

CERTIFICATION TEST REPORT

Report Number. : 4790101669-E4V3

Applicant: SAMSUNG ELECTRONICS CO., LTD.

129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI,

GYEONGGI-DO, 16677, KOREA

Model: SM-X900

FCC ID : A3LSMX900

IC: 649E-SMX900

EUT Description: DTS/UNII a/b/g/n/ac/ax Tablet + BT/BLE and WPT

Test Standard(s): FCC 47 CFR PART 15 SUBPART C

INDUSTRY CANADA RSS-247 Issue 2 INDUSTRY CANADA RSS-GEN Issue 5

Date Of Issue:

2021-12-15

Prepared by:

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea

> TEL: (031) 337-9902 FAX: (031) 213-5433

Revision History

Rev.	Issue Date	Revisions	Revised By
V1	2021-11-30	Initial issue	Hyunsik Yun
V2	2021-12-13	Updated to address TCB's question	Hyunsik Yun
V3	2021-12-15	Updated to address TCB's question	Hyunsik Yun

TABLE OF CONTENTS

1. A	TTESTATION OF TEST RESULTS	5
1.1.	INTRODUCTION OF TEST DATA REUSE	6
1.2.	DIFFERENCE	6
1.3.	SPOT CHECK VERIFICATION DATA	6
1.4.	REFERENCE DETAIL	7
2. T	EST METHODOLOGY	8
3. F	ACILITIES AND ACCREDITATION	8
4. D	ECISION RULES AND MEASUREMENT UNCERTAINTY	9
4.1.	METROLOGICAL TRACEABILITY	g
4.2.	SAMPLE CALCULATION	g
4.3.	MEASUREMENT UNCERTAINTY	g
4.4.	DECISION RULES	9
5. E	QUIPMENT UNDER TEST	10
5.1.	EUT DESCRIPTION	10
5.2.	MAXIMUM OUTPUT POWER	10
5.3.	DESCRIPTION OF AVAILABLE ANTENNAS	10
5.4.	WORST-CASE CONFIGURATION AND MODE	11
5.5.	DESCRIPTION OF TEST SETUP	11
6. T	EST AND MEASUREMENT EQUIPMENT	13
7. T	EST RESULTS SUMMARY	14
8. M	IEASUREMENT METHODS	15
9. A	NTENNA PORT TEST RESULTS	16
9.1.	ON TIME AND DUTY CYCLE	16
	20 dB BANDWIDTH	
	.2.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION	
	HOPPING FREQUENCY SEPARATION	
9.	.3.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION	21
	.3.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION	
	NUMBER OF HOPPING CHANNELS	
	4.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION	
9.5.	AVERAGE TIME OF OCCUPANCY	27
9.	.5.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION	28
	Page 3 of 83	

DATE: 2021-12-15

IC: 649E-SMX900

1 OO ID. AGEOWAGOO	IO. UTSE CIVIASOU
9.5.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION	32
9.6. OUTPUT POWER	36
9.6.1. BASIC DATA RATE GFSK MODULATION	
9.6.2. ENHANCED DATA RATE Pi/4-DPSK MODULATION	
9.6.3. ENHANCED DATA RATE 8PSK MODULATION	
9.6.4. OUTPUT POWER PLOTS	37
9.7. AVERAGE POWER	40
9.7.1. BASIC DATA RATE GFSK MODULATION	
9.7.2. ENHANCED DATA RATE PI/4-DQPSK MODULATION	
9.7.3. ENHANCED DATA RATE 8PSK MODULATION	40
9.8. CONDUCTED SPURIOUS EMISSIONS	
9.8.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION	
9.8.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION	46
10. RADIATED TEST RESULTS	50
10.1. TRANSMITTER ABOVE 1 GHz	52
10.1.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION	52
10.1.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION	66
10.2. WORST CASE BELOW 1 GHZ	80
11. AC POWER LINE CONDUCTED EMISSIONS	81
11.1.1 AC Power Line	82

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: SAMSUNG ELECTRONICS CO., LTD.

EUT DESCRIPTION: DTS/UNII a/b/g/n/ac/ax Tablet + BT/BLE and WPT

MODEL: SM-X900

SERIAL NUMBER: R32RA0033JJ (CONDUCTED, Original);

R32RA0036VV, R32RB006W3E (RADIATED, Original);

R32RB00B3WH (RADIATED, Spot-check);

DATE TESTED: 2021-09-23 ~ 2021-11-24(Original);

STANDARD

2021-11-26 ~ 2021-11-30(Spot-check);

APPLICABLE STANDARDS

CFR 47 Part 15 Subpart C Complies INDUSTRY CANADA RSS-247 Issue 2 Complies INDUSTRY CANADA RSS-GEN Issue 5 Complies

UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Korea, Ltd. By:

Tested By:

Seokhwan Hong Suwon Lab Engineer UL Korea, Ltd.

Dexter(Hyunsik) Yun Suwon Lab Engineer UL Korea, Ltd.

Page 5 of 83

TEST RESULTS

1.1. INTRODUCTION OF TEST DATA REUSE

This report referenced from the FCC ID: A3LSMX906B BT(FCC CFR 47 Part 15C). And the applicant takes full responsibility that the test data as referenced in this report represent compliance for this FCC ID.

1.2. DIFFERENCE

The FCC ID: A3LSMX900 (IC: 649E-SMX900, Model number: SM-X900) shares the same enclosure and circuit board as FCC ID: A3LSMX906B (Model number: SM-X906B). The BT antennas and surrounding circuitry and layout are identical between these two units for re-used bands.

In SM-X900 model, all of the RF parts(5G/LTE/WCDMA/GSM) are removed from the PCB.

After confirming through preliminary radiated emissions that the performance of the FCC ID: A3LSMX906B (Model number : SM-X906B) remains representative of FCC ID: A3LSMX900 (IC : 649E-SMX900, Model number : SM-X900). The test data of FCC ID: A3LSMX906B (Model number : SM-X906B) being submitted for this application to cover BT features.

Model number, SM-X906B, is not certified for ISED certification.

1.3. SPOT CHECK VERIFICATION DATA

				Original model	Spot check model			
Band	Test Item	Mode	Frequency	Test Limit	SM-X906B Results	SM-X900 Results	Deviation	Remark
					FCC ID: A3LSMX906B	FCC ID: A3LSMX900		
DSS BT	Band Edge	GFSK	2480 MHz	54 dBuV/m	41.06 dBuV/m	43.44 dBuV/m	2.38 dB	
(2.4GHz)	RSE	GFSK	2480 MHz	54 dBuV/m	45.61 dBuV/m	33.57 dBuV/m	-12.04 dB	Noise Floor

Comparison of two models, upper deviation is within 3dB range and all test results are under FCC technical limits.

1.4. REFERENCE DETAIL

Reference application that contains the re-used reference data.

Equipment Class	Reference FCC ID	Type Grant/Permissive Change	Reference Application	Folder Test/RF Exposure	Report Title / Section
CXX	A3LSMX906B	Grant	4790101660-E2	Test	Report CXX / All sections
DTS	A3LSMX906B	Grant	4790101660-E4	Test	Report DTS [b, g, n ax] WLAN / All sections
סוס	ASESIVIASUOD	Giani	4790101660-E5	Test	Report BLE / All sections
DSS	A3LSMX906B	Grant	4790101660-E6	Test	Report BT / All sections
NII	A3LSMX906B	Grant	4790101660-E7	Test	Report UNII [a, n, ac, ax] WLAN / All sections
NII (6E)	A3LSMX906B	Grant	4790101660-E8	Test	Report UNII 6E [a, ax] WLAN / All sections
WPT	A3LSMX906B	Grant	4790101660-E9	Test	Report WPT / All sections

Note: ISED not supported U-NII 6E.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with following methods.

- 1. FCC CFR 47 Part 2.
- 2. FCC CFR 47 Part 15.
- 3. IC RSS-GEN Issue 5
- 4. IC RSS-247 Issue 2
- KDB 558074 D01 15.247 Meas Guidance v05r02.
- 6. ANSI C63.10-2013.
- 7. KDB 484596 D01 Referencing Test Data v01

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea. Line conducted emissions are measured only at the 218 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections.

218 Maeyeong-ro
☐ Chamber 2
☐ Chamber 3

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637. The full scope of accreditation can be viewed at https://www.iasonline.org/wp-content/uploads/2017/05/TL-637-cert-New.pdf.

Used ISED Test Site Reg.(company number): 2324L

CAB Identifier: KR0161

4. DECISION RULES AND MEASUREMENT UNCERTAINTY

4.1. METROLOGICAL TRACEABILITY

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	3.02 dB
Radiated Disturbance, 30 MHz to 1 GHz	4.05 dB
Radiated Disturbance, 1 GHz to 18 GHz	5.78 dB
Radiated Disturbance, 18 GHz to 40 GHz	5.58 dB

Uncertainty figures are valid to a confidence level of 95%.

4.4. DECISION RULES

Decision rule for statement(s) of conformity is based on Procedure 2, Clause 4.4.3 in IEC Guide 115:2007.

5. EQUIPMENT UNDER TEST

5.1. EUT DESCRIPTION

The EUT is a DTS/UNII a/b/g/n/ac/ax Tablet + BT/BLE and WPT. This test report addresses the BT(DSS) operational mode.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency Range [MHz]	Mode	Power Mode	Output Power [dBm]	Output Power [mW]
	Basic GFSK	Peak	18.160	65.464
0.400 0.400	Dasic Gran	Average	17.863	61.136
	Enhanced Pi/4-DPSK	Peak	18.324	67.983
2 402 ~ 2 480	Ellianced Pi/4-DPSK	Average	15.787	37.905
	F.1	Peak	18.897	77.571
	Enhanced 8PSK	Average	15.791	37.940

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

The internal antenna was Permanently attached. Therefore this E.U.T Complies with the requirement of §15.203.

The radio utilizes an internal antennas, with ANT 1's maximum gain of -2.4 dBi and ANT 2's maximum gain of -2.1 dBi.

5.4. WORST-CASE CONFIGURATION AND MODE

Radiated emission below 1GHz and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

Radiated emission above 1GHz was performed with the EUT set to transmit low/mid/high channels.

For Antenna 1, the fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

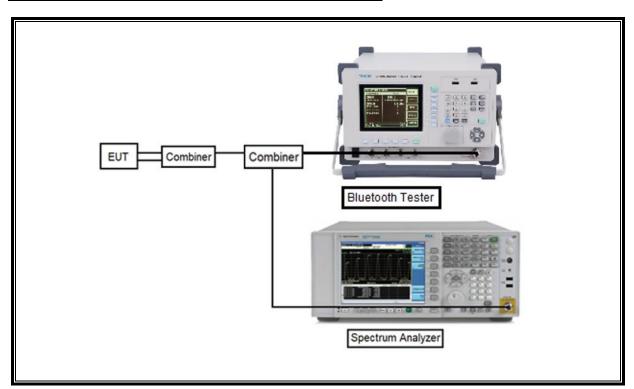
For Antenna 2, the fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that X orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in X orientation.

GFSK, Pi/4-DQPSK, 8PSK average Power are all investigated, The GFSK & 8PSK Power are the worst case. Testing is based on this mode to showing compliance.

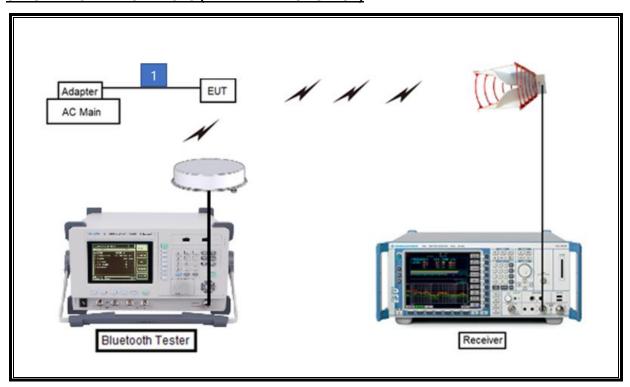
5.5. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

Support Equipment List						
Description Manufacturer Model Serial Number FCC ID						
Charger	SAMSUNG	EP-TA800	R37R8YN0CD1RC3	N/A		
Data Cable	Data Cable SAMSUNG EP-DW767JWE N/A N/A					


I/O CABLE

	I/O Cable List					
Cable No.	Port I Identical I Canie IVne I P Remarks					
1	DC Power	1	С Туре	Shielded	1.0 m	N/A


TEST SETUP

The EUT is continuously communicating to the Bluetooth tester during the tests. Test software enable BT communications.

SETUP DIAGRAM FOR TESTS (CONDUCTED TEST SETUP)

SETUP DIAGRAM FOR TESTS (RADIATED TEST SETUP)

DATE: 2021-12-15 IC: 649E-SMX900

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

rt:						
	lest	Equipment List				
Description	Manufacturer	Model	S/N	Cal Due		
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	750	2022-08-19		
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	749	2022-08-13		
Antenna, Bilog, 30MHz-1GHz	SCHWARZBECK	VULB9163	845	2022-08-13		
Antenna, Loop, 9kHz-30MHz	R&S	HFH2-Z2	100418	2023-10-06		
Antenna, Horn, 18 GHz	ETS	3115	00167211	2022-07-27		
Antenna, Horn, 18 GHz	ETS	3115	00161451	2022-08-15		
Antenna, Horn, 18 GHz	ETS	3117	00168724	2022-07-27		
Antenna, Horn, 18 GHz	ETS	3117	00168717	2022-08-15		
Antenna, Horn, 40 GHz	ETS	3116C	00166155	2022-08-04		
Preamplifier	ETS	3116C-PA	00168841	2022-08-04		
Directional Antenna	Cobham	FPA3-0.8-6.0R/1329	80108-0004	N/A		
Directional Antenna	Cobham	FPA3-0.8-6.0R/1329	110367-0003	N/A		
Preamplifier, 1000 MHz	Sonoma	310N	341282	2022-08-02		
Preamplifier, 1000 MHz	Sonoma	310N	351741	2022-08-02		
Preamplifier, 1000 MHz	Sonoma	310N	370599	2022-08-02		
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1876511	2022-08-02		
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	1896138	2022-08-02		
Preamplifier, 18 GHz	Miteq	AFS42-00101800-25-S-42	2029168	2022-08-02		
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	MY54170614	2022-08-04		
Spectrum Analyzer, 44 GHz	Agilent / HP	N9030A	MY54490312	2022-08-04		
Average Power Sensor	Agilent / HP	U2000	MY54270007	2022-08-04		
Average Power Sensor	Agilent / HP	U2000	MY54260010	2022-08-04		
Bluetooth Tester	TESCOM	TC-3000C	3000C000546	2022-08-04		
Power Splitter	MINI-CIRCUITS	WA1534	UL001	2022-01-27		
Power Splitter	MINI-CIRCUITS	WA1534	UL002	2022-01-27		
Attenuator	PASTERNACK	PE7087-10	A009	2022-08-03		
Attenuator	PASTERNACK	PE7087-10	A001	2022-08-03		
Attenuator	PASTERNACK	PE7087-10	A008	2022-08-03		
Attenuator	PASTERNACK	PE7004-10	2	2022-08-02		
EMI Test Receive, 40 GHz	R&S	ESU40	100439	2022-08-02		
EMI Test Receive, 40 GHz	R&S	ESU40	100457	2022-08-02		
Low Pass Filter 5GHz	Micro-Tronics	LPS17541	009	2022-08-02		
Low Pass Filter 5GHz	Micro-Tronics	LPS17541	015	2022-08-02		
Low Pass Filter 5GHz	Micro-Tronics	LPS17541	019	2022-08-02		
High Pass Filter 3GHz	Micro-Tronics	HPM17543	010	2022-08-02		
High Pass Filter 3GHz	Micro-Tronics	HPM17543	015	2022-08-02		
High Pass Filter 3GHz	Micro-Tronics	HPM17543	020	2022-08-02		
High Pass Filter 6GHz	Micro-Tronics	HPS17542	009	2022-08-02		
High Pass Filter 6GHz	Micro-Tronics	HPS17542	016	2022-08-02		
High Pass Filter 6GHz	Micro-Tronics	HPS17542	020	2022-08-02		
LISN	R&S	ENV-216	101837	2022-08-05		
Termination	WEINSCHEL	M1406A	T09	2022-08-03		
	U	L Software				
Description	Manufacturer	Model	Ve	rsion		
Radiated software	UL	UL EMC	Ve	er 9.5		
AC Line Conducted software	UL	UL EMC	Ver 9.5			

Page 13 of 83

7. TEST RESULTS SUMMARY

FCC Part Section	IC Part Section	Test Description	Test Limit	Test Condition	Test Result
2.1051, 15.247(d)	RSS-247 5.5	Band Edge / Conducted Spurious Emission	-20 dBc		PASS
15.247 (b)(1)	RSS-247 5.1(b)	TX conducted output power	< 21 dBm		PASS
15.247 (a)(1)	RSS-247 5.1(b)	Hopping frequency separation	> two-thirds of the 20 dB bandwidth	Conducted	PASS
15.247 (a)(1)(iii)	RSS-247 5.1(d)	Number of Hopping channels	More than 15 non-overlapping channels		PASS
15.247 (a)(1)(iii)	RSS-247 5.1(d)	Avg Time of Occupancy	< 8 dBm		PASS
15.207(a)	RSS-GEN Clause 7.2 & 8.8	AC Power Line conducted emissions	Section 11	Power Line conducted	PASS
15.205, 15.209	RSS-GEN Clause 8.9 & 8.10	Radiated Spurious Emission	< 54dBuV/m(Av)	Radiated	PASS

8. MEASUREMENT METHODS

20dB BW: ANSI C63.10, Section 6.9.2

99% BW: ANSI C63.10, Section 6.9.3

HOPPING FREQUENCY SEPARATION: ANSI C63.10, Section 7.8.2

NUMBER OF HOPPING CHANNELS: ANSI C63.10, Section 7.8.3

AVERAGE TIME OF OCCUPANCY: ANSI C63.10, Section 7.8.4

OUTPUT POWER: ANSI C63.10, Section 7.8.5.

Out-of-band EMISSIONS (Conducted): ANSI C63.10, Section 7.8.6, 7.8.8

Out-of-band EMISSIONS IN NON-RESTRICTED BANDS: ANSI C63.10, Section 6.

Out-of-band EMISSIONS IN RESTRICTED BANDS: ANSI C63.10, Section 6.

AC Power Line Conducted Emission: ANSI C63.10-2013, Section 6.2.

9. ANTENNA PORT TEST RESULTS

9.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

ANSI C63.10, Section 11.6: Zero-Span Spectrum Analyzer Method.

ON TIME AND DUTY CYCLE RESULTS

Mode	On time [msec]	Period [msec]	Duty Cycle [%]	Duty Cycle Correction Factor[dB]	1/T Minimum VBW [kHz]	
	2 400 ~ 2 483.5 MHz Band					
Bluetooth	2.878	3.751	76.726	1.15	0.35	

9.2. **20 dB BANDWIDTH**

LIMITS

None; for reporting purposes only.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to \geq 1% of the 20 dB bandwidth. The VBW is set to \geq RBW. The sweep time is coupled.

RESULTS

9.2.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION

Ant.	Channal	Frequency	20 dB Bandwidth
	Channel	[MHz]	[kHz]
	0	2 402	943.3
ANT1	39	2 441	940.8
	78	2 480	941.2
	0	2 402	941.5
ANT2	39	2 441	942.6
	78	2 480	943.2
	Worst	943.3	

9.2.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION

Ant.	Channel	Frequency	20 dB Bandwidth
Ant.	Channel	[MHz]	[kHz]
	0	2 402	1305.0
ANT1	39	2 441	1306.0
	78	2 480	1305.0
	0	2 402	1306.0
ANT2	39	2 441	1306.0
	78	2 480	1305.0
	Worst	1306.0	

9.3. HOPPING FREQUENCY SEPARATION

LIMITS

FCC §15.247 (a) (1)

RSS-247 (5.1) (b)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hoping channel, whichever is greater.

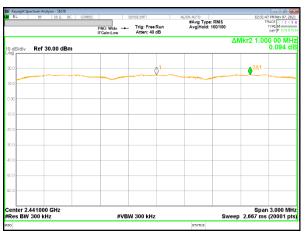
Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The RBW is set to 300 kHz and the VBW is set to VBW >= RBW. The sweep time is coupled.

RESULTS

9.3.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION



ANT1 SEPARATION

ANT2 SEPARATION

9.3.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION

ANT1 SEPARATION

ANT2 SEPARATION

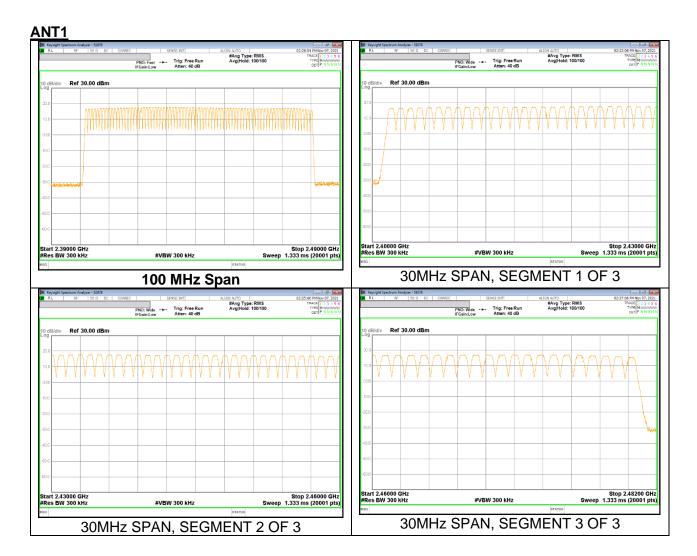
9.4. NUMBER OF HOPPING CHANNELS

LIMITS

FCC §15.247 (a) (1) (iii)

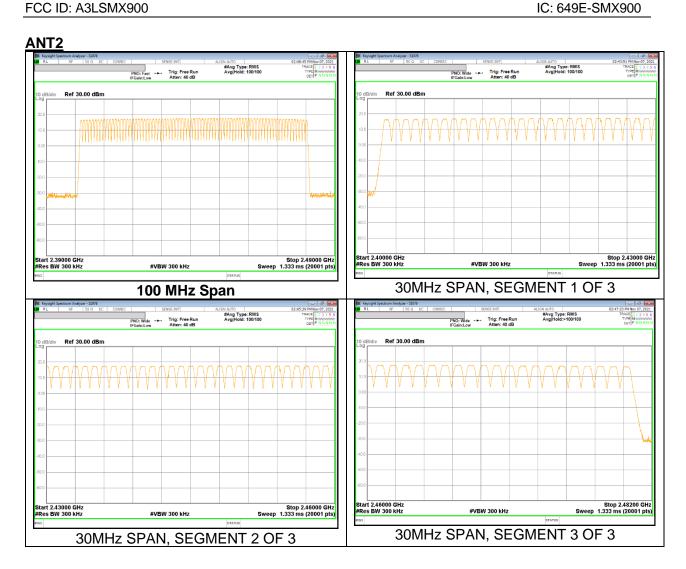
RSS-247 (5.1) (d)

Frequency hopping systems in the 2400 – 2483.5 MHz band shall use at least 15 non-overlapping channels.

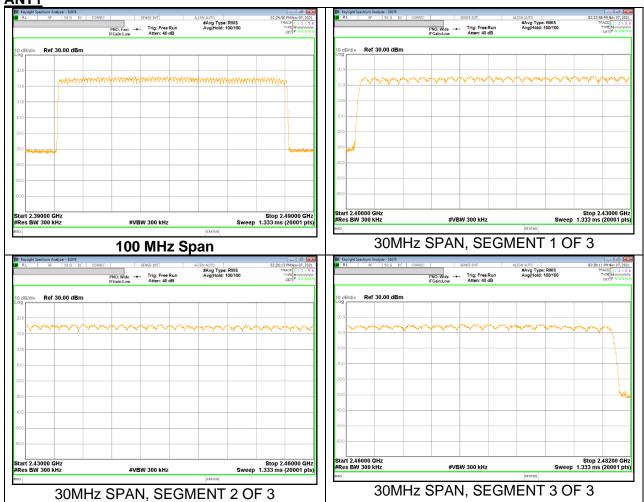

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to cover the entire authorized band, in either a single sweep or in multiple contiguous sweeps. The RBW is set to a maximum of 1 % of the span. The analyzer is set to Max Hold.

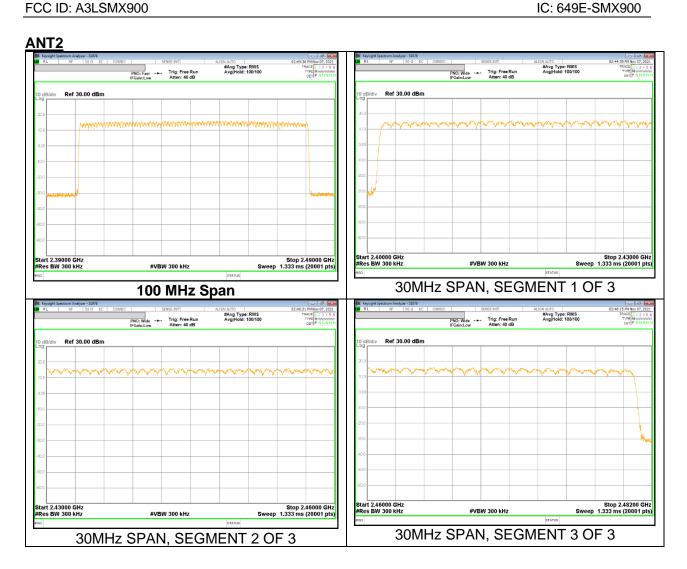
RESULTS


Normal Mode: All Channels Observed

9.4.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION


DATE: 2021-12-15

IC: 649E-SMX900


9.4.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION

ANT1

DATE: 2021-12-15

IC: 649E-SMX900

9.5. AVERAGE TIME OF OCCUPANCY

LIMITS

FCC §15.247 (a) (1) (iii)

RSS-247 (5.1) (d)

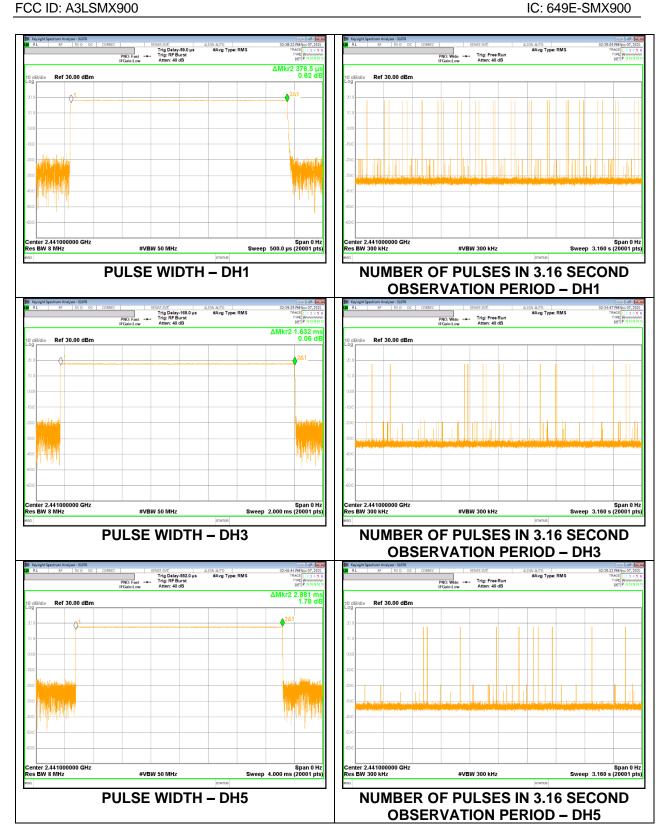
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The span is set to 0 Hz, centered on a single, selected hopping channel. The width of a single pulse is measured in a fast scan. The number of pulses is measured in a 3.16 second scan, to enable resolution of each occurrence.

The average time of occupancy in the specified 3.16 second period (79 channels * 0.4 s) is equal to 10 * (# of pulses in 3.16 s) * pulse width.

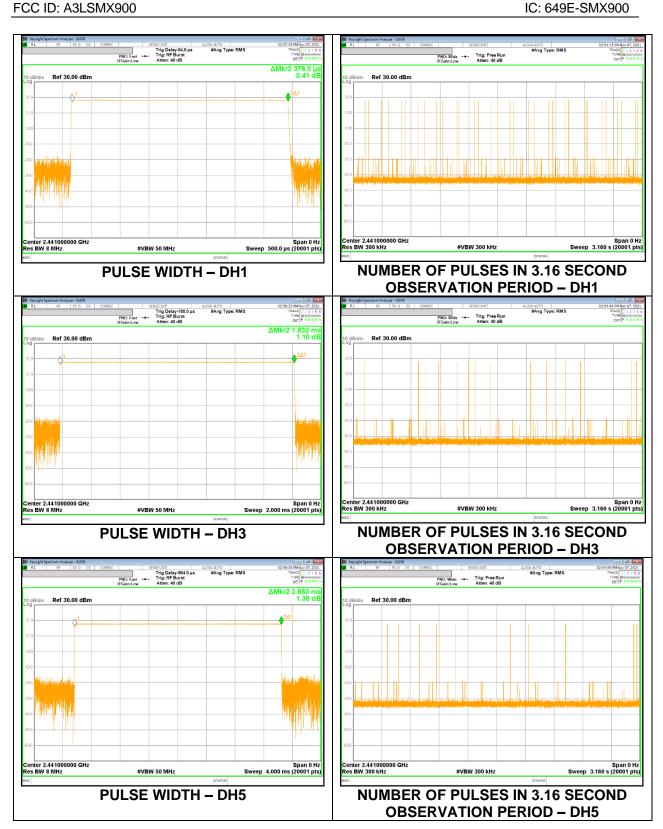
For AFH mode, the average time of occupancy in the specified 8 second period (20 channels * 0.4 seconds) is equal to 10 * (# of pulses in 0.8 s) * pulse width.


RESULTS

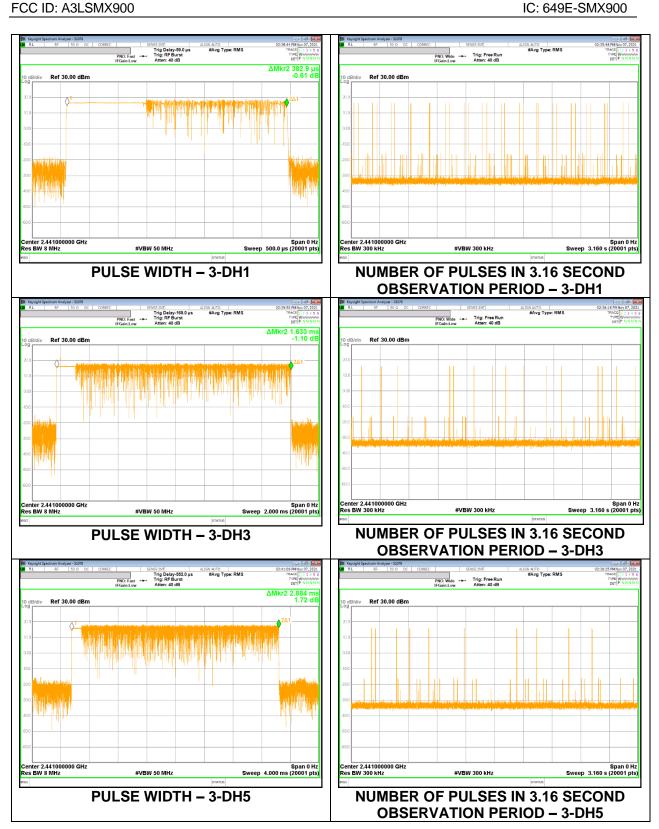
9.5.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION

DH Packet	Pulse Width [msec]	Number of Pulses in 3.16 seconds	Average Time of Occupancy [sec]	Limit [sec]	Margin [sec]	
		GFSK ANT1 No	ormal			
DH1	0.377	32	0.120	0.4	-0.280	
DH3	1.632	16	0.261	0.4	-0.139	
DH5	2.881	10	0.288	0.4	-0.112	
DH Packet	Pulse	Number of	Average Time	Limit	Margin	
	Width	Pulses in	of Occupancy			
	[msec]	0.8 seconds	[sec]	[sec]	[sec]	
	GFSK ANT1 AFH					
DH1	0.377	8	0.030	0.4	-0.370	
DH3	1.632	4	0.065	0.4	-0.335	
DH5	2.881	2.5	0.072	0.4	-0.328	

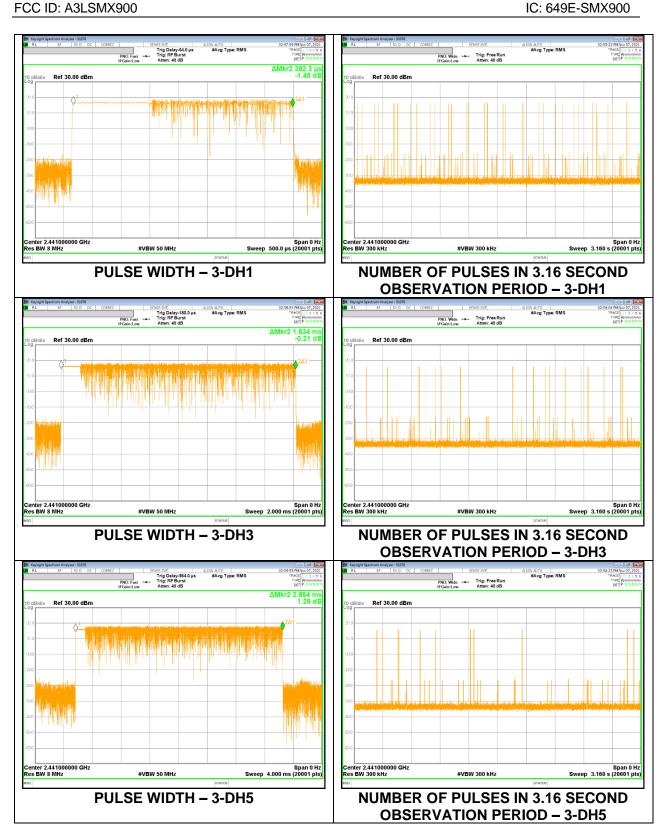
DATE: 2021-12-15


IC: 649E-SMX900

DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width	Pulses in	of Occupancy		
	[msec]	3.16	[sec]	[sec]	[sec]
		seconds			
		GFSK ANT2 N	ormal		
DH1	0.376	32	0.120	0.4	-0.280
DH3	1.632	13 0.212		0.4	-0.188
DH5	2.880	10 0.288		0.4	-0.112
DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width	Pulses in	of Occupancy		
	[msec]	0.8 seconds	[sec]	[sec]	[sec]
GFSK ANT2 AFH					
DH1	0.376	8	0.030	0.4	-0.370
DH3	1.632	3.25	0.053	0.4	-0.347
DH5	2.880	2.5	0.072	0.4	-0.328


DATE: 2021-12-15

IC: 649E-SMX900



9.5.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION

DH Packet	Pulse	Number of Average Time		Limit	Margin
	Width	Pulses in	of Occupancy		
	[msec]	3.16	[sec]	[sec]	[sec]
		seconds			
		8PSK ANT1 N	ormal		
DH1	0.383	32	0.123	0.4	-0.277
DH3	1.633	15	0.245	0.4	-0.155
DH5	2.884	10	10 0.288		-0.112
DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width	Pulses in	of Occupancy		
	[msec]	0.8 seconds	[sec]	[sec]	[sec]
8PSK ANT1 AFH					
DH1	0.383	8	0.031	0.4	-0.369
DH3	1.633	3.75	0.061	0.4	-0.339
DH5	2.884	2.5	0.072	0.4	-0.328

DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width	Pulses in	of Occupancy		
	[msec]	3.16 [sec]		[sec]	[sec]
		seconds			
		8PSK ANT2 N	ormal		
DH1	0.382	32	0.122	0.4	-0.278
DH3	1.634	16	16 0.261		-0.139
DH5	2.884	11 0.317		0.4	-0.083
DH Packet	Pulse	Number of	Average Time	Limit	Margin
	Width	Pulses in	of Occupancy		
	[msec]	0.8 seconds	[sec]	[sec]	[sec]
8PSK ANT2 AFH					
DH1	0.382	8	0.031	0.4	-0.369
DH3	1.634	4	4 0.065		-0.335
DH5	2.884	2.75	0.079	0.4	-0.321

9.6. OUTPUT POWER

LIMITS

§15.247 (b) (1)

The maximum antenna gain is less than 6 dBi, therefore the limit is 21 dBm.

TEST PROCEDURE

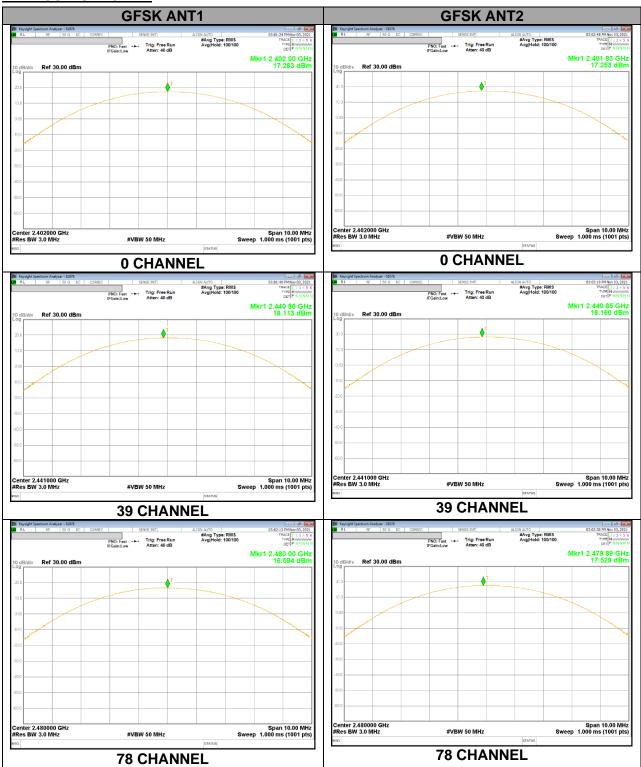
The transmitter output is connected to a spectrum analyzer the analyzer bandwidth is set to a value greater than the 20 dB bandwidth of the EUT.

RESULTS

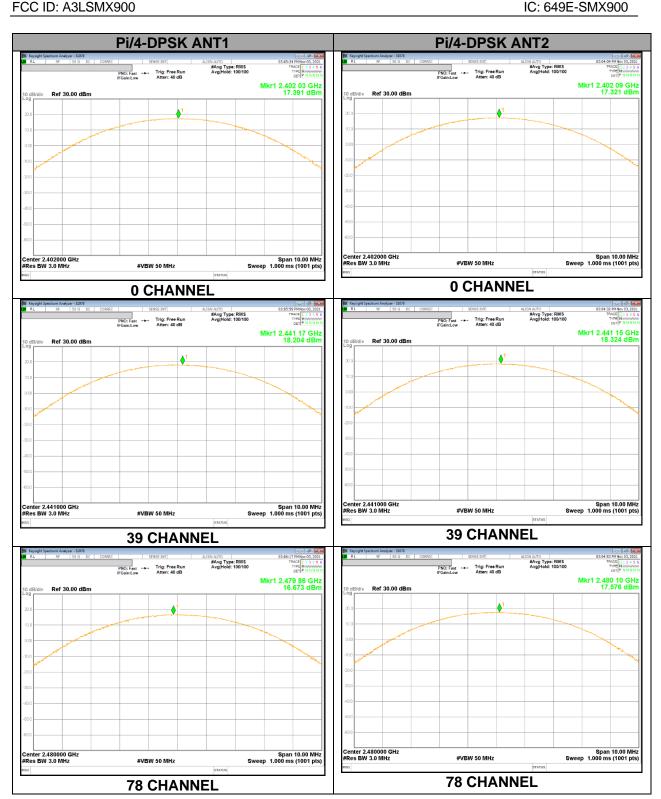
9.6.1. BASIC DATA RATE GFSK MODULATION

Antenna	Channel	Frequency	Peak Output Power	Limit	Margin
		[MHz]	[dBm]	[dBm]	[dB]
	0	2 402	17.283		-3.717
ANT1	39	2 441	18.113		-2.887
	78	2 480	16.594		-4.406
	0	2 402	17.253	21.000	-3.747
ANT2	39	2 441	18.160		-2.840
	78	2 480	17.529		-3.471
	Worst		18.160		-2.840

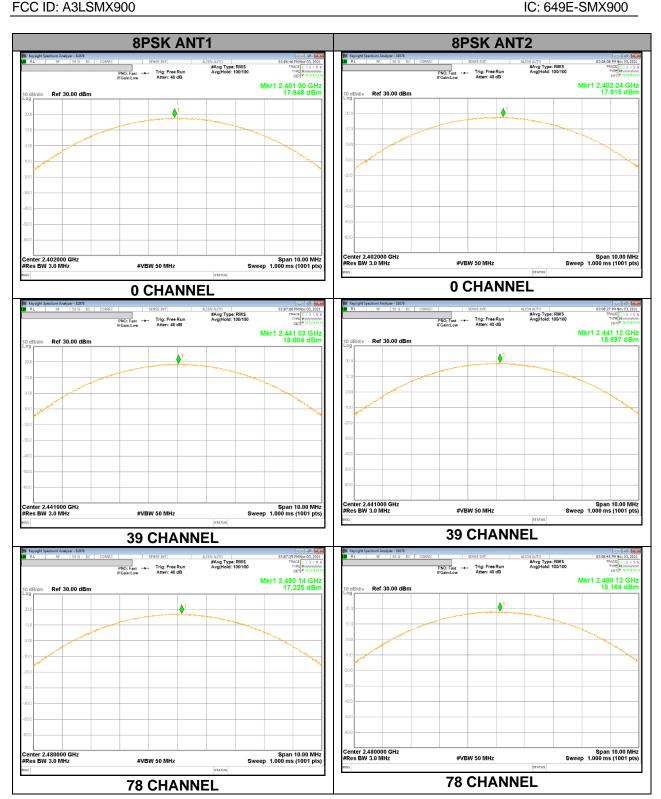
9.6.2. ENHANCED DATA RATE PI/4-DPSK MODULATION


Antenna	Channel	Frequency	Peak Output Power	Limit	Margin
Antonna	Onamici	[MHz]	[dBm]	[dBm]	[dB]
	0	2 402	17.391		-3.609
ANT1	39	2 441	18.204		-2.796
	78	2 480	16.673		-4.327
	0	2 402	17.321	21.000	-3.679
ANT2	39	2 441	18.324		-2.676
	78	2 480	17.576		-3.424
	Worst		18.324		-2.676

9.6.3. ENHANCED DATA RATE 8PSK MODULATION


Antenna	Channel	Frequency	Peak Output Power	Limit	Margin
		[MHz]	[dBm]	[dBm]	[dB]
	0	2 402	17.948		-3.052
ANT1	39	2 441	18.804		-2.196
	78	2 480	17.225		-3.775
	0	2 402	17.915	21.000	-3.085
ANT2	39	2 441	18.897		-2.103
	78	2 480	18.164		-2.836
	Worst	_	18.897		-2.103

9.6.4. OUTPUT POWER PLOTS


PEAK OUTPUT POWER

DATE: 2021-12-15

DATE: 2021-12-15

DATE: 2021-12-15

REPORT NO: 4790101669-E4V3 DATE: 2021-12-15 FCC ID: A3LSMX900 IC: 649E-SMX900

9.7. AVERAGE POWER

LIMITS

None; for reporting purposes only

TEST PROCEDURE

Measurements perform using a wideband gated RF power meter.

The cable assembly insertion loss was entered as an offset in the power meter to allow for direct reading of power.

RESULTS

9.7.1. BASIC DATA RATE GFSK MODULATION

Antenna	Channel	Frequency [MHz]	Average Output Power [dBm]	Average Output Power [mW]
ANT1	0	2 402	16.961	49.671
	39	2 441	17.807	60.353
	78	2 480	16.233	42.005
ANT2	0	2 402	16.915	49.147
	39	2 441	17.863	61.136
	78	2 480	17.173	52.155

9.7.2. ENHANCED DATA RATE PI/4-DQPSK MODULATION

Antenna	Channel	Frequency [MHz]	Average Output Power [dBm]	Average Output Power [mW]	
ANT1	0	2 402	14.943	31.210	
	39	2 441	15.780	37.844	
	78	2 480	14.244	26.571	
ANT2	0	2 402	14.809	30.262	
	39	2 441	15.787	37.905	
	78	2 480	15.138	32.644	

9.7.3. ENHANCED DATA RATE 8PSK MODULATION

Antenna	Channel	Frequency [MHz]	Average Output Power [dBm]	Average Output Power [mW]
ANT1	0	2 402	14.917	31.024
	39	2 441	15.777	37.818
	78	2 480	14.250	26.607
ANT2	0	2 402	14.832	30.423
	39	2 441	15.791	37.940
	78	2 480	15.134	32.614

REPORT NO: 4790101669-E4V3 DATE: 2021-12-15 FCC ID: A3LSMX900 IC: 649E-SMX900

9.8. CONDUCTED SPURIOUS EMISSIONS

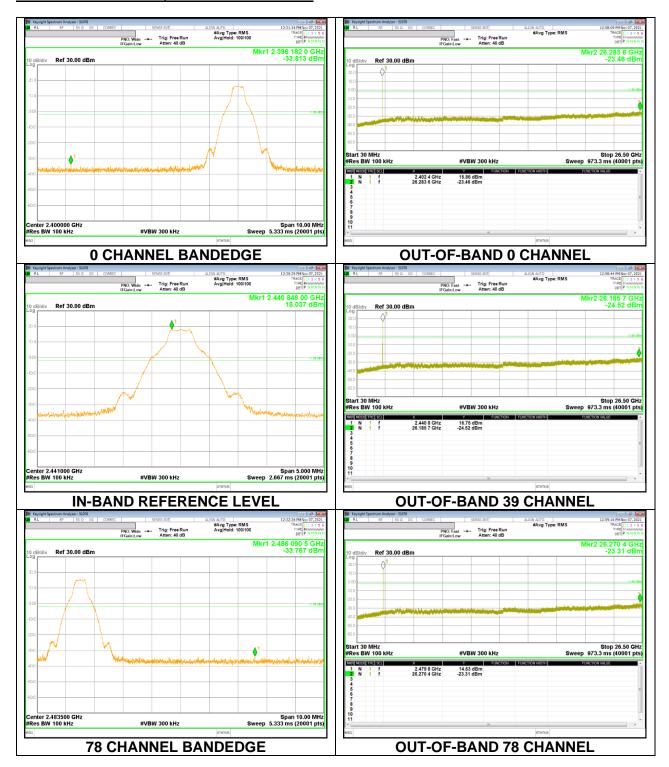
LIMITS

FCC §15.247 (d)

Limit = -20 dBc

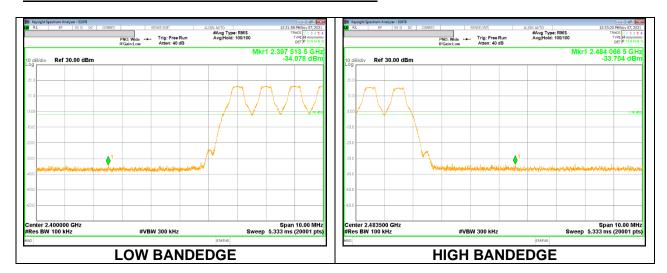
TEST PROCEDURE

The transmitter output is connected to a spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.

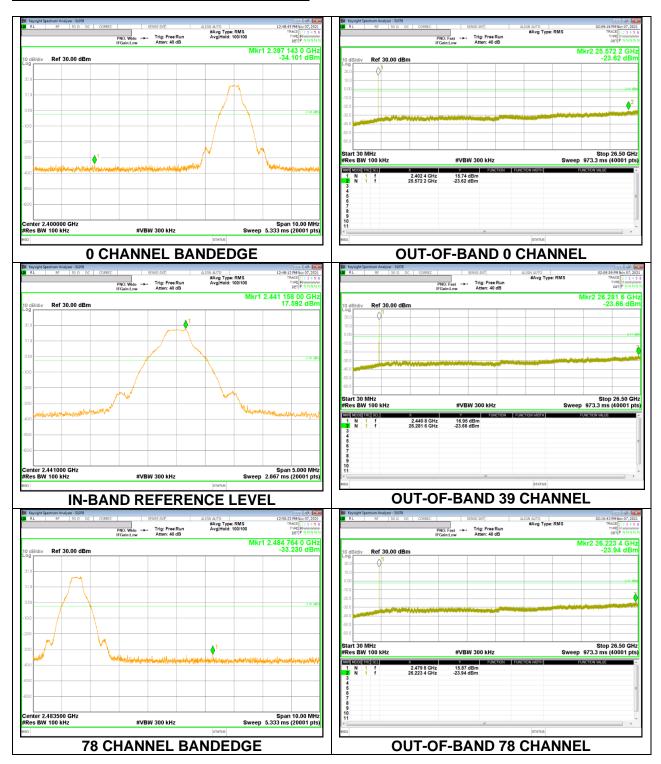

The spectrum from 30 MHz to 26 GHz is investigated with the transmitter set to the lowest, middle, and highest channels.

The band-edges at 2.4 and 2.4835 GHz are investigated with the transmitter set to the normal hopping mode.

RESULTS


9.8.1. BLUETOOTH BASIC DATA RATE GFSK MODULATION

SPURIOUS EMISSIONS, NON-HOPPING - ANT1

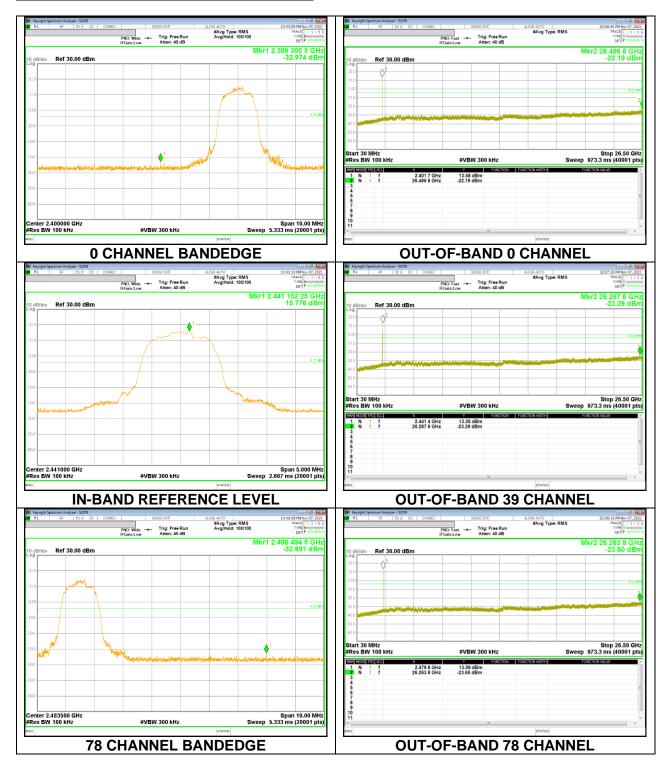


DATE: 2021-12-15

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

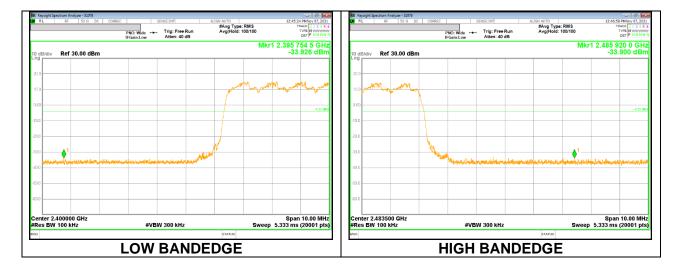


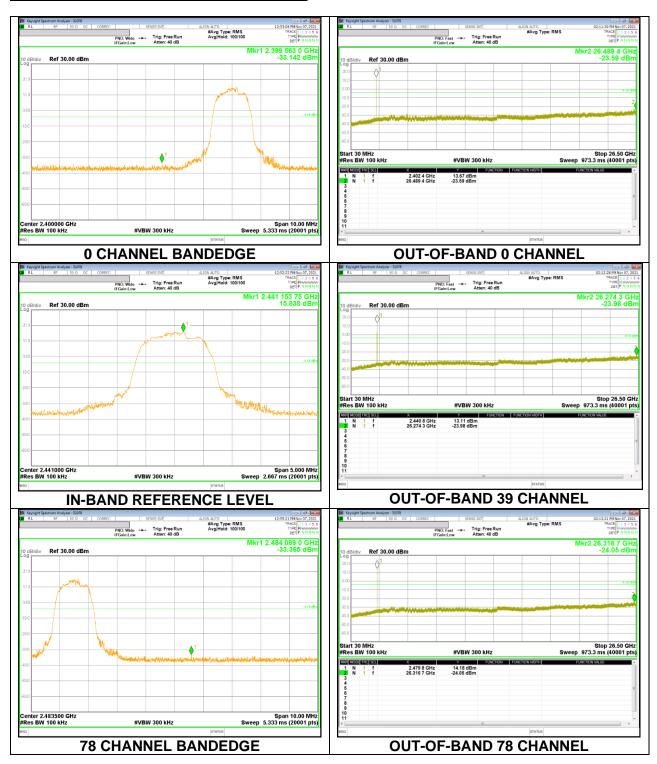
SPURIOUS EMISSIONS, NON-HOPPING - ANT2


DATE: 2021-12-15 IC: 649E-SMX900

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

9.8.2. BLUETOOTH ENHANCED DATA RATE 8PSK MODULATION


SPURIOUS EMISSIONS, NON-HOPPING - ANT1


DATE: 2021-12-15

REPORT NO: 4790101669-E4V3 DATE: 2021-12-15 FCC ID: A3LSMX900 IC: 649E-SMX900

SPURIOUS BANDEDGE EMISSIONS WITH HOPPING ON

SPURIOUS EMISSIONS, NON-HOPPING - ANT2

DATE: 2021-12-15