

ELEMENT SUWON

13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16954 South Korea Tel. 031.660.7319 / Fax 031.660.7318 http://www.element.com

MEASUREMENT REPORT FCC PART 15.407 802.11be (OFDM)

Applicant Name:

Samsung Electronics Co., Ltd.

129, Samsung-ro,

Yeongtong-gu, Suwon-si

Gyeonggi-do, 16677, Korea

Date of Testing:

12/15/2023 - 1/11/2024

Test Report Issue Date:

1/18/2024

Test Site/Location:

Element lab., Gyeonggi-do, South Korea

Test Report Serial No.: 1M2312180128-04.A3L

FCC ID: A3LSMX910

649E-SMX910 IC:

APPLICANT: Samsung Electronics Co., Ltd.

Application Type: Class II Permissive Change

Original Grant Date: 06/08/2023 Model: SM-X910

EUT Type: Portable Tablet 5180 - 5885MHz Frequency Range:

Modulation Type: **OFDM**

FCC Equipment Class: Unlicensed National Information Infrastructure TX (NII)

FCC Rule Part(s): Part 15 Subpart E (15.407)

ISED Specification: RSS-247 Issue 3 **Test Procedure(s):** ANSI C63.10-2013

Class II Permissive Change: Enabling WiFi 7 functionality via software

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in ANSI C63.10-2013. Test results reported herein relate only to the item(s) tested.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

Reviewed by Prepared by FCC ID: A3LSMX910 Approved by: Class II Permissive Change Report IC: 649E-SMX910 Technical Manager Test Report S/N: **Test Dates: EUT Type:** Page 1 of 83 1M2312180128-04.A3L 12/15/2023 - 1/11/2024 Portable Tablet

TABLE OF CONTENTS

1.0	INTRO	DUCTION	N	4	
	1.1	Scope	9	4	
	1.2	Eleme	ent Test Location	4	
	1.3	Test F	Facility / Accreditations	4	
2.0	PROD	UCT INFO	ORMATION	5	
	2.1	Equip	ment Description	5	
	2.2	Device	e Capabilities	5	
	2.3	Anten	na Description	7	
	2.4	Test C	Configuration	7	
	2.5	Softwa	are and Firmware	7	
	2.6	EMI S	Suppression Device(s) / Modifications	7	
3.0	DESC	RIPTION	OF TESTS	8	
	3.1	Evalua	ation Procedure	8	
	3.2	Radia	ited Emissions	8	
	3.3	Enviro	onmental Conditions	8	
4.0	ANTE	NNA REQ	QUIREMENTS	9	
5.0	MEAS	UREMEN	IT UNCERTAINTY	10	
6.0	TEST	EQUIPME	ENT CALIBRATION DATA	11	
7.0	TEST	RESULTS	S	12	
	7.1	Summ	nary	12	
	7.2	26dB	Bandwidth Measurement	13	
		7.2.1	MIMO Antenna-1 26dB Bandwidth Measurements	15	
		7.2.2	MIMO Antenna-2 26dB Bandwidth Measurements	21	
	7.3	6dB B	Bandwidth Measurement	27	
		7.3.1	MIMO Antenna-1 6dB Bandwidth Measurements	29	
		7.3.2	MIMO Antenna-2 6dB Bandwidth Measurements	33	
	7.4	UNII C	Output Power Measurement	37	
	7.5	7.5 Maximum Power Spectral Density			
		7.5.1	MIMO Antenna-1 Power Spectral Density Measurements	44	
		7.5.2	MIMO Antenna-2 Power Spectral Density Measurements	48	
		7.5.3	MIMO Antenna-1 Power Spectral Density Measurements - Punctured	52	
		7.5.4	MIMO Antenna-2 Power Spectral Density Measurements - Punctured	55	
	7.6	Radia	ted Emission Measurements	59	
		7.6.1	MIMO Radiated Spurious Emission Measurements	64	
		7.6.2	MIMO Radiated Band Edge Measurements (20MHz BW)	65	
		7.6.3	MIMO Radiated Band Edge Measurements (40MHz BW)	68	
		7.6.4	MIMO Radiated Band Edge Measurements (80MHz BW – 20MHz Punctured)	71	
		7.6.5	MIMO Radiated Band Edge Measurements (80MHz BW)	74	
		7.6.6	MIMO Radiated Band Edge Measurements (160MHz BW – 40MHz Punctured)	77	
		7.6.7	MIMO Radiated Band Edge Measurements (160MHz BW)	80	
8.0	CONC	LUSION.		83	

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 2 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 2 of 83

MEASUREMENT REPORT

Channel				МІМО	
Bandwidth [MHz]	IEEE Mode	UNII Band	Tx Frequency [MHz]	Max. Power [mW]	Max. Power [dBm]
	802.11be	1	5180 - 5240	109.14	20.38
	802.11be	2A	5260 - 5320	110.92	20.45
20	802.11be	2C	5500 - 5720	117.16	20.69
	802.11be	3	5745 - 5825	116.51	20.66
	802.11be	4	5845 - 5885	52.79	17.23
	802.11be	1	5190 - 5230	77.27	18.88
	802.11be	2A	5270 - 5310	76.56	18.84
40	802.11be	2C	5510 - 5710	92.47	19.66
	802.11be	3	5755 - 5795	91.20	19.60
	802.11be	4	5835 - 5875	37.31	15.72
	802.11be	1	5210	67.30	18.28
	802.11be	2A	5290	67.09	18.27
80	802.11be	2C	5530 - 5690	68.87	18.38
	802.11be	3	5775	75.34	18.77
	802.11be	4	5855	33.50	15.25
	802.11be	1/2A	5250	54.70	17.38
160	802.11be	2C	5570	57.81	17.62
	802.11be	3/4	5815	27.00	14.31

EUT Overview

Note: The UNII Band 4 max power values shown in the above table are e.i.r.p values.

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 2 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 3 of 83

© 2024 ELEMENT

1.0 INTRODUCTION

1.1 Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and\\or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Innovation, Science and Economic Development Canada.

1.2 Element Test Location

These measurement tests were conducted at the Element Suwon Laboratory located at 13, Heungdeok 1-ro, Giheung-gu, Yongin-si, Gyeonggi-do, 16954, South Korea. The measurement facility is compliant with the test site requirements specified in ANSI C63.4-2014.

1.3 Test Facility / Accreditations

Measurements were performed at Element Materials Technology Suwon, Ltd. located in Yongin-si, Gyeonggi-do, 16954, South Korea.

- Element Materials Technology Suwon, Ltd. is an ISO 17025-2017 accredited test facility under the American Association for Laboratory Accreditation(A2LA) with Certificate number 2041.04 for Specific Absorption Rate (SAR), and Electromagnetic Compatibility (EMC) & Telecommunications testing for FCC and Innovation, Science, and Economic Development Canada rules.
- Element Materials Technology Suwon, Ltd. facility is accredited, designated, and recognized in accordance with the provision of Radio Wave Act and International Standard ISO/IEC 17025:2017 under the National Radio Research Agency.
 - Designation Number / CABID: KR0169
 - Test Firm Registration Number of FCC: 417945
 - Test Firm Registration Number of ISED: 26168

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 4 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 4 of 83

2.0 PRODUCT INFORMATION

2.1 Equipment Description

The Equipment Under Test (EUT) is the **Samsung Portable Tablet FCC ID: A3LSMX910, IC: 649E-SMX910**. The test data contained in this report pertains only to the emissions due to the EUT's UNII transmitter.

Test Device Serial No.: 0150M, 4628G, 3657M

2.2 Device Capabilities

This device contains the following capabilities:

802.11b/g/n/ax/be WLAN, 802.11a/n/ac/ax/be UNII (5 and 6 GHz), Bluetooth (1x, EDR, LE), Wireless Power Transfer.

	Band 1
Ch.	Frequency (MHz)
36	5180
:	:
40	5200
	:
48	5240

	Band 2A
Ch.	Frequency (MHz)
52	5260
:	•
56	5280
:	:
64	5320

	Band 2C	
Ch.	Frequency (MHz)	
100	5500	
:	:	
120	5600	
:	:	
144	5720	
 v/b = (00MH) = \ F=======		

	Band 3
Ch.	Frequency (MHz)
149	5745
:	:
157	5785
	:
165	5825

Dalla 3/4
Frequency (MHz)
5845
:
5865
:
5885

Rand 3/4

Table 2-1. 802.11a/n/ac/ax/be (20MHz) Frequency / Channel Operations

	Band 1
Ch.	Frequency (MHz)
38	5190
	• •
46	5230

	Band 2A
Ch.	Frequency (MHz)
54	5270
:	• •
62	5310

	Band 2C
Ch.	Frequency (MHz)
102	5510
:	:
118	5590
:	• •
142	5710

	Band 3
Ch.	Frequency (MHz)
151	5755
:	:
159	5795

Ch.	Frequency (MHz)
167	5835
:	:
175	5875

Band 3/4

Table 2-2. 802.11n/ac/ax/be (40MHz BW) Frequency / Channel Operations

Band 2C

	Danu i
Ch.	Frequency (MHz)
42	5210

Rand 1

Ch.	Frequency (MHz)
58	5290

Band 2A

Ch.	Frequency (MHz)	
106	5530	
:	:	
122	5610	
:	:	
138	5690	
ho (COMUL DIA) From		

	Band 3
Ch.	Frequency (MHz)
155	5775

Ch.	Frequency (MHz)
167	5835

Band 3/4

Table 2-3. 802.11ac/ax/be (80MHz BW) Frequency / Channel Operations

Band 1/2A	
Ch.	Frequency (MHz)
50	5250

Ch.	Frequency (MHz)
114	5570

Band 2C

Band 3/4	
Ch.	Frequency (MHz)
163	5815

Table 2-4. 802.11ac/ax/be (160MHz BW) Frequency / Channel Operations

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo F of 02
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 5 of 83

Notes:

1. 5GHz NII operation is possible in 20MHz, 40MHz, 80MHz, and 160MHz channel bandwidths. The maximum achievable duty cycles for all modes were determined based on measurements performed on a spectrum analyzer in zero-span mode with RBW = 8MHz, VBW = 50MHz, and detector = peak per the guidance of Section B)2)b) of ANSI C63.10-2013. The RBW and VBW were both greater than 50/T, where T is the minimum transmission duration, and the number of sweep points across T was greater than 100. The duty cycles are as follows:

		MIMO (1+2)			
802.11 M	ode/Band	Duty Cycle [%]	Radiated DCCF [dB]		
	be (EHT20)	99.54	N/A		
FOLI-	be (EHT40)	99.34	N/A		
5GHz	be (EHT80)	98.94	N/A		
	be (EHT160)	99.71	N/A		

Table 2-5. Measured Duty Cycles

2. The device employs MIMO technology. Below are the possible configurations.

WiFi Configurations		SI	SO	SE	OM	CDD		
VVIFICO	WiFi Configurations		ANT2	ANT1	ANT2	ANT1	ANT2	
	11a	×	×	✓	✓	✓	✓	
	11n	×	×	✓	✓	✓	✓	
5GHz	11ac	×	×	✓	✓	✓	✓	
	11ax	×	×	✓	✓	✓	✓	
	11be	×	×	✓	✓	✓	✓	

Table 2-6. Antenna / Technology Configuration

✓= Support; × = NOT Support SISO = Single Input Single Output

SDM = Spatial Diversity Multiplexing – MIMO function

CDD = Cyclic Delay Diversity – 2Tx Function

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dono C of 02	
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 6 of 83	

3. The device supports the following data rates (shown in Mbps):

802.11a		MCS	ndex		Spatial	0	FDM (802.1	1n/802.11a	c)		OFDM (8	02.11ac)							OFDM (802	2.11ax/be)					
20MHz					Stream	201	ИHz	40N	ИHz	808	ИHz	160	MHz		20MHz			40MHz			80MHz			160MHz	
20141112	HT	VHT	HE	EHT		0.8μs GI	0.4μs GI	0.8µs GI	0.4μs GI	0.8μs GI	0.4μs GI	0.8μs GI	0.4µs GI	0.8μs GI	1.6µs GI	3.2µs GI	0.8μs GI	1.6µs GI	3.2µs GI	0.8µs GI	1.6μs GI	3.2µs GI	0.8μs GI	1.6μs GI	3.2µs GI
6	0	0	0	0	1	6.5	7.2	13.5	15	29.3	32.5	58.5	65	8.6	8.1	7.3	17.2	16.3	14.6	36	34	30.6	72.1	68.1	61.3
9	1	1	1	1	1	13	14.4	27	30	58.5	65	117	130	17.2	16.3	14.6	34.4	32.5	29.3	72.1	68.1	61.3	144.1	136.1	122.5
12	2	2	2	2	1	19.5	21.7	40.5	45	87.8	97.5	175.5	195	25.8	24.4	21.9	51.6	48.8	43.9	108.1	102.1	91.9	216.2	204.2	183.8
18	3	3	3	3	1	26	28.9	54	60	117	130	234	260	34.4	32.5	29.3	68.8	65	58.5	144.1	136.1	122.5	288.2	272.2	245
24	4	4	4	4	1	39	43.3	81	90	175.5	195	351	390	51.6	48.8	43.9	103.2	97.5	87.8	216.2	204.2	183.8	432.4	408.3	367.5
36	5	5	5	5	1	52	57.8	108	120	234	260	468	520	68.8	65	58.5	137.6	130	117	288.2	272.2	245	576.5	544.4	490
48	6	6	6	6	1	58.5	65	121.5	135	263.3	292.5	526.5	585	77.4	73.1	65.8	154.9	146.3	131.6	324.3	306.3	275.6	648.5	612.5	551.3
54	7	7	7	7	1	65	72.2	135	150	292.5	325	585	650	86	81.3	73.1	172.1	162.5	146.3	360.3	340.3	306.3	720.6	680.6	612.5
		8	8	8	1	78	86.7	162	180	351	390	702	780	103.2	97.5	87.8	206.5	195	175.5	432.4	408.3	367.5	864.7	816.7	735
	,	9	9	9	1	N/A	N/A	180	200	390	433.3	780	866.7	114.7	108.3	97.5	229.4	216.7	195	480.4	453.7	408.3	960.8	907.4	816.7
			10	10	1									129	121.9	109.7	258.1	243.8	219.4	540.4	510.4	459.4	1080.9	1020.8	918.8
			11	11	1									143.4	135.4	121.9	286.8	270.8	243.8	600.5	567.1	510.4	1201	1134.3	1020.8
				12	1									154.9	146.3	131.6	309.7	292.5	263.3	648.5	612.5	551.3	1297.1	1225	1102.5
				13	1									172.1	162.5	146.3	344.1	325	292.5	720.6	680.6	612.5	1441.2	1361.1	1225
6	8	0	0	0	2	13	14.4	27	30	58.5	65	117	130	17.2	16.3	14.6	34.4	32.5	29.3	72.1	68.1	61.3	144.1	136.1	122.5
9	9	1	1	1	2	26	28.9	54	60	117	130	234	260	34.4	32.5	29.3	68.8	65	58.5	144.1	136.1	122.5	288.2	272.2	245
12	10	2	2	2	2	39	43.3	81	90	175.5	195	351	390	51.6	48.8	43.9	103.2	97.5	87.8	216.2	204.2	183.8	432.4	408.3	367.5
18	11	3	3	3	2	52	57.8	108	120	234	260	468	520	68.8	65	58.5	137.6	130	117	288.2	272.2	245	576.5	544.4	490
24	12	4	4	4	2	78 104	86.7	162	180	351	390	702	780	103.2	97.5	87.8	206.5	195	175.5	432.4	408.3	367.5	864.7	816.7	735
36	13	5 6	5	5 6	2	104	115.6	216	240	468 526.5	520 585	936	1040	137.6	130	117	275.3	260	234	576.5	544.4 612.5	490	1152.9	1088.9	980
48 54	15	7	7	- 5	2	117	130 144.4	243	300	526.5 585	585 650	1053 1170	1170 1300	154.9 172.1	146.3 162.5	131.6 146.3	309.7 344.1	292.5 325	263.3 292.5	648.5 720.6	612.5	551.3 612.5	1297.1 1441.2	1225 1361.1	1102.5 1225
54	15	8	8	8	2	156	173.3	324	360	702	780	1404	1560	206.5	195	175.5	412.9	390	351	864.7	816.7	735	1729.4	1633.3	1470
		8	9	8	2	N/A	1/3.3 N/A	360	400	780	866.7	1560	1733.3	229.4	216.7	175.5	412.9	433.3	390	960.8	907.4	816.7	1921.6	1814.8	1633.3
		,	10	10	2	IV/A	IV/A	300	400	780	000.7	1300	1/33.3	258.1	243.8	219.4	516.2	487.5	438.8	1080.9	1020.8	918.8	2161.8	2041.7	1837.5
			10	11	2									258.1	270.8	243.8	573.5	487.5 541.7	438.8	1201	1134.3	1020.8	2402	2268.5	2041.7
			-11	12	2									309.7	292.5	263.3	619.4	585	526.5	1201	1225	1102.5	2594.1	2450	2205
				13	2									344.1	325	292.5	688.2	650	585	1441.2	1361.1	1225	2882.4	2722.2	2450

Table 2-7. Supported Data Rates

2.3 Antenna Description

The following antenna gains were used for the testing.

Frequency [MHz]	Antenna 1 Gain (dBi)	Antenna 2 Gain (dBi)	Directional Gain (dBi)
5200	-5.65	-6.89	-3.24
5300	-5.26	-6.16	-2.69
5500	-5.35	-5.80	-2.56
5800	-5.86	-6.92	-3.36
5850	-5.91	-7.06	-3.46

Table 2-8. Antenna Peak Gain per Frequency

2.4 Test Configuration

ANSI C63.10-2013 was used to reference the appropriate EUT setup for radiated spurious emissions testing. See Sections 7.6 for radiated emissions test setups, and 7.2, 7.3, 7.4 and 7.5 for antenna port conducted emissions test setups.

2.5 Software and Firmware

The test was conducted with software/firmware version X910XXU1BWL3 installed on the EUT.

2.6 EMI Suppression Device(s) / Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 7 of 92	
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 7 of 83	

3.0 DESCRIPTION OF TESTS

3.1 Evaluation Procedure

The measurement procedures described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices (ANSI C63.10-2013) was used in the measurement of the EUT.

Deviation from measurement procedure......None

3.2 Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. The test site inside the chamber is a 6m x 5.2m elliptical, obstruction-free area in accordance with Figure 5.7 of Clause 5 in ANSI C63.4-2014. Absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections for measurements above 1GHz. An 80cm tall test table made of Styrodur is placed on top of the turn table. For measurements above 1GHz, an additional Styrodur pedestal is placed on top of the test table to bring the total table height to 1.5m.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33 depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up was placed on top of the 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, mode of operation, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions.

All radiated measurements are performed in a chamber that meets the site requirements per ANSI C63.4-2014. Additionally, radiated emissions below 30MHz are also validated on an Open Area Test Site to assert correlation with the chamber measurements per the requirements of KDB 414788 D01 v01r01.

3.3 Environmental Conditions

The temperature is controlled within range of 15°C to 35°C. The relative humidity is controlled within range of 10% to 75%. The atmospheric pressure is monitored within the range 86-106kPa (860-1060mbar).

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 9 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 8 of 83

ELEMENT V11.1 08/28/202:

4.0 ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

- The antennas of the EUT are permanently attached.
- There are no provisions for connection to an external antenna.

Conclusion:

The EUT complies with the requirement of §15.203.

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 0 of 92	
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 9 of 83	

5.0 MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013. All measurement uncertainty values are shown with a coverage factor of k=2 to indicate a 95% level of confidence. The measurement uncertainty shown below meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Contribution	Expanded Uncertainty (±dB)
Conducted Bench Top Measurements	1.95
Line Conducted Disturbance	3.09
Radiated Disturbance (<1GHz)	4.10
Radiated Disturbance (>1GHz)	4.82
Radiated Disturbance (>18GHz)	4.96

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 40 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 10 of 83

6.0 TEST EQUIPMENT CALIBRATION DATA

Test Equipment Calibration is traceable to the National Institute of Standards and Technology (NIST). Measurements antennas used during testing were calibrated in accordance to the requirements of ANSI C63.5-2017.

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Agilent	N9030A	PXA Signal Analyzer	7/6/2023	Annual	7/3/2024	MY49432391
Antritsu	S820E	Cable and Antenna Analyzer	7/4/2023	Annual	7/3/2024	1839097
Antritsu	TOSLKF50A-40	Calibration Kit	N/A	-	N/A	1825024
Com-Power	AL-130R	Active Loop Antenna	10/21/2022	Biennial	10/20/2024	10160045
Fairview Microwave	FM2CP1122-10	Coupler	7/4/2023	Annual	7/3/2024	1946
Keysight Technologies	N9030B	PXA Signal Analyzer	4/6/2023	Annual	4/5/2024	MY57142018
Mini-Circuits	BW-N10W5+	Attenuator	4/6/2023	Annual	4/5/2024	TEMPNO.01-151
Rohde & Schwarz	TS-PR1840	Preamplifier	7/6/2023	Annual	7/5/2024	100049
Rohde & Schwarz	ESW	EMI TEST Receiver	7/5/2023	Annual	7/4/2024	101761
Rohde & Schwarz	FSW43	Signal & Spectrum Analyzer	4/6/2023	Annual	4/5/2024	101250
Rohde & Schwarz	TS-SFUNIT-Rx	Shielded Filter Unit	1/13/2023	Annual	1/12/2024	102151
Schwarzbeck	VULB9162	Broadband TRILOG Antenna	6/1/2023	Biennial	5/31/2025	9162-217
Sunol Sciences	DRH-118	Horn Antenna	1/26/2023	Biennial	1/25/2025	A102416-1
Anritsu	MA24106A	Power Sensor	7/4/2023	Annual	7/3/2024	1244512

Table 6-1. Annual Test Equipment Calibration Schedule

Note:

- 1. For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date.
- 2. Equipment with a calibration date of "N/A" shown in this list was not used to make direct calibrated measurements.

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 11 of 92
1M2312180128-04.A3L	2180128-04.A3L		Page 11 of 83

7.0 TEST RESULTS

7.1 Summary

Company Name: <u>Samsung Electronics Co., Ltd.</u>

FCC ID: <u>A3LSMX910</u> IC: <u>649E-SMX910</u>

FCC Classification: Unlicensed National Information Infrastructure (UNII)

FCC Part Section(s)	RSS Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
N/A	RSS-Gen [6.6]	26dB Bandwidth	N/A		PASS	Section 7.2
15.407(e)	RSS-Gen [6.6]	6dB Bandwidth	>500kHz(5725-5850MHz and 5850 – 5895MHz)		PASS	Section 7.3
15.407 (a)(1)(iv), (a)(2), (a)(3)	RSS-247 [6.2]	Maximum Conducted Output Power	Maximum conducted powers must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])	CONDUCTED	PASS	Section 7.4
15.407 (a)(1)(iv), (a)(2), (a)(3)	RSS-247 [6.2]	Maximum Power Spectral Density	Maximum power spectral density must meet the limits detailed in 15.407 (a) (RSS-247 [6.2])		PASS	Section 7.5
15.407(h)	RSS-247 [6.3]	Dynamic Frequency Selection	See DFS Test Report		PASS	See DFS Test Report
15.407(b)(1), (b)(2), (b)(3), (b)(4)	RSS-247 [6.2]	Undesirable Emissions	Undesirable emissions must meet the limits detailed in 15.407(b) (RSS-247 [6.2])		PASS	Section 7.6
15.205, 15.407(b)(1), (b)(4), (b)(5), (b)(6)	RSS-Gen [8.9]	General Field Strength Limits (Restricted Bands and Radiated Emission Limits)	Emissions in restricted bands must meet the radiated limits detailed in 15.209 (RSS-Gen [8.9])	RADIATED	PASS	Section 7.6

Table 7-1. Summary of Test Results

Notes:

- 1) All channels, modes, and modulations/data rates were investigated among all UNII bands. The test results shown in the following sections represent the worst-case emissions.
- 2) The analyzer plots shown in this section were all taken with a correction table loaded into the analyzer. The correction table was used to account for the losses of the cables and attenuators used as part of the system to connect the EUT to the analyzer at all frequencies of interest.
- 3) All antenna port conducted emissions testing was performed on a test bench with the antenna port of the EUT connected to the spectrum analyzer through calibrated cables and attenuators.
- 4) For conducted spurious emissions, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "UNII Automation," Version 4.7.
- 5) For radiated band edge, automated test software was used to measure emissions and capture the corresponding plots necessary to show compliance. The measurement software utilized is Element "Chamber Automation," Version 1.6.4.

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 12 of 83
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 12 01 83

7.2 26dB Bandwidth Measurement

Test Overview and Limit

The bandwidth at 26dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 26dB bandwidth.

The 26dB bandwidth is used to determine the conducted power limits.

Test Procedure Used

ANSI C63.10-2013 - Section 12.4

Test Settings

- 1. The signal analyzers' automatic bandwidth measurement capability was used to perform the 26dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 26. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = approximately 1% of the emission bandwidth
- 3. $VBW \ge 3 \times RBW$
- 4. Detector = Peak
- Trace mode = max hold

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-1. Test Instrument & Measurement Setup

Test Notes

All cases were investigated; a subset of the taken plots were included to represent relevant settings and measurements.

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 42 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 13 of 83

2312101126-U4-A3L 12/13/2023 - 1/11/2024 PORTABLE FABRET 144.4.09/98/0

MIMO 26dB Bandwidth Measurements

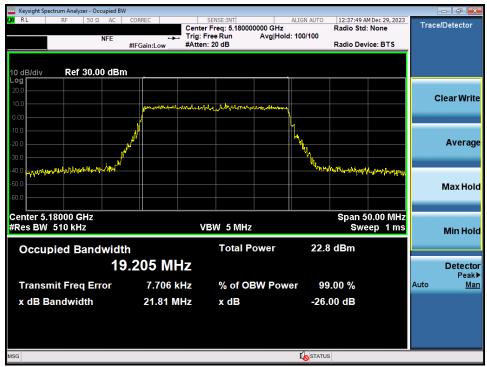

	Frequency [MHz]	Channel	802.11 MODE	Antenna-1 26dB Bandwidth [MHz]	Antenna-2 26dB Bandwidth [MHz]
	5180	36	be SU	21.81	21.65
_	5200	40	be SU	21.18	22.05
Band 1	5240	48	be SU	21.38	21.13
Bar	5190	38	be SU	41.86	42.33
	5230	46	be SU	41.57	42.75
	5210	42	be SU	86.67	87.14
Band 1/2A	5250	50	be SU	168.30	168.20
	5260	52	be SU	21.20	21.68
∢	5280	56	be SU	21.25	20.96
Band 2A	5320	64	be SU	21.11	21.17
San	5270	54	be SU	41.73	41.56
	5310	62	be SU	41.42	41.95
	5290	58	be SU	87.28	84.11
	5500	100	be SU	21.85	21.06
	5600	120	be SU	21.40	21.24
	5720	144	be SU	21.38	20.95
U	5510	102	be SU	41.09	41.24
d 20	5590	118	be SU	41.65	41.19
Band 2C	5710	142	be SU	41.73	41.39
	5530	106	be SU	84.73	86.59
	5610	122	be SU	87.21	86.89
	5690	138	be SU	89.01	84.08
	5570	114	be SU	170.10	169.40

Table 7-2. Bands 1, 2A, 2C Conducted 26dB Bandwidth Measurements MIMO

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dog 14 of 02
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 14 of 83

7.2.1 MIMO Antenna-1 26dB Bandwidth Measurements

Plot 7-1. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802. 11be (UNII Band 1) - Ch. 36)

Plot 7-2. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11be (UNII Band 1) - Ch. 38)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 15 of 83
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	rage 15 01 65

Plot 7-3. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802. 11be (UNII Band 1) - Ch. 42)


Plot 7-4. 26dB Bandwidth Plot MIMO ANT1 (160MHz BW 802. 11be (UNII Band 1/2A) - Ch. 50)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 16 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 16 of 83

Plot 7-5. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802. 11be (UNII Band 2A) - Ch. 56)


Plot 7-6. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11be (UNII Band 2A) - Ch. 56)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 17 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 17 of 83


Plot 7-7. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11be (UNII Band 2A) - Ch. 58)

Plot 7-8. 26dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11be (UNII Band 2C) - Ch. 100)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 19 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 18 of 83

Plot 7-9. 26dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11be (UNII Band 2C) - Ch. 142)

Plot 7-10. 26dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11be (UNII Band 2C) - Ch. 138)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 10 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 19 of 83

Plot 7-11. 26dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11be (UNII Band 2C) - Ch. 114)

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 82
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 20 of 83

© 2024 ELEMENT

7.2.2 MIMO Antenna-2 26dB Bandwidth Measurements

Plot 7-12. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11be (UNII Band 1) - Ch. 40)

Plot 7-13. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11be (UNII Band 1) - Ch. 46)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 21 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 21 of 83

Plot 7-14. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11be (UNII Band 1) - Ch. 42)

Plot 7-15. 26dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11be (UNII Band 1/2A) - Ch. 50)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 22 of 83

Plot 7-16. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11be (UNII Band 2A) - Ch. 52)

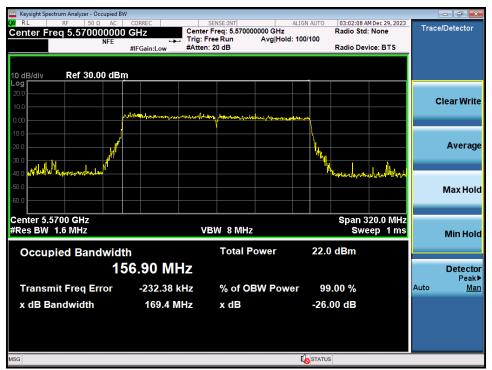

Plot 7-17. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11be (UNII Band 2A) - Ch. 62)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 23 of 83


Plot 7-18. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11be (UNII Band 2A) - Ch. 58)

Plot 7-19. 26dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11be (UNII Band 2C) - Ch. 120)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 24 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 24 of 83


Plot 7-20. 26dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11be (UNII Band 2C) - Ch. 142)

Plot 7-21. 26dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11be (UNII Band 2C) - Ch. 122)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 25 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 25 of 83

Plot 7-22. 26dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11be (UNII Band 2C) - Ch. 114)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dog 26 of 22
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 26 of 83

© 2024 ELEMENT

7.3 6dB Bandwidth Measurement

Test Overview and Limit

The bandwidth at 6dB down from the highest in-band spectral density is measured with a spectrum analyzer connected to the antenna terminal while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. The spectrum analyzer's bandwidth measurement function is configured to measure the 6dB bandwidth.

In the 5.725 – 5.850GHz band and 5.850 – 5.895GHz band, the 6dB bandwidth must be \geq 500 kHz.

Test Procedure Used

ANSI C63.10-2013 - Section 6.9.2

Test Settings

- 1. The signal analyzers' automatic bandwidth measurement capability was used to perform the 6dB bandwidth measurement. The "X" dB bandwidth parameter was set to X = 6. The automatic bandwidth measurement function also has the capability of simultaneously measuring the 99% occupied bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 100 kHz
- 3. $VBW \ge 3 \times RBW$
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-2. Test Instrument & Measurement Setup

Test Notes

All cases were investigated; a subset of the taken plots were included to represent relevant settings and measurements.

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 27 of 83
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 27 01 83

MIMO 6dB Bandwidth Measurements

	Frequency [MHz]	Channel	802.11 MODE	Antenna-1 6dB Bandwidth [MHz]	Antenna-2 6dB Bandwidth [MHz]
	5745	149	be SU	18.97	18.96
	5785	157	be SU	19.02	19.11
g 3	5825	165	be SU	19.10	18.99
Band	5755	151	be SU	38.06	38.18
Sec. 18	5795	159	be SU	38.04	38.19
	5775	155	be SU	78.07	78.24

Table 7-3. Band 3 Conducted 6dB Bandwidth Measurements MIMO

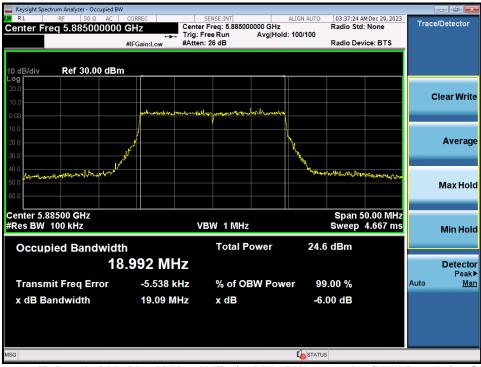
	Frequency [MHz]	Channel	802.11 MODE	Antenna-1 6dB Bandwidth [MHz]	Antenna-2 6dB Bandwidth [MHz]
Band 3/4	5845	169	be SU	18.96	19.04
Band 4	5865	173	be SU	19.03	19.06
Dallu 4	5885	177	be SU	19.09	18.87
Band 3/4	5835	167	be SU	38.14	38.21
Band 4	5875	175	be SU	38.10	38.15
Band 3/4	5855	171	be SU	78.09	78.10
Balla 3/4	5815	163	be SU	158.30	158.20

Table 7-4. Bands 3/4 Conducted 6dB Bandwidth Measurements MIMO

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 20 of 02
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 28 of 83

7.3.1 MIMO Antenna-1 6dB Bandwidth Measurements

Plot 7-23. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11be (UNII Band 3) - Ch. 165)


Plot 7-24. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11be (UNII Band 3) - Ch. 151)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 29 of 83

Plot 7-25. 6dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11be (UNII Band 3) - Ch. 155)

Plot 7-26. 6dB Bandwidth Plot MIMO ANT1 (20MHz BW 802.11be (UNII Band 4) - Ch. 177)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 30 of 83

Plot 7-27. 6dB Bandwidth Plot MIMO ANT1 (40MHz BW 802.11be (UNII Band 3/4) - Ch. 167)

Plot 7-28. 6dB Bandwidth Plot MIMO ANT1 (80MHz BW 802.11be (UNII Band 3/4) - Ch. 171)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 21 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 31 of 83

Plot 7-29. 6dB Bandwidth Plot MIMO ANT1 (160MHz BW 802.11be (UNII Band 3/4) - Ch. 163)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 22 of 02
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 32 of 83

© 2024 ELEMENT

V11.1 08/28/2023

7.3.2 MIMO Antenna-2 6dB Bandwidth Measurements

Plot 7-30. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11be (UNII Band 3) - Ch. 157)

Plot 7-31. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11be (UNII Band 3) - Ch. 159)

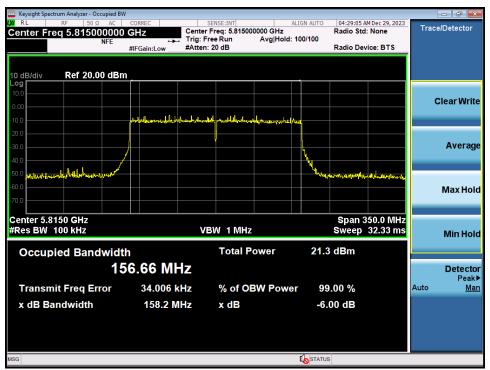
FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 33 of 83
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	raye 33 UI 83

© 2024 ELEMENT

Plot 7-32. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11be (UNII Band 3) - Ch. 155)

Plot 7-33. 6dB Bandwidth Plot MIMO ANT2 (20MHz BW 802.11be (UNII Band 4) - Ch. 173)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 24 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 34 of 83


Plot 7-34. 6dB Bandwidth Plot MIMO ANT2 (40MHz BW 802.11be (UNII Band 3/4) - Ch. 167)

Plot 7-35. 6dB Bandwidth Plot MIMO ANT2 (80MHz BW 802.11be (UNII Band 4) - Ch. 171)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 25 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 35 of 83

Plot 7-36. 6dB Bandwidth Plot MIMO ANT2 (160MHz BW 802.11be (UNII Band 3/4) - Ch. 163)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dog 26 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 36 of 83

7.4 UNII Output Power Measurement

Test Overview and Limits

A transmitter antenna terminal of the EUT is connected to the input of an RF pulse power sensor. Measurement is made using a broadband average power meter while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies.

The output power limits are as specified in the tables below.

UNII	Fraguency Bongs	Maximum Conducted Pov	ver Limit		Maximum e.i.r.p
Band	Frequency Range	FCC	ISED	FCC	ISED
UNII 1	5.15 – 5.25GHz	23.98dBm (250mW)	N/A	N/A	The lesser of 23.01dBm (200mW) or 10dBm + 10log ₁₀ B
UNII 2A	5.25 – 5.35GHz	The least of 00 00 dD at (0)	50 M/V		The Leaders of 00 dB or (4)A() are
UNII 2C	5.47 – 5.725GHz	The lesser of 23.98dBm (29.000		N/A	The lesser of 30dBm (1W) or 17dBm + 10log ₁₀ B
UNII 3	5.725 – 5.850GHz	30dBm (1W)		N/A	N/A
UNII 4	5.850 – 5.895GHz	N/A		30dBm (1W)	N/A

Test Procedure Used

ANSI C63.10-2013 - Section 12.3.3.2 Method PM-G

ANSI C63.10-2013 - Section 14.2 Measure-and-Sum Technique

Test Settings

Average power measurements were performed only when the EUT was transmitting at its maximum power control level using a broadband power meter with a pulse sensor. The power meter implemented triggering and gating capabilities which were set up such that power measurements were recorded only during the ON time of the transmitter. The trace was averaged over 100 traces to obtain the final measured average power.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-3. Test Instrument & Measurement Setup

Test Notes

None.

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 27 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 37 of 83

MIMO Maximum Conducted Output Power Measurements

	5	GHz WIFI (20MHz 802.11	be MIMO)		Conducted	Conducted	Directional			
Band	Freq	Channel	Avg. Co	nducted Power	s [dBm]	Power Limit	Power Margin	Ant. Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
	[MHz]		ANT1	ANT2	MIMO	[dBm]	[dB]	[dBi]			
	5180	36	17.15	17.13	20.15	23.98	-3.83	-3.24	16.91	30.00	-13.09
UNII-1	5200	40	17.35	17.21	20.29	23.98	-3.69	-3.24	17.05	30.00	-12.95
OINII-1	5220	44	17.45	17.02	20.25	23.98	-3.73	-3.24	17.01	30.00	-12.99
	5240	48	17.83	16.85	20.38	23.98	-3.60	-3.24	17.14	30.00	-12.86
	5260	52	17.81	17.01	20.44	23.98	-3.54	-2.69	17.75	30.00	-12.25
UNII-2A	5280	56	17.61	16.94	20.30	23.98	-3.68	-2.69	17.61	30.00	-12.39
UNII-ZA	5300	60	17.49	17.38	20.45	23.98	-3.53	-2.69	17.76	30.00	-12.24
	5320	64	17.06	17.12	20.10	23.98	-3.88	-2.69	17.41	30.00	-12.59
	5500	100	16.86	17.32	20.11	23.98	-3.87	-2.56	17.55	30.00	-12.45
UNII-2C	5600	120	17.82	17.53	20.69	23.98	-3.29	-2.56	18.13	30.00	-11.87
UNII-20	5620	124	17.86	17.38	20.64	23.98	-3.34	-2.56	18.08	30.00	-11.92
	5720	144	18.23	16.81	20.59	23.98	-3.39	-2.56	18.03	30.00	-11.97
	5745	149	18.16	17.08	20.66	30.00	-9.34	-3.38	17.28	36.00	-18.72
UNII-3	5785	157	17.56	17.48	20.53	30.00	-9.47	-3.38	17.15	36.00	-18.85
	5825	165	17.73	17.38	20.57	30.00	-9.43	-3.38	17.19	36.00	-18.81
	5845	169	17.79	17.43	20.62	-	-	-3.46	17.17	30.00	-12.83
UNII-4	5865	173	17.81	17.36	20.60	-	-	-3.46	17.15	30.00	-12.85
	5885	177	17.97	17.35	20.68	-	-	-3.46	17.23	30.00	-12.77

Table 7-5. MIMO 20MHz BW 802.11be (UNII) Maximum Conducted Output Power

	5	GHz WIFI (40MHz 802.11	be MIMO)		Conducted	Conducted	Directional			
Band	Freq	Channel	Avg. Co	nducted Power	s [dBm]	Power Limit	Power Margin	Ant. Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
	[MHz]		ANT1	ANT2	MIMO	[dBm]	[dB]	[dBi]			
UNII-1	5190	38	16.09	15.63	18.88	23.98	-5.10	-3.24	15.64	30.00	-14.36
OIVII-I	5230	46	16.02	15.28	18.68	23.98	-5.30	-3.24	15.44	30.00	-14.56
UNII-2A	5270	54	16.13	15.51	18.84	23.98	-5.14	-2.69	16.15	30.00	-13.85
UNII-ZA	5310	62	15.41	15.42	18.43	23.98	-5.55	-2.69	15.74	30.00	-14.26
	5510	102	15.71	15.82	18.78	23.98	-5.20	-2.56	16.22	30.00	-13.78
UNII-2C	5590	118	16.63	16.67	19.66	23.98	-4.32	-2.56	17.10	30.00	-12.90
UNII-20	5630	126	16.35	15.85	19.12	23.98	-4.86	-2.56	16.56	30.00	-13.44
	5710	142	16.86	15.22	19.13	23.98	-4.85	-2.56	16.57	30.00	-13.43
UNII-3	5755	151	16.76	15.88	19.35	30.00	-10.65	-3.38	15.97	36.00	-20.03
OINII-3	5795	159	16.63	16.54	19.60	30.00	-10.40	-3.38	16.22	36.00	-19.78
UNII-4	5835	167	16.07	15.94	19.02	-	-	-3.38	15.64	30.00	-14.36
UNII-4	5875	175	16.34	15.98	19.17	-	-	-3.46	15.72	30.00	-14.28

Table 7-6. MIMO 40MHz BW 802.11be (UNII) Maximum Conducted Output Power

		GHz WIFI (80MHz 802.11	be MIMO)		Conducted	Conducted	Directional			
Band	Freq	Channel	Avg. Co	nducted Power	s [dBm]	Power Limit	Power Margin	Ant. Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
	[MHz]		ANT1	ANT2	MIMO	[dBm]	[dB]	[dBi]			
UNII-1	5210	42	15.51	15.02	18.28	23.98	-5.70	-3.24	15.04	30.00	-14.96
UNII-2A	5290	58	15.58	14.82	18.23	23.98	-5.75	-2.69	15.54	30.00	-14.46
	5530	106	15.01	15.23	18.13	23.98	-5.85	-2.56	15.57	30.00	-14.43
UNII-2C	5610	122	15.45	14.86	18.18	23.98	-5.80	-2.56	15.62	30.00	-14.38
	5690	138	16.24	14.28	18.38	23.98	-5.60	-2.56	15.82	30.00	-14.18
UNII-3	5775	155	16.02	15.49	18.77	30.00	-11.23	-3.38	15.39	36.00	-20.61
UNII-4	5855	171	15.78	15.45	18.63	-	-	-3.38	15.25	30.00	-14.75

Table 7-7. MIMO 80MHz BW 802.11be (UNII) Maximum Conducted Output Power

	5GHz WIFI (160MHz 802.11be MIMO)					Conducted	Conducted	Directional			
Band	Freq	Channel	Avg. Co	Avg. Conducted Powers [dBm]		Power Limit	Power Margin	Ant. Gain	Max e.i.r.p [dBm]	e.i.r.p Limit [dBm]	e.i.r.p Margin [dB]
	[MHz]		ANT1	ANT2	MIMO	[dBm]	[dB]	[dBi]			
UNII-1/2A	5250	50	14.61	14.11	17.38	23.98	-6.60	-2.69	14.69	30.00	-15.31
UNII-2C	5570	114	14.57	14.65	17.62	23.98	-6.36	-2.56	15.06	30.00	-14.94
UNII-3/4	5815	163	14.78	14.36	17.59	30.00	-12.41	-3.38	14.21	30.00	-15.79

Table 7-8. MIMO 160MHz BW 802.11be (UNII) Maximum Conducted Output Power

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 20 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 38 of 83

		From					Av			ower (dBi	n)			Conducted	Conducted	Dir. Ant.	Max	e.i.r.p	e.i.r.p
	Band	Freq [MHz]	Channel	Tones		93		Pu	ncture Ca 92	se		90		Power Limit	Power Margin	Gain	e.i.r.p	Limit	Margin
. ≥		[2]			ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	[dBm]	[dB]	[dBi]	[dBm]	[dBm]	[dB]
m n	1	5210	42	484+242T	15.11	14.90	18.02	15.09	14.91	18.01	15.16	14.90	18.04	23.98	-5.94	-3.24	14.80	30.0	-15.20
Ĥ	2A	5290	58	484+242T	15.35	15.16	18.27	15.34	15.05	18.21	15.38	14.97	18.19	23.98	-5.71	-2.69	15.58	30.0	-14.42
Σ		5530	106	484+242T	15.15	14.86	18.02	15.12	15.03	18.09	15.13	15.07	18.11	23.98	-5.87	-2.56	15.55	30.0	-14.45
8	2C	5610	122	484+242T	15.09	14.91	18.01	15.16	14.98	18.08	15.27	14.88	18.09	23.98	-5.89	-2.56	15.53	30.0	-14.47
		5690	138	484+242T	15.54	15.03	18.30	15.44	15.21	18.34	15.55	15.08	18.33	23.98	-5.64	-2.56	15.78	30.0	-14.22
	3	5775	155	484+242T	15.53	15.31	18.43	15.57	15.63	18.61	15.66	15.62	18.65	30	-11.35	-3.38	15.27	36.0	-20.73
	4	5855	171	484+242T	15.11	14.95	18.04	15.09	14.89	18.00	15.06	14.99	18.04	-	-	-3.46	14.59	30.0	-15.41

Table 7-9. MIMO 80MHz BW 802.11be (UNII) Maximum Conducted Output Power - Punctured

3		Freq					Av		nducted P	ower (dB	n)			Conducted	Conducted	Dir. Ant.	Max	e.i.r.p	e.i.r.p
Z B	Band	[MHz]	Channel	Tones		1095		- 10	1094			94		Power Limit [dBm]	Power Margin	Gain [dBi]	e.i.r.p [dBm]	Limit [dBm]	Margin
Ŧ					ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	ANT1	ANT2	MIMO	lapmi	[dB]	[abij	lapmi	[abm]	[dB]
8	1/2A	5250	50	996+484T	14.04	14.02	17.04	14.08	14.15	17.13	14.14	14.03	17.10	23.98	-6.85	-3.24	13.89	30.0	-16.11
9	2C	5570	114	996+484T	13.98	14.14	17.07	14.08	14.01	17.06	14.06	14.02	17.05	23.98	-6.91	-2.56	14.51	30.0	-15.49
	3/4	5815	163	996+484T	14.97	14.26	17.64	14.85	14.19	17.54	14.89	14.13	17.54	-	-	-3.46	14.18	30.0	-15.82

Table 7-10. MIMO 160MHz BW 802.11be (UNII) Maximum Conducted Output Power - Punctured

ВМ	Band	Freq	Channel	Tones			Av	erage Cor Pu	nducted P ncture Ca	_	m)			Conducted Power Limit	Conducted Power Margin	Dir. Ant. Gain	Max e.i.r.p	e.i.r.p Limit	e.i.r.p Margin
Hz E	Danu	[MHz]	Channel	Tones	ANT1	1099 ANT2	MIMO	ANT1	1096 ANT2	мімо	ANT1	96 ANT2	MIMO	[dBm]	[dB]	[dBi]	[dBm]	[dBm]	(dB)
M	1/2A	5250	50	996+484+242T	14.15	13.97	17.07	14.11	14.06	17.10	14.13	14.09	17.12	23.98	-6.86	-3.24	13.88	30.0	-16.12
16	2C	5570	114	996+484+242T	14.02	14.15	17.10	14.05	14.08	17.08	14.11	14.05	17.09	23.98	-6.88	-2.56	14.53	30.0	-15.47
	3/4	5815	163	996+484+242T	14.93	14.40	17.68	14.97	14.31	17.66	14.93	14.58	17.77	-	-	-3.46	14.31	30.0	-15.69

Table 7-11. MIMO 160MHz BW 802.11be (UNII) Maximum Conducted Output Power - Punctured

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 20 of 02
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 39 of 83

Note:

Per ANSI C63.10-2013, the conducted powers at Antenna 1 and Antenna 2 were first measured separately during MIMO transmission as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Per ANSI C63.10-2013 Section 14.4.3, the directional gain is calculated using the following formula, where G_N is the gain of the nth antenna and N_{ANT} , the total number of antennas used.

Directional gain =
$$10 \log[(10^{G_1/20} + 10^{G_2/20} + ... + 10^{G_N/20})^2 / N_{ANT}] dBi$$

Sample MIMO Calculation:

At 5180MHz in 802.11be (20MHz BW) mode, the average conducted output power was measured to be 17.15 dBm for Antenna 1 and 17.13 dBm for Antenna 2.

$$(17.15 \text{ dBm} + 17.13 \text{ dBm}) = (51.88 \text{ mW} + 51.64 \text{ mW}) = 103.52 \text{ mW} = 20.15 \text{ dBm}$$

Sample e.i.r.p Calculation:

At 5180MHz in 802.11be (20MHz BW) mode, the average MIMO conducted power was calculated to be 20.15 dBm with directional gain of -3.24 dBi.

$$20.15 \text{ dBm} + (-3.24 \text{ dBi}) = 16.91 \text{ dBm}$$

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 40 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 40 of 83

7.5 Maximum Power Spectral Density

Test Overview and Limit

The spectrum analyzer was connected to the antenna terminal while the EUT was operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. Method SA-1, as defined in ANSI C63.10-2013, was used to measure the power spectral density.

The output power density limits are as specified in the tables below.

UNII	Fraguency Bongo	Maximum Power Spectral Density		
Band	Frequency Range	FCC	ISED	
UNII 1	5.15 – 5.25GHz	11dBm/MHz	10dBm/MHz e.i.r.p	
UNII 2A	5.25 – 5.35GHz			
UNII 2C	5.47 – 5.725GHz	11dBn	n/MHz	
UNII 3	5.725 – 5.850GHz	30dBm/	500kHz	
UNII 4	5.850 – 5.895GHz	14dBm/MHz e.i.r.p	N/A	

Test Procedure Used

ANSI C63.10-2013 – Section 12.3.2.3 (Method SA-2)

ANSI C63.10-2013 – Section 14.3.2.2 Measure-and-Sum Technique

Test Settings

- 1. Analyzer was set to the center frequency of the UNII channel under investigation
- 2. Span was set to encompass the entire emission bandwidth of the signal
- 3. RBW = 1MHz
- 4. VBW = 3MHz
- 5. Number of sweep points $\geq 2 x$ (span/RBW)
- 6. Sweep time = auto
- 7. Detector = power averaging (RMS)
- 8. Trigger was set to free run for all modes
- 9. Trace was averaged over 100 sweeps
- 10. The peak search function of the spectrum analyzer was used to find the peak of the spectrum.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

Figure 7-4. Test Instrument & Measurement Setup

Test Notes

All cases were investigated; a subset of the taken plots were included to represent relevant settings and measurements.

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 41 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 41 of 83

Summed MIMO Power Spectral Density Measurements

	Frequency [MHz]	Channel	802.11 MODE	Antenna 1 PSD [dBm]	Antenna 2 PSD [dBm]	DCCF [dB]	MIMO Summed PSD [dBm]	Max PSD [dBm]	Margin [dB]
	5180	36	be SU	3.73	3.68	0.00	6.72	11.00	-4.28
	5200	40	be SU	4.24	4.42	0.00	7.34	11.00	-3.66
Band 1	5240	48	be SU	4.81	4.05	0.00	7.46	11.00	-3.54
Bar	5190	38	be SU	0.22	-0.46	0.00	2.90	11.00	-8.10
	5230	46	be SU	0.40	-0.33	0.00	3.06	11.00	-7.94
	5210	42	be SU	-2.82	-2.95	0.00	0.13	11.00	-10.87
Band 1/2A	5250	50	be SU	-7.05	-7.85	0.00	-4.42	11.00	-15.42
	5260	52	be SU	4.97	4.16	0.00	7.59	11.00	-3.41
<₹	5280	56	be SU	5.48	4.24	0.00	7.91	11.00	-3.09
Band2A	5320	64	be SU	5.27	4.85	0.00	8.08	11.00	-2.92
Зал	5270	54	be SU	0.76	0.06	0.00	3.43	11.00	-7.57
	5310	62	be SU	1.05	-0.03	0.00	3.55	11.00	-7.45
	5290	58	be SU	-2.58	-3.73	0.00	-0.11	11.00	-11.11
	5500	100	be SU	4.04	4.08	0.00	7.07	11.00	-3.93
	5600	120	be SU	5.30	4.49	0.00	7.92	11.00	-3.08
	5720	144	be SU	5.68	4.44	0.00	8.11	11.00	-2.89
U	5510	102	be SU	0.64	0.35	0.00	3.51	11.00	-7.49
d2	5590	118	be SU	0.73	0.99	0.00	3.87	11.00	-7.13
Band 2 C	5710	142	be SU	1.69	-0.16	0.00	3.87	11.00	-7.13
_	5530	106	be SU	-3.68	-2.28	0.00	0.09	11.00	-10.91
	5610	122	be SU	-3.58	-2.98	0.00	-0.26	11.00	-11.26
	5690	138	be SU	-4.94	-5.46	0.00	-2.18	11.00	-13.18
	5570	114	be SU	-7.23	-6.84	0.00	-4.02	11.00	-15.02

Table 7-12. Bands 1, 2A, 2C MIMO Conducted Power Spectral Density Measurements

	Frequency [MHz]	Channel	802.11 MODE	Antenna 1 PSD [dBm]	Antenna 2 PSD [dBm]	DCCF [dB]	MIMO Summed PSD [dBm]	Max PSD [dBm]	Margin [dB]
	5745	149	be SU	3.10	2.00	0.00	5.60	11.00	-5.40
	5785	157	be SU	2.44	1.57	0.00	5.04	11.00	-5.96
Band 3	5825	165	be SU	2.56	1.97	0.00	5.29	11.00	-5.71
Bar	5755	151	be SU	-1.55	-2.79	0.00	0.88	11.00	-10.12
	5795	159	be SU	-1.74	-2.00	0.00	1.14	11.00	-9.86
	5775	155	be SU	-2.37	-2.26	0.00	0.70	11.00	-10.30

Table 7-13. Band 3 MIMO Conducted Power Spectral Density Measurements

	Frequency [MHz]	Channel	802.11 MODE	Antenna 1 PSD [dBm]	Antenna 2 PSD [dBm]	MIMO Summed PSD [dBm]	Directional Antenna Gain [dBi]	EIRP PSD [dBm]	Max EIRP PSD [dBm]	Margin [dB]
Band 3/4	5845	169	be SU	6.57	5.39	9.03	-3.46	5.57	14.00	-8.43
Band 4	5865	173	be SU	6.53	5.17	8.91	-3.46	5.45	14.00	-8.55
Ballu 4	5885	177	be SU	6.45	5.35	8.95	-3.46	5.49	14.00	-8.51
Band 3/4	5835	167	be SU	1.88	1.05	4.49	-3.46	1.03	14.00	-12.97
Band 4	5875	175	be SU	2.16	0.78	4.54	-3.46	1.08	14.00	-12.92
Band 3/4	5855	171	be SU	-1.79	-2.44	0.91	-3.46	-2.55	14.00	-16.55
ballu 5/4	5815	163	be SU	-6.32	-6.95	-3.61	-3.36	-6.97	14.00	-20.97

Table 7-14. Bands 3/4 MIMO Conducted Power Spectral Density Measurements

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 42 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 42 of 83

© 2024 ELEMENT

	Frequency [MHz]	Channel	802.11 MODE	RU Index	Punctured Cases	Antenna 1 PSD [dBm]	Antenna 2 PSD [dBm]	DCCF [dB]	MIMO Summed PSD [dBm]	Max PSD [dBm]	Margin [dB]
	5210	42	be (80MHz)	90	484+242T	-1.39	-2.26	0.00	1.21	11.00	-9.79
Band 1	5210	42	be (80MHz)	92	484+242T	-1.57	-2.38	0.00	1.06	11.00	-9.94
	5210	42	be (80MHz)	93	484+242T	-1.69	-2.40	0.00	0.98	11.00	-10.02
	5250	50	be (160MHz)	94	996+484T	-4.68	-6.44	0.00	-2.46	11.00	-13.46
	5250	50	be (160MHz)	96	996+484+242T	-5.57	-7.00	0.00	-3.22	11.00	-14.22
Band 1/2A	5250	50	be (160MHz)	1094	996+484T	-4.92	-6.27	0.00	-2.53	11.00	-13.53
Banu 1/2A	5250	50	be (160MHz)	1095	996+484T	-4.99	-6.51	0.00	-2.67	11.00	-13.67
	5250	50	be (160MHz)	1096	996+484+242T	-5.58	-6.95	0.00	-3.20	11.00	-14.20
	5250	50	be (160MHz)	1099	996+484+242T	-5.80	-7.18	0.00	-3.42	11.00	-14.42
	5290	58	be SU	90	484+242T	-1.03	-1.65	0.00	1.68	11.00	-9.32
Band 2A	5290	58	be SU	92	484+242T	-0.74	-2.00	0.00	1.69	11.00	-9.31
	5290	58	be SU	93	484+242T	-0.89	-2.08	0.00	1.57	11.00	-9.43
	5530	106	be (80MHz)	90	484+242T	-0.98	-1.51	0.00	1.77	11.00	-9.23
	5610	122	be (80MHz)	90	484+242T	-0.73	-2.20	0.00	1.61	11.00	-9.39
	5690	138	be (80MHz)	90	484+242T	-0.49	-2.95	0.00	1.46	11.00	-9.54
	5530	106	be (80MHz)	92	484+242T	-1.00	-1.32	0.00	1.86	11.00	-9.14
	5610	122	be (80MHz)	92	484+242T	-1.06	-2.38	0.00	1.34	11.00	-9.66
	5690	138	be (80MHz)	92	484+242T	-0.42	-3.14	0.00	1.44	11.00	-9.56
	5530	106	be (80MHz)	93	484+242T	-0.90	-1.27	0.00	1.93	11.00	-9.07
Band 2C	5610	122	be (80MHz)	93	484+242T	-0.96	-2.65	0.00	1.29	11.00	-9.71
	5690	138	be (80MHz)	93	484+242T	-0.50	-2.91	0.00	1.47	11.00	-9.53
	5570	114	be (160MHz)	94	996+484T	-4.96	-5.22	0.00	-2.08	11.00	-13.08
	5570	114	be (160MHz)	96	996+484+242T	-5.23	-5.79	0.00	-2.49	11.00	-13.49
	5570	114	be (160MHz)	1094	996+484T	-4.73	-5.05	0.00	-1.88	11.00	-12.88
	5570	114	be (160MHz)	1095	996+484T	-5.06	-5.13	0.00	-2.08	11.00	-13.08
	5570	114	be (160MHz)	1096	996+484+242T	-5.53	-5.49	0.00	-2.50	11.00	-13.50
	5570	114	be (160MHz)	1099	996+484+242T	-5.29	-5.49	0.00	-2.38	11.00	-13.38

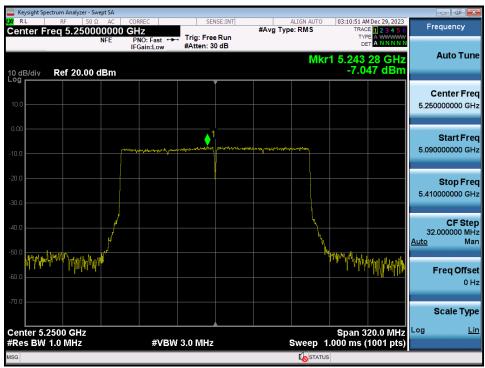
Table 7-15. Bands 1, 2A, 2C MIMO Conducted Power Spectral Density Measurements - Punctured

		Frequency [MHz]	Channel	802.11 MODE	RU Index	Punctured Cases	Antenna 1 PSD [dBm]	Antenna 2 PSD [dBm]	DCCF [dB]	MIMO Summed PSD [dBm]	Max PSD [dBm]	Margin [dB]
		5775	155	be (80MHz)	90	484+242T	-0.23	-1.99	0.00	1.99	11.00	-9.01
Ban	id 3	5775	155	be (80MHz)	92	484+242T	-0.25	-2.47	0.00	1.79	11.00	-9.21
		5775	155	be (80MHz)	93	484+242T	-0.47	-2.10	0.00	1.80	11.00	-9.20

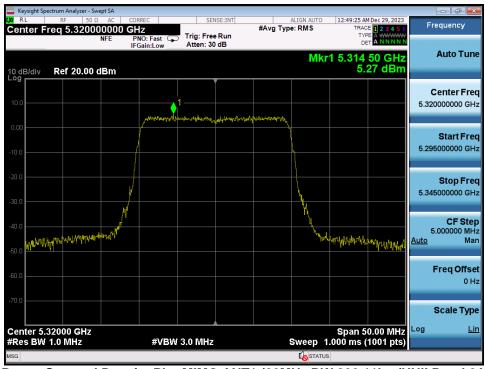
Table 7-16. Band 3 MIMO Conducted Power Spectral Density Measurements - Punctured

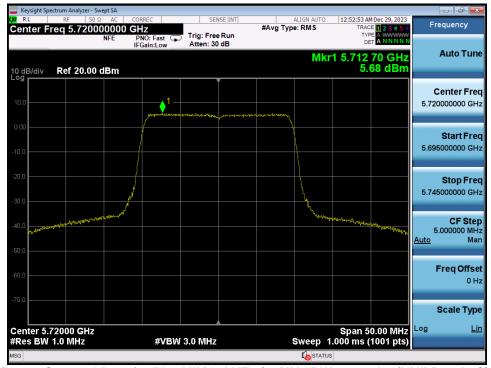

	Frequency [MHz]	Channel	802.11 MODE	RU Index	Punctured Cases	Antenna 1 PSD [dBm]	Antenna 2 PSD [dBm]	MIMO Summed PSD [dBm]	Directional Antenna Gain [dBi]	DCCF [dB]	EIRP PSD [dBm]	Max EIRP PSD [dBm]	Margin [dB]
	5855	171	be (80MHz)	90	484+242T	-0.64	-2.47	1.56	-3.46	0.00	-1.90	14.00	-15.90
	5855	171	be (80MHz)	92	484+242T	-1.11	-2.96	1.08	-3.46	0.00	-2.38	14.00	-16.38
	5855	171	be (80MHz)	93	484+242T	-0.81	-2.77	1.33	-3.46	0.00	-2.13	14.00	-16.13
E. 115-15	5815	163	be (160MHz)	94	996+484T	-3.83	-4.87	-1.31	-3.36	0.00	-4.67	14.00	-18.67
Band 3/4	5815	163	be (160MHz)	96	996+484+242T	-4.44	-6.02	-2.15	-3.36	0.00	-5.51	14.00	-19.51
	5815	163	be (160MHz)	1094	996+484T	-3.79	-5.25	-1.45	-3.36	0.00	-4.81	14.00	-18.81
	5815	163	be (160MHz)	1095	996+484T	-4.07	-5.05	-1.52	-3.36	0.00	-4.88	14.00	-18.88
	5815	163	be (160MHz)	1096	996+484+242T	-4.17	-5.99	-1.97	-3.36	0.00	-5.33	14.00	-19.33
	5815	163	be (160MHz)	1099	996+484+242T	-4.36	-5.65	-1.94	-3.36	0.00	-5.30	14.00	-19.30

Table 7-17. Bands 3/4 MIMO Conducted Power Spectral Density Measurements - Punctured


FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 43 of 83	
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	raye 43 01 03	

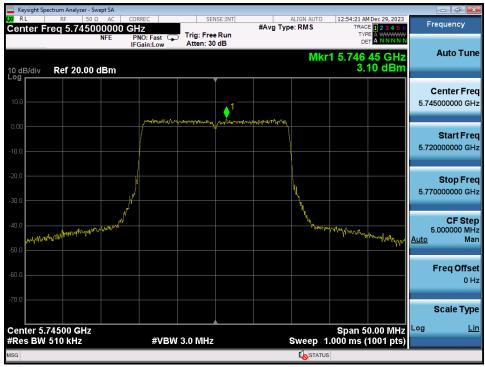
7.5.1 MIMO Antenna-1 Power Spectral Density Measurements


Plot 7-37. Power Spectral Density Plot MIMO ANT1 (20MHz 802.11be (UNII Band 1) - Ch. 48)

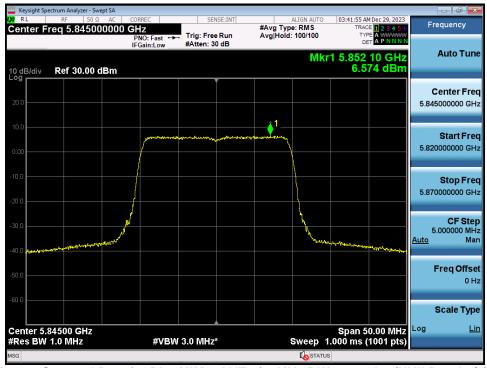

Plot 7-38. Power Spectral Density Plot MIMO ANT1 (160MHz BW 802.11be (UNII Band 1/2A) - Ch. 50)

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 44 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 44 of 83

Plot 7-39. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11be (UNII Band 2A) - Ch. 64)



Plot 7-40. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11be (UNII Band 2C) - Ch. 144)


FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 45 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 45 of 83

© 2024 ELEMENT V11.1 08/28/202:

Plot 7-41. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11be (UNII Band 3) - Ch. 149)



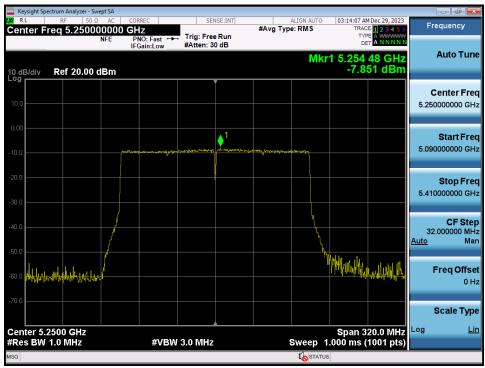
Plot 7-42. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11be (UNII Band 3/4) - Ch. 169)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 46 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 46 of 83

© 2024 ELEMENT V11.1 08/28/202:

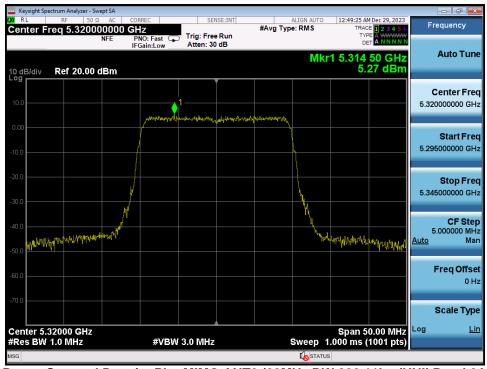
Plot 7-43. Power Spectral Density Plot MIMO ANT1 (20MHz BW 802.11be (UNII Band 4) - Ch. 177)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Daga 47 of 02
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 47 of 83

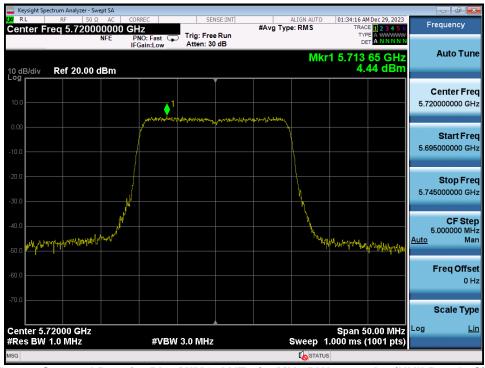

© 2024 ELEMENT

7.5.2 MIMO Antenna-2 Power Spectral Density Measurements

Plot 7-44. Power Spectral Density Plot MIMO ANT2 (20MHz 802.11be (UNII Band 1) - Ch. 48)

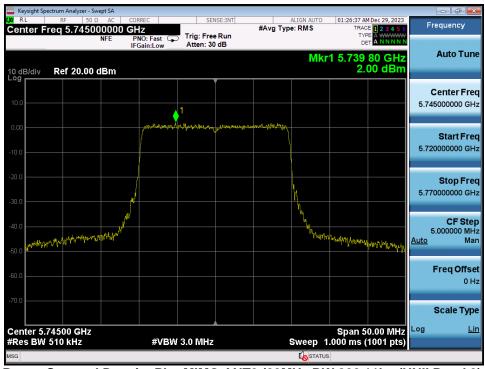


Plot 7-45. Power Spectral Density Plot MIMO ANT2 (160MHz BW 802.11be (UNII Band 1/2A) - Ch. 50)

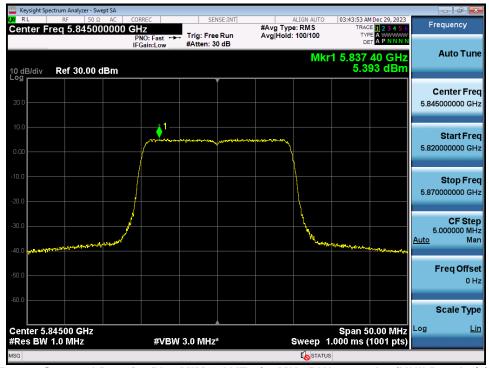

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 49 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 48 of 83

© 2024 ELEMENT V11.1 08/28/2023

Plot 7-46. Power Spectral Density Plot MIMO ANT2 (20MHz BW 802.11be (UNII Band 2A) - Ch. 64)

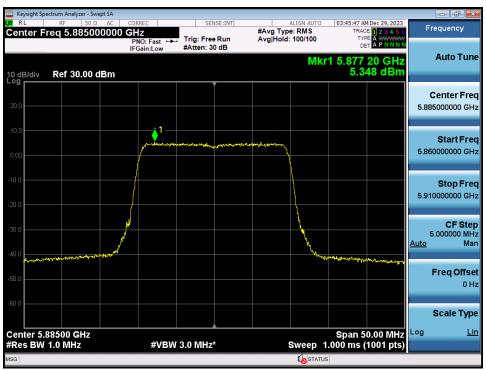


Plot 7-47. Power Spectral Density Plot MIMO ANT2 (20MHz BW 802.11be (UNII Band 2C) - Ch. 144)


FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 40 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 49 of 83

© 2024 ELEMENT V11.1 08/28/202:

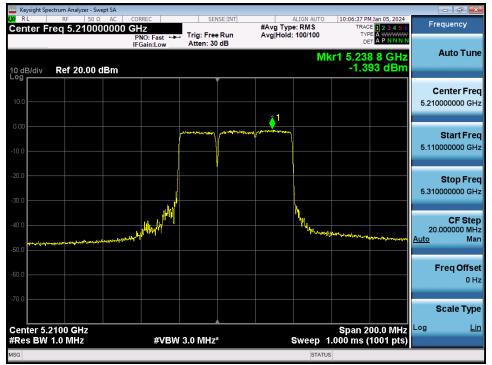
Plot 7-48. Power Spectral Density Plot MIMO ANT2 (20MHz BW 802.11be (UNII Band 3) - Ch. 149)



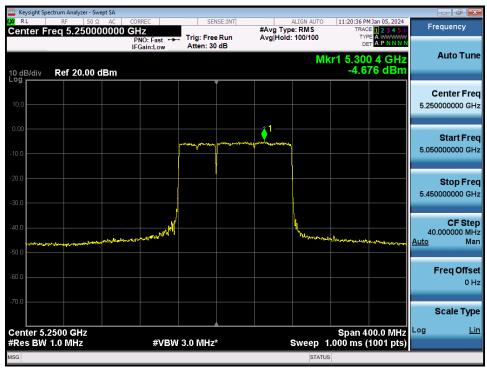
Plot 7-49. Power Spectral Density Plot MIMO ANT2 (20MHz BW 802.11be (UNII Band 3/4) - Ch. 169)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo E0 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 50 of 83

© 2024 ELEMENT V11.1 08/28/202:

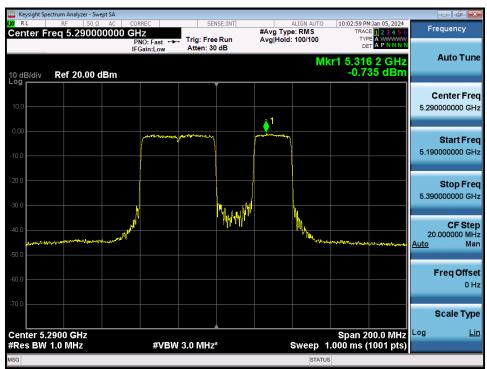

Plot 7-50. Power Spectral Density Plot MIMO ANT2 (20MHz BW 802.11be (UNII Band 4) - Ch. 177)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Page 51 of 83
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 51 01 63

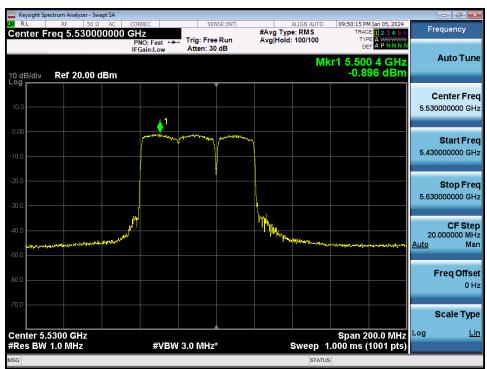

© 2024 ELEMENT

7.5.3 MIMO Antenna-1 Power Spectral Density Measurements - Punctured

Plot 7-51. Power Spectral Density MIMO ANT1 (80MHz 802.11be (UNII Band 1) 484+242 Tones - RU Index 90 - Ch. 42)

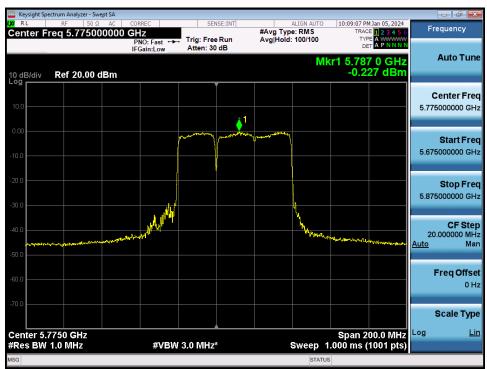


Plot 7-52. Power Spectral Density MIMO ANT1 (160MHz 802.11be (UNII Band 1/2A) 996+484 Tones - RU Index 94 - Ch. 50)

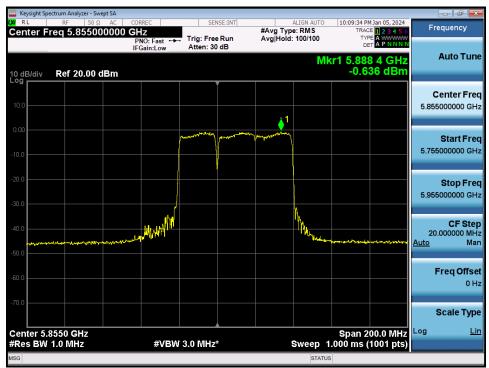

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 52 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 52 of 83

© 2024 ELEMENT V11.1 08/28/2023

Plot 7-53. Power Spectral Density MIMO ANT1 (80MHz 802.11be (UNII Band 2A) 484+242 Tones - RU Index 92 - Ch. 58)

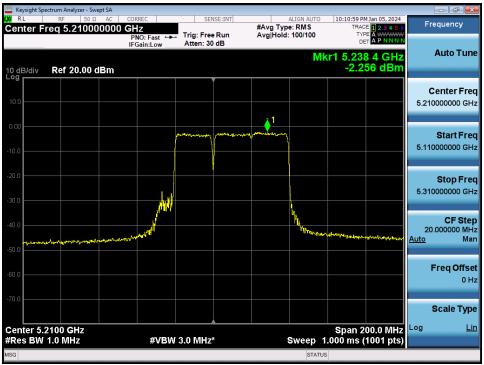


Plot 7-54. Power Spectral Density MIMO ANT1 (80MHz 802.11be (UNII Band 2C) 484+242 Tones - RU Index 93 - Ch. 106)

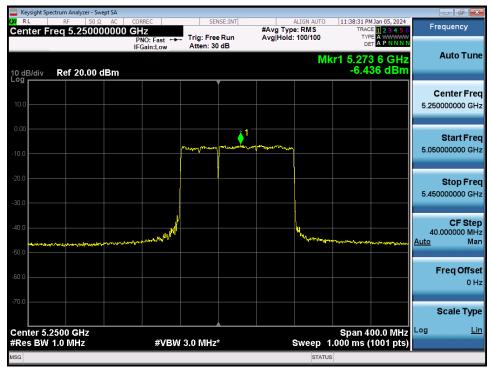

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo F2 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 53 of 83

© 2024 ELEMENT V11.1 08/28/202:

Plot 7-55. Power Spectral Density MIMO ANT1 (80MHz 802.11be (UNII Band 3) 484+242 Tones - RU Index 90 - Ch. 155)

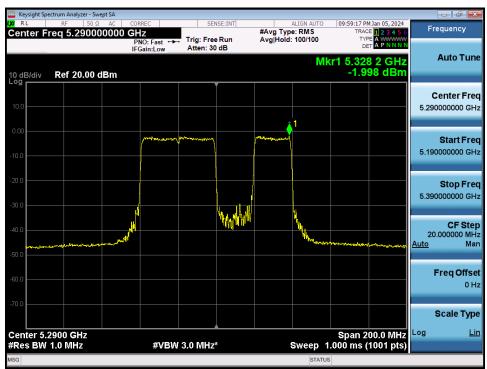


Plot 7-56. Power Spectral Density MIMO ANT1 (80MHz 802.11be (UNII Band 3/4) 484+242 Tones - RU Index 90 - Ch. 171)

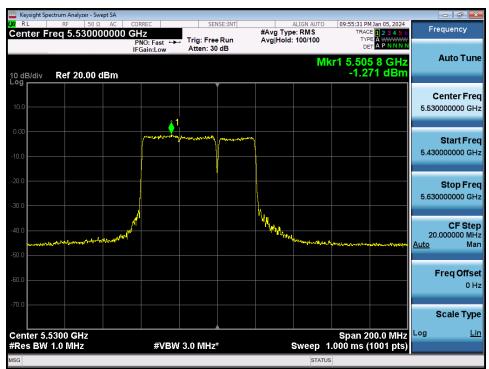

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 54 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 54 of 83

7.5.4 MIMO Antenna-2 Power Spectral Density Measurements - Punctured

Plot 7-57. Power Spectral Density MIMO ANT2 (80MHz 802.11be (UNII Band 1) 484+242 Tones - RU Index 90 - Ch. 42)

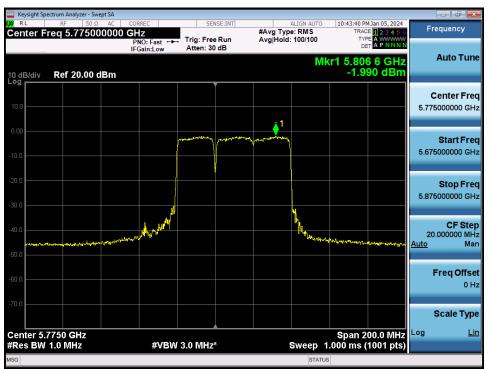


Plot 7-58. Power Spectral Density MIMO ANT2 (160MHz 802.11be (UNII Band 1/2A) 996+484 Tones - RU Index 94 - Ch. 50)

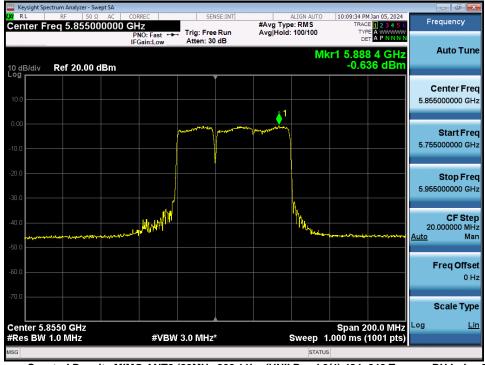

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo EE of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 55 of 83

ELEMENT V11.1 08/28/202:

Plot 7-59. Power Spectral Density MIMO ANT2 (80MHz 802.11be (UNII Band 2A) 484+242 Tones - RU Index 92 - Ch. 58)



Plot 7-60. Power Spectral Density MIMO ANT2 (80MHz 802.11be (UNII Band 2C) 484+242 Tones - RU Index 93 - Ch. 106)


FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo EG of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 56 of 83

© 2024 ELEMENT V11.1 08/28/2023

Plot 7-61. Power Spectral Density MIMO ANT2 (80MHz 802.11be (UNII Band 3) 484+242 Tones - RU Index 90 - Ch. 155)

Plot 7-62. Power Spectral Density MIMO ANT2 (80MHz 802.11be (UNII Band 3/4) 484+242 Tones - RU Index 90 - Ch. 171)

FCC ID: A3LSMX910 IC: 649E-SMX910	Class II Permissive Change Report		Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogo 57 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 57 of 83

Note:

Per ANSI C63.10-2013 Section 14.3.2.2 the power spectral density at Antenna-1 and Antenna-2 were first measured separately as shown in the section above. The measured values were then summed in linear power units then converted back to dBm.

Sample MIMO Calculation:

At 5845MHz in 802.11be (20MHz BW) mode, the average conducted power spectral density was measured to be 6.57dBm for Antenna 1 and 5.39dBm for Antenna 2.

$$(6.57 \text{ dBm} + 5.39 \text{dBm}) = (4.54 \text{mW} + 3.46 \text{ mW}) = 8.00 \text{mW} = 9.03 \text{ dBm}$$

Sample e.i.r.p Power Spectral Density Calculation:

At 5845MHz in 802.11be (20MHz BW) mode, the average MIMO power density was calculated to be 9.03 dBm with directional gain of -3.46 dBi.

$$9.03 \text{ dBm} + (-3.46 \text{ dBi}) = 5.57 \text{ dBm}$$

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report			
Test Report S/N:	Test Dates:	EUT Type:	Dogg 50 of 02		
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 58 of 83		

7.6 Radiated Emission Measurements

Test Overview and Limit

All out of band radiated spurious emissions are measured with a spectrum analyzer connected to a receive antenna while the EUT is operating at its maximum duty cycle, at its maximum power control level, as defined in ANSI C63.10-2013, and at the appropriate frequencies. All channels, modes, and modulations/data rates were investigated among all UNII bands. Only the radiated emissions of the configuration that produced the worst-case emissions are reported in this section.

For transmitters operating in the 5.15-5.25 GHz and 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an EIRP of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

For transmitters operating in the 5.850 – 5.895 GHz band: all emissions at or above 5.895GHz shall not exceed an e.i.r.p. of -5dBm/MHz and shall decrease linearly up to an e.i.r.p. of -27dBm/MHz at or above 5.925GHz, and all emissions below 5.725 GHz shall not exceed an e.i.r.p. of -27dBm/MHz at 5.65 GHz increasing linearly to 10dBm/MHz at 5.7GHz and from 5.7GHz increasing linearly to a level of 15.6dMb/MHz at 5.72GHz, and from 5.72GHz increasing linearly to a level of 27dBm/MHz at 5.725GHz.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47 CFR and Table 6 of RSS-Gen (8.10) must not exceed the limits shown in the table below per FCC §15.209 and RSS-Gen (8.9).

Frequency	Field Strength [μV/m]	Measured Distance [Meters]
0.009 - 0.490 MHz	2400\F (kHz)	300
0.490 – 1.705 MHz	24000\F (kHz)	30
1.705 – 30.00 MHz	30	30
30.00 – 88.00 MHz	100	3
88.00 – 216.0 MHz	150	3
216.0 – 960.0 MHz	200	3
Above 960.0 MHz	500	3

Table 7-18. Radiated Limits

Test Procedures Used

ANSI C63.10-2013 – Sections 12.7.7.2, 12.7.6, 12.7.5 (Radiated Spurious Emissions) ANSI C63.10-2013 – Section 12.7.4.4 (Band Edge Measurements)

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report			
Test Report S/N:	Test Dates:	EUT Type:	Dogg 50 of 02		
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 59 of 83		

<u>Test Settings – Above 1GHz</u>

Average Field Strength Measurements (Method AD - Average Detection)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest.
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = power average (RMS)
- 5. Number of measurement points = 1001 (Number of points must be \geq 2 x span\\RBW)
- 6. Sweep time = auto
- 7. Trace (RMS) averaging was performed over at least 100 traces.

Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest.
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize.

Test Settings - Below 1GHz

Quasi-Peak Field Strength Measurements

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest.
- 2. RBW = 120kHz (for emissions from 30MHz 1GHz)
- 3. Detector = quasi-peak
- 4. Sweep time = auto couple
- 5. Trace mode = max hold
- 6. Trace was allowed to stabilize.

Test Setup

The EUT and measurement equipment were set up as shown in the diagram below.

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report	Approved by: Technical Manager
Test Report S/N:	Test Dates:	EUT Type:	Dogg 60 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 60 of 83

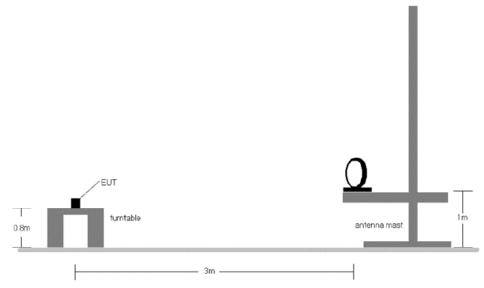


Figure 7-5. Radiated Test Setup < 30MHz

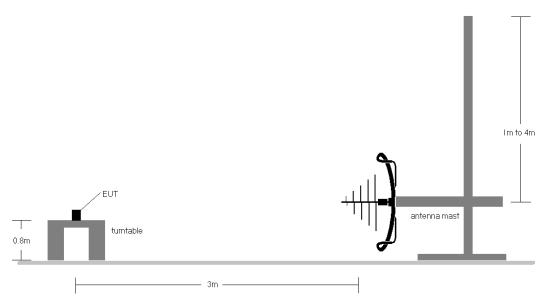


Figure 7-6. Radiated Test Setup < 1GHz

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 64 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 61 of 83

ELEMENT V11.1 08/28/2023

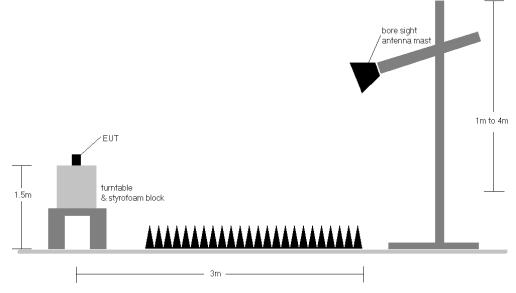


Figure 7-7. Radiated Test Setup > 1GHz

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Page 62 of 83
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 62 01 83

V11.1 08/28/2023

Test Notes

- 1. All spurious emissions lying in restricted bands specified in §15.205 are below the limits shown in §15.209. All spurious emissions that do not lie in a restricted band are subject to an average limit of -27dBm/MHz. At 3 meters, the field strength limit in dB_μV/m can be determined by adding a "conversion" factor of 95.2dB to the EIRP limit of -27dBm/MHz to obtain the limit for out of band spurious emissions of 68.2dB_μV/m.
- 2. All spurious emissions that do not lie in a restricted band are subject to a peak limit not to exceed 20dB of the average limit [68.2dB μ V/m]. If a peak measurement passes the average limit, it was determined no further investigation is necessary.
- 3. The antenna is manipulated through typical positions, polarity, and length during the tests. The EUT is manipulated through three orthogonal planes.
- 4. This unit was tested with its standard battery.
- 5. The spectrum is measured from 9kHz to the 10th harmonic of the fundamental frequency of the transmitter using CISPR quasi peak detector below 1GHz. Above 1 GHz, average and peak measurements were taken using linearly polarized horn antennas. The worst-case emissions are reported, however emissions whose levels were not within 20dB of the respective limits were not reported.
- 6. Emissions below 18GHz were measured at a 3-meter test distance while emissions above 18GHz were measured at a 1-meter test distance with the application of a distance correction factor.
- 7. The wide spectrum spurious emissions plots shown on the following pages are used only for the purpose of emission identification. Any emissions found to be within 20dB of the limit are fully investigated and the results are shown in this section.
- 8. The "-" shown in the following RSE tables are used to denote a noise floor measurement.
- 9. In the case where a peak-detector measurement passed the given RMS limit it was determined sufficient to demonstrate compliance.
- 10. The results recorded using the broadband antenna are known to correlate with the results obtained by using a tuned dipole with an acceptable degree of accuracy. The VSWR for the measurement antenna was found to be less than 2:1.

Sample Calculations

Determining Spurious Emissions Levels

- Field Strength Level [dBμV/m] = Analyzer Level [dBm] + 107 + AFCL [dB/m]
- AFCL [dB/m] = Antenna Factor [dB/m] + Cable Loss [dB]
- o Margin [dB] = Field Strength Level $[dB\mu V/m]$ Limit $[dB\mu V/m]$

Radiated Band Edge Measurement Offset

The amplitude offset shown in the radiated restricted band edge plots was calculated using the formula:
 Offset (dB) = (Antenna Factor + Cable Loss + Attenuator) - Preamplifier Gai

FCC ID: A3LSMX910 IC: 649E-SMX910		Class II Permissive Change Report			
Test Report S/N:	Test Dates:	EUT Type:	Dogg 62 of 92		
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 63 of 83		

7.6.1 MIMO Radiated Spurious Emission Measurements

MIMO Radiated Spurious Emission Measurements - UNII Band 2A

Worst Case Mode:

Worst Case Transfer Rate:

Distance of Measurements:

Operating Frequency

Channel

802.11be

MCS0

1 & 3 Meters

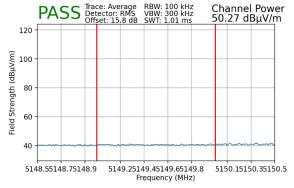
5320 MHz

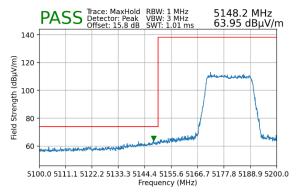
64

Frequency [MHz]	Detector	Ant. Pol. [H/V]	Antenna Height [cm]	Turntable Azimuth [degree]	Analyzer Level [dBm]	AFCL [dB/m]	Distance Correction Factor [dB]	Field Strength [dBµV/m]	Limit [dBµV/m]	Margin [dB]
10640.00	Average	Н	162	284	-74.14	10.52	0.00	43.38	53.98	-10.60
10640.00	Peak	Н	162	284	-64.28	10.52	0.00	53.24	73.98	-20.74
15960.00	Average	Н	147	228	-76.63	13.01	0.00	43.38	53.98	-10.60
15960.00	Peak	Н	147	228	-65.53	13.01	0.00	54.48	73.98	-19.50
21280.00	Average	٧	-	-	-63.37	-3.34	-9.54	30.75	53.98	-23.23
21280.00	Peak	٧	-	-	-52.96	-3.34	-9.54	41.16	73.98	-32.82
26600.00	Peak	٧	-	-	-51.65	-2.27	-9.54	43.54	68.20	-24.66

Table 7-19. Radiated Measurements MIMO

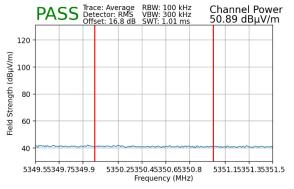
FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 64 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 64 of 83

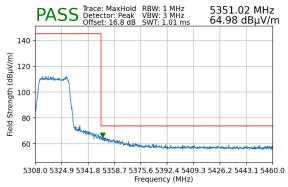

© 2024 ELEMENT


7.6.2 MIMO Radiated Band Edge Measurements (20MHz BW)

Worst Case Mode:
Worst Case Transfer Rate:
Distance of Measurements:
Operating Frequency:
Channel:

802.11be
MCS0
3 Meters
5180MHz
36

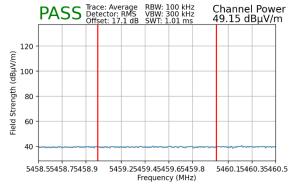

Plot 7-63. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 1)


Plot 7-64. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 1)

Worst Case Mode:
Worst Case Transfer Rate:
Distance of Measurements:
Operating Frequency:
Channel:

802.11be
MCS0
3 Meters
5320MHz
64

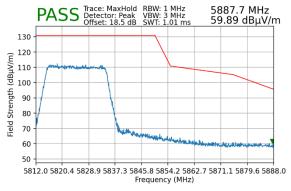
Plot 7-65. Radiated Upper Band Edge Plot MIMO (Average – UNII Band 2A)


Plot 7-66. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 2A)

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 65 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 65 of 83

ELEMENT V11.1 08/28/2023

802.11be Worst Case Mode: Worst Case Transfer Rate: MCS0 Distance of Measurements: 3 Meters Operating Frequency: 5500MHz Channel: 100



Plot 7-67. Radiated Lower Band Edge Plot MIMO (Average - UNII Band 2C)

PASS Trace: MaxHold NBW: 1 MHz VBW: 3 MHz Offset: 17.4 dB SWT: 1.01 ms 5467.77 MHz 65.76 dBμV/m 140 Field Strength (dBµV/m) 08 001 60 5350 5368 5386 5404 5422 5440 5458 5476 5494 5512 Frequency (MHz)

Plot 7-68. Radiated Lower Band Edge Plot MIMO (Peak - UNII Band 2C)

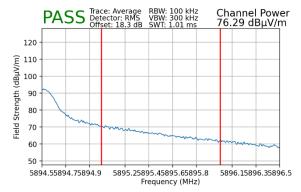
Worst Case Mode: 802.11be Worst Case Transfer Rate: MCS0 Distance of Measurements: 3 Meters Operating Frequency: 5825MHz Channel: 165

Plot 7-69. Radiated Upper Band Edge Plot MIMO (Peak - UNII Band 3)

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager	
Test Report S/N:	Test Dates:	EUT Type:	Dogo 66 of 92
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 66 of 83

© 2024 ELEMENT

Worst Case Mode:
Worst Case Transfer Rate:
Distance of Measurements:
Operating Frequency:
Channel:


802.11be
MCS0
3 Meters
5845MHz
169

	PAS	5S 🖔	ace: Ma etector ffset: 1	xHold Peak 7.5 dB	RBW: 1 VBW: 3 SWT: 1	MHz			5 MHz ΒμV/m
140 -									
Field Strength (dBµV/m) 608 - 001									
dBµ									property
된 100 -									
tren									
<u>80</u> -									
								dayataka	1
60 -	will be and on the	donestrando	-	al terrology	al-lay/padashasel	- Alle Carried	glassochusered	AND THE REAL PROPERTY.	
		0.6.565	6 3 5 7 6		7.255	20577	0.2.500	2.0.503	
5625.0 5650.6 5676.1 5701.7 5727.2 5752.8 5778.3 5803.9 5829.4 5855.0 Frequency (MHz)									

Plot 7-70. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 4)

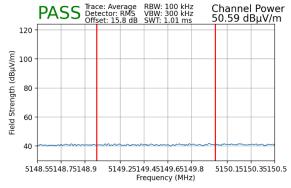
Worst Case Mode:
Worst Case Transfer Rate:
Distance of Measurements:
Operating Frequency:
Channel:

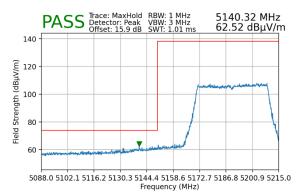
802.11be
MCS0
3 Meters
5885MHz
177

Plot 7-71. Radiated Upper Band Edge Plot MIMO (Average – UNII Band 4)

Plot 7-72. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 4)

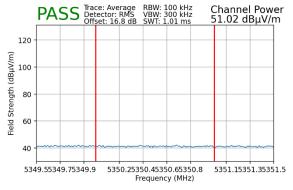
FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 67 of 92	
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 67 of 83	

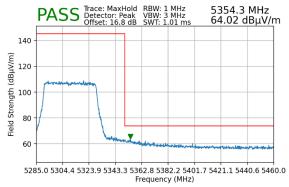

© 2024 ELEMENT V11.1 08/28/2023


7.6.3 MIMO Radiated Band Edge Measurements (40MHz BW)

Worst Case Mode:
Worst Case Transfer Rate:
Distance of Measurements:
Operating Frequency:
Channel:

802.11be
MCS0
3 Meters
5190MHz
38


Plot 7-73. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 1)

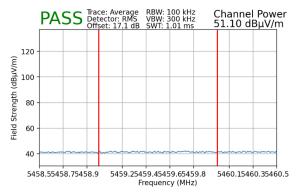

Plot 7-74. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 1)

Worst Case Mode:
Worst Case Transfer Rate:
Distance of Measurements:
Operating Frequency:
Channel:

802.11be
MCS0
3 Meters
5310MHz
62

Plot 7-75. Radiated Upper Band Edge Plot MIMO (Average – UNII Band 2A)

Plot 7-76. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 2A)


FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 69 of 92	
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 68 of 83	

LEMENT V11.1 08/28/2023

Worst Case Mode:
Worst Case Transfer Rate:
Distance of Measurements:
Operating Frequency:
Channel:

802.11be
MCS0
3 Meters
5510MHz
102

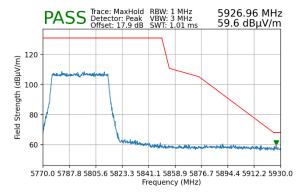
Plot 7-77. Radiated Lower Band Edge Plot MIMO (Average – UNII Band 2C)

Worst Case Mode:

Worst Case Transfer Rate:

Distance of Measurements:
Operating Frequency:

Channel:


802.11be

MCS0

3 Meters

5795MHz

159

Plot 7-79. Radiated Upper Band Edge Plot MIMO (Peak – UNII Band 3)

	PAS	5S [race: Ma Detector Offset: 1	xHold Peak 7.5 dB	RBW: 1 VBW: 3 SWT: 1	MHz MHz .01 ms			4 MHz ΙΒμV/m
140 ·									
Field Strength (dBµV/m)									
th 100 -								ph-sected space of	Maranan
trenç									
80 -							- /		
						profile spine	in war		
60 -	alyman Ambra	we will be a second	Marine Alva	ar-upplestice-fi	and a filter desired to the second	A STATE OF THE STA			
535	50.0 537	0.2 539	90.4 541		30.9 545 requenc			91.6 551	1.8 5532.0

Plot 7-78. Radiated Lower Band Edge Plot MIMO (Peak – UNII Band 2C)

FCC ID: A3LSMX910 IC: 649E-SMX910		Approved by: Technical Manager		
Test Report S/N:	Test Dates:	EUT Type:	Dogo 60 of 92	
1M2312180128-04.A3L	12/15/2023 - 1/11/2024	Portable Tablet	Page 69 of 83	

© 2024 ELEMENT V11.1 08/28/2023