

FCC 47 CFR § 2.1093

RF EVALUATION REPORT (Digitizer)

FOR

Tablet with BT, DTS/UNII a/b/g/n/ac/ax and WPT

MODEL NUMBER: SM-X710

FCC ID: A3LSMX710

REPORT NUMBER: 4790776099-S4V1

ISSUE DATE: 5/18/2023

Prepared for

SAMSUNG ELECTRONICS CO., LTD. 129 SAMSUNG-RO, YEONGTONG-GU, SUWON-SI, GYEONGGI-DO, 16677, KOREA

Prepared by

UL Korea, Ltd.

26th floor, 152, Teheran-ro, Gangnam-gu Seoul, 06236, Korea

Suwon Test Site: UL Korea, Ltd. Suwon Laboratory 218 Maeyeong-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16675, Korea

> TEL: (031) 337-9902 FAX: (031) 213-5433

Testing Laboratory

TL-637

Revision History

Rev.	Date	Revisions	Revised By
V1	5/18/2023	Initial Issue	

Table of Contents

1.	Attestation of SAR Characterization	4
2.	Test Specification, Methods and Procedures	5
3.	Facilities and Accreditation	5
4.	H-field Measurement System & Test Equipment	6
4.1.	H-field Measurement System	6
4.2.	H-field measurement & extrapolation using MAGpy probe	7
4.3.	Test Equipment	8
5.	Measurement Uncertainty	8
6.	DUT Informations	8
7.	RF Exposure Conditions (Test Configurations)	8
8.	System verification	9
9.	Test results	. 10
10.	TER analysis results	. 10
Арре	endixes	. 11
47	90776099-S4 FCC Report Digitizer evaluation _App A_Test setup photos	. 11
47	90776099-S4 FCC Report Digitizer evaluation _App B_Highest Magnetic field strength Test Plots	s 11
47	90776099-S4 FCC Report Digitizer evaluation _App C_System verification Plots	. 11
47	90776099-S4 FCC Report Digitizer evaluation _App D_Probe Cal. Certificates	. 11
47	90776099-S4 FCC Report Digitizer evaluation _App E_Verification Source Cal. Certificates	. 11

1. Attestation of SAR Characterization

Applicant Name	SAMSUNG ELECTRONICS CO.,LTD.				
FCC ID	A3LSMX710				
Model Number	SM-X710				
Applicable Standards	FCC 47 CFR § 2.1093				
Exposure Category	Magnetic field strength limit (A/m)				
General population / Uncontrolled exposure	1.63				
DE Eveneuura Conditions	The Highest Magnetic field strength (A/m)				
RF Exposure Conditions	0.204				
Date Tested	4/13/2023, 5/18/2023				
Test Results	Pass				

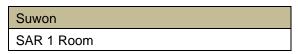
UL Korea, Ltd. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Korea, Ltd. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Korea, Ltd. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Korea, Ltd. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by IAS, any agency of the Federal Government, or any agency of any government

Approved & Released By:	Prepared By:
-flex	1,460
Justin Park	Sunghoon Kim
Operations Leader	Senior Laboratory Engineer
UL Korea, Ltd. Suwon Laboratory	UL Korea, Ltd. Suwon Laboratory

2. Test Specification, Methods and Procedures

The tests documented in this report were performed in accordance with FCC 47 CFR § 2.1093.


447498 D04 Interim General RF Exposure Guidance v01

In addition to the above, the following information was used:

- o TCB workshop April, 2022; Part18 and Wireless Power Transfer Updates (Part I)
- o DASY8 Module WPT System Handbook (Manual)

3. Facilities and Accreditation

The test sites and measurement facilities used to collect data are located at

UL Korea, Ltd. is accredited by IAS, Laboratory Code TL-637.

The full scope of accreditation can be viewed at;

https://www.iasonline.org/wp-content/uploads/2017/05/TL-637-cert-New.pdf.

4. H-field Measurement System & Test Equipment

4.1. H-field Measurement System

DASYsystem Module WPT - MAGPy is optimized for evaluation of compliance for wireless power transfer (WPT) systems and any other sources operating in the 3kHz - 10MHz frequency range. Module WPT V1.2 is compatible with the DASY 6 & 8 systems and in addition has been extended for easy evaluations of pulsed sources.

Figure 1.2.1: DASY8 Module WPT system

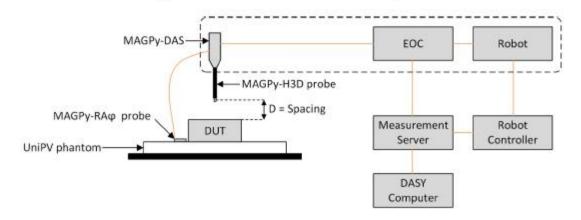


Figure: Typical measurement setup with DASY system Module WPT-MAGPy

DASYsystem Module V	VPT – MAGPy's Specifications
System	DASY8 Module WPT is composed of the isotropic probe MAGPy-H3D, the reference amplitude and phase probe (MAGPy-RAφ), and the data acquisition system (MAGPy-DAS) mounted to the DASY8 robot via the emergency stop (MAGPy-ES). The induced electric (E-) fields and specific absorption rate (SAR) are assessed with Sim4Life's Quasi-Static EM Solver (P-EM-QS) using only the measured data. The dedicated graphical user interface (GUI) fully automates the testing workflow.
MAGPy-H3D	The MAGPy-H3D probe consists of an isotropic H-field sensor (three concentric orthogonal loops): • Frequency range: 3 kHz – 10 MHz • Dynamic range: 0.1 A/m – 3200 A/m (0.12 µT – 4 mT) • Sensor size (loop): 1 cm2 / Probe length: 335 mm • Probe tip diameter: 25 mm / Sensor center to tip: 6.6 mm
Software	Software components: DASY8 Module WPT application programming interface (API) MAGPy-DAS / Graphic library / Report generator Sim4Life WPT (vector potential reconstruction, P-EM-QS solver)

4.2. H-field measurement & extrapolation using MAGpy probe.

MAGPy probe can measured H-field strength at 7mm distance from DUT's surface. And it is possible to Extrapolated the H-field strength of 0mm using Sim4Life WPT software.

So we can use this function for MAGPy probe to measure H-field strength radiating of digitizer's coil and check the 0mm H-field strength. In order to additionally verify the H-field strength Extrapolated method, we progress to test using Reference source(V-coil50/400) as follows and compared Measured H-field strength and Extrapolated H-field strength at 7mm separation distance from reference source.

(Test A is Measured H-field at 7mm & Extrapolated H-field at 0mm.

Test B is Measured H-field at 14mm & Extrapolated H-field at 7mm.

Test distance	Test A (at 7mm)	Test B (at 14mm)	Diviation(%)	Plot	
Measured H-field	153.22	84.68		1	
Extrapolated H- field	286.00	156.00	2%	2	

Depending on the test results, the deviation between Measured H-field at 7mm and Extrapolated H-field at 7mm is 2 %. Therefore, DUT measurement proceeds using the function of that extrapolation method.

4.3. Test Equipment

Name of Equipment	Manufacturer Type/Model		Serial No.	Cal Date	Cal. Due Date	
Droho	SPEAG Probe		2050	2050 9-23-2022		
Flobe	SPEAG	MA GPy-DAS	2050	9-23-2022	9-23-2023	
System verification Source	SPEAG	V-Coil50/400	1014	10-6-2022	10-6-2023	

5. Measurement Uncertainty

Measurement uncertainty of the MAGPy-H3D Probe (3 kHz to 10 MHz) (According to IEC/IEEE 63184)

Error Description	Unc. Value Prob. (± dB) Distr.		Div.	ci	Std. Unc. (± dB)		
Probe uncertainty							
Amplitude calibration uncertainty	0.47	Normal	1	1	0.47		
Probe anisotropy	0.50	Rectangular	1.732	1	0.29		
Probe dynamic linearity	0.15	Rectangular	Rectangular 1.732	1	0.09		
Probe frequency domain response	0.25	Rectangular	1.732	1	0.14		
Gradient uncertainty	0.10	Rectangular	1.732	1	0.06		
Parasitic E-field sensitivuty	0.10	Rectangular	1.732	1	0.06		
Detection limit	0.15	Rectangular	1.732	1	0.09		
Readout electronics	0.00	Normal	1	1	0.00		
Probe positioning	0.19	Normal	1	1	0.19		
Repeatability	0.10	Normal	1	1	0.10		
Combined Standard Uncertainty (k = 1)							
Expanded Uncertainty U, Coverage F	actor = 2, > 95 °	% Confidence =			1.24		

6. DUT Informations

Tech	Frequency bands	Mode (Scanning)	Description				
Dinitina	531 kHz - 593 kHz	531 kHz Global Scan		Digitizer scans display area around for finding Spen.			
Digitizer		Local Scan	When Digitizer find Spen's location during Global Scan, then Digitizer scans small area around Spen.				

7. RF Exposure Conditions (Test Configurations)

RF Exposure Conditions	Mode (Scanning)	Separation distance of DUT's surface-to-Probe's element	Test Position
Standalone	Global Scan	7 mm	Front
Staridatorie	Local Scan	7 mm	Front

Notes:

- 1. Digitizer is generally not expected to be used in head & body-worn exposure conditions. It is considered in the Hand exposure condition because it is mainly used by holding it in the hand. And Digitizer's coils operates to radiated to display of DUT. So other surface or edges are not considered.
- 2. Test distance 7mm means that distance between DUT's surface to Probe's element. In fact, DUT's surface to Probe's tip are almost touched.

8. System verification

A set of four system verification sources (3kHz, 85kHz, 400kHz and 6.78 MHz) are available. According to the manufacturer's guide, the system verification was performed in the nearest frequency band with DUT's operate frequency. And The deviation of measured values from the target values of calibration report should be less than the expanded uncertainty (1.24 dB).

Reference Target SAR Values

The reference SAR values can be obtained from the calibration certificate of system validation dipoles.

Verification	Serial No.	Cal. Date	Cal.due date	Target Magnetic field strength (A/m)		
Source	Seliai No.	Cal. Date	Car.due date	Measured at 7mm	Extrapolated at 2mm	
V-coil50/400	1014	10-6-2022	10-6-2023	158.56	245.00	

System verification Results

SAR 1 Room

	OAIX I IXOOIII											
	Date Tested	System Source		Measured at 7mm Results (A/m)		Delta Delta -	Extrapolated at 2mm Results		Delta	Delta		
		Туре	Serial #	Test results	Target	(±%)	(±dB)	Test results	Target	(±%)	(±dB)	Plot No.
	4-13-2023	V-coil50/400	1014	149.59	158.56	-5.66	-0.25	241.00	245.00	-1.63	-0.07	1
	5-18-2023	V-coil50/400	1014	149.68	158.56	-5.60	-0.25	242.00	245.00	-1.22	-0.05	2

Notes:

The deviation of measured values from the target values of calibration report should be less than the expanded uncertainty (1.24 dB).

9. Test results

Test mode	Test positon	Magnetic field strength results (A/m)		Diet Ne
		Measured at 7mm Results	Extrapolated at 0mm Results	Plot No.
Global Scan	Front	0.071	0.062	1
Local Scan with Spen	Front	0.135	0.204	2

Notes:

- In the case of Local scan, The Spen needs to be placed over the display of DUT, which limits the
 measurements as it will collide with the MAGPy probe during measuring surface. Therefore, in order
 to measure as closely as possible to the conditions of use, we proceeded with the measurement after
 fixing the Spen to the probe.
- 2. For Extrapolated Results, The result are estimated based on the measured Magnetic field strength at 7mm.
- 3. For Global scan result, Measured result is higher than extrapolated result due to lower measured value.

10. TER analysis results

This device is tablet device. SAR test is not required for front side (display) according to KDB 616217 D04 SAR for laptop and tablets v01r02. So TER analysis is not require with other transmitters.

Appendixes

Refer to separated files for the following appendixes.

4790776099-S4 FCC Report Digitizer evaluation _App A_Test setup photos

4790776099-S4 FCC Report Digitizer evaluation _App B_Highest Magnetic field strength Test Plots

4790776099-S4 FCC Report Digitizer evaluation _App C_System verification Plots

4790776099-S4 FCC Report Digitizer evaluation _App D_Probe Cal. Certificates

4790776099-S4 FCC Report Digitizer evaluation _App E_Verification Source Cal. Certificates

END OF REPORT