

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga E of EG
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 5 of 56
© 2014 PCTEST Engineering	© 2014 PCTEST Engineering Laboratory, Inc.			

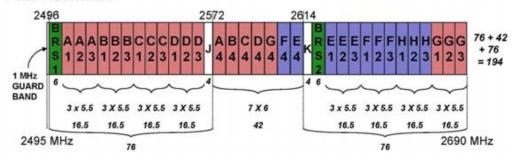
3.0 DESCRIPTION OF TESTS

3.1 Measurement Procedure

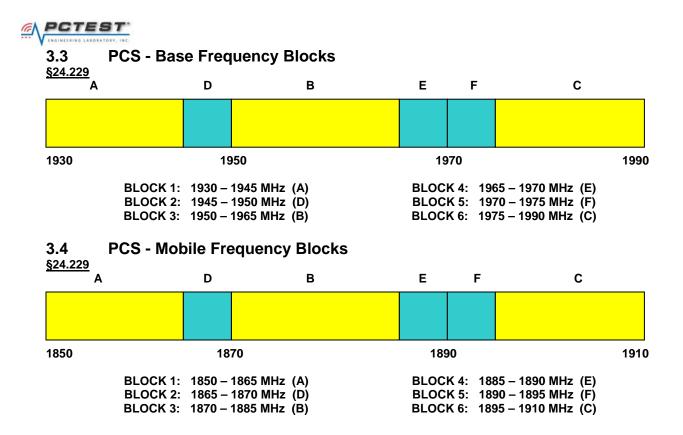
The measurement procedures described in the document titled "Land Mobile FM or PM – Communications Equipment – Measurements and Performance Standards" (ANSI/TIA-603-C-2004) and "Procedures for Compliance Measurement of the Fundamental Emission Power of Licensed Wideband (> 1 MHz) Digital Transmission Systems" (KDB 971168) were used in the measurement of the **Samsung Portable Handset FCC ID: A3LSPHL520.**

3.2 BRS/EBS Frequency Range §27.5(i)(2)

<u>2496-2690 MHz bands</u>. The following frequencies are available for licensing pursuant to this part in the 2496-2690 MHz band:


Lower Band Segment	Middle Band Segment	Upper Band Segment
BRS Channel 1: 2496-2502 MHz or 2150-2156 MHz	EBS Channel A4: 2572-2578 MHz	BRS Channel KH1: 2614.00000-2614.33333 MHz.
EBS Channel A1: 2502-2507.5 MHz	EBS Channel B4: 2578-2584 MHz	BRS Channel KH2: 2614.33333-2614.66666 MHz.
EBS Channel A2: 2507.5-2513 MHz	EBS Channel C4: 2584-2590 MHz	BRS Channel KH3: 2614.66666-2615.00000 MHz.
EBS Channel A3: 2513-2518.5 MHz	EBS Channel D4: 2590-2596 MHz	EBS Channel KG1: 2615.00000-2615.33333 MHz.
EBS Channel B1: 2518.5-2524 MHz	EBS Channel G4: 2596-2602 MHz	EBS Channel KG2: 2615.33333-2615.66666 MHz.
EBS Channel B2: 2524-2529.5 MHz	BRS/EBS Channel F4: 2602-2608 MHz	EBS Channel KG3: 2615.66666-2616.00000 MHz.
EBS Channel B3: 2529.5-2535 MHz	BRS/EBS Channel E4: 2608-2614 MHz	BRS Channel KF1: 2616.00000-2616.33333 MHz.
EBS Channel C1: 2535-2540.5 MHz		BRS Channel KF2: 2616.33333-2616.66666 MHz.
EBS Channel C2: 2540.5-2546 MHz		BRS Channel KF3: 2616.66666-2617.00000 MHz.
EBS Channel C3: 2546-2551.5 MHz		BRS Channel KE1: 2617.00000-2617.33333 MHz.
EBS Channel D1: 2551.5-2557 MHz		BRS Channel KE2: 2617.33333-2617.66666 MHz.
EBS Channel D2: 2557-2562.5 MHz		BRS Channel KE3: 2617.66666-2618.00000 MHz.
EBS Channel D3: 2562.5-2568 MHz		BRS Channel 2: 2618-2624 MHz or 2156-2162 MHz.
EBS Channel JA1: 2568.00000-2568.33333 MHz		BRS Channel 2A: 2618-2624 MHz or 2156-2160 MHz.
EBS Channel JA2: 2568.33333-2568.66666 MHz		BRS/EBS Channel E1: 2624-2629.5 MHz.
EBS Channel JA3: 2568.66666-2569.00000 MHz		BRS/EBS Channel E2: 2629.5-2635 MHz.
EBS Channel JB1: 2569.00000-2569.33333 MHz		BRS/EBS Channel E3: 2635-2640.5 MHz.
EBS Channel JB2: 2569.33333-2569.66666 MHz		BRS/EBS Channel F1: 2640.5-2646 MHz
EBS Channel JB3: 2569.66666-2570.00000 MHz		BRS/EBS Channel F2: 2646-2651.5 MHz.
EBS Channel JC1: 2570.00000-2570.33333 MHz		BRS/EBS Channel F3: 2651.5-2657 MHz
EBS Channel JC2: 2570.33333-2570.666666 MHz		BRS Channel H1: 2657-2662.5 MHz.
EBS Channel JC3: 2570.66666-2571.00000 MHz		BRS Channel H2: 2662.5-2668 MHz.
EBS Channel JD1: 2571.00000-2571.33333 MHz		BRS Channel H3: 2668-2673.5 MHz.
EBS Channel JD2: 2571.33333-2571.666666 MHz		EBS Channel G1: 2673.5-2679 MHz.
EBS Channel JD3: 2571.66666-2572.00000 MHz		EBS Channel G2: 2679-2684.5 MHz.
		EBS Channel G3: 2684.5-2690 MHz.

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 6 of 56	
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 6 of 56	
© 2014 PCTEST Engineering	2014 PCTEST Engineering Laboratory, Inc.			



BRS-EBS BAND PLANS: POST-TRANSITION AT 2495-2690 MHz

POST-TRANSITION

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 7 of 56	
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 7 of 56	
© 2014 PCTEST Engineering	2014 PCTEST Engineering Laboratory, Inc.			

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 9 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 8 of 56
© 2014 PCTEST Engineering	g Laboratory, Inc.			V 1.8

3.5 Radiated Power and Radiated Spurious Emissions §2.1053 §24.232(c) §24.238(a) §27.53(m)

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Clause 5, Figure 5.7 of ANSI C63.4-2009. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. An ETS Lindgren Model 2188 raised turntable is used for radiated measurement. It is a continuously rotatable, remote-controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. A 78cm high PVC support structure is placed on top of the turntable. A $\frac{3}{4}$ " (~1.9cm) sheet of high density polyethylene is used as the table top and is placed on top of the PVC supports to bring the total height of the table to 80cm.

The equipment under test was transmitting while connected to its integral antenna and is placed on a wooden turntable 80cm above the ground plane and 3 meters from the receive antenna. The receive antenna height is adjusted between 1 and 4 meter height, the turntable is rotated through 360 degrees, and the EUT is manipulated through all orthogonal planes representative of its typical use to achieve the highest reading on the receive spectrum analyzer. Radiated power levels are also investigated with the receive antenna horizontally and vertically polarized. The maximized power level is recorded using the spectrum analyzer "Channel Power" function with the integration band set to the emissions' occupied bandwidth, a RMS detector, RBW = 100kHz, VBW = 300kHz, and a 1 second sweep time over a minimum of 10 sweeps, per the guidelines of KDB 971168.

Per the guidance of ANSI/TIA-603-C-2004, a half-wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer level previously recorded from the spurious emission from the EUT. The power of the emission is calculated using the following formula:

$$P_{d [dBm]} = P_{g [dBm]} - cable loss_{[dB]} + antenna gain_{[dBd/dBi]}$$

Where, P_d is the dipole equivalent power, P_g is the generator output into the substitution antenna, and the antenna gain is the gain of the substitute antenna used relative to either a half-wave dipole (dBd) or an isotropic source (dBi). The substitute level is equal to $P_{g \text{ [dBm]}}$ – cable loss $_{\text{[dB]}}$.

The calculated P_d levels are then compared to the absolute spurious emission limit of -13dBm which is equivalent to the required minimum attenuation of 43 + 10log₁₀(Power _[Watts]). For Band 41, the calculated P_d levels are compared to the absolute spurious emission limit of -25dBm which is equivalent to the required minimum attenuation of 55 + 10log₁₀(Power _[Watts]).

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago 0 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 9 of 56
© 2014 PCTEST Engineering	Laboratory, Inc.		V 1.8

4.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST).

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
-	LTx1	Licensed Transmitter Cable Set	1/29/2014	Annual	1/29/2015	N/A
-	RE1	Radiated Emissions Cable Set (UHF/EHF)	5/29/2014	Annual	5/29/2015	N/A
Agilent	8447D	Broadband Amplifier	6/2/2014	Annual	6/2/2015	1937A03348
Agilent	E5515C	Wireless Communications Test Set	3/18/2014	Annual	3/18/2015	GB46110872
Agilent	N9020A	MXA Signal Analyzer	10/29/2013	Annual	10/29/2014	US46470561
Agilent	N9030A	PXA Signal Analyzer (26.5GHz)	5/8/2014	Annual	5/8/2015	MY49432391
Com-Power	AL-130	9kHz - 30MHz Loop Antenna	6/26/2013	Biennial	6/26/2015	121034
ETS Lindgren	3117	1-18 GHz DRG Horn (Medium)	4/8/2014	Biennial	4/8/2016	125518
ETS Lindgren	3160-09	18-26.5 GHz Standard Gain Horn	6/17/2014	Biennial	6/17/2016	135427
ETS Lindgren	3164-08	Quad Ridge Horn Antenna	3/12/2014	Biennial	3/12/2016	128337
Gigatronics	80701A	(0.05-18GHz) Power Sensor	10/30/2013	Annual	10/30/2014	1833460
Gigatronics	8651A	Universal Power Meter	10/30/2013	Annual	10/30/2014	8650319
K & L	11SH10-3075/U18000	High Pass Filter	5/2/2014	Annual	5/2/2015	2
Rhode & Schwarz	TS-PR18	Pre-Amplifier	6/12/2014	Annual	6/12/2015	101622
Rohde & Schwarz	CMW500	Radio Communication Tester	10/18/2013	Annual	10/18/2014	100976
Rohde & Schwarz	TS-PR18	1-18 GHz Pre-Amplifier	3/5/2014	Annual	3/5/2015	100071
Rohde & Schwarz	TS-PR26	18-26.5 GHz Pre-Amplifier	3/12/2014	Annual	3/12/2015	100040
Rohde & Schwarz	ESU26	EMI Test Receiver (26.5GHz)	1/27/2014	Annual	1/27/2015	100342
Schwarzbeck	UHA 9105	Dipole Antenna (400 - 1GHz) Rx	11/21/2013	Biennial	11/21/2015	9105-2404
Schwarzbeck	UHA 9105	Dipole Antenna (400 - 1GHz) Tx	11/21/2013	Biennial	11/21/2015	9105-2403
Sunol	JB5	Bi-Log Antenna (30M - 5GHz)	1/28/2014	Biennial	1/28/2016	A051107

Table 4-1. Test Equipment

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 10 of 56
© 2014 PCTEST Engineering	g Laboratory, Inc.	·		V 1.8

5.0 SAMPLE CALCULATIONS

Emission Designator

QPSK Modulation

Emission Designator = 8M62G7D

LTE BW = 8.62 MHz G = Phase Modulation 7 = Quantized/Digital Info D = Amplitude/Angle Modulated

16QAM Modulation

Emission Designator = 8M45W7D

LTE BW = 8.45 MHz W = Amplitude/Angle Modulated 7 = Quantized/Digital Info D = Combination (Audio/Data)

Spurious Radiated Emission – LTE Band

Example: Middle Channel LTE Mode 2nd Harmonic (1564 MHz)

The average spectrum analyzer reading at 3 meters with the EUT on the turntable was -81.0 dBm. The gain of the substituted antenna is 8.1 dBi. The signal generator connected to the substituted antenna terminals is adjusted to produce a reading of -81.0 dBm on the spectrum analyzer. The loss of the cable between the signal generator and the terminals of the substituted antenna is 2.0 dB at 1564 MHz. So 6.1 dB is added to the signal generator reading of -30.9 dBm yielding -24.80 dBm. The fundamental EIRP was 25.501 dBm so this harmonic was 25.501 dBm – (-24.80).

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 11 of 56
© 2014 PCTEST Engineering	Laboratory, Inc.		V 1.8

6.0 TEST RESULTS

6.1 Summary

Company Name:	Samsung Electronics, Co. Ltd.
FCC ID:	A3LSPHL520
FCC Classification:	PCS Licensed Transmitter Held to Ear (PCE)
Mode(s):	LTE

FCC Part Section(s)	Test Description Test Limit Test Conditio		Test Condition	Result	Reference
TRANSMITTER MOD	E (TX)				
2.1049	Occupied Bandwidth	N/A		PASS	Section 6.2
2.1051 24.238(a)	Band Edge / Conducted Spurious Emissions	> 43 + 10log ₁₀ (P[Watts]) at Band Edge and for all out-of- band emissions		PASS	Section 6.3, 6.4
27.53(m)	Band Edge / Conducted Spurious Emissions	 > 43 + 10log₁₀ (P[Watts]) at channel edges and > 55 + 10log₁₀ (P[Watts]) at 5.5MHz away and beyond channel edges 	CONDUCTED	PASS	Section 6.3, 6.4
24.232(d)	Peak-Average Ratio	< 13 dB	-	PASS	Section 6.5
2.1046	Transmitter Conducted Output Power	N/A		PASS	See RF Exposure Report
2.1055. 24.235 27.54	Frequency Stability	Fundamental emissions stay within authorized frequency block (Part 24, 27)		PASS	Section 6.7
24.232(c) 27.50(h.2)	Equivalent Isotropic Radiated Power (Band 25 41)	< 2 Watts max. EIRP	RADIATED	PASS	Section 6.6
	Table 6	-1. Summary of Test Resu	lts	-	

Notes:

- 1) All modes of operation and data rates were investigated. The test results shown in the following sections represent the worst case emissions.
- 2) The analyzer plots (Sections 6.2, 6.3, 6.4, 6.5) were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables, directional couplers, and attenuators used as part of the system to maintain a link between the call box and the EUT at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables, attenuators, and couplers.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is PCTEST "LTE Automation", Version 2.4.

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 10 of EG
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 12 of 56
© 2014 PCTEST Engineering	Laboratory, Inc.			V 1.8

6.2 Occupied Bandwidth §2.1049

Test Overview

The occupied bandwidth, that is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission shall be measured. All modes of operation were investigated and the worst case configuration results are reported in this section.

Test Procedure Used

KDB 971168 v02r01 - Section 4.2

Test Settings

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW \geq 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within

1 – 5% of the 99% occupied bandwidth observed in Step 7

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

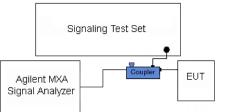
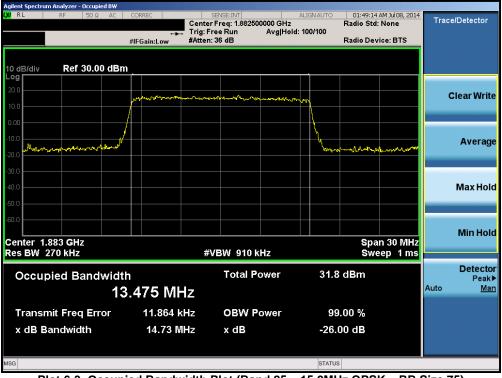


Figure 6-1. Test Instrument & Measurement Setup

Test Notes

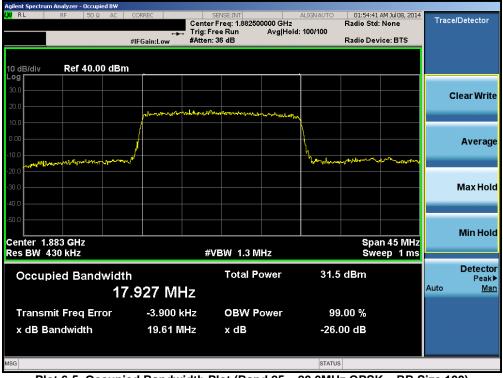
None.

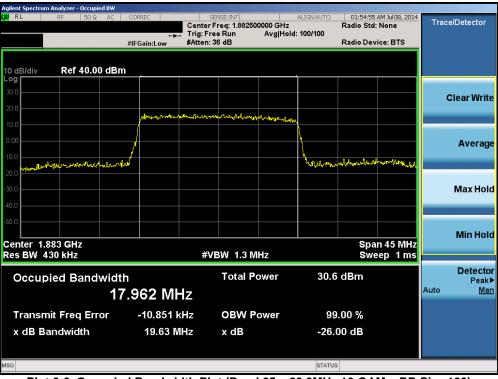
FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dego 12 of EC
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 13 of 56
© 2014 PCTEST Engineering	Laboratory, Inc.	·	V 1.8


Plot 6-1. Occupied Bandwidth Plot (Band 25 – 1.4MHz QPSK – RB Size 6)


Plot 6-2. Occupied Bandwidth Plot (Band 25 – 1.4MHz 16-QAM – RB Size 6)

FCC ID: A3LSPHL520	PCTEST	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 14 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 14 of 56
© 2014 PCTEST Engineerin	g Laboratory, Inc.			V 1.8


Plot 6-3. Occupied Bandwidth Plot (Band 25 – 15.0MHz QPSK – RB Size 75)


Plot 6-4. Occupied Bandwidth Plot (Band 25 – 15.0MHz 16-QAM – RB Size 75)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	MSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 15 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 15 of 56
© 2014 PCTEST Engineerin	g Laboratory, Inc.			V 1.8


Plot 6-5. Occupied Bandwidth Plot (Band 25 - 20.0MHz QPSK - RB Size 100)

Plot 6-6. Occupied Bandwidth Plot (Band 25 – 20.0MHz 16-QAM – RB Size 100)

FCC ID: A3LSPHL520	PCTEST	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 16 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 16 of 56
© 2014 PCTEST Engineerin	g Laboratory, Inc.			V 1.8

Plot 6-7. Occupied Bandwidth Plot (Band 41 – 5.0MHz QPSK – RB Size 25)

Plot 6-8. Occupied Bandwidth Plot (Band 41 – 5.0MHz 16-QAM – RB Size 25)

FCC ID: A3LSPHL520	PCTEST	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 17 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 17 of 56
© 2014 PCTEST Engineerin	g Laboratory, Inc.			V 1.8

Spurious and Harmonic Emissions at Antenna Terminal 6.3 §2.1051 §24.238(a) §27.53(m)

Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P_{IWattsl})$, where P is the transmitter power in Watts. For Band 41, the minimum permissible attenuation level of any spurious emission is $55 + \log_{10}(P_{[Watts]})$.

Test Procedure Used

KDB 971168 v02r01 - Section 6.0

Test Settings

- 1. Start frequency was set to 30MHz and stop frequency was set to at least 10 * the fundamental frequency (separated into at least two plots per channel)
- 2. Detector = RMS
- 3. Trace mode = max hold
- 4. Sweep time = auto couple
- 5. The trace was allowed to stabilize
- 6. Please see test notes below for RBW and VBW settings

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

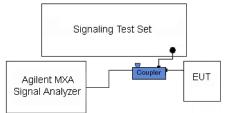
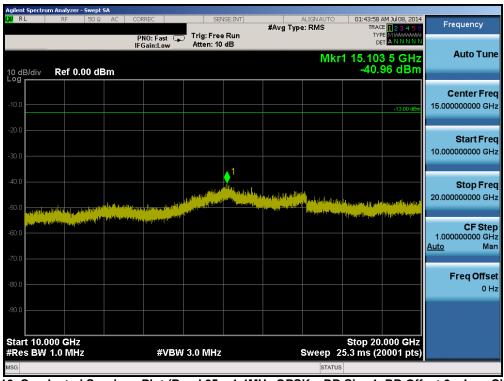


Figure 6-2. Test Instrument & Measurement Setup

Test Notes


Compliance with the applicable limits is based on the use of measurement instrumentation employing a resolution bandwidth of 100 kHz or greater for frequencies less than 1 GHz and 1 MHz or greater for frequencies greater than 1 GHz. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power. Many of the following conducted spurious emission plots for Band 41 do not extend to completely cover the necessary frequencies. In order to demonstrate compliance, integration plots with a 1MHz bandwidth covering the remaining frequencies have been provided.

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 19 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 18 of 56
© 2014 PCTEST Engineering	Laboratory Inc.	-	V 1 8

Agilent Spe	ectrum Analy										
L <mark>au</mark> RL	RF	50 9	R AC CO	RREC		JSE:INT	#Avg Type	ALIGN AUTO e: RMS	TRAC	AM Jul 08, 2014 E <mark>1 2 3 4 5 6</mark>	Frequency
				NO: Fast 🛛 🖵 Gain:Low	Trig: Free Atten: 36						
								M	kr1 9.51	4 GHz	Auto Tune
10 dB/di Log	iv Ref	25.00	dBm						-24.	69 dBm	
											Center Freq
15.0											5.015000000 GHz
5.00											Start Freq
-5.00											30.000000 MHz
										-13.00 dBm	
-15.0											Stop Freq
										↓ ¹	10.00000000 GHz
-25.0				1.				nation of a surface		in the second second	
-35.0	A POINT OF A	a to party listers	an terrent trademistration		and the state of the	and an interview	ennyen om den gesten. Der skillere det skiller	الماردان والمراد وال	n fa data shi kata shi kata	table and the local design of	CF Step 997.000000 MHz
	and the second s		and the state of the	فأنحل والمتلكان الأر	أفكر الدرارية	and the state of the]				Auto Man
-45.0	יי וי										
-55.0											Freq Offset
-35.0											0 Hz
-65.0											
Start 3									Stop 10	.000 GHz	
#Res E	3W 1.0 N	ЛНz		#VBW	3.0 MHz			Sweep	17.3 ms (2	0001 pts)	
MSG								STATU	JS		

Plot 6-9. Conducted Spurious Plot (Band 25 – 1.4MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)


Plot 6-10. Conducted Spurious Plot (Band 25 – 1.4MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:	Dega 10 of 56				
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 19 of 56				
© 2014 PCTEST Engineering	0 2014 PCTEST Engineering Laboratory, Inc.						

RL 0 dB/div	RF 50 Ω	AC CORREC PNO: Fast File File File File File File File File		#Avg Type	ALIGN AUTO	TRAC	AM Jul 08, 2014 E 123456 E MWWWWWW T A N N N N N	Frequency
0 dB/div	Ref 30.00 dB	IFGain:Low				DE	TANNNN	
o dB/div	Ref 30.00 dB	Sm						
0 dB/div	Ref 30.00 dB	3m			Mk	r1 8.517	75 GHz	Auto Tun
<u>ا</u>						-20.	73 dBm	
								Center Fre
20.0								5.015000000 GH
10.0								
10.0								Start Fre
).00								30.000000 MH
0.0							-13.00 dBm	Stop Fre
20.0						¹		10.000000000 GH
.0.0					والعربي الجيادين	ALL PROPERTY AND A STATEMENT	ali de Hendisk	
30.0	and the state of the second second		-plath all a produce	Party of the Party	والتعا كثني وتقيرو	بالانتم أأمحناها إلى يسى	and an and the state of the	CF Ste 997.000000 MH
and the second	ing an inclusion distantiation and	(initial and initial and in						<u>Auto</u> Ma
10.0								
50.0								Freq Offs 0 H
60.0								
tart 30 MH Res BW 1.		#\/B\/	V 3.0 MHz		Swoon 4	Stop 10	.000 GHz 0001 pts)	
		#VBV	* 3.0 WIA Z		Sweep 1.	r.5 ms (2	boor pis)	

Plot 6-11. Conducted Spurious Plot (Band 25 – 1.4MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

Plot 6-12. Conducted Spurious Plot (Band 25 – 1.4MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:	Daga 20 of 56				
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 20 of 56				
© 2014 PCTEST Engineering Laboratory, Inc.							

	um Analyzer - Swepi									
X/RL	RF 50 S	Σ AC C	ORREC	SEN	JSE:INT	#Avg Typ			M Jul 08, 2014	Frequency
			PNO: Fast 🖵 IFGain:Low	Trig: Free Atten: 36		HULA I M	e. 14115	TYPE	ANNNNN	
10 dB/div	Ref 25.00	dBm					Mk	r1 9.356 -24.3	4 GHz 2 dBm	Auto Tune
15.0										Center Freq 5.015000000 GHz
-5.00										Start Freq 30.000000 MHz
-15.0								ndlistaitea. I	-13.00 dBm	Stop Freq 10.000000000 GHz
-35.0	and the state of the second section of the sect	and the second street	en die die die fer in gester die se werden die die die die die se werden die die die die se geweikenen	andelsen Destatistica _{n en} statis	Approximation and material and a second	l <mark>ang dipertifikasi kati kang tantakan Kana kati kati kati kati kati kati kati kat</mark>	a prograf a fil fan de far fer per 19 october 19 a fil fan de far fer af		a _{la s} late Anna Incon	CF Step 997.000000 MHz <u>Auto</u> Man
-55.0										Freq Offsel 0 Hz
-65.0										
Start 30 #Res BW	MHz 1.0 MHz		#VBW	3.0 MHz			Sweep 1	Stop 10.0 7.3 ms (20		
MSG							STATUS			

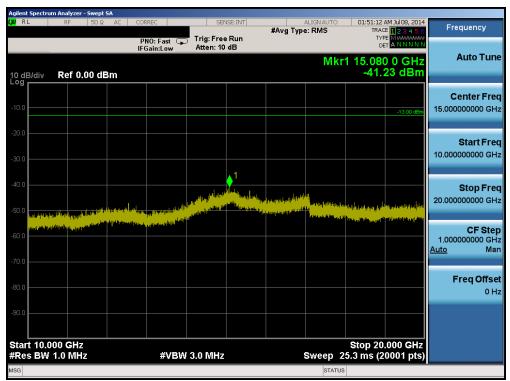
Plot 6-13. Conducted Spurious Plot (Band 25 – 1.4MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

Plot 6-14. Conducted Spurious Plot (Band 25 – 1.4MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager					
Test Report S/N:	Test Dates:	EUT Type:	Dega 21 of 56					
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 21 of 56					
© 2014 PCTEST Engineering	© 2014 PCTEST Engineering Laboratory, Inc.							

	ım Analyzer - Swep									
X/RL	RF 50 :	Ω AC	CORREC	SEN	SE:INT	#Avg Typ	ALIGNAUTO e: RMS		M Jul 08, 2014	Frequency
			PNO: Fast 🕞 IFGain:Low	Trig: Free Atten: 36				TYPE DE1	ANNNN	
10 dB/div	Ref 25.00	dBm					Mk	r1 9.657 -24.3	5 GHz 6 dBm	Auto Tune
15.0										Center Free 5.015000000 GH
5.00										Start Free 30.000000 MH
-15.0									-13.00 dBm	Stop Fre 10.000000000 GH
-35.0	perturya princi salar Antonia fina di manadari	he souther bet	hala an airte ann an	a palating ang ang ang ang ang ang ang ang ang a	na posta de la desta de la La desta de la d	a gi parti na gi di sa k Ngjarti ng parti ng p Ngjarti ng parti ng pa	n <mark>i (telepel) performantes te</mark> 1993 - Leine Angeler, estatue and p	<mark>y Leon De Serviciense de la constante de</mark>	a store standing to a spender	CF Stej 997.000000 MH <u>Auto</u> Ma
-55.0										Freq Offse 0 H
-65.0										
Start 30 <mark> </mark> #Res BW	MHz 1.0 MHz		#VBM	/ 3.0 MHz			Sweep 1	Stop 10. 7.3 ms (20	000 GHz 0001 pts)	
ISG							STATUS			

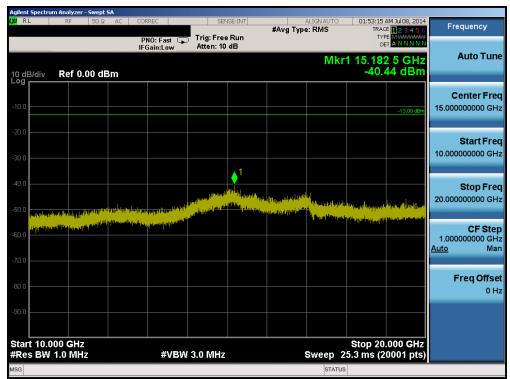
Plot 6-15. Conducted Spurious Plot (Band 25 – 15.0MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)


Plot 6-16. Conducted Spurious Plot (Band 25 – 15.0MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager				
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 56				
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 22 of 56				
© 2014 PCTEST Engineering Laboratory, Inc.							

	m Analyzer - Swept									
(RL	RF 50 Ω	AC C	DRREC		VSE:INT	#Avg Typ	ALIGN AUTO e: RMS	01:51:05 AM Ju TRACE	23456	Frequency
			PNO: Fast 🖵 FGain:Low	Trig: Free Atten: 36				DET A	NNNN	
							Mk	(r1 9.977 1	GHz	Auto Tun
0 dB/div .og	Ref 25.00	dBm						-23.93	dBm	
										Center Fre
15.0										5.015000000 GH
5.00										
5.00										Start Fre
5.00										30.000000 MH
									13.00 dBm	
15.0									1	Stop Fre
25.0										10.00000000 GI
.5.0					. 0	da la habitanti sa datat	and the stand		dit and when	
15.0	nel (1917) I be brooking broach	Add Milling	plants really altered.	land the second	The state of a second s	en opposite de la constantion en opposite de la constantion de la cons	and the second second	and the second	and the second	CF Ste 997.000000 MI
at and EDD	and the state of the second		ir itention	and the second						Auto M
5.0										
i5.0										Freq Offs
										01
5.0										
tart 30 N							_	Stop 10.00	GHz	
	1.0 MHz		#VBW	3.0 MHz				7.3 ms (2000	T pts)	
G							STATUS	5		

Plot 6-17. Conducted Spurious Plot (Band 25 – 15.0MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)


Plot 6-18. Conducted Spurious Plot (Band 25 – 15.0MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	ING	Reviewed by: Quality Manager			
Test Report S/N:	Test Dates:	EUT Type:		Daga 22 of 56			
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 23 of 56			
© 2014 PCTEST Engineering Laboratory, Inc.							

	um Analyzer - Si									
<mark>X/</mark> RL	RF	50Ω AC	CORREC		SE:INT	#Avg Typ	ALIGN AUTO e: RMS	TRACE	M Jul 08, 2014	Frequency
10 dB/div	Ref 25.0	0 dBm	PNO: Fast 📮 IFGain:Low	Trig: Free Atten: 36			Mk	DET r1 8.586	ANNNN	Auto Tune
15.0										Center Freq 5.015000000 GHz
-5.00									-13.00 dBm	Start Fred 30.000000 MHz
-15.0						al film of the second		_1 		Stop Fred 10.000000000 GH:
-35.0	n ta shi ta shi a		y Marine Statelline Andreas Stateller Y Marine and All Marine and All Stateller Y Marine and All Marine and All Stateller	, filling _{Cons} ellin percentratific p ^{atie} nt		a (ta fa da	n in the many of a second s	na lina (n Malaka ila k	an an Anna an Anna an Anna an Anna Anna	CF Step 997.000000 MHz <u>Auto</u> Mar
55.0										Freq Offse 0 H:
-65.0										
Start 30 #Res BW	MHz 1.0 MHz		#VBW	/ 3.0 MHz			Sweep 1	Stop 10.0 7.3 ms (20		
//SG							STATUS			

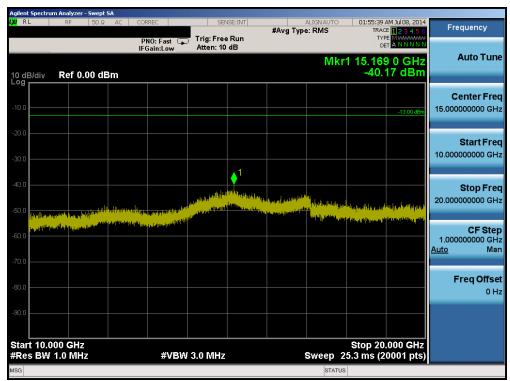
Plot 6-19. Conducted Spurious Plot (Band 25 – 15.0MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

Plot 6-20. Conducted Spurious Plot (Band 25 – 15.0MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 24 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 24 of 56
© 2014 PCTEST Engineering	Laboratory, Inc.		V 1.8

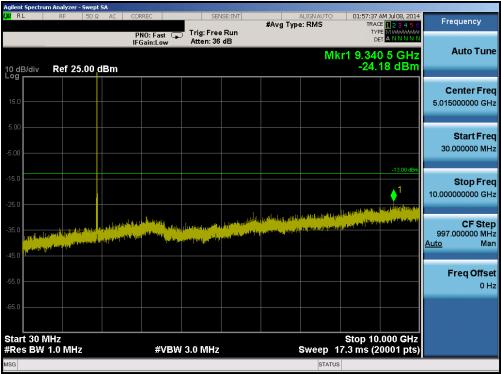
	um Analyzer - Swep									
LXI RL	RF 50 \$	≥ AC CC	ORREC	SEN	JSE:INT	#Avg Typ	ALIGNAUTO		M Jul 08, 2014	Frequency
	_		PNO: Fast 🖵 Gain:Low	Trig: Free Atten: 36				TYPI DE		
10 dB/div	Ref 25.00	dBm					Mk	r1 9.381 -25.1	9 GHz I6 dBm	Auto Tune
15.0										Center Freq 5.015000000 GHz
-5.00										Start Freq 30.000000 MHz
-15.0								الم فرهدان م	-13.00 dBm	Stop Freq 10.000000000 GHz
-35.0	ter providence in a literate in the literate i	en ang tenantitis ^{ti} ndonana na pitandanana dia tindagi	n an chille fourth	_{an} da king panya ⁽¹¹ 14) Da nahi tata pan ^{akatan}	a an de la casa da da Gana da tanàna da	n de terreter	وي المرابع الم مرابع المرابع ال مرابع المرابع ا	f left fi	a provide a construction of the second s	CF Step 997.000000 MHz <u>Auto</u> Man
-55.0										Freq Offset 0 Hz
-65.0								Stop 10.	000 CH2	
#Res BW			#VBW	3.0 MHz			Sweep 1	7.3 ms (20	0001 pts)	
MSG							STATUS	;		

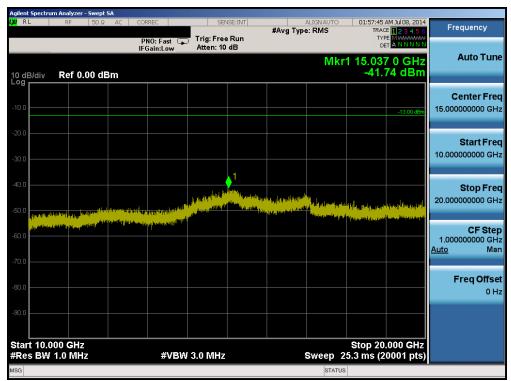
Plot 6-21. Conducted Spurious Plot (Band 25 – 20.0MHz QPSK – RB Size 1, RB Offset 0– Low Channel)


Plot 6-22. Conducted Spurious Plot (Band 25 – 20.0MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	UNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 25 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 25 of 56
© 2014 PCTEST Engineering	Laboratory, Inc.	·		V 1.8

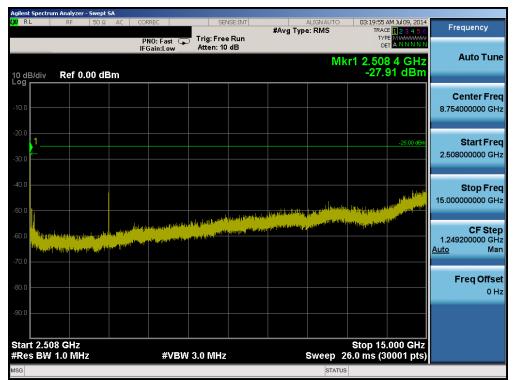
	ım Analyzer - Swer								_
X/RL	RF 50	Ω AC I	CORREC	SEN	ISE:INT	#Avg Typ	ALIGN AUTO e: RMS	01:55:33 AM Jul 08, 201- TRACE 1 2 3 4 5 (
			PNO: Fast 🖵 IFGain:Low	Trig: Free Atten: 36		•			
10 dB/div	Ref 25.00	dBm					Mk	r1 9.376 4 GHz -25.02 dBm	Auto Tuno
15.0									Center Fre 5.015000000 GH
5.00									Start Fre 30.000000 M⊦
25.0								-13.00 dBr	Stop Fre 10.000000000 G⊦
35.0		l La calabasi a dalah Manada sa pinaka		n y gener og generet for	n fan stêre an de stêre Gernelêre an dê têre	na aling a sa s	, have been been been by the second	n _{terr} yang disebut yang disebut yang disebut yang dise disebut yang disebut y	CF Ste 997.000000 MH <u>Auto</u> Ma
55.0									Freq Offs 0 F
65.0									
Start 30 M Res BW	/IHz 1.0 MHz		#VBW	3.0 MHz			Sweep_1	Stop 10.000 GHz 7.3 ms (20001 pts	
SG			/ • Div	ene min12			STATUS		


Plot 6-23. Conducted Spurious Plot (Band 25 – 20.0MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)


Plot 6-24. Conducted Spurious Plot (Band 25 – 20.0MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

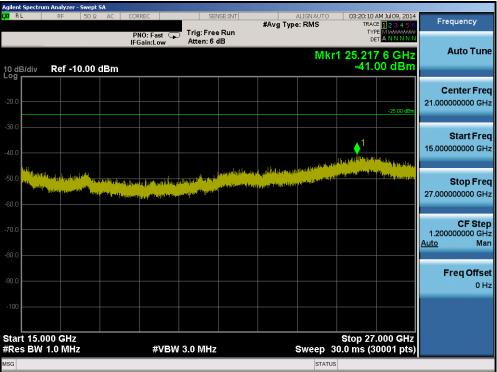
FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 26 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 26 of 56
© 2014 PCTEST Engineering	Laboratory, Inc.	·	V 1.8

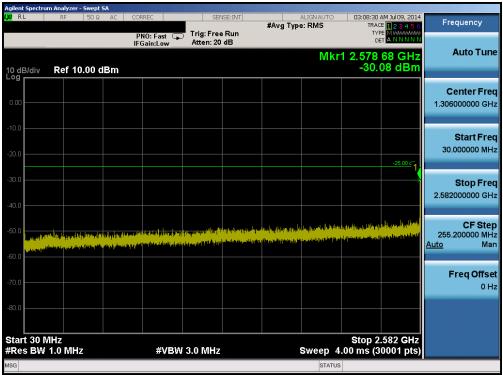
Plot 6-25. Conducted Spurious Plot (Band 25 – 20.0MHz QPSK – RB Size 1, RB Offset 0 – High Channel)


Plot 6-26. Conducted Spurious Plot (Band 25 – 20.0MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 27 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 27 of 56
© 2014 PCTEST Engineering	Laboratory, Inc.	·		V 1.8

	ım Analyzer - S										
X/RL	RF	50 Ω AC	CORREC	SEN	NSE:INT	#Avg Typ			AM Jul 09, 2014 E 1 2 3 4 5 6	Frequenc	cy
			PNO: Fast 🗔	Trig: Free		HULL I I I I	e. 14115	TY	E M WARARARA		-
			IFGain:Low	Atten: 20	dB				ANNNN		_
							Mkr1	2.489 8	36 GHz	Auto	Tune
10 dB/div	Ref 10.	00 dBm						-28.	54 dBm		
- ^{og} [
										Center	Free
0.00										1.26000000	0 GH
10.0											
										Start	
-20.0										30.00000	0 MH:
									-25.00 c 1		
30.0									`	0 1	-
										Stop	
-40.0										2.49000000	0 GH
					المعالية المراجع	بالصبية والمراجع	a mana da	الدرائل بلساع والمعا	and the second second	CF	Ster
-50.0	a marine dependent of	All Martin Property	an a	la a ni wata ta ang	er ander et die ster en er	an ta segue a créterine.	ي من يونين من	a sa si likela shi sa likela sa s	الديد فيريم إداعا وجا	246.00000	
NUMBER	and the second	فا بأدانا أدلا حادث معالي	tana ang piteti na kakang pantén (taté né	in Alter Constantion	ي مريد برايي ير طر		. li			Auto	Mar
60.0											
										FreqC	Offse
-70.0											0 H;
-80.0											
Start 30 I								Stop 2	.490 GHz		
Res BW	1.0 MHz		#VBV	/ 3.0 MHz			sweep 4	.00 ms (3	0001 pts)		
ISG							STATUS	5			


Plot 6-27. Conducted Spurious Plot (Band 41 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)


Plot 6-28. Conducted Spurious Plot (Band 41 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)

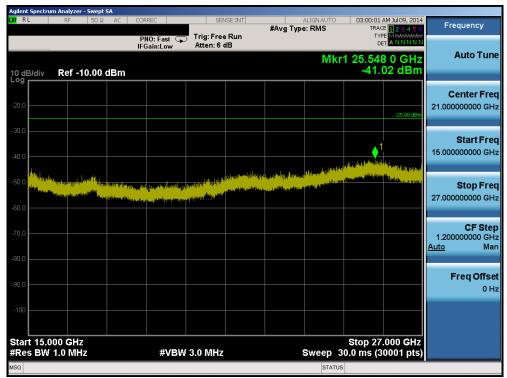
FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 29 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 28 of 56
© 2014 PCTEST Engineering	Laboratory, Inc.	·	V 1.8

Plot 6-29. Conducted Spurious Plot (Band 41 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – Low Channel)


Plot 6-30. Conducted Spurious Plot (Band 41 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	MSUNG	Reviewed by: Quality Manager						
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of E6						
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 29 of 56						
© 2014 PCTEST Engineering	2014 PCTEST Engineering Laboratory, Inc.									

Plot 6-31. Conducted Spurious Plot (Band 41 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)


Plot 6-32. Conducted Spurious Plot (Band 41 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 20 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 30 of 56
© 2014 PCTEST Engineerin	g Laboratory, Inc.		V 1.8

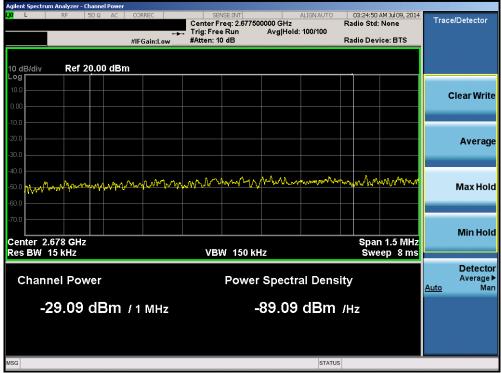
	pectrum	Analyzer - S	wept SA								
L <mark>XI</mark> RL		RF	50Ω AC	CORREC	SE	NSE:INT	#Avg Typ			M Jul 09, 2014 • 1 2 3 4 5 6	Frequency
				PNO: Fast	📕 Trig: Fre		HULB LIN.	e. 1405	TYP	E M WWWWWW	
				IFGain:Low	Atten: 10	dB				TANNNN	A
								Mł	(r1 2.602	2 0 GHz	Auto Tune
10 dB/	div	Ref 0.00) dBm						-27.0	66 dBm	
Log											
											Center Freq
-10.0											8.801000000 GHz
-20.0	1									-25.00 dBm	Start Freq
	-									-25.00 abm	2.602000000 GHz
-30.0											2.60200000 GH2
-40.0											Stop Freq
										Jun Post	15.00000000 GHz
-50.0						ant hear		and the second second		an a	
				Detyl fyr det far fyl an far fylar Detyl far far af san af arferdau Detyn far den af san af arferdau		Variat CAUT and an	and a second	ليأبله والأوريسان	فاقتد مترفق ومرارعه المقاقة		CF Step
-60.0	and the second	ا بعد با للوقات و عواد	Participation in the second	national and a second of the second sec	المتعربة المتحدية المتحدية	ورزارية ويربي					1.239800000 GHz
4	يةار ألا الاست.	e na an an dan Mila	أمله فالانتخاب والمتاري								<u>Auto</u> Man
-70.0		and 16 million - 1	7 ·								
											Freq Offset
-80.0											0 Hz
											0112
-90.0											
L											
Start		GHz .0 MHz		#1)/E	W 3.0 MHz			Curson (Stop 15. 6.0 ms (3	000 GHz	
	BW 1	.0 MHZ		#VE	W 3.0 MH2					ooor pis)	
MSG								STATUS	5		

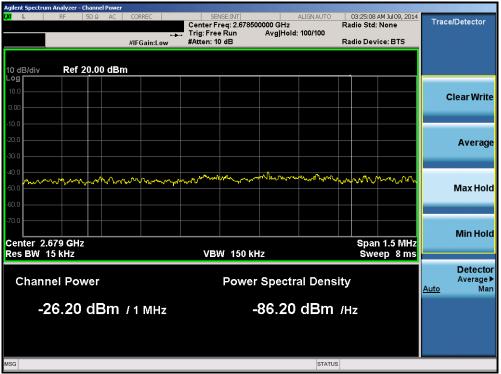
Plot 6-33. Conducted Spurious Plot (Band 41 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)


Plot 6-34. Conducted Spurious Plot (Band 41 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – Mid Channel)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 24 of 50
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 31 of 56
© 2014 PCTEST Engineering	ng Laboratory, Inc.			V 1.8

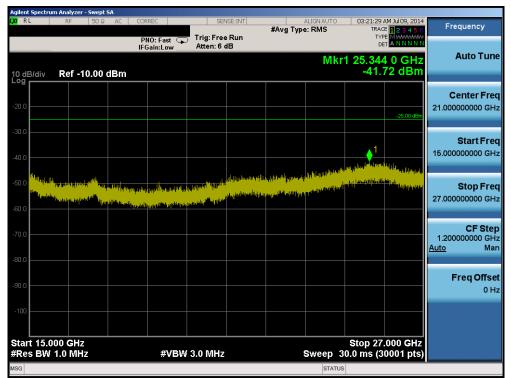
	um Analyzer - Swept :									
I,XI RL	RF 50 Ω	AC COF	REC		VSE:INT	#Avg Type	ALIGN AUTO	TRAC	AM Jul 09, 2014 E <mark>1 2 3 4 5 6</mark>	Frequency
			NO: Fast 🕞 Gain:Low	Trig: Free Atten: 20				TYF DE	TANNNN	
	-						Mkr1 2	.674 85	3 4 GHz	Auto Tune
10 dB/div	Ref 10.00 d	IBm						-33.	55 dBm	
										Center Freq
0.00										1.353000000 GHz
-10.0										Otent Envir
										Start Freq 30.000000 MHz
-20.0									-25.00 dBm	00.000000 11112
-30.0									1/	
55.5										Stop Freq 2.67600000 GHz
-40.0										2.07000000 GH2
							1			CF Step
-50.0	lan waaraa kula kuna karaa u u	and and a state of the state of	بالمرزورا يعرفنها فا	And the state of the second state of the secon	territo <mark>tan</mark> laratio	Adalah sering Adalah sering Sering Adalah sering Adalah sering Sering Adalah sering Adalah sering Adalah sering	and a second	Angenerief perspecting ta Marinflaats bistorie	No. of Street, or Stre	264.600000 MHz
-60.0	ang sa ka	فتتعليك ومعتقل أنفسنا	nand télesztíttégy jébben	date and the little	de l'elles des rouss		o 1			<u>Auto</u> Man
-60.0										
-70.0										Freq Offset 0 Hz
										0 H2
-80.0										
Start 30									.676 GHz	
· · · · · ·	1.0 MHz		#VBW	3.0 MHz			Sweep 4	.00 ms (3	0001 pts)	
MSG							STATUS	3		


Plot 6-35. Conducted Spurious Plot (Band 41 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – High Channel)


Plot 6-36. Conducted Spurious Plot (Band 41 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 22 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 32 of 56
© 2014 PCTEST Engineering	g Laboratory, Inc.			V 1.8

Plot 6-37. Conducted Spurious Plot (Band 41 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – High Channel)


Plot 6-38. Conducted Spurious Plot (Band 41 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 22 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 33 of 56
© 2014 PCTEST Engineerin	g Laboratory, Inc.		V 1.8

		n Analyzer - Sw									
l xi ri	L	RF 5	ΟΩ ΑΟ Ο	ORREC	SEN	ISE:INT	#Avg Typ	ALIGN AUTO e: RMS	03:21:20 TRAC	AM Jul 09, 2014	Frequency
				PNO: Fast 🖵 FGain:Low	Trig: Free Atten: 20		0 //		TYF	E 123456 E MWWWW T A N N N N N	
				FGain:Luw	Aden. 20	40		MI			Auto Tune
10 dF	Mkr1 2.696 5 GHz 10 dB/div Ref 10.00 dBm -30.30 dBm									30 dBm	
Log											
											Center Freq
0.00											8.848250000 GHz
40.0											
-10.0											Start Freq
-20.0											2.696500000 GHz
20.0	1									-25.00 dBm	
-30.0	<u>) </u>										Stop Freq
										a distribution of the	15.00000000 GHz
-40.0						ul		ni-dalla piti	أميناهم ورجعه والأرق	NO DI CALLI	
			امر افتدار ا	والالعمارية المعرورا الم	and a state of the second	n	a patrice (to be a patrice)	الفاجان والتوليل المحد أمرار	الالتارينية ورواد ومأتر		CF Step
-50.0	THE TOP	يعتاريه ومتحققا وتعرفناه	nder bereichten einen einen Einen einen eine	فالاستقادات والأردر وأعداد	والعما مراشقته والأودأ	da, jakas sai palitalikaik	ali				1.230350000 GHz
	na tini i	u a chi perta della ca	And the mail of the staff is the staff is the staff of th								<u>Auto</u> Man
-60.0											
											Freq Offset
-70.0											0 Hz
-80.0											
-00.0											
		7 GHz 1.0 MHz		#\/B\A	/ 3.0 MHz			Swoon -	Stop 15 6.0 ms (3	.000 GHz	
_	5 DW			#VBV	JUWINZ					000 F pts)	
MSG								STATUS			

Plot 6-39. Conducted Spurious Plot (Band 41 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

Plot 6-40. Conducted Spurious Plot (Band 41 – 5.0MHz QPSK – RB Size 1, RB Offset 0 – High Channel)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dama 24 of 50
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 34 of 56
© 2014 PCTEST Engineerin	a Laboratory, Inc.			V 1.8

6.4 Band Edge Emissions at Antenna Terminal §2.1051 §24.238(a) §27.53(m)

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

The minimum permissible attenuation level of any spurious emission is $43 + \log_{10}(P_{[Watts]})$, where P is the transmitter power in Watts.

The minimum permissible attenuation level for Band 41 is > 43 + $10\log_{10}$ (P[Watts]) at channel edges and > 55 + $10\log_{10}$ (P[Watts]) at 5.5 MHz away and beyond channel edges.

Test Procedure Used

KDB 971168 v02r01 – Section 6.0

Test Settings

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW \geq 1% of the emission bandwidth
- 4. VBW <u>></u> 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = max hold
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

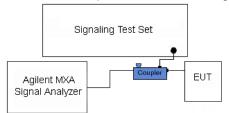
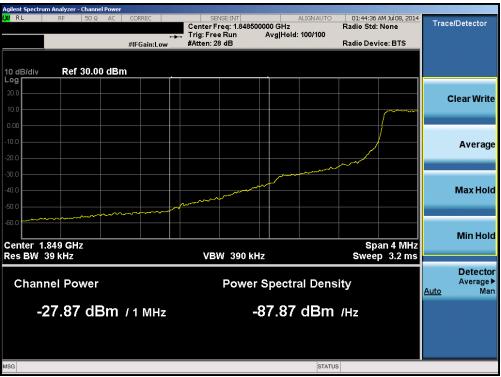


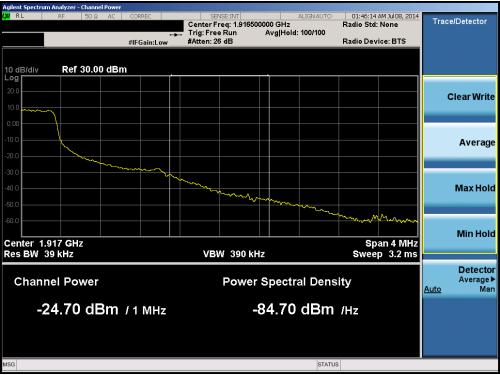
Figure 6-3. Test Instrument & Measurement Setup

Test Notes

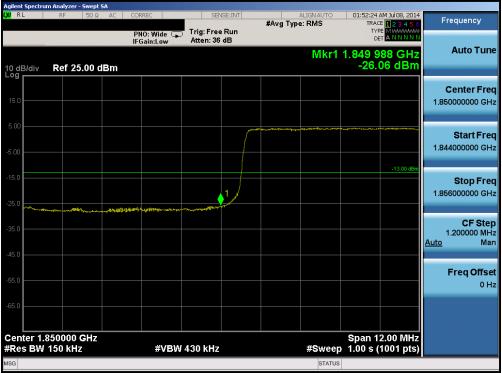

Per 24.238(a) and 27.53(m) in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to demonstrate compliance with the out-of-band emissions limit. The emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emission are attenuated at least 26 dB below the transmitter power.

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 25 of 56	
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 35 of 56	
© 2014 PCTEST Engineering Laboratory, Inc.				

Plot 6-41. Lower Band Edge Plot (Band 25 – 1.4MHz QPSK – RB Size 6)


Plot 6-42. Lower Extended Band Edge Plot (Band 25 – 1.4MHz QPSK – RB Size 6)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 26 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 36 of 56
© 2014 PCTEST Engineerin	g Laboratory, Inc.			V 1.8


Plot 6-43. Upper Band Edge Plot (Band 25 – 1.4MHz QPSK – RB Size 6)


Plot 6-44. Upper Extended Band Edge Plot (Band 25 – 1.4MHz QPSK – RB Size 6)

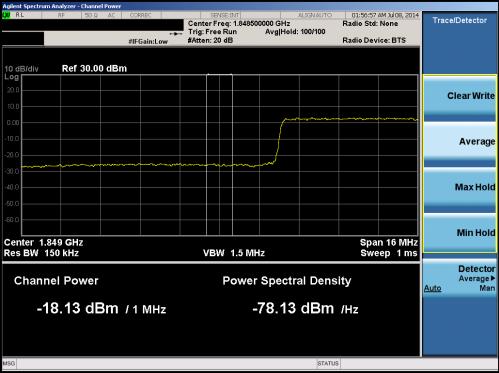
FCC ID: A3LSPHL520	PCTEST	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dego 27 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 37 of 56
© 2014 PCTEST Engineerin	g Laboratory, Inc.	•		V 1.8

Plot 6-45. Lower Band Edge Plot (Band 25 – 15.0MHz QPSK – RB Size 75)

Plot 6-46. Lower Extended Band Edge Plot (Band 25 – 15.0MHz QPSK – RB Size 75)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 29 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 38 of 56
© 2014 PCTEST Engineerin	2014 PCTEST Engineering Laboratory, Inc.			


Plot 6-47. Upper Band Edge Plot (Band 25 – 15.0MHz QPSK – RB Size 75)


Plot 6-48. Upper Extended Band Edge Plot (Band 25 – 15.0MHz QPSK – RB Size 75)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 20 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 39 of 56
© 2014 PCTEST Engineerin	2014 PCTEST Engineering Laboratory, Inc.			

Plot 6-49. Lower Band Edge Plot (Band 25 - 20.0MHz QPSK - RB Size 100)

Plot 6-50. Lower Extended Band Edge Plot (Band 25 – 20.0MHz QPSK – RB Size 100)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 40 of 56
© 2014 PCTEST Engineerin	2014 PCTEST Engineering Laboratory, Inc.			

Plot 6-51. Upper Band Edge Plot (Band 25 – 20.0MHz QPSK – RB Size 100)

Plot 6-52. Upper Extended Band Edge Plot (Band 25 – 20.0MHz QPSK – RB Size 100)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 41 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 41 of 56
© 2014 PCTEST Engineerin	114 PCTEST Engineering Laboratory, Inc.			


Plot 6-53. Lower ACP Plot (Band 41 – 5.0MHz QPSK – RB Size 25)

Plot 6-54. Mid ACP Plot (Band 41 – 5.0MHz QPSK – RB Size 25)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 56		
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 42 of 56		
© 2014 PCTEST Engineering	2014 PCTEST Engineering Laboratory, Inc.				

Plot 6-55. Upper ACP Plot (Band 41 – 5.0MHz QPSK – RB Size 25)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 42 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 43 of 56
© 2014 PCTEST Engineering	014 PCTEST Engineering Laboratory, Inc.			

6.5 Peak-Average Ratio

Test Overview

A peak to average ratio measurement is performed at the conducted port of the EUT. The spectrum analyzers Complementary Cumulative Distribution Function (CCDF) measurement profile is used to determine the largest deviation between the average and the peak power of the EUT in a given bandwidth. The CCDF curve shows how much time the peak waveform spends at or above a given average power level. The percent of time the signal spends at or above the level defines the probability for that particular power level.

Test Procedure Used

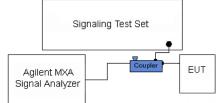
KDB 971168 v02r01 - Section 5.7.1

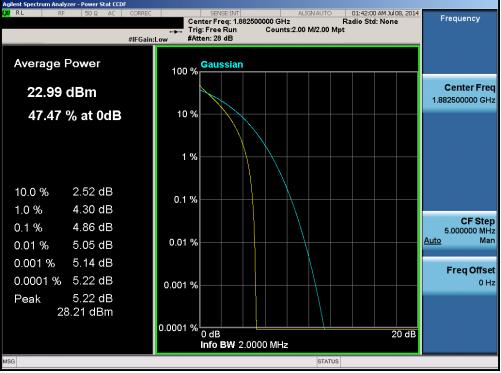
Test Settings

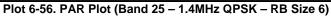
- 1. The signal analyzer's CCDF measurement profile is enabled
- 2. Frequency = carrier center frequency
- 3. Measurement BW > Emission bandwidth of signal
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve
- 5. The measurement interval was set depending on the type of signal analyzed. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power

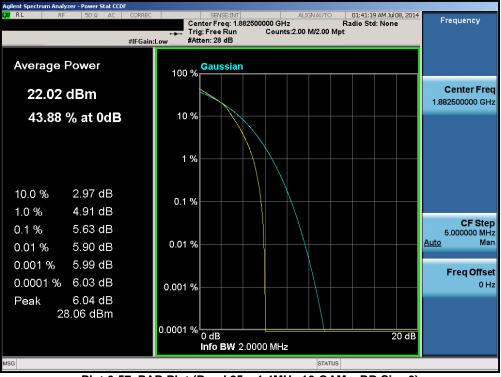
Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

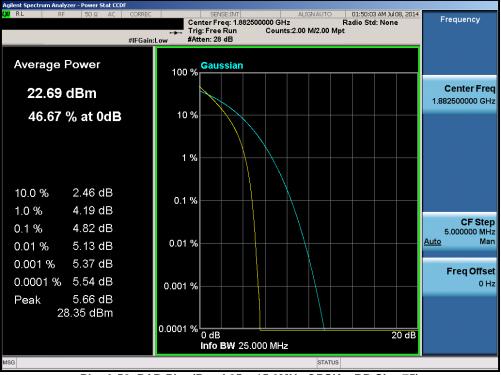


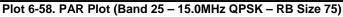

Figure 6-4. Test Instrument & Measurement Setup


Test Notes


None.

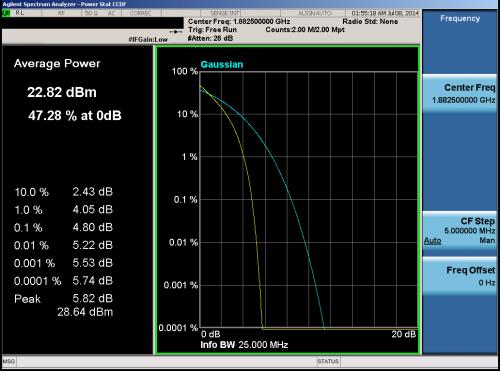
FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage 44 of 56	
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 44 of 56	
© 2014 PCTEST Engineering	2014 PCTEST Engineering Laboratory, Inc.			

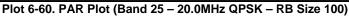


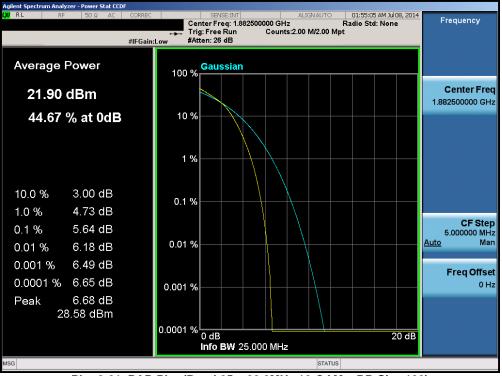



Plot 6-57. PAR Plot (Band 25 – 1.4MHz 16-QAM – RB Size 6)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 45 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 45 of 56
© 2014 PCTEST Engineerin	14 PCTEST Engineering Laboratory, Inc.			






Plot 6-59. PAR Plot (Band 25 – 15.0MHz 16-QAM – RB Size 75)

FCC ID: A3LSPHL520	PCTEST	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	MSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 46 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 46 of 56
© 2014 PCTEST Engineerin	2014 PCTEST Engineering Laboratory, Inc.			

Plot 6-61. PAR Plot (Band 25 - 20.0MHz 16-QAM - RB Size 100)

FCC ID: A3LSPHL520	PCTEST	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 47 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 47 of 56
© 2014 PCTEST Engineerin	2014 PCTEST Engineering Laboratory, Inc.			

6.6 Radiated Power (EIRP) §24.232(c) §27.50(h.2)

Test Overview

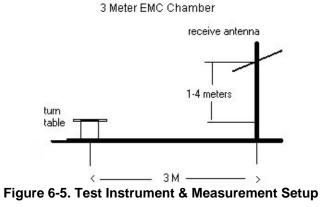
Equivalent Isotropic Radiated Power (EIRP) measurements are performed using the substitution method described in ANSI/TIA-603-C-2004 with the EUT transmitting into an integral antenna. Measurements on signals operating below 1GHz are performed using vertically polarized tuned dipole antennas. Measurements on signals operating above 1GHz are performed using vertically polarized broadband horn antennas. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

Test Procedures Used

KDB 971168 v02r01 - Section 5.2.1

ANSI/TIA-603-C-2004 - Section 2.2.17

Test Settings


- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation. For signals with burst transmission, the signal analyzer's "time domain power" measurement capability is used
- 2. RBW = 1 5% of the expected OBW, not to exceed 1MHz
- 3. VBW \geq 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points \geq 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto". Trigger is set to enable triggering only on full power bursts with the sweep time set less than or equal to the transmission burst duration
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation. For signals with burst transmission, the "gating" function was enabled to ensure that measurements are performed during times in which the transmitter is operating at its maximum power
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

FCC ID: A3LSPHL520	PCTEST	FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 49 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 48 of 56
© 2014 PCTEST Engineerin	014 PCTEST Engineering Laboratory, Inc.			

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Test Notes

- 1) The EUT was tested in three orthogonal planes and in all possible test configurations and positioning. The "H" positioning is defined with the EUT lying flat on the test surface, the "H2" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing up on its side, and the "V" positioning is defined with the EUT standing upright. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the tables below.
- 2) The EUT is supplied with a new fully-recharged battery. The battery for this model B500BU contains an embedded NFC antenna.

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Dage 40 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 49 of 56
© 2014 PCTEST Engineerin	g Laboratory, Inc.			V 1.8

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Battery	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	Ant. Pol. [H/V]	EUT Pol.	EIRP [dBm]	EIRP [Watts]	Margin [dB]
1850.70	1.4	QPSK	Standard	1 / 0	9.53	9.60	V	V	19.13	0.082	-13.88
1882.50	1.4	QPSK	Standard	3 / 2	10.01	9.53	V	V	19.54	0.090	-13.47
1914.30	1.4	QPSK	Standard	1 / 5	9.43	9.47	V	V	18.90	0.078	-14.11
1850.70	1.4	16-QAM	Standard	1 / 0	8.45	9.60	V	V	18.05	0.064	-14.96
1882.50	1.4	16-QAM	Standard	1 / 5	9.32	9.53	V	V	18.85	0.077	-14.16
1914.30	1.4	16-QAM	Standard	1 / 5	8.27	9.47	V	V	17.74	0.059	-15.27
1857.50	15	QPSK	Standard	1 / 74	9.71	9.58	V	V	19.29	0.085	-13.72
1882.50	15	QPSK	Standard	1 / 74	9.78	9.53	V	V	19.31	0.085	-13.70
1907.50	15	QPSK	Standard	1 / 0	9.67	9.48	V	V	19.15	0.082	-13.86
1857.50	15	16-QAM	Standard	1 / 74	8.03	9.58	V	V	17.61	0.058	-15.40
1882.50	15	16-QAM	Standard	1 / 74	9.08	9.53	V	V	18.61	0.073	-14.40
1907.50	15	16-QAM	Standard	1 / 0	8.58	9.48	V	V	18.06	0.064	-14.95
1860.00	20	QPSK	Standard	1 / 0	9.00	9.58	V	V	18.58	0.072	-14.43
1882.50	20	QPSK	Standard	1 / 0	9.68	9.53	V	V	19.21	0.083	-13.80
1905.00	20	QPSK	Standard	1 / 0	10.00	9.48	V	V	19.48	0.089	-13.53
1860.00	20	16-QAM	Standard	1 / 0	7.84	9.58	V	V	17.42	0.055	-15.59
1882.50	20	16-QAM	Standard	1 / 0	9.07	9.53	V	V	18.60	0.072	-14.41
1905.00	20	16-QAM	Standard	1 / 0	7.99	9.48	V	V	17.47	0.056	-15.54

Table 6-2. EIRP Data (Band 25)

Frequency [MHz]	Channel Bandwidth [MHz]	Mod.	Battery	RB Size/Offset	Substitute Level [dBm]	Ant. Gain [dBi]	Ant. Pol. [H/V]	EUT Pol.	EIRP [dBm]	EIRP [Watts]	Margin [dB]
2499.00	5	QPSK	Standard	1 / 24	10.81	8.66	V	V	19.47	0.088	-13.54
2593.00	5	QPSK	Standard	1 / 24	10.18	8.72	V	V	18.90	0.078	-14.11
2687.50	5	QPSK	Standard	1 / 0	10.01	8.83	V	V	18.84	0.077	-14.17
2499.00	5	16-QAM	Standard	1 / 24	9.43	8.66	V	V	18.09	0.064	-14.92
2593.00	5	16-QAM	Standard	1 / 24	9.20	8.72	V	V	17.92	0.062	-15.09
2687.50	5	16-QAM	Standard	1 / 0	8.64	8.83	V	V	17.47	0.056	-15.54

Table 6-3. EIRP Data (Band 41)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga E0 of E6
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 50 of 56
© 2014 DCTEST Engineering	Laboratory Inc		\/ 1.8

© 2014 PCTEST Engineering Laboratory, Inc.

6.7 Frequency Stability / Temperature Variation §2.1055 §24.235 §27.54

Test Overview and Limit

Frequency stability testing is performed in accordance with the guidelines of ANSI/TIA-603-C-2004. The frequency stability of the transmitter is measured by:

- a.) **Temperature:** The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.
- b.) **Primary Supply Voltage:** The primary supply voltage is varied from 85% to 115% of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

For Part 24 and Part 27, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.

Test Procedure Used

ANSI/TIA-603-C-2004

Test Settings

- 1. The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

Test Setup

The EUT was connected via an RF cable to a spectrum analyzer with the EUT placed inside an environmental chamber.

Test Notes

None

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 51 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 51 of 56
© 2014 PCTEST Engineering	Laboratory, Inc.			V 1.8

Band 25 Frequency Stability Measurements §2.1055 §24.235

OPERATING FREQUENCY:	1,882,500,000	Hz
CHANNEL:	26365	-
REFERENCE VOLTAGE:	3.80	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+ 20 (Ref)	1,882,499,979	-21	-0.0000011
100 %		- 30	1,882,499,970	-30	-0.0000016
100 %		- 20	1,882,500,027	27	0.0000014
100 %		- 10	1,882,499,974	-26	-0.0000014
100 %		0	1,882,499,982	-18	-0.0000010
100 %		+ 10	1,882,500,019	19	0.0000010
100 %		+ 20	1,882,499,976	-24	-0.0000013
100 %		+ 30	1,882,500,017	17	0.0000009
100 %		+ 40	1,882,499,982	-18	-0.0000010
100 %		+ 50	1,882,499,975	-25	-0.0000013
BATT. ENDPOINT	3.50	+ 20	1,882,500,018	18	0.0000010

 Table 6-4. Frequency Stability Data (Band 25)

Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain inband when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 52 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 52 of 56
© 2014 PCTEST Engineering	Laboratory, Inc.		V 1.8

Band 25 Frequency Stability Measurements §2.1055 §24.235

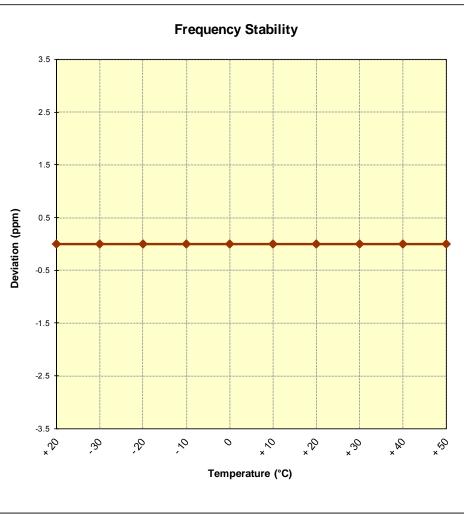


Figure 6-6. Frequency Stability Graph (Band 25)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	SAMSUNG	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:		Daga 52 of 56
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset		Page 53 of 56
© 2014 PCTEST Engineering	Laboratory, Inc.			V 1.8

Band 41 Frequency Stability Measurements §2.1055 §27.54

OPERATING FREQUENCY:	2,590,000,000	Hz
CHANNEL:	40590	_
REFERENCE VOLTAGE:	3.80	VDC

VOLTAGE (%)	POWER (VDC)	TEMP (°C)	FREQUENCY (Hz)	Freq. Dev. (Hz)	Deviation (%)
100 %	3.80	+ 20 (Ref)	2,589,999,970	-30	-0.0000012
100 %		- 30	2,590,000,016	16	0.0000006
100 %		- 20	2,590,000,018	18	0.0000007
100 %		- 10	2,589,999,974	-26	-0.0000010
100 %		0	2,590,000,030	30	0.0000012
100 %		+ 10	2,590,000,019	19	0.0000007
100 %		+ 20	2,589,999,971	-29	-0.0000011
100 %		+ 30	2,590,000,030	30	0.0000012
100 %		+ 40	2,589,999,973	-27	-0.0000010
100 %		+ 50	2,590,000,027	27	0.0000010
BATT. ENDPOINT	3.50	+ 20	2,590,000,016	16	0.0000006

Table 6-5. Frequency Stability Data (Band 41)

Note:

Based on the results of the frequency stability test at the center channel the frequency deviation results measured are very small. As such it is determined that the channels at the band edge would remain inband when the maximum measured frequency deviation noted during the frequency stability tests is applied. Therefore the device is determined to remain operating in band over the temperature and voltage range as tested.

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga E4 of E6
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 54 of 56
© 2014 PCTEST Engineering	Laboratory, Inc.		V 1.8

Band 41 Frequency Stability Measurements §2.1055 §27.54

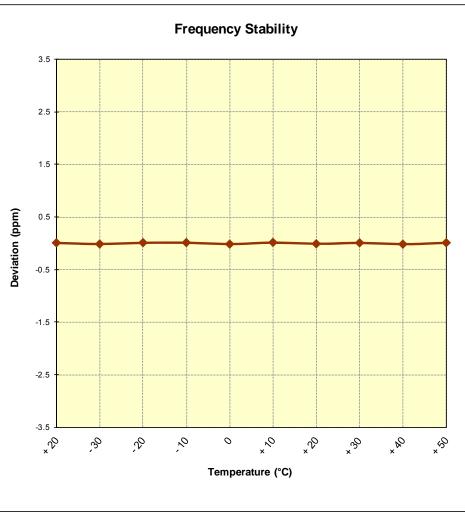


Figure 6-7. Frequency Stability Graph (Band 41)

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga EE of EG
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 55 of 56
© 2014 PCTEST Engineering Laboratory, Inc.			

7.0 CONCLUSION

The data collected relate only to the item(s) tested and show that the **Samsung Portable Handset FCC ID: A3LSPHL520** complies with all the requirements of Parts 2, 24, 27 of the FCC rules for LTE operation only.

FCC ID: A3LSPHL520		FCC Pt. 24 & 27 LTE MEASUREMENT REPORT (CLASS II PERMISSIVE CHANGE)	Reviewed by: Quality Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga EC of EC	
0Y1407011334.A3L	7/8-7/16/2014	Portable Handset	Page 56 of 56	
© 2014 PCTEST Engineering Laboratory, Inc.				