

APPENDIX D: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ε' can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{\left[\ln(b/a)\right]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp\left[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}\right]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency,

and
$$j = \sqrt{-1}$$
.

3 Composition / Information on ingredients

3.2 Mixtures

Description: Aqueous solution with surfactants and inhibitors

Declarable, or hazardous components:

Decidiable, of flazardous components.								
CAS: 107-21-1	Ethanediol	>1.0-4.9%						
EINECS: 203-473-3	STOT RE 2, H373;							
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302							
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%						
EINECS: 271-781-5	Eye Irrit. 2, H319							
Reg.nr.: 01-2119527859-22-0000								
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%						
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319							
Reg.nr.: 01-2119539582-35-0000	_							
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%						
NLP: 500-236-9	Aquatic Chronic 2, H411;							
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319							

Additional information:

For the wording of the listed risk phrases refer to section 16.

Not mentioned CAS-, EINECS- or registration numbers are to be regarded as Proprietary/Confidential. The specific chemical identity and/or exact percentage concentration of proprietary components is

withheld as a trade secret.

Figure D-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

FCC ID: A3LSMX910	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
DUT Type: Portable Computing Device		APPENDIX D: Page 1 of 2

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

Measurement Certificate / Material Test

tem Name Head Tissue Simulating Liquid (HBBL600-10000V6)

Product No. SL AAH U16 BC (Batch: 230313-2)

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

Ambient Condition 22°C; 30% humidity

TSL Temperature 22°C
Test Date 17-Mar-23
Operator WM

Additional Information

TSL Density

TSL Heat-capacity

Results

	Meas	ured	Pile D	Targe	et	Diff.to Targ	get [%]	15.0							
f [MHz]	e'	e"	sigma	eps	sigma		Δ-sigma	10.0							
600	44.9	24.8	0.83	42.7	0.88	5.1	-5.9		18024			T SUIT	1 7015	THE S	
750	44.2	21.0	0.88	41.9	0.89	5.4	-1.5	% 5.0 ≩			-	_			
800	44.0	20.1	0.90	41.7	0.90	5.6	0.3	Permittivity 0.0-5-					1		
825	44.0	19.8	0.91	41.6	0.91	5.8	0.4	E -5.0	+					_	
835	44.0	19.6	0.92	41.5	0.91	5.9	0.9	3-10.0 -15.0							
850	43.9	19.4	0.92	41.5	0.92	5.8	0.4					W. Laylor	Marie 15		
900	43.7	18.7	0.94	41.5	0.97	5.3	-3.1		500 150	00 2500		00 5500 f	5500 7500	8500 9	950
1400	42.6	14.7	1.15	40.6	1.18	4.9	-2.5	45.0				,			-
1450	42.5	14.5	1.17	40.5	1.20	4.9	-2.5	15.0	MAH	180					
1600	42.3	14.0	1.25	40.3	1.28	4.9	-2.7	10.0	186.4	Stall to	210.0				Ť
1625	42.3	13.9	1.26	40.3	1.30	5.0	-3.0	5.0 0.0 5.0 0.0 0.0	138	1					
1640	42.3	13.9	1.27	40.3	1.31	5.1	-2.8	15 0.0	1	11		~			
1650	42.2	13.9	1.27	40.2	1.31	4.9	-3.3	B-5.0	1	-	/				
1700	42.1	13.8	1.30	40.2	1.34	4.8	-3.1	910.0 215.0			The state of	e he			
1750	42.1	13.7	1.33	40.1	1.37	5.0	-3.0		00 150	0.2500	3500 450	00 5500 6	500 7500	9500.0	EO
1800	42.0	13.6	1.36	40.0	1.40	5.0	-2.9		100 100	0 2000		ncy MHz	300 7300	0000 9	50
1810	42.0	13.6	1.37	40.0	1.40	5.0	-2.1	3500	39.3	13.9	2.70	37.9	2.91	3.6	_
1825	42.0	13.5	1.38	40.0	1.40	5.0	-1.4	3700	39.0	14.0	2.88	37.7	3.12	3.4	
1850	42.0	13.5	1.39	40.0	1.40	5.0	-0.7	5200	36.5	15.8	4.58	36.0	4.66	1.3	
1900	41.9	13.4	1.42	40.0	1.40	4.7	1.4	5250	36.4	16.0	4.66	35.9	4.71	1.4	
1950	41.8	13.4	1.45	40.0	1.40	4.5	3.6	5300	36.4	16.1	4.73	35.9	4.76	1.5	
2000	41.8	13.3	1.48	40.0	1.40	4.5	5.7	5500	36.3	16.2	4.97	35.6	4.96	1.8	
2050	41.7	13.3	1.51	39.9	1.44	4.5	4.5	5600	36.2	16.2	5.06	35.5	5.07	1.8	
2100	41.7	13.2	1.55	39.8	1.49	4.7	4.1	5700	36.0	16.2	5.14	35.4	5.17	1.6	
2150	41.6	13.2	1.58	39.7	1.53	4.7	3.0	5800	35.7	16.2	5.22	35.3	5.27	1.2	
2200	41.5	13.2	1.62	39.6	1.58	4.7	2.7	6000	35.0	16.4	5.48	35.1	5.48	-0.2	
2250	41.4	13.2	1.65	39.6	1.62	4.7	1.7	6500	34.9	16.7	6.05	34.5	6.07	1.2	
2300	41.3	13.2	1.69	39.5	1.67	4.6	1.4	7000	33.7	17.2	6.72	33.9	6.65	-0.6	
2350	41.3	13.3	1.73	39.4	1.71	4.9	1.1	7500	32.5	17.6	7.34	33.3	7.24	-2.5	
2400	41.2	13.3	1.77	39.3	1.76	4.9	0.8	8000	31.4	17.9	7.97	32.7	7.84	-3.9	
2450	41.1	13.3	1.81	39.2	1.80	4.8	0.6	8500	30.6	18.1	8.57	32.1	8.45	-4.8	
2500	41.1	13.3	1.85	39.1	1.85	5.0	-0.2	9000	29.9	18.3	9.18	31.5	9.08	-5.2	
2550	41.0	13.3	1.89	39.1	1.91	4.9	-1.0	9500	29.3	18.5	9.77	31.0	9.71	-5.4	
2600	40.9	13.4	1.93	39.0	1.96	4.8	-1.7	10000	28.6	18.6	10.35	30.4	-10	-5.9	

Figure D-2 600 – 10000 MHz Head Tissue Equivalent Matter

FCC ID: A3LSMX910	WIFI 6 GHZ RF EXPOSURE EVALUATION	Approved by: Technical Manager
DUT Type: Portable Computing Device		APPENDIX D: Page 2 of 2