

MIMO Antenna-2 26 dB Bandwidth Measurements - (UNII Band 7)

Plot 7-34. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11be (UNII Band 7) – Ch. 149)

Plot 7-35. 26dB Bandwidth Plot MIMO ANT2 (40MHz 802.11be (UNII Band 7) - Ch. 155)

FCC ID: A3LSMX910 IC: 649E-SMX910		MEASUREMENT REPORT (Class II Permissive Change)			
Test Report S/N:	Test Dates:	EUT Type:	Daga 25 of 126		
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 35 01 126		
© 2024 ELEMENT			V11 1 08/28/2023		

Plot 7-36. 26dB Bandwidth Plot MIMO ANT2 (80MHz 802.11be (UNII Band 7) – Ch. 151)

Plot 7-37. 26dB Bandwidth Plot MIMO ANT2 (160MHz 802.11be (UNII Band 7) - Ch. 143)

FCC ID: A3LSMX910 IC: 649E-SMX910		MEASUREMENT REPORT (Class II Permissive Change)		
Test Report S/N:	Test Dates:	EUT Type:	Dega 26 of 126	
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 30 01 120	
© 2024 ELEMENT			V11.1 08/28/2023	

Keysight Spectrum Analyzer - Occupied	BW					- P	X
XX RL RF 50Ω AC	CORREC	SENSE:INT	ALIGN AUTO	04:14:45 A	M Dec 30, 2023	Trace/Detect	tor
	Trig	g: Free Run Av	g Hold: 100/100	Raulo Stu	None		
	#IFGain:Low #At	ten: 30 dB		Radio Dev	ice: BTS		
10 dB/div Ref 30.00 dB	m						
Log							
20.0						Clear W	Irite
10.0		formen heren al un				Cicui I	
0.00	Design of the second second		Wenne				
-10.0	/						
-20.0			I			Aver	rage
-30.0 person and the state of t	undul		in a later of the second	dected and a state	When the apply and		
-40.0							
50.0							
-30.0						Max	lold
-60.0							_
Center 6.5850 GHz				Span 8	00.0 MHz		
#Res BW 4 MHz		VBW 50 MHz		Sweep	1.333 ms	Min F	lold
Occupied Bandwid	lth	Total Powe	r 23.2	dBm			
3	14.41 MHz					Dete	ctor
						Pe	eak►
Transmit Freq Error	-328.20 kHz	% of OBW	Power 99	.00 %		Auto	Man
x dB Bandwidth	331.4 MHz	x dB	-26.	00 dB			
MSG			STATUS	3			

Plot 7-38. 26dB Bandwidth Plot MIMO ANT2 (320MHz 802.11be (UNII Band 6/7) - Ch. 127)

Plot 7-39. 26dB Bandwidth Plot MIMO ANT2 (320MHz 802.11be (UNII Band 7/8) - Ch. 159)

FCC ID: A3LSMX910 IC: 649E-SMX910		MEASUREMENT REPORT (Class II Permissive Change)		
Test Report S/N:	Test Dates:	EUT Type:	Dega 27 of 126	
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 37 of 126	
© 2024 ELEMENT	·	·	V11.1 08/28/2023	

MIMO Antenna-2 26 dB Bandwidth Measurements - (UNII Band 8)

Plot 7-40. 26dB Bandwidth Plot MIMO ANT2 (20MHz 802.11be (UNII Band 8) - Ch. 209)

Plot 7-41. 26dB Bandwidth Plot MIMO ANT2 (40MHz 802.11be (UNII Band 8) - Ch. 211)

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga 29 of 106
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 36 01 120
© 2024 ELEMENT			V/11 1 08/28/2023

Plot 7-42. 26dB Bandwidth Plot MIMO ANT2 (80MHz 802.11be (UNII Band 8) - Ch. 215)

Plot 7-43. 26dB Bandwidth Plot MIMO ANT2 (160MHz 802.11be (UNII Band 8) - Ch. 207)

FCC ID: A3LSMX910 IC: 649E-SMX910		MEASUREMENT REPORT (Class II Permissive Change)		
Test Report S/N:	Test Dates:	EUT Type:	Daga 20 of 126	
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 39 01 120	
© 2024 ELEMENT			V11.1 08/28/2023	

Keysight Spectrum Analyzer - Occupied	d BW				
LXI RL RF 50 Ω AC	CORREC	SENSE:INT	ALIGN AUTO 04:16:5	1 AM Dec 30, 2023	Trace/Detector
	Cen	r Free Run Aval	HZ Radio S Hold: 100/100	ta: None	
	#IFGain:Low #Att	ten: 30 dB	Radio D	evice: BTS	
10 dB/div Ref 30.00 d	BM				
20.0					
10.0					Clear Write
10.0	remains revelo	to make marker washing much	بم ال		
0.00					
-10.0					
-20.0	e du chi				Average
-30.0			Unite mer Marken and	the the lange of the former land	
40.0					
-40.0					
-50.0					Max Hold
-60.0					
Center 6.9050 GHz			Spar	800.0 MHz	
#Res BW 4 MHz		VBW 50 MHZ	Swee	5 1.333 ms	Min Hold
Occurried Developing	-141-	Total Power	22.9 dBm		
Occupied Bandwi	ath	Total Fower	23.0 UBIII		
	314.51 MHz				Detector
					Peak►
Transmit Freq Error	-1.5056 MHz	% of OBW P	ower 99.00 %		Auto <u>Man</u>
x dB Bandwidth	332 0 MHz	x dB	-26 00 dB		
	002.0 11112	A GB	20.00 48		
MSG			STATUS		

Plot 7-44. 26dB Bandwidth Plot MIMO ANT2 (320MHz 802.11be (UNII Band 7/8) - Ch. 191)

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dage 40 of 126	
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 40 of 126	
© 2024 ELEMENT			V11.1 08/28/2023	

7.3 UNII Output Power Measurement

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies.

For client devices operating under the control of an indoor access point in the 5.925-7.125 GHz bands, the maximum e.i.r.p. over the frequency band of operation must not exceed 24 dBm. For client devices operating under the control of a standard power access point, the maximum e.i.r.p. over the frequency band of operation must not exceed 30 dBm and the device must limit its power to no more than 6 dB below its associated standard power access point's authorized transmit power.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.3.2 Method PM-G ANSI C63.10-2013 – Section 14.2 Measure-and-Sum Technique

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

Compliance for this device while operating under the control of either an indoor low power access point or a standard power access point is demonstrated by applying the tighter low power indoor access point limit of 24dBm e.i.r.p. for both cases.

FCC ID: A3LSMX910 IC: 649E-SMX910		MEASUREMENT REPORT (Class II Permissive Change)		
Test Report S/N:	Test Dates:	EUT Type:	Dama 44 af 400	
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 41 of 126	
© 2024 ELEMENT			V11.1 08/28/2023	

MIMO Maximum Conducted Output Power Measurements

	6GHz WIFI (20MHz 802.11be MIMO)								
Band	Freg [MHz]	reg [MHz] Channel	Avg. Conducted Powers [dBm]			Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
			ANT1	ANT2	MIMO	[aBi]			
	5935	2	3.73	2.75	6.28	-2.17	4.11	24.00	-19.89
LINIL 5	5955	1	12.37	12.04	15.22	-2.17	13.05	24.00	-10.95
UNII-3	6175	45	12.58	12.11	15.36	-2.17	13.19	24.00	-10.81
	6415	93	12.56	12.83	15.71	-2.17	13.54	24.00	-10.46
	6435	97	12.76	12.45	15.62	-2.45	13.17	24.00	-10.83
UNII-6	6475	105	12.07	12.82	15.47	-2.45	13.02	24.00	-10.98
	6515	113	12.09	12.61	15.37	-2.45	12.92	24.00	-11.08
	6535	117	12.63	11.85	15.27	-2.62	12.65	24.00	-11.35
	6675	145	12.02	12.14	15.09	-2.62	12.47	24.00	-11.53
UNII-7	6695	149	12.16	12.38	15.28	-2.62	12.66	24.00	-11.34
	6875	185	11.67	12.02	14.86	-2.62	12.24	24.00	-11.76
	6895	189	11.81	11.45	14.64	-2.66	11.98	24.00	-12.02
UNII-8	6995	209	12.24	11.23	14.77	-2.66	12.11	24.00	-11.89
	7115	233	6.75	5.74	9.28	-2.66	6.62	24.00	-17.38

Table 7-3. MIMO 20MHz BW 802.11be (UNII) Maximum Conducted Output Power

	6GHz WIFI (40MHz 802.11be MIMO)								
Band	Freq [MHz]	z] Channel	Avg. Conducted Powers [dBm]		Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]	
			ANT1	ANT2	MIMO	[аві]			
	5965	3	14.37	14.21	17.30	-4.34	12.96	24.00	-11.04
	6165	43	14.28	13.82	17.07	-4.02	13.05	24.00	-10.95
UNII-5	6285	67	14.63	13.45	17.09	-5.26	11.83	24.00	-12.17
	6405	91	14.82	14.08	17.48	-6.81	10.67	24.00	-13.33
	6445	99	14.71	13.84	17.31	-6.81	10.50	24.00	-13.50
UNII-6	6485	107	13.42	14.63	17.08	-7.69	9.39	24.00	-14.61
	6525	115	13.52	14.43	17.01	-7.69	9.32	24.00	-14.68
	6565	123	14.02	14.73	17.40	-7.69	9.71	24.00	-14.29
	6685	147	13.83	14.32	17.09	-8.10	8.99	24.00	-15.01
UNII-7	6725	155	13.72	14.02	16.88	-8.09	8.79	24.00	-15.21
	6845	179	13.34	13.82	16.60	-8.13	8.47	24.00	-15.53
UNII-8	6885	187	13.74	14.08	16.92	-7.75	9.17	24.00	-14.83
	7005	211	14.10	13.21	16.69	-7.74	8.95	24.00	-15.05
	7085	227	14.32	13.12	16.77	-8.21	8.56	24.00	-15.44

Table 7-4. MIMO 40MHz BW 802.11be (UNII) Maximum Conducted Output Power

6GHz WIFI (80MHz 802.11be MIMO)						Directional Ant			
Band	Freq [MHz]	z] Channel	Avg. Conducted Powers [dBm]		Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]	
			ANT1	ANT2	MIMO	[αΒι]			
	5985	7	14.21	14.15	17.19	-4.20	12.99	24.00	-11.01
	6145	39	14.21	13.51	16.88	-4.02	12.86	24.00	-11.14
UNII-5	6305	71	13.23	14.25	16.78	-5.26	11.52	24.00	-12.48
	6385	87	14.11	14.64	17.39	-5.58	11.81	24.00	-12.19
JNII-6	6465	103	13.73	14.52	17.15	-6.81	10.34	24.00	-13.66
	6545	119	13.94	14.45	17.21	-7.69	9.52	24.00	-14.48
	6705	151	14.05	14.04	17.06	-8.10	8.96	24.00	-15.04
UNII-7	6785	167	13.68	13.56	16.63	-8.13	8.50	24.00	-15.50
	6865	183	13.51	13.71	16.62	-7.75	8.87	24.00	-15.13
	6945	199	13.94	13.73	16.85	-7.75	9.10	24.00	-14.90
UNII-8	7025	215	14.69	13.28	17.05	-7.74	9.31	24.00	-14.69

Table 7-5. MIMO 80MHz BW 802.11be (UNII) Maximum Conducted Output Power

FCC ID: A3LSMX910 IC: 649E-SMX910		MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dega 42 of 126
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 42 01 120
© 2024 ELEMENT			V11.1 08/28/2023

		6GHz WIFI	(160MHz 802.11	oe MIMO)		Directional Ant				
Band	nd Freq [MHz] Channel A		Avg. C	onducted Powers	s (dBm)	Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]	
			ANT1	ANT2	MIMO	[dBi]				
	6025	15	12.94	13.15	16.06	-4.20	11.86	24.00	-12.14	
UNII-5	6185	47	13.11	13.29	16.21	-4.05	12.16	24.00	-11.84	
	6345	79	12.89	13.53	16.23	-5.58	10.65	24.00	-13.35	
UNII-6	6505	111	12.95	13.54	16.27	-7.69	8.58	24.00	-15.42	
	6665	143	13.02	13.19	16.12	-8.10	8.02	24.00	-15.98	
UNII-7	6825	175	13.03	13.09	16.07	-8.13	7.94	24.00	-16.06	
UNII-8	6985	207	13.41	12.63	16.05	-7.74	8.31	24.00	-15.69	

Table 7-6. MIMO 160MHz BW 802.11be (UNII) Maximum Conducted Output Power

		6GHz WIFI	(320MHz 802.11t	oe MIMO)		Directional Ant			
Band	Freq [MHz]	Channel	Avg. C	Avg. Conducted Powers		Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
	-		ANT1	ANT2	MIMO	[aBi]			
UNII-5	6105	31	13.81	12.74	16.32	-4.02	12.30	24.00	-11.70
UNII-5	6265	63	13.32	13.83	16.59	-4.05	12.54	24.00	-11.46
UNII-6	6425	95	13.12	13.52	16.33	-6.81	9.52	24.00	-14.48
UNII-7	6585	127	13.25	13.03	16.15	-8.49	7.66	24.00	-16.34
UNII-7	6745	159	13.31	12.86	16.10	-8.09	8.01	24.00	-15.99
UNII-8	6905	191	13.34	13.98	16.68	-7.75	8.93	24.00	-15.07

Table 7-7. MIMO 320MHz BW 802.11be (UNII) Maximum Conducted Output Power

							Average Conduc	ted Power (dBm)						
	Dond	Eron [Mila]	Channel	Tanaa			RU li	ndex			Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
	Dallu	ried[muz]	Channel	Tones		90			91		(dBi)	[dBm]	[dBm]	[dB]
₽					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO				
ŧ	5	6145	39	242+484T	14.85	13.56	17.26	14.81	13.40	17.17	-4.02	13.2	24.0	-10.76
6	6	6465	103	242+484T	14.21	14.84	17.55	14.31	14.69	17.51	-6.81	10.7	24.0	-13.26
8	7	6705	151	242+484T	14.11	13.88	17.01	14.23	13.77	17.02	-8.10	8.9	24.0	-15.08
	8	6945	199	242+484T	14.41	13.73	17.09	14.67	13.97	17.34	-7.75	9.6	24.0	-14.41

Table 7-8. MIMO 80MHz BW 802.11be (UNII) Maximum Conducted Output Power – Punctured

							Average Conduc	ted Power (dBm)					e i r n l imit	
Se la	Band	Freq [MHz]	Channel	Tones			RU I	ndex			Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
N						94			95		[dBi]	[dBm]	[dBm]	[dB]
Ξ.					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO				
Σ	5	6185	47	996+484T	13.65	13.77	16.72	13.65	13.27	16.47	-4.05	12.7	24.0	-11.33
60	6	6505	111	996+484T	12.74	13.45	16.12	12.87	13.12	16.01	-7.69	8.4	24.0	-15.57
-	7	6665	143	996+484T	13.32	13.43	16.39	13.26	12.89	16.09	-8.10	8.3	24.0	-15.71
		6005	007		40.00		4.6.45						010	40.00

Table 7-9. MIMO 160MHz BW 802.11be (UNII) Maximum Conducted Output Power – Punctured

_							Average Conduc	ted Power (dBm)						
ž	Band	Freg [MHz]	Channel	Tones			RU II	ndex	dex			Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
N						96			99		[dBi]	[dBm]	[dBm]	[dB]
Î					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO				
≥	5	6185	47	996+484+242T	13.82	13.63	16.74	13.79	13.45	16.63	-4.05	12.7	24.0	-11.31
3	6	6505	111	996+484+242T	12.88	13.76	16.35	13.01	13.52	16.28	-7.69	8.7	24.0	-15.34
÷	7	6665	143	996+484+242T	13.36	13.44	16.41	13.38	13.32	16.36	-8.10	8.3	24.0	-15.69
	8	6985	207	996+484+242T	13.86	11.94	16.02	13.84	11.95	16.01	-8.10	7.9	24.0	-16.08

Table 7-10. MIMO 160MHz BW 802.11be (UNII) Maximum Conducted Output Power – Punctured

×	David	Free [Mile]	Observal	T			Average Conduc Punctu	ted Power (dBm) re Case			Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
	Band	Freq[MHZ]	Channel	Tones		00100			00103		(dBi)	[dBm]	[dBm]	[dB]
Ŧ					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO				
Σ	5	6105	31	3x996+484T	13.57	12.36	16.02	13.59	12.32	16.01	-4.02	12.0	24.0	-12.00
<u>o</u>	6	6425	95	3x996+484T	12.98	13.16	16.08	13.05	13.00	16.04	-6.81	9.3	24.0	-14.73
8	7	6585	127	3x996+484T	13.68	13.61	16.66	13.87	13.51	16.70	-8.49	8.2	24.0	-15.79
	8	6905	191	3x996+484T	14.02	13.77	16.91	13.82	14.03	16.94	-7.75	9.2	24.0	-14.81

Table 7-11. MIMO 320MHz BW 802.11be (UNII) Maximum Conducted Output Power – Punctured – LPI

×				_			Average Conduc Punctu	ted Power (dBm) re Case			Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
<u> </u>	Band	Freq [MHz]	Channel	Tones		00104			01104		(dBi)	[dBm]	[dBm]	[dB]
Ŧ					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO				
Σ	5	6105	31	3x996T	14.28	12.76	16.60	14.12	12.53	16.41	-4.02	12.6	24.0	-11.42
<u> </u>	6	6425	95	3x996T	13.20	13.62	16.43	13.22	13.38	16.31	-6.81	9.6	24.0	-14.38
8	7	6585	127	3x996T	13.25	13.23	16.25	13.56	12.99	16.29	-8.49	7.8	24.0	-16.20
	8	6905	191	3x996T	13.84	13.05	16.47	13.68	13.25	16.48	-7.75	8.7	24.0	-15.27

Table 7-12. MIMO 320MHz BW 802.11be (UNII) Maximum Conducted Output Power – Punctured

FCC ID: A3LSMX910 IC: 649E-SMX910		MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 42 of 106
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 43 01 120
© 2024 ELEMENT			V11.1 08/28/2023

							Average Conduc	ted Power (dBm)						
>	Dend	Enco [balled	Observal	Terres			Punctu	re Case			Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
	Band	Freq[MHZ]	Channel	rones		00105			01106		[dBi]	[dBm]	[dBm]	[dB]
£					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO				
Σ	5	6105	31	2x996+484T	14.27	12.91	16.65	14.26	12.73	16.57	-4.02	12.6	24.0	-11.37
2	6	6425	95	2x996+484T	13.33	13.73	16.54	13.31	13.55	16.44	-6.81	9.7	24.0	-14.27
33	7	6585	127	2x996+484T	13.39	13.41	16.41	13.54	13.13	16.35	-8.49	7.9	24.0	-16.08
	8	6905	191	2x996+484T	13.89	13.44	16.68	13.77	13.65	16.72	-7.75	9.0	24.0	-15.03
									-	-				-

Table 7-13. MIMO 320MHz BW 802.11be (UNII) Maximum Conducted Output Power – Punctured

Sample MIMO Calculation:

At 5935MHz in 802.11be (20MHz BW) mode, the average conducted output power was measured to be 3.73 dBm for Antenna-1 and 2.75 dBm for Antenna-2.

Antenna 1 + Antenna 2 = MIMO

(3.73 dBm + 2.75 dBm) = (2.36 mW + 1.88 mW) = 4.25 mW = 6.28 dBm

Sample Directional Gain Calculation:

Per ANSI C63.10-2013 Section 14.4.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used.

Directional gain = 10 log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})² / N_{ANT}] dBi

Sample e.i.r.p. Calculation:

At 5935MHz in 802.11be (20MHz BW) mode, the average MIMO conducted power was calculated to be 6.28 dBm with directional gain of -4.34 dBi.

e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

6.28 dBm + -4.34 dBi = 1.94 dBm

FCC ID: A3LSMX910 IC: 649E-SMX910		MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dage 11 of 106
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 44 01 120
© 2024 ELEMENT			V11.1 08/28/2023

7.4 Maximum Power Spectral Density

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013, was used to measure the power spectral density for 802.11a/ax.

In the 5.925-7.125 GHz bands, the maximum power spectral density must not exceed −1 dBm e.i.r.p. in any 1-megahertz band. For client devices, except for fixed client devices as defined in this subpart, operating under the control of a standard power access point in 5.925-6.425 GHz and 6.525-6.875 GHz bands, the maximum power spectral density must not exceed 17 dBm/MHz e.i.r.p.

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.2 ANSI C63.10-2013 – Section 14.3.2.2 Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation.
- 2. Span was set to encompass the entire emission bandwidth of the signal.
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 \times (\text{span/RBW})$
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes.
- 9. Trace was averaged over 100 sweeps.
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

All cases were investigated; a subset of the taken plots were included to represent relevant settings and measurements.

FCC ID: A3LSMX910 IC: 649E-SMX910		MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dago 45 of 106
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 45 01 126
© 2024 ELEMENT			V11.1 08/28/2023

MIMO Power Spectral Density Measurements

	Frequency [MHz]	Channel	802.11 MODE	Antenna-1 Power Density [dBm]	Antenna-2 Power Density [dBm]	Antenna-1 Gain [dBi]	Antenna-2 Gain [dBi]	Summed MIMO Power Density [dBm/MHz]	Directional Gain [dBi]	e.i.r.p Density [dBm/MHz]	Max EIRP Density [dBm/MHz]	Margin [dB]
	6175	45	be (20MHz)	-0.08	-0.73	-5.99	-8.27	2.62	-4.05	-1.43	-1	-0.43
	6165	43	be (40MHz)	-0.45	-1.50	-6.17	-7.98	2.07	-4.02	-1.95	-1	-0.95
Band 5	6145	39	be (80MHz)	-2.94	-4.46	-6.17	-7.98	-0.62	-4.02	-4.64	-1	-3.64
Dana 5	6185	47	be (160MHz)	-7.19	-7.45	-5.99	-8.27	-4.31	-4.05	-8.35	-1	-7.35
	6105	31	be (320MHz)	-8.22	-9.33	-6.17	-7.98	-5.73	-4.02	-9.75	-1	-8.75
	6265	63	be (320MHz)	-8.53	-7.93	-5.99	-8.27	-5.21	-4.05	-9.25	-1	-8.25
Band 6	6475	105	be (20MHz)	0.65	1.77	-9.73	-11.80	4.25	-7.69	-3.44	-1	-2.44
	6485	107	be (40MHz)	-0.91	0.16	-9.73	-11.80	2.67	-7.69	-5.03	-1	-4.03
	6465	103	be (80MHz)	-3.24	-2.70	-8.71	-11.10	0.05	-6.81	-6.76	-1	-5.76
	6505	111	be (160MHz)	-6.46	-6.80	-9.73	-11.80	-3.61	-7.69	-11.31	-1	-10.31
Band 5/6/7	6425	95	be (320MHz)	-8.48	-7.94	-8.71	-11.10	-5.19	-6.81	-12.00	-1	-11.00
	6695	149	be (20MHz)	1.14	1.57	-9.74	-12.75	4.37	-8.10	-3.74	-1	-2.74
Band 7	6725	155	be (40MHz)	-0.71	-0.53	-9.90	-12.50	2.40	-8.09	-5.70	-1	-4.70
Danu 7	6705	151	be (80MHz)	-3.05	-2.69	-9.74	-12.75	0.14	-8.10	-7.96	-1	-6.96
	6665	143	be (160MHz)	-7.22	-6.45	-9.74	-12.75	-3.81	-8.10	-11.91	-1	-10.91
Band 6/7	6585	127	be (320MHz)	-9.14	-8.51	-10.60	-12.50	-5.80	-8.49	-14.29	-1	-13.29
Band 7/8	6825	175	be (320MHz)	-9.14	-8.68	-9.96	-12.50	-5.90	-8.13	-14.02	-1	-13.02
	6995	209	be (20MHz)	0.74	0.15	-9.82	-11.80	3.46	-7.74	-4.28	-1	-3.28
Band 9	7005	211	be (40MHz)	-0.05	-0.88	-9.82	-11.80	2.57	-7.74	-5.18	-1	-4.18
Dallu o	7025	215	be (80MHz)	-2.78	-3.85	-9.82	-11.80	-0.27	-7.74	-8.02	-1	-7.02
	6985	207	be (160MHz)	-6.69	-6.85	-9.82	-11.80	-3.75	-7.74	-11.50	-1	-10.50
Band 7/8	6905	191	be (320MHz)	-8.86	-7.91	-9.92	-11.70	-5.35	-7.75	-13.10	-1	-12.10

Table 7-14. MIMO e.i.r.p. Conducted Power Spectral Density Measurements

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager			
Test Report S/N:	Test Dates:	EUT Type:	Daga 46 of 106		
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 40 01 120		
© 2024 ELEMENT			V11.1 08/28/2023		

MIMO Antenna-1 Power Spectral Density Measurements - (UNII Band 5)

Plot 7-45. Power Spectral Density MIMO ANT1 (20MHz 802.11be (UNII Band 5) - Ch. 45)

Plot 7-46. Power Spectral Density MIMO ANT1 (40MHz 802.11be (UNII Band 5) - Ch. 43)

FCC ID: A3LSMX910 IC: 649E-SMX910		MEASUREMENT REPORT (Class II Permissive Change)		
Test Report S/N:	Test Dates:	EUT Type:	Dega 47 of 106	
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 47 01 120	
© 2024 ELEMENT			1/11 1 08/28/2023	

🔤 Ke	ysight Spe	trum Analyzer -	- Swept SA									
l,XI R	L	RF 5	0Ω AC	CORREC	SEI	ISE:INT	#Avg Typ	ALIGN AUTO	03:42:25 A	M Dec 30, 2023	Fr	equency
10 di	3/div	Ref 20.0	0 dBm	PNO: Fast ↔ IFGain:Low	Atten: 30	dB	AvgiHold	. 100/100 M	lkr1 6.18 -2.9	0 8 GHz 36 dBm		Auto Tune
10.0							1				C 6.145	enter Freq 5000000 GHz
0.00 -10.0				from Mary	⊷ĸŧŧ₽₩∽₩ [₽] ₹₽₽₩₽₩₽ [₽] ₩₩ঀ	paral-frafid.tw	and have a second s				6.045	Start Freq 5000000 GHz
-20.0 -30.0											6.245	Stop Freq 5000000 GHz
-40.0 -50.0	an faile from the	nguntur manufine	ware an and the	ý				My have	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	franson wy fwysdag.	20 <u>Auto</u>	CF Step .000000 MHz Man
-60.0											F	F req Offset 0 Hz
-70.0											;	Scale Type
Cen #Do	ter 6.1	450 GHz		#\/B\	M 2 0 MH-			Duroon	Span 2	00.0 MHz	Log	Lin
#Re	SEW			#VB	N 3.0 MHZ			sweep	1.000 ms (TOOT pts)		
MSG 🤇	File <	SavePlot.pl	ng> saved					STAT	US			

Plot 7-48. Power Spectral Density MIMO ANT1 (160MHz 802.11be (UNII Band 5) - Ch. 47)

FCC ID: A3LSMX910 IC: 649E-SMX910		MEASUREMENT REPORT (Class II Permissive Change)			
Test Report S/N:	Test Dates:	EUT Type:	Dage 49 of 126		
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 48 of 126		
© 2024 ELEMENT	-		V11.1 08/28/2023		

🧱 Keysigh	t Spectrum Analyzer - Swept SA									
Center	RF 50 Ω AC		SENS	E:INT	#Avg Typ	ALIGN AUTO e: RMS	04:06:25 Al TRAC	Dec 30, 2023	Fr	equency
Genter		PNO: Fast ++ IFGain:Low	 Trig: Free I Atten: 30 d 	Run IB	Avg Hold:	: 100/100	TYF DE			
10 dB/di	v Ref 20.00 dBm					N	1kr1 6.10 -8.2	2 6 GHz 15 dBm		Auto Tune
10.0									(6.10	Senter Freq
0.00		And and all and all and and	And a state of the	ا مىمىيەر بىلىمىر	and a start of the				5.70	Start Freq 5000000 GHz
-20.0									6.50	Stop Freq 5000000 GHz
-40.0		9 ,, 9 ,				-	Pryshaper and the second second	and a strange	80 <u>Auto</u>	CF Step 0.000000 MHz Man
-60.0										F req Offset 0 Hz
-70.0										Scale Type
Center	6.1050 GHz					_	Span 8	00.0 MHz	Log	Lin
#Res B	W 1.0 MHz	#VBN	73.0 MHz*			sweep	1.333 ms (1001 pts)		
MSG						STAT	US			

Plot 7-49. Power Spectral Density MIMO ANT1 (320MHz 802.11be (UNII Band 5) - Ch. 31)

Plot 7-50. Power Spectral Density MIMO ANT1 (320MHz 802.11be (UNII Band 5) - Ch. 63)

FCC ID: A3LSMX910 IC: 649E-SMX910		MEASUREMENT REPORT (Class II Permissive Change)			
Test Report S/N:	Test Dates:	EUT Type:	Degra 40 of 196		
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 49 01 126		
© 2024 ELEMENT			V11.1 08/28/2023		

MIMO Antenna-1 Power Spectral Density Measurements - (UNII Band 6)

Plot 7-51. Power Spectral Density MIMO ANT1 (20MHz 802.11be (UNII Band 6) – Ch. 105)

Plot 7-52. Power Spectral Density MIMO ANT1 (40MHz 802.11be (UNII Band 6) - Ch. 107)

FCC ID: A3LSMX910 IC: 649E-SMX910		MEASUREMENT REPORT (Class II Permissive Change)		
Test Report S/N:	Test Dates:	EUT Type:	Dega 50 of 106	
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 50 of 126	
© 2024 ELEMENT			V11 1 08/28/2023	

🔤 Keysight S	pectrum Analyzer - Swep	ot SA								e X
(X) RL Center	RF 50 Ω		SE	NSE:INT	#Ava Tvp	ALIGN AUTO	03:43:05 AN TRAC	Dec 30, 2023	Frequer	ncy
Center	-Teq 0.405000	PNO: Fa IFGain:L	ast +++ Trig: Fre ow Atten: 3	e Run) dB	Avg Hold	: 100/100	TYP DE		Auto	Tune
10 dB/div Log	Ref 20.00 dl	Bm					-3.2	35 dBm		
10.0				[Cente	r Freq
0.00			1						0.4000000	00 8112
10.0			and the second se) and a second second	ware				Star 6.3650000	t Freq 00 GHz
-10.0										
-20.0									Stoj 6.5650000	p Freq 00 GHz
-30.0		h				ų			CI	F Step
-40.0		month				Thomas	mangan pangan ang p	alayterast Marine	20.0000 <u>Auto</u>	00 MHz Man
-50.0									Freq	Offeet
-60.0									Treq	0 Hz
-70.0									Scale	е Туре
Center 6	.4650 GHz						Span 2	00.0 MHz	Log	Lin
#Res BW	1.0 MHz	#	VBW 3.0 MHz	*		Sweep	1.000 ms (1001 pts)		
MSG						STATU	JS			

Plot 7-54. Power Spectral Density MIMO ANT1 (160MHz 802.11be (UNII Band 6) - Ch. 111)

FCC ID: A3LSMX910 IC: 649E-SMX910		MEASUREMENT REPORT (Class II Permissive Change)			
Test Report S/N:	Test Dates:	EUT Type:	Daga E1 of 196		
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 51 of 126		
© 2024 ELEMENT	•		V11.1 08/28/2023		

🔤 Keysig	ght Spectrum Analyzer - Swept SA							
l <mark>xi</mark> Rl	RF 50 Ω AC	CORREC	SENSE:INT	#Avg Typ	ALIGN AUTO	04:08:19 AM I TRACE	Dec 30, 2023	Frequency
10 dB/0	div Ref 20.00 dBm	PNO: Fast +++ IFGain:Low	Atten: 30 dB	Avginoid	M	kr1 6.411 -8.48	4 GHz 1 dBm	Auto Tune
10.0								Center Freq 6.425000000 GHz
-10.0		hand the state of		and a second and a second a s				Start Freq 6.025000000 GHz
-20.0 -30.0								Stop Freq 6.825000000 GHz
-40.0	Later land mind a fragment of the state of the				Uurundeseeste	A44.6495	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CF Step 80.000000 MHz <u>Auto</u> Man
-60.0								Freq Offset 0 Hz
Cente	or 6 4250 CHz					Snap 20	0 0 MH 2	Scale Type
#Res	BW 1.0 MHz	#VBW	3.0 MHz*		Sweep '	5 spar 80 1.333 ms (1	001 pts)	
MSG					STATU	s		
					OINTO	-		

Plot 7-55. Power Spectral Density MIMO ANT1 (320MHz 802.11be (UNII Band 5/6/7) - Ch. 95)

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dege 52 of 106
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 52 01 120
© 2024 ELEMENT			V11.1 08/28/2023

MIMO Antenna-1 Power Spectral Density Measurements - (UNII Band 7)

Plot 7-56. Power Spectral Density MIMO ANT1 (20MHz 802.11be (UNII Band 7) - Ch. 149)

Plot 7-57. Power Spectral Density MIMO ANT1 (40MHz 802.11be (UNII Band 7) - Ch. 155)

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Daga 52 of 126	
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 53 of 126	
© 2024 ELEMENT			1/11 1 08/28/2023	

Keysight Spectrum Analyzer - Swept SA					- d <u>×</u>
LXIRL RF 50Ω AC CO	DRREC S	ENSE:INT #Avg Ty	ALIGN AUTO 03:47 pe: RMS	:26 AM Dec 30, 2023 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast ↔ Trig: Fr FGain:Low Atten: 5	ee Run Avg Holo 30 dB	Mkr1 6.	671 8 GHz	Auto Tune
10 dB/div Ref 20.00 dBm		•	-	3.051 dBm	
10.0					Center Freq 6.705000000 GHz
0.00	∲ 1				
-10.0		an prainte and	1		Start Freq 6.605000000 GHz
-20.0					Stop Freq 6.805000000 GHz
-40.0	/		N.		CF Step 20.000000 MHz
-50.0			""It was a fundament	and all and the state of the st	<u>Auto</u> Man
-60.0					Freq Offset 0 Hz
-70.0					
					Scale Type
Center 6.7050 GHz #Res BW 1.0 MHz	#VBW 3.0 MH	Z*	Spa Sweep 1.000 r	an 200.0 MHz ns (1001 pts)	Log <u>Lin</u>
MSG			STATUS		

Plot 7-59. Power Spectral Density MIMO ANT1 (160MHz 802.11be (UNII Band 7) – Ch. 143)

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga E4 of 196
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 54 01 120
© 2024 ELEMENT	•		V11.1 08/28/2023

🔤 Keysight Spectrum Analyzer - Swept SA						- d <u>×</u>
LX RL RF 50 Ω AC	CORREC	SENSE:INT	ALIGN #Avg Type: RM	AUTO 04:09:26 AM	Dec 30, 2023	Frequency
10 dB/div Ref 20.00 dBm	PNO: Fast ↔ IFGain:Low	Atten: 30 dB	Avg Hold: 100/1	Mkr1 6.586 -9.13	6 GHz 9 dBm	Auto Tune
10.0						Center Freq 6.585000000 GHz
-10.0	part and a second se		Lawrence -			Start Freq 6.185000000 GHz
-20.0						Stop Freq 6.985000000 GHz
-40.0				Winter and the second	weigen fingelijke	CF Step 80.000000 MHz <u>Auto</u> Man
-60.0						Freq Offset 0 Hz
-70.0						Scale Type
Center 6.5850 GHz #Res BW 1.0 MHz	#VBW	3.0 MHz*	Swe	Span 80 ep 1.333 ms (1	0.0 MHz 001 pts)	Log <u>Lin</u>
MSG				STATUS		

Plot 7-61. Power Spectral Density MIMO ANT1 (320MHz 802.11be (UNII Band 7/8) - Ch. 175)

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dage EE of 196
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 55 01 126
© 2024 ELEMENT	•	· · · · · · · · · · · · · · · · · · ·	V11.1 08/28/2023

MIMO Antenna-1 Power Spectral Density Measurements - (UNII Band 8)

Plot 7-62. Power Spectral Density MIMO ANT1 (20MHz 802.11be (UNII Band 8) - Ch. 209)

Plot 7-63. Power Spectral Density MIMO ANT1 (40MHz 802.11be (UNII Band 8) - Ch. 211)

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Daga E6 of 106	
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 56 of 126	
© 2024 ELEMENT			V11 1 08/28/2023	

Plot 7-65. Power Spectral Density MIMO ANT1 (160MHz 802.11be (UNII Band 8) – Ch. 207)

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Daga EZ of 106
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 57 01 120
© 2024 ELEMENT	•		V11.1 08/28/2023

🔤 Ke	ysight Spe	ctrum Analyzer - Swept SA	ł							- ē 🔀
l,XI R	L	RF 50 Ω A0	C CORREC	SENS	E:INT	#Avg Typ	ALIGN AUTO	04:11:06 AN TRAC	1Dec 30, 2023 E 1 2 3 4 5 6	Frequency
			PNO: Fast +++ IFGain:Low	Atten: 30 o	Run IB	Avg Hold:	: 100/100	DE		Auto Tuno
10 dE	B/div	Ref 20.00 dBn	n				Μ	kr1 6.902 -8.80	2 6 GHz 64 dBm	AutoTune
10.0										Center Freq 6.905000000 GHz
0.00 -10.0			anapara ana mangana j	and the second statement of	1) harrow fraction and				Start Freq 6.505000000 GHz
-20.0 -30.0										Stop Freq 7.305000000 GHz
-40.0	******	an and a start of the	"In a garlying"					ĨĨĨĨŦŦŦŦŎŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢŢ	ladionaynu migin	CF Step 80.000000 MHz <u>Auto</u> Man
-60.0										Freq Offset 0 Hz
-70.0										Scale Type
Cen #Re	ter 6.9 s BW	050 GHz 1.0 MHz	#VBW	3.0 MHz*			Sweep	Span 8 1.333 ms (00.0 MHz 1001 pts)	
MSG							STAT	JS		

Plot 7-66. Power Spectral Density MIMO ANT1 (320MHz 802.11be (UNII Band 7/8) - Ch. 191)

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dega 59 of 196
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 56 01 120
© 2024 ELEMENT			V11.1 08/28/2023

MIMO Antenna-2 Power Spectral Density Measurements - (UNII Band 5)

Plot 7-67. Power Spectral Density MIMO ANT2 (20MHz 802.11be (UNII Band 5) - Ch. 45)

Plot 7-68. Power Spectral Density MIMO ANT2 (40MHz 802.11be (UNII Band 5) - Ch. 43)

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Daga 50 of 106	
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 59 of 126	
© 2024 ELEMENT			V/11 1 08/28/2023	

🔤 Key	/sight Spectrum Ar	nalyzer - Swept SA	1								
lxi ri	L RF	50 Ω AC	CORREC	SI T-i F	INSE:INT	#Avg Typ	ALIGN AUTO	03:50:31 AM	1 Dec 30, 2023 E 1 2 3 4 5 6	Frequ	ency
10 dE	3/div Ref	20.00 dBn	PNO: Fast IFGain:Lov	Atten: 3	0 dB	Avginoid	. 100/100 M	kr1 6.147 -4.4	7 2 GHz 59 dBm	Au	ito Tune
10.0										Cen 6.145000	ter Freq 0000 GHz
0.00 -10.0				กษุขณุณปนุกษณฑย่างได้กา	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ana sama a				St 6.045000	a rt Freq 0000 GHz
-20.0 -30.0										St 6.245000	o p Freq 0000 GHz
-40.0 -50.0	and the state of the	hym yf hangroegen (hymenisg	N N N N N N N N N N N N N N N N N N N				N. Allanna		ag by the second second	20.000 <u>Auto</u>	CF Step 0000 MHz Man
-60.0										Fre	q Offset 0 Hz
-70.0										Sca	ale Type
Cen #Re	ter 6.1450 (s BW 1.0 M	GHz Hz	#\	/BW 3.0 MH;	2*		Sweep	Span 2 1.000 ms (00.0 MHz 1001 pts)	Log	Lin
MSG							STATU	JS			

Plot 7-69. Power Spectral Density MIMO ANT2 (80MHz 802.11be (UNII Band 5) – Ch. 39)

Plot 7-70. Power Spectral Density MIMO ANT2 (160MHz 802.11be (UNII Band 5) - Ch. 47)

FCC ID: A3LSMX910 IC: 649E-SMX910		MEASUREMENT REPORT (Class II Permissive Change)			
Test Report S/N:	Test Dates:	EUT Type:	Dege 60 of 106		
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 60 of 126		
© 2024 ELEMENT			V11.1 08/28/2023		

Center 6.2650 GHz #Res BW 1.0 MHz

🔤 Key	ysight Spe	ctrum Analyzer - Sw	vept SA									
lxi Ri	L	RF 50 S	2 AC C	ORREC	SEN	ISE:INT	#Avg Typ	ALIGN AUTO	04:12:14 A TRAC	M Dec 30, 2023	Fr	equency
10 dE	B/div	Ref 20.00	ı dBm	PNO: Fast ← FGain:Low	Atten: 30	dB	Avginoia	N	lkr1 6.10 -9.3	1 0 GHz 33 dBm		Auto Tune
10.0											6 .10	Center Freq 5000000 GHz
0.00 -10.0					warne and	1 ••••••••	وساور معتار معارضه العمر				5.70	Start Freq 5000000 GHz
-20.0 -30.0											6.50	Stop Freq 5000000 GHz
-40.0 -50.0	-laborar	affision-guiden-universe	anganang nang pangangang pangang pangan	/				man	-)/###18-1-(⁻¹ 14/1-19 ⁶ 8-1-1	80 <u>Auto</u>	CF Step 0.000000 MHz Man
-60.0											ľ	Freq Offset 0 Hz
-70.0												Scale Type
Cen	ter 6.1	050 GHz		40 (D)				0	Span 8	00.0 MHz	Log	Lin
#Re	SBW	T.U MHZ		#VB	W 3.0 WHZ			sweep	1.333 ms (TOUT pts)		
MSG								STAT	rus			

Plot 7-71. Power Spectral Density MIMO ANT2 (320MHz 802.11be (UNII Band 5) - Ch. 31)

Plot 7-72. Power Spectral Density MIMO ANT2 (320MHz 802.11be (UNII Band 5) - Ch. 63)

#VBW 3.0 MHz*

Man

Lin

Freq Offset 0 Hz

Scale Type

<u>Auto</u>

Log

Span 800.0 MHz Sweep 1.333 ms (1001 pts)

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager			
Test Report S/N: Test Dates:		EUT Type:	Dege 61 of 106		
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 61 01 126		
2024 ELEMENT V11.1 08/28/2023					

MIMO Antenna-2 Power Spectral Density Measurements - (UNII Band 6)

Plot 7-73. Power Spectral Density MIMO ANT2 (20MHz 802.11be (UNII Band 6) - Ch. 105)

Plot 7-74. Power Spectral Density MIMO ANT2 (40MHz 802.11be (UNII Band 6) - Ch. 107)

FCC ID: A3LSMX910 IC: 649E-SMX910		MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dega 62 of 126		
1M2312180128-06.A3L 12/15/2023 - 1/11/2023		Portable Tablet	Page 62 01 126		

🔤 Keysig	ht Spectrum Analyzer - Swept	SA				
lxi RL	RF 50 Ω	AC CORREC	SENSE:INT	ALIGN AUTO	03:51:03 AM Dec 30, 2023 TRACE 1 2 3 4 5 6	Frequency
10 dB/c	liv Ref 20.00 dB	PNO: Fast ↔ IFGain:Low	Atten: 30 dB	Avginola: 100/100	kr1 6.461 2 GHz -2.696 dBm	Auto Tune
10.0			â 1			Center Freq 6.465000000 GHz
-10.0		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	month and the second			Start Freq 6.365000000 GHz
-20.0 -						Stop Freq 6.565000000 GHz
-40.0	and the second for the second	کل محمد ال		1 Martine		CF Step 20.000000 MHz <u>Auto</u> Man
-60.0						Freq Offset 0 Hz
-70.0						Scale Type
Cente #Res I	r 6.4650 GHz BW 1.0 MHz	#VBW	3.0 MHz*	Sweep	Span 200.0 MHz 1.000 ms (1001 pts)	Log <u>Lin</u>
MSG				STATU	JS	

Plot 7-76. Power Spectral Density MIMO ANT2 (160MHz 802.11be (UNII Band 6) - Ch. 111)

FCC ID: A3LSMX910 IC: 649E-SMX910		MEASUREMENT REPORT (Class II Permissive Change)	Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Daga 62 of 126		
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 63 of 126		
© 2024 ELEMENT V1 ²					

μα RL RF 50 Ω AC CORREC SENSE:INT ALIGN AUTO 04:13:49 AM Dec 30, 2023 Frequency #Avg Type: RNS TRACE 2.3.4.5.6 Frequency
PNO: Fast
10.0 Center F 6.42500000
0.00 -10.0
20.0 -30.0
-40.0 -50.0
Freq Of
Scale T
#Res BW 1.0 MHz #VBW 3.0 MHz* Sweep 1.333 ms (1001 pts)
MSG STATUS

Plot 7-77. Power Spectral Density MIMO ANT2 (320MHz 802.11be (UNII Band 5/6/7) - Ch. 95)

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager		
Test Report S/N:	N: Test Dates: EUT Type:		Dege 64 of 196	
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 64 01 126	
© 2024 ELEMENT				

MIMO Antenna-2 Power Spectral Density Measurements - (UNII Band 7)

Plot 7-78. Power Spectral Density MIMO ANT2 (20MHz 802.11be (UNII Band 7) - Ch. 149)

Keysight Spectrum Analyzer - Swept SA					
Center Freg 6.72500000	CORREC	SENSE:INT	#Avg Type: RMS	03:35:40 AM Dec 30, 2023 TRACE 1 2 3 4 5 6	Frequency
	PNO: Fast ++ IFGain:Low	 Trig: Free Run Atten: 30 dB 	Avg Hold: 100/100	DET A PNNN	Auto Turo
10 dB/div Ref 20.00 dBm			M	kr1 6.711 6 GHz -0.527 dBm	Auto Tune
10.0	<u>^1</u>				Center Freq 6.725000000 GHz
-10.0		adurtughdan ord Anarydd 1961 au			Start Freq 6.675000000 GHz
-20.0					Stop Freq 6.775000000 GHz
-40.0			han han	Anna gun an anna an anna anna anna	CF Step 10.000000 MHz <u>Auto</u> Man
-60.0					Freq Offset 0 Hz
-70.0					Scale Type
Center 6.72500 GHz #Res BW 1.0 MHz	#VBW	3.0 MHz*	Sweep	Span 100.0 MHz 1.000 ms (1001 pts)	Log <u>Lin</u>
MSG			STATU	IS	

Plot 7-79. Power Spectral Density MIMO ANT2 (40MHz 802.11be (UNII Band 7) - Ch. 155)

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager				
Test Report S/N:	Test Dates:	EUT Type:	Dage 65 of 106			
1M2312180128-06.A3L	12/15/2023 - 1/11/2023	Portable Tablet	Page 05 01 120			
2024 ELEMENT						