

# **TEST REPORT**

FCC LTE B5 Test for SM-X526B

Certification

**APPLICANT** SAMSUNG Electronics Co., Ltd.

REPORT NO. HCT-RF-2502-FC038

**DATE OF ISSUE** February 17, 2025

> Tested by Jae Ryang Do

**Technical Manager** Jong Seok Lee

> HCT CO., LTD. BongJai Huh



**HCT CO.,LTD.**2-6, 73, 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Republic of Korea Tel. +82 31 645 6300 Fax. +82 31 645 6401

# TEST REPORT

REPORT NO. HCT-RF-2502-FC038

**DATE OF ISSUE** February 17, 2025

| Applicant                  | SAMSUNG Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea                                   |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| Product Name<br>Model Name | Tablet<br>SM-X526B                                                                                                                         |
| Date of Test               | December 26, 2024 ~ February 12, 2025                                                                                                      |
| FCC ID                     | A3LSMX526B                                                                                                                                 |
| Location of Test           | ■ Permanent Testing Lab □ On Site Testing (Address: 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Republic of Korea) |
| FCC Classification:        | PCS Licensed Transmitter (PCB)                                                                                                             |
| Test Standard Used         | FCC Rule Part: § 22                                                                                                                        |
| Test Results               | PASS                                                                                                                                       |

F-TP22-03 (Rev. 06) Page 2 of 104



#### **REVISION HISTORY**

The revision history for this test report is shown in table.

| Revision No. | Date of Issue     | Description     |
|--------------|-------------------|-----------------|
| 0            | February 17, 2025 | Initial Release |

#### **Notice**

#### Content

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section § 2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them.

HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

The laboratory is not accredited for the test results marked \*.

Information provided by the applicant is marked \*\*.

Test results provided by external providers are marked \*\*\*.

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

The test results in this test report are not associated with the ((KS Q) ISO/IEC 17025) accreditation by KOLAS (Korea Laboratory Accreditation Scheme) / A2LA (American Association for Laboratory Accreditation) that are under the ILAC (International Laboratory Accreditation Cooperation) Mutual Recognition Agreement (MRA).

F-TP22-03 (Rev. 06) Page 3 of 104



# **CONTENTS**

| 1. GENERAL INFORMATION                                     | 5   |
|------------------------------------------------------------|-----|
| 1.1. MAXIMUM OUTPUT POWER                                  | 6   |
| 2. INTRODUCTION                                            | 7   |
| 2.1. DESCRIPTION OF EUT                                    | 7   |
| 2.2. MEASURING INSTRUMENT CALIBRATION                      | 7   |
| 2.3. TEST FACILITY                                         | 7   |
| 3. DESCRIPTION OF TESTS                                    | 8   |
| 3.1 TEST PROCEDURE                                         | 8   |
| 3.2 RADIATED POWER                                         | 9   |
| 3.3 RADIATED SPURIOUS EMISSIONS                            | 10  |
| 3.4 PEAK- TO- AVERAGE RATIO                                | 11  |
| 3.5 OCCUPIED BANDWIDTH.                                    | 13  |
| 3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL    | 14  |
| 3.7 BAND EDGE                                              | 15  |
| 3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE | 17  |
| 3.9 WORST CASE(RADIATED TEST)                              | 18  |
| 3.10 WORST CASE(CONDUCTED TEST)                            | 19  |
| 4. LIST OF TEST EQUIPMENT                                  | 20  |
| 5. MEASUREMENT UNCERTAINTY                                 | 21  |
| 6. SUMMARY OF TEST RESULTS                                 | 22  |
| 7. SAMPLE CALCULATION                                      | 23  |
| 8. TEST DATA                                               | 25  |
| 8.1 EFFECTIVE RADIATED POWER                               | 25  |
| 8.2 RADIATED SPURIOUS EMISSIONS                            | 27  |
| 8.3 PEAK-TO-AVERAGE RATIO                                  | 28  |
| 8.4 OCCUPIED BANDWIDTH                                     | 29  |
| 8.5 CONDUCTED SPURIOUS EMISSIONS                           | 30  |
| 8.6 BAND EDGE                                              | 30  |
| 8.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE | 31  |
| 9. TEST PLOTS                                              | 35  |
| 10 ANNEY A TEST SETUD DHOTO                                | 104 |



# **MEASUREMENT REPORT**

# 1. GENERAL INFORMATION

| Applicant Name:     | SAMSUNG Electronics Co., Ltd.                                              |
|---------------------|----------------------------------------------------------------------------|
| Address:            | 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea |
| FCC ID:             | A3LSMX526B                                                                 |
| Application Type:   | Certification                                                              |
| FCC Classification: | PCS Licensed Transmitter (PCB)                                             |
| FCC Rule Part(s):   | § 22                                                                       |
| EUT Type:           | Tablet                                                                     |
| Model(s):           | SM-X526B                                                                   |
|                     | 824.7 MHz - 848.3 MHz (LTE - Band 5 (1.4 MHz))                             |
| T. F                | 825.5 MHz - 847.5 MHz (LTE - Band 5 (3 MHz))                               |
| Tx Frequency:       | 826.5 MHz - 846.5 MHz (LTE - Band 5 (5 MHz))                               |
|                     | 829.0 MHz - 844.0 MHz (LTE - Band 5 (10 MHz))                              |
| Date(s) of Tests:   | December 26, 2024 ~ February 12, 2025                                      |
|                     | Radiated: R32XC00B7ZP                                                      |
| Serial number:      | Conducted: R32XC00AZFB                                                     |

F-TP22-03 (Rev. 06) Page 5 of 104



#### 1.1. MAXIMUM OUTPUT POWER

| Mada               | Ty Francisco          | Emission               |            | ERP               |                     |  |
|--------------------|-----------------------|------------------------|------------|-------------------|---------------------|--|
| Mode<br>(MHz)      | Tx Frequency<br>(MHz) | Emission<br>Designator | Modulation | Max. Power<br>(W) | Max. Power<br>(dBm) |  |
|                    |                       | 1M10G7D                | QPSK       | 0.199             | 22.99               |  |
| LTC   Donale (1.4) | 824.7 - 848.3         | 1M10W7D                | 16QAM      | 0.176             | 22.46               |  |
| LTE – Band5 (1.4)  | 824.7 - 848.3         | 1M10W7D                | 64QAM      | 0.137             | 21.36               |  |
|                    |                       | 1M10W7D                | 256QAM     | 0.067             | 18.25               |  |
|                    |                       | 2M72G7D                | QPSK       | 0.199             | 22.99               |  |
| LTE DandE (2)      | 825.5 - 847.5         | 2M70W7D                | 16QAM      | 0.171             | 22.32               |  |
| LTE – Band5 (3)    | 023.3 - 041.3         | 2M70W7D                | 64QAM      | 0.136             | 21.32               |  |
|                    |                       | 2M72W7D                | 256QAM     | 0.069             | 18.39               |  |
|                    |                       | 4M53G7D                | QPSK       | 0.199             | 22.99               |  |
| LTC DandE (E)      | 826.5 - 846.5         | 4M51W7D                | 16QAM      | 0.173             | 22.39               |  |
| LTE – Band5 (5)    | 820.5 - 840.5         | 4M52W7D                | 64QAM      | 0.123             | 20.89               |  |
|                    |                       | 4M54W7D                | 256QAM     | 0.068             | 18.31               |  |
|                    |                       | 9M01G7D                | QPSK       | 0.200             | 23.00               |  |
| LTE D 15 (10)      | 020.0 044.0           | 9M00W7D                | 16QAM      | 0.162             | 22.09               |  |
| LTE – Band5 (10)   | 829.0 – 844.0         | 9M01W7D                | 64QAM      | 0.127             | 21.04               |  |
|                    |                       | 9M01W7D                | 256QAM     | 0.064             | 18.05               |  |

F-TP22-03 (Rev. 06) Page 6 of 104



#### 2. INTRODUCTION

#### 2.1. DESCRIPTION OF EUT

Please refer to the [2G3G] Test Report.

#### 2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

#### 2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, Republic of Korea

F-TP22-03 (Rev. 06) Page 7 of 104



# 3. DESCRIPTION OF TESTS

# **3.1 TEST PROCEDURE**

| Test Description                         | Test Procedure Used                                                           |
|------------------------------------------|-------------------------------------------------------------------------------|
| Occupied Bandwidth                       | - KDB 971168 D01 v03r01 - Section 4.3<br>- ANSI C63.26-2015 - Section 5.4.4   |
| Band Edge                                | - KDB 971168 D01 v03r01 - Section 6.0<br>- ANSI C63.26-2015 - Section 5.7     |
| Spurious and Harmonic Emissions at       | - KDB 971168 D01 v03r01 - Section 6.0                                         |
| Antenna Terminal                         | - ANSI C63.26-2015 – Section 5.7                                              |
| Conducted Output Power                   | - N/A (See SAR Report)                                                        |
| Peak- to- Average Ratio                  | - KDB 971168 D01 v03r01 - Section 5.7<br>- ANSI C63.26-2015 - Section 5.2.3.4 |
| Frequency stability                      | - ANSI C63.26-2015 – Section 5.6                                              |
| Radiated Power                           | - ANSI C63.26-2015 - Section 5.2.4.4<br>- KDB 971168 D01 v03r01 - Section 5.8 |
| Radiated Spurious and Harmonic Emissions | - ANSI C63.26-2015 – Section 5.5.3<br>- KDB 971168 D01 v03r01 – Section 5.8   |

F-TP22-03 (Rev. 06) Page 8 of 104



#### 3.2 RADIATED POWER

#### **Test Overview**

Radiated tests are performed in the Fully-anechoic chamber.

The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna.

#### **Test Settings**

- 1. Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed 1 MHz
- 3. VBW  $\geq$  3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

#### **Test Note**

- 1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
- 2. A half wave dipole is then substituted in place of the EUT. For emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

Where:  $P_d$  is the dipole equivalent power and  $P_g$  is the generator output power into the substitution antenna.

- 3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value.
  - These steps are repeated with the receiving antenna in both vertical and horizontal polarization. the difference between the gain of the horn and an isotropic antenna are taken into consideration
- 4. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- 5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

F-TP22-03 (Rev. 06) Page 9 of 104



#### 3.3 RADIATED SPURIOUS EMISSIONS

#### **Test Overview**

Radiated tests are performed in the Fully-anechoic chamber.

Radiated Spurious Emission Measurements at 3 meters by Substitution Method.

#### **Test Settings**

- 1. RBW = 100 kHz for emissions below 1 GHz and 1 MHz for emissions above 1 GHz
- 2. VBW  $\geq$  3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = Max Hold
- 7. The trace was allowed to stabilize
- 8. Test channel: Low/ Middle/ High
- 9. Frequency range: We are performed all frequency to 10<sup>th</sup> harmonics from 9 kHz.

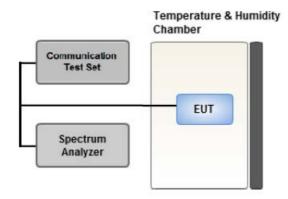
#### **Test Note**

- Measurements value show only up to 3 maximum emissions noted, or would be lesser
  if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit)
  and considered that's already beyond the background noise floor.
- 2. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning. The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets, and channel bandwidth configurations shown in the test data
- 3. For spurious emissions above 1 GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The spurious emissions is calculated by the following formula;

Result (dBm) = Pg (dBm) - cable loss (dB) + antenna gain (dBi)

Where:  $P_g$  is the generator output power into the substitution antenna.


If the fundamental frequency is below 1 GHz, RF output power has been converted to EIRP.

EIRP (dBm) = ERP (dBm) + 2.15

F-TP22-03 (Rev. 06) Page 10 of 104



#### 3.4 PEAK- TO- AVERAGE RATIO



**Test setup** 

#### ① CCDF Procedure for PAPR

#### **Test Settings**

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Set the measurement interval as follows:
  - .- for continuous transmissions, set to 1 ms,
  - .- or burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 4. Record the maximum PAPR level associated with a probability of 0.1 %.

### 2 Alternate Procedure for PAPR

Use one of the procedures presented in 5.2(ANSI C63.26-2015) to measure the total peak power and record as as P Pk.

Use one of the applicable procedures presented 5.2 (ANSI C63.26-2015) to measure the total average power and record as P  $_{\text{Avg}}$ . Determine the P.A.R. from:

P.A.R  $_{(dB)} = P_{Pk (dBm)} - P_{Avg (dBm)}$  (P  $_{Avg} = Average Power + Duty cycle Factor)$ 

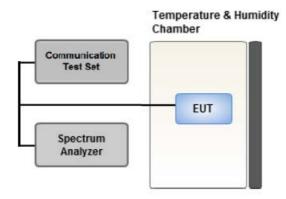
F-TP22-03 (Rev. 06) Page 11 of 104



# **Test Settings(Peak Power)**

The measurement instrument must have a RBW that is greater than or equal to the OBW of the signal to be measured and a VBW  $\geq 3 \times$  RBW.

- 1. Set the RBW  $\geq$  OBW.
- 2. Set VBW  $\geq 3 \times RBW$ .
- 3. Set span  $\geq 2 \times OBW$ .
- 4. Sweep time  $\geq 10 \times \text{(number of points in sweep)} \times \text{(transmission symbol period)}$ .
- 5. Detector = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the peak amplitude level.


#### **Test Settings(Average Power)**

- 1. Set span to  $2 \times$  to  $3 \times$  the OBW.
- 2. Set RBW  $\geq$  OBW.
- 3. Set VBW  $\geq$  3 × RBW.
- 4. Set number of measurement points in sweep  $\geq 2 \times \text{span} / \text{RBW}$ .
- 5. Sweep time:
  - Set  $\geq [10 \times (\text{number of points in sweep}) \times (\text{transmission period})]$  for single sweep (automation-compatible) measurement. The transmission period is the (on + off) time.
- 6. Detector = power averaging (rms).
- 7. Set sweep trigger to "free run."
- 8. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. (To accurately determine the average power over the on and off period of the transmitter, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.)
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. Add [10 log (1/duty cycle)] to the measured maximum power level to compute the average power during continuous transmission. For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is a constant 25 %.

F-TP22-03 (Rev. 06) Page 12 of 104



#### 3.5 OCCUPIED BANDWIDTH.



#### **Test setup**

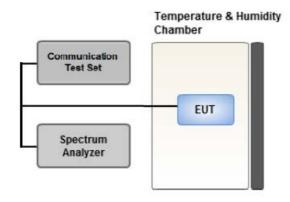
The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

The EUT makes a call to the communication simulator.

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency.

Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth


#### **Test Settings**

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99 % occupied bandwidth and the 26 dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW  $\geq$  3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
  - 1-5% of the 99 % occupied bandwidth observed in Step 7

F-TP22-03 (Rev. 06) Page 13 of 104



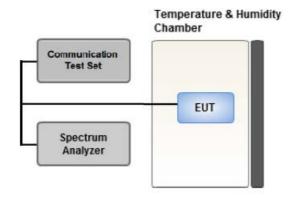
#### 3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL



**Test setup** 

# **Test Overview**

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.


# **Test Settings**

- 1. RBW = 1 MHz
- 2. VBW  $\geq$  3 MHz
- 3. Detector = Peak
- 4. Trace Mode = Max Hold
- 5. Sweep time = auto
- 6. Number of points in sweep  $\geq 2 \times \text{Span} / \text{RBW}$

F-TP22-03 (Rev. 06) Page 14 of 104



#### 3.7 BAND EDGE



**Test setup** 

#### **Test Overview**

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

#### **Test Settings**

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. RBW > 1 % of the emission bandwidth
- 4. VBW > 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points  $\geq 2 \times \text{Span/RBW}$
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize

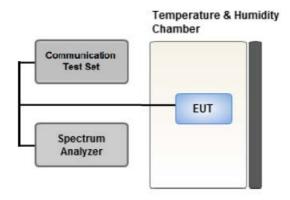
F-TP22-03 (Rev. 06) Page 15 of 104



#### **Test Notes**

According to FCC 22.917, 24.238, 27.53 specified that power of any emission outside of The authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least  $43 + 10 \log(P)$  dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

All measurements were done at 2 channels(low and high operational frequency range.)


The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

Where Margin < 1 dB the emission level is either corrected by 10 log(1 MHz/ RB) or the emission is integrated over a 1 MHz bandwidth to determine the final result. When using the integration method the integration window is either centered on the emission or, for emissions at the band edge, centered by an offset of 500 kHz from the block edge so that the integration window is the 1 MHz adjacent to the block edge.

F-TP22-03 (Rev. 06) Page 16 of 104



#### 3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE



**Test setup** 

#### **Test Overview**

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015.

The frequency stability of the transmitter is measured by:

1. Temperature:

The temperature is varied from -30 °C to +50 °C in 10 °C increments using an environmental chamber.

- 2. Primary Supply Voltage:
  - .- Unless otherwise specified, vary primary supply voltage from 85 % to 115 % of the nominal value for other than hand carried battery equipment.
  - .- For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.

# **Test Settings**

- 1. The carrier frequency of the transmitter is measured at room temperature (20 °C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter.
  - Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10 °C intervals ranging from -30 °C to +50 °C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

F-TP22-03 (Rev. 06) Page 17 of 104



# 3.9 WORST CASE(RADIATED TEST)

- The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- All modes of operation were investigated and the worst case configuration results are reported.

Mode: Stand alone, Stand alone + External accessories (Earphone, AC adapter, etc)

Worst case: Stand alone

- All simultaneous transmission scenarios of operation were investigated, and the test results showed no additional significant emissions relative to the least restrictive limit were observed.

Therefore, only the worst case(stand-alone) results were reported.

- In the case of radiated spurious emissions, all bandwidth of operation were investigated and the worst case bandwidth results are reported. (Worst case: 10 MHz)
- The worst case is reported with the EUT positioning, modulations, and paging service configurations shown in the test data.

#### [Worst case]

| Test Description                         | Modulation | RB size         | RB offset | Axis |
|------------------------------------------|------------|-----------------|-----------|------|
|                                          | QPSK,      |                 |           |      |
| Cff ation Dadieted Danier                | 16QAM,     | See Section 8.1 |           | X    |
| Effective Radiated Power                 | 64QAM,     |                 |           |      |
|                                          | 256QAM     |                 |           |      |
| Radiated Spurious and Harmonic Emissions | QPSK       | See Se          | ction 8.2 | Z    |

F-TP22-03 (Rev. 06) Page 18 of 104



# 3.10 WORST CASE(CONDUCTED TEST)

- All modes of operation were investigated and the worst case configuration results are reported.

# [ Worst case ]

| Test Description                                       | Modulation | Bandwidth<br>(MHz) | Frequency | RB size  | RB offset |
|--------------------------------------------------------|------------|--------------------|-----------|----------|-----------|
|                                                        | QPSK,      |                    |           |          |           |
| Ossuminal Bonduvidah                                   | 16QAM,     | 1 4 2 5 10         | NA: -l    | E. II DD | 0         |
| Occupied Bandwidth                                     | 64QAM,     | 1.4, 3, 5, 10      | Mid       | Full RB  | 0         |
|                                                        | 256QAM     |                    |           |          |           |
|                                                        | QPSK,      |                    |           |          |           |
| Peak-To-Average Ratio                                  | 16QAM,     | 1.4, 3, 5, 10      | Mid       | Full RB  | 0         |
| reak-10-Average Ratio                                  | 64QAM,     | 1.4, 3, 3, 10      | MIG       |          |           |
|                                                        | 256QAM     |                    |           |          |           |
|                                                        |            | 1.4                | Low       | 1        | 0         |
|                                                        |            |                    | High      | 1        | 5         |
|                                                        |            | 3                  | Low       | 1        | 0         |
|                                                        |            |                    | High      | 1        | 14        |
| Dand Edge                                              |            | 5                  | Low       | 1        | 0         |
| Band Edge                                              | QPSK       |                    | High      | 1        | 24        |
|                                                        |            | 10                 | Low       | 1        | 0         |
|                                                        |            |                    | High      | 1        | 49        |
|                                                        |            |                    | Low,      | 5 U.D.D  |           |
|                                                        |            | 1.4, 3, 5, 10      | High      | Full RB  | 0         |
| Spurious and Harmonic Emissions at<br>Antenna Terminal |            |                    | Low,      |          |           |
|                                                        | QPSK       | 1.4, 3, 5, 10      | Mid,      | 1        | 0         |
|                                                        |            |                    | High      |          |           |

F-TP22-03 (Rev. 06) Page 19 of 104



# 4. LIST OF TEST EQUIPMENT

| Equipment                                            | Model                   | Manufacture         | Serial No.  | Due to<br>Calibration | Calibration<br>Interval |
|------------------------------------------------------|-------------------------|---------------------|-------------|-----------------------|-------------------------|
| RF Switching System                                  | Switch box(1 G HPF+LNA) | HCT CO., LTD.,      | F2L2        | 12/12/2025            | Annual                  |
| RF Switching System                                  | Switch box(3 G HPF+LNA) | HCT CO., LTD.,      | F2L3        | 12/12/2025            | Annual                  |
| RF Switching System                                  | Switch box(LNA)         | HCT CO., LTD.,      | F2L5        | 12/12/2025            | Annual                  |
| RF Switching System                                  | Switch box(6 G HPF+LNA) | HCT CO., LTD.,      | F2L14       | 12/12/2025            | Annual                  |
| Power Amplifier                                      | CBL18265035             | CERNEX              | 22966       | 11/07/2025            | Annual                  |
| Power Amplifier                                      | CBL26405040             | CERNEX              | 25956       | 02/26/2025            | Annual                  |
| Power Splitter(DC ~ 26.5 GHz)                        | 11667B                  | Hewlett<br>Packard  | 5001        | 04/17/2025            | Annual                  |
| DC Power Supply                                      | E3632A                  | Agilent             | MY40010147  | 08/06/2025            | Annual                  |
| Dipole Antenna                                       | UHAP                    | Schwarzbeck         | 01274       | 03/10/2026            | Biennial                |
| Dipole Antenna                                       | UHAP                    | Schwarzbeck         | 01288       | 08/07/2026            | Biennial                |
| Chamber                                              | SU-642                  | ESPEC               | 93008124    | 02/19/2025            | Annual                  |
| Horn Antenna(1 ~ 18 GHz)                             | BBHA 9120D              | Schwarzbeck         | 03197       | 11/28/2025            | Biennial                |
| Horn Antenna(1 ~ 18 GHz)                             | BBHA 9120D              | Schwarzbeck         | 03201       | 11/28/2025            | Biennial                |
| Horn Antenna(15 ~ 40 GHz)                            | BBHA 9170               | Schwarzbeck         | BBHA9170342 | 09/20/2026            | Biennial                |
| Horn Antenna(15 ~ 40 GHz)                            | BBHA 9170               | Schwarzbeck         | BBHA9170124 | 03/28/2025            | Biennial                |
| Signal Analyzer(10 Hz ~ 26.5 GHz)                    | N9020A                  | Agilent             | MY52090906  | 04/19/2025            | Annual                  |
| ATTENUATOR(20 dB)                                    | 8493C                   | Hewlett<br>Packard  | 17280       | 04/17/2025            | Annual                  |
| Spectrum Analyzer(10 Hz ~ 40 GHz)                    | FSV40                   | ROHDE &<br>SCHWARZ  | 101733      | 09/19/2025            | Annual                  |
| Base Station                                         | 8960 (E5515C)           | Agilent             | MY48360800  | 08/05/2025            | Annual                  |
| Loop Antenna(9 kHz ~ 30 MHz)                         | FMZB1513                | Schwarzbeck         | 1513-333    | 03/07/2026            | Biennial                |
| Trilog Broadband Antenna                             | VULB9168                | Schwarzbeck         | 895         | 08/28/2026            | Biennial                |
| Trilog Broadband Antenna                             | VULB9168                | Schwarzbeck         | 1135        | 08/19/2026            | Biennial                |
| Radio Communication Test<br>Station                  | MT8000A                 | Anritsu Corp.       | 6272613402  | 08/28/2025            | Annual                  |
| SIGNAL GENERATOR<br>(100 kHz ~ 40 GHz)               | SMB100A                 | REOHDE &<br>SCHWARZ | 177633      | 07/26/2025            | Annual                  |
| Signal Analyzer(5 Hz ~ 40.0 GHz)                     | N9030B                  | KEYSIGHT            | MY55480167  | 05/17/2025            | Annual                  |
| Signal & Spectrum Analyzer (2<br>Hz~67 GHz)          | FSW67                   | REOHDE &<br>SCHWARZ | 101736      | 05/23/2025            | Annual                  |
| FCC LTE Mobile Conducted RF Automation Test Software | -                       | HCT CO., LTD.,      | -           | -                     | -                       |

# Note:

- 1. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.
- 2. Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

F-TP22-03 (Rev. 06) Page 20 of 104



#### 5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the  $U_{CISPR}$  measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

| Parameter                              | Expanded Uncertainty (±kHz)                     |
|----------------------------------------|-------------------------------------------------|
| Occupied Bandwidth                     | 95 (Confidence level about 95 %, <i>k</i> =2)   |
| Frequency stability                    | 28 (Confidence level about 95 %, <i>k</i> =2)   |
| Parameter                              | Expanded Uncertainty (±dB)                      |
| Block Edge                             | 0.70 (Confidence level about 95 %, <i>k</i> =2) |
| Conducted Spurious Emissions           | 1.18 (Confidence level about 95 %, <i>k</i> =2) |
| Peak- to- Average Ratio                | 0.68 (Confidence level about 95 %, <i>k</i> =2) |
| Radiated Power                         | 4.74 (Confidence level about 95 %, <i>k</i> =2) |
| Radiated Disturbance (9 kHz ~ 30 MHz)  | 4.36 (Confidence level about 95 %, <i>k</i> =2) |
| Radiated Disturbance (30 MHz ~ 1 GHz)  | 5.70 (Confidence level about 95 %, <i>k</i> =2) |
| Radiated Disturbance (1 GHz ~ 18 GHz)  | 5.52 (Confidence level about 95 %, <i>k</i> =2) |
| Radiated Disturbance (18 GHz ~ 40 GHz) | 5.66 (Confidence level about 95 %, <i>k</i> =2) |
| Radiated Disturbance (Above 40 GHz)    | 5.58 (Confidence level about 95 %, <i>k</i> =2) |

F-TP22-03 (Rev. 06) Page 21 of 104



# **6. SUMMARY OF TEST RESULTS**

6.1 Test Condition: Conducted Test

| Test Description                                                       | FCC Part<br>Section(s)   | Test Limit                                                                  | Test Result |
|------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------|-------------|
| Occupied Bandwidth                                                     | § 2.1049                 | N/A                                                                         | PASS        |
| Band Edge / Spurious and<br>Harmonic Emissions at Antenna<br>Terminal. | § 2.1051,<br>§ 22.917(a) | < 43 + 10log10 (P[Watts]) at Band Edge<br>and for all out-of-band emissions | PASS        |
| Conducted Output Power                                                 | § 2.1046                 | N/A                                                                         | See Note1   |
| Peak- to- Average Ratio                                                | § 22.913(d)              | < 13 dB                                                                     | PASS        |
| Frequency stability / variation of ambient temperature                 | § 2.1055,<br>§ 22.355    | < 2.5 ppm                                                                   | PASS        |

# Note:

1. See SAR Report

6.2 Test Condition: Radiated Test

| Test Description               | FCC Part<br>Section(s) | Test Limit                    | Test Result |
|--------------------------------|------------------------|-------------------------------|-------------|
| Effective Radiated Power       | § 22.913(a)(5)         | < 7 Watts max. ERP            | PASS        |
| Radiated Spurious and Harmonic | § 2.1053,              | < 43 + 10log10 (P[Watts]) for | DACC        |
| Emissions                      | § 22.917(a)            | all out-of band emissions     | PASS        |

F-TP22-03 (Rev. 06) Page 22 of 104



#### 7. SAMPLE CALCULATION

#### 7.1 ERP Sample Calculation

| Ch.     | Ch./ Freq. |             | Substitute  | Ant. Gain | C.1  | Dol  | El    | RP    |
|---------|------------|-------------|-------------|-----------|------|------|-------|-------|
| channel | Freq.(MHz) | Level (dBm) | Level (dBm) | (dBd)     | C.L  | Pol. | W     | dBm   |
| 128     | 824.20     | -21.37      | 38.40       | -10.61    | 0.95 | Н    | 0.483 | 26.84 |

### ERP = Substitute LEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power.

#### 7.2 EIRP Sample Calculation

| Ch.     | Ch./ Freq. |             | Substitute  | Ant. Gain | CI   | Dol  | EII   | RP    |
|---------|------------|-------------|-------------|-----------|------|------|-------|-------|
| channel | Freq.(MHz) | Level (dBm) | Level (dBm) | (dBi)     | C.L  | Pol. | w     | dBm   |
| 20175   | 1,732.50   | -15.75      | 18.45       | 9.90      | 1.76 | Н    | 0.456 | 26.59 |

# EIRP = Substitute LEVEL(dBm) + Ant. Gain – CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of equivalent isotropic radiated power.

F-TP22-03 (Rev. 06) Page 23 of 104



# 7.3. Emission Designator

# **GSM Emission Designator**

Emission Designator = 249KGXW

GSM BW = 249 kHz

G = Phase Modulation

X = Cases not otherwise covered

W = Combination (Audio/Data)

# **WCDMA Emission Designator**

Emission Designator = 4M17F9W

WCDMA BW = 4.17 MHz

F = Frequency Modulation

9 = Composite Digital Info

W = Combination (Audio/Data)

# **QAM Modulation**

Emission Designator = 4M48W7D

LTE BW = 4.48 MHz

W = Amplitude/Angle Modulated

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

### **EDGE Emission Designator**

Emission Designator = 249KG7W

GSM BW = 249 kHz

G = Phase Modulation

7 = Quantized/Digital Info

W = Combination (Audio/Data)

# **QPSK Modulation**

Emission Designator = 4M48G7D

LTE BW = 4.48 MHz

G = Phase Modulation

7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand

F-TP22-03 (Rev. 06) Page 24 of 104



# 8. TEST DATA

# **8.1 EFFECTIVE RADIATED POWER**

| Гиол          | Mod/              |            | Measured       | Substitute     | Ant.          |      |     | Limit      | El    | RP    | F    | RB     |
|---------------|-------------------|------------|----------------|----------------|---------------|------|-----|------------|-------|-------|------|--------|
| Freq<br>(MHz) | Mod/<br>Bandwidth | Modulation | Level<br>(dBm) | Level<br>(dBm) | Gain<br>(dBd) | C.L  | Pol | W          | w     | dBm   | Size | Offset |
|               |                   | QPSK       | -28.61         | 34.38          | -9.95         | 1.44 | Н   |            | 0.199 | 22.99 | - 1  |        |
| 0247          |                   | 16-QAM     | -29.14         | 33.85          | -9.95         | 1.44 | Н   |            | 0.176 | 22.46 |      | 1.4    |
| 824.7         |                   | 64-QAM     | -30.24         | 32.75          | -9.95         | 1.44 | Н   |            | 0.137 | 21.36 |      | 14     |
|               |                   | 256-QAM    | -33.35         | 29.64          | -9.95         | 1.44 | Н   |            | 0.067 | 18.25 |      |        |
|               |                   | QPSK       | -29.28         | 33.58          | -9.90         | 1.45 | Н   |            | 0.167 | 22.23 |      |        |
| 006.5         | LTE B5/           | 16-QAM     | -29.97         | 32.89          | -9.90         | 1.45 | Н   | 7.00       | 0.143 | 21.54 | 1    | 0      |
| 836.5         | 1.4 MHz           | 64-QAM     | -31.07         | 31.79          | -9.90         | 1.45 | Н   | < 7.00 0.1 | 0.111 | 20.44 |      |        |
|               |                   | 256-QAM    | -34.18         | 28.68          | -9.90         | 1.45 | Н   |            | 0.054 | 17.33 |      |        |
|               | <del>-</del>      | QPSK       | -29.91         | 33.18          | -9.85         | 1.45 | Н   |            | 0.154 | 21.88 |      |        |
| 0.40.0        |                   | 16-QAM     | -30.59         | 32.50          | -9.85         | 1.45 | Н   |            | 0.132 | 21.20 | 1    |        |
| 848.3         |                   | 64-QAM     | -31.75         | 31.34          | -9.85         | 1.45 | Н   |            | 0.101 | 20.04 |      | 0      |
|               |                   | 256-QAM    | -34.83         | 28.26          | -9.85         | 1.45 | Н   |            | 0.050 | 16.96 |      |        |

|               | Mad/              |            | Measured       | Substitute     | Ant.          |      |     | Limit  | El          | RP    | F    | RB     |
|---------------|-------------------|------------|----------------|----------------|---------------|------|-----|--------|-------------|-------|------|--------|
| Freq<br>(MHz) | Mod/<br>Bandwidth | Modulation | Level<br>(dBm) | Level<br>(dBm) | Gain<br>(dBd) | C.L  | Pol | w      | w           | dBm   | Size | Offset |
|               |                   | QPSK       | -28.58         | 34.38          | -9.95         | 1.44 | Н   |        | 0.199       | 22.99 | - 1  |        |
| 005.5         |                   | 16-QAM     | -29.25         | 33.71          | -9.95         | 1.44 | Н   |        | 0.171       | 22.32 |      |        |
| 825.5         |                   | 64-QAM     | -30.25         | 32.71          | -9.95         | 1.44 | Н   |        | 0.136       | 21.32 |      | 0      |
|               |                   | 256-QAM    | -33.18         | 29.78          | -9.95         | 1.44 | Н   |        | 0.069       | 18.39 |      |        |
|               | 7                 | QPSK       | -29.18         | 33.68          | -9.90         | 1.45 | Н   |        | 0.171       | 22.33 |      |        |
| 026.5         | LTE B5/           | 16-QAM     | -29.86         | 33.00          | -9.90         | 1.45 | Н   | 7.00   | 0.146       | 21.65 | 1    | 0      |
| 836.5         | 3 MHz             | 64-QAM     | -30.95         | 31.91          | -9.90         | 1.45 | Н   | < 7.00 | 0.114       | 20.56 |      |        |
|               |                   | 256-QAM    | -34.07         | 28.79          | -9.90         | 1.45 | Н   | _      | 0.055       | 17.44 |      |        |
|               |                   | QPSK       | -29.76         | 33.46          | -9.85         | 1.45 | Н   | _      | 0.164       | 22.16 |      |        |
| 0.47.5        |                   | 16-QAM     | -30.45         | 32.77          | -9.85         | 1.45 | Н   | _      | 0.140 21.47 | 21.47 |      |        |
| 847.5         |                   | 64-QAM     | -31.52         | 31.70          | -9.85         | 1.45 | Н   |        | 0.110       | 20.40 |      | 0      |
|               |                   | 256-QAM    | -34.61         | 28.61          | -9.85         | 1.45 | Н   |        |             | 17.31 |      |        |

F-TP22-03 (Rev. 06) Page 25 of 104



|               | 14 a d /          |            | Measured       | Substitute     | Ant.          |      |     | Limit  | El          | RP    | F    | ₹B     |
|---------------|-------------------|------------|----------------|----------------|---------------|------|-----|--------|-------------|-------|------|--------|
| Freq<br>(MHz) | Mod/<br>Bandwidth | Modulation | Level<br>(dBm) | Level<br>(dBm) | Gain<br>(dBd) | C.L  | Pol | W      | w           | dBm   | Size | Offset |
|               |                   | QPSK       | -28.53         | 34.38          | -9.95         | 1.44 | Н   |        | 0.199       | 22.99 |      | 0      |
| 926 5         |                   | 16-QAM     | -29.13         | 33.78          | -9.95         | 1.44 | Н   |        | 0.173       | 22.39 |      |        |
| 826.5         |                   | 64-QAM     | -30.63         | 32.28          | -9.95         | 1.44 | Н   |        | 0.123       | 20.89 | 1    |        |
|               |                   | 256-QAM    | -33.21         | 29.70          | -9.95         | 1.44 | Н   |        | 0.068       | 18.31 |      |        |
| -             |                   | QPSK       | -29.04         | 33.82          | -9.90         | 1.45 | Н   |        | 0.177       | 22.47 | _    | 0      |
| 026.5         | LTE B5/           | 16-QAM     | -29.76         | 33.10          | -9.90         | 1.45 | Н   | 7.00   | 0.150       | 21.75 |      |        |
| 836.5         | 5 MHz             | 64-QAM     | -30.82         | 32.04          | -9.90         | 1.45 | Н   | < 7.00 | 0.117       | 20.69 | 1    | 0      |
|               |                   | 256-QAM    | -33.94         | 28.92          | -9.90         | 1.45 | Н   |        | 0.057       | 17.57 |      |        |
|               |                   | QPSK       | -29.50         | 33.79          | -9.85         | 1.45 | Н   |        | 0.177       | 22.49 |      |        |
| 046 5         |                   | 16-QAM     | -30.38         | 32.91          | -9.85         | 1.45 | Н   |        | 0.145 21.61 |       |      |        |
| 846.5         |                   | 64-QAM     | -31.44         | 31.85          | -9.85         | 1.45 | Н   |        | 0.114       | 20.55 | 1    | 0      |
|               |                   | 256-QAM    | -34.50         | 28.79          | -9.85         | 1.45 | Н   |        | 0.056       | 17.49 |      |        |

| From          | Mod/      |            | Measured       | Substitute     | Ant.          |      |     | Limit  | EI    | RP    | F    | RB     |
|---------------|-----------|------------|----------------|----------------|---------------|------|-----|--------|-------|-------|------|--------|
| Freq<br>(MHz) | Bandwidth | Modulation | Level<br>(dBm) | Level<br>(dBm) | Gain<br>(dBd) | C.L  | Pol | W      | w     | dBm   | Size | Offset |
| 829.0         |           | QPSK       | -28.46         | 34.39          | -9.95         | 1.44 | Н   |        | 0.200 | 23.00 |      |        |
|               |           | 16-QAM     | -29.37         | 33.48          | -9.95         | 1.44 | Н   |        | 0.162 | 22.09 | 1    | 0      |
|               | 64-QAM    | -30.42     | 32.43          | -9.95          | 1.44          | Н    |     | 0.127  | 21.04 | 1     | 0    |        |
|               | 256-QAM   | -33.41     | 29.44          | -9.95          | 1.44          | Н    |     | 0.064  | 18.05 |       |      |        |
|               |           | QPSK       | -28.76         | 34.10          | -9.90         | 1.45 | Н   |        | 0.188 | 22.75 | 1    |        |
| 836.5         | LTE B5/   | 16-QAM     | -29.57         | 33.29          | -9.90         | 1.45 | Н   | 17.00  | 0.156 | 21.94 |      |        |
| 830.5         | 10 MHz    | 64-QAM     | -30.63         | 32.23          | -9.90         | 1.45 | Н   | < 7.00 | 0.122 | 20.88 |      | 0      |
|               |           | 256-QAM    | -33.60         | 29.26          | -9.90         | 1.45 | Н   |        | 0.062 | 17.91 |      |        |
|               |           | QPSK       | -29.39         | 33.85          | -9.85         | 1.45 | Н   |        | 0.180 | 22.55 |      |        |
| 844.0         |           | 16-QAM     | -30.20         | 33.04          | -9.85         | 1.45 | Н   |        | 0.149 | 21.74 |      |        |
|               |           | 64-QAM     | -31.28         | 31.96          | -9.85         | 1.45 | Н   |        | 0.116 | 20.66 | _    | 0      |
|               |           | 256-QAM    | -34.31         | 28.93          | -9.85         | 1.45 | Н   |        | 0.058 | 17.63 |      |        |

F-TP22-03 (Rev. 06) Page 26 of 104



#### **8.2 RADIATED SPURIOUS EMISSIONS**

■ MODE: <u>LTE B5</u>

■ MODULATION SIGNAL: 10 MHz QPSK

■ DISTANCE: <u>3 meters</u>

| Ch               | Freq     | Measured       | Ant. Gain | Substitute     | <b>C</b> I | Pol | Result | Limit  | F    | RB     |
|------------------|----------|----------------|-----------|----------------|------------|-----|--------|--------|------|--------|
| Cli              | (MHz)    | Level<br>(dBm) | (dBi)     | Level<br>(dBm) | C.L        | POI | (dBm)  | (dBm)  | Size | Offset |
|                  | 1 658.00 | -49.43         | 9.51      | -64.55         | 2.03       | Н   | -57.07 | -13.00 |      |        |
| 20450<br>(829.0) | 2 487.00 | -52.73         | 10.31     | -63.91         | 2.53       | V   | -56.13 | -13.00 | 1    | 0      |
| (823.0)          | 3 316.00 | -53.13         | 11.09     | -61.50         | 2.99       | Н   | -53.40 | -13.00 |      |        |
|                  | 1 673.00 | -48.32         | 9.60      | -63.59         | 2.05       | Н   | -56.04 | -13.00 |      |        |
| 20525<br>(836.5) | 2 509.50 | -51.69         | 10.26     | -62.97         | 2.51       | V   | -55.22 | -13.00 | 1    | 0      |
| (030.3)          | 3 346.00 | -53.49         | 11.10     | -62.15         | 2.96       | Н   | -54.01 | -13.00 |      |        |
|                  | 1 688.00 | -48.98         | 9.70      | -64.26         | 2.06       | V   | -56.62 | -13.00 |      |        |
| 20600            | 2 532.00 | -51.46         | 10.25     | -62.73         | 2.54       | V   | -55.02 | -13.00 | 1    | 0      |
| (844.0)          | 3 376.00 | -53.02         | 11.15     | -61.99         | 2.98       | Н   | -53.82 | -13.00 |      |        |

F-TP22-03 (Rev. 06) Page 27 of 104



#### **8.3 PEAK-TO-AVERAGE RATIO**

| Band | Band<br>Width | Frequency<br>(MHz) | Modulation | Resource<br>Block Size | Resource<br>Block<br>Offset | Data (dB) |
|------|---------------|--------------------|------------|------------------------|-----------------------------|-----------|
|      |               |                    | QPSK       |                        |                             | 5.41      |
|      | 1.4841        |                    | 16-QAM     |                        |                             | 6.06      |
|      | 1.4 MHz       |                    | 64-QAM     | 6                      |                             | 6.35      |
|      |               |                    | 256-QAM    |                        |                             | 6.39      |
|      |               |                    | QPSK       | 15                     |                             | 5.41      |
|      |               |                    | 16-QAM     |                        |                             | 5.99      |
|      | 3 MHz         |                    | 64-QAM     |                        |                             | 6.28      |
| _    |               |                    | 256-QAM    |                        |                             | 6.42      |
| 5    |               | 836.5              | QPSK       |                        | 0                           | 5.41      |
|      |               |                    | 16-QAM     |                        |                             | 6.02      |
|      | 5 MHz         |                    | 64-QAM     | 25                     |                             | 6.30      |
|      |               |                    | 256-QAM    |                        |                             | 6.45      |
|      |               |                    | QPSK       |                        |                             | 5.50      |
|      |               |                    | 16-QAM     |                        |                             | 6.05      |
|      | 10 MHz        |                    | 64-QAM     | 50                     |                             | 6.31      |
|      |               |                    | 256-QAM    |                        |                             | 6.42      |

# Note:

1. Plots of the EUT's Peak- to- Average Ratio are shown Page 36~ 51.

F-TP22-03 (Rev. 06) Page 28 of 104



#### **8.4 OCCUPIED BANDWIDTH**

| Band | Band<br>Width | Frequency<br>(MHz) | Modulation | Resource<br>Block Size | Resource<br>Block<br>Offset | Data (MHz) |
|------|---------------|--------------------|------------|------------------------|-----------------------------|------------|
|      |               |                    | QPSK       |                        |                             | 1.0970     |
|      |               |                    | 16-QAM     |                        |                             | 1.0956     |
|      | 1.4 MHz       |                    | 64-QAM     | 6                      |                             | 1.0958     |
|      |               |                    | 256-QAM    |                        |                             | 1.0965     |
|      |               |                    | QPSK       | 15                     |                             | 2.7152     |
|      | 2.444         |                    | 16-QAM     |                        |                             | 2.7040     |
|      | 3 MHz         |                    | 64-QAM     |                        |                             | 2.7026     |
| -    |               |                    | 256-QAM    |                        |                             | 2.7147     |
| 5    |               | 836.5              | QPSK       |                        | 0                           | 4.5258     |
|      | E MIL         |                    | 16-QAM     |                        |                             | 4.5106     |
|      | 5 MHz         |                    | 64-QAM     | 25                     |                             | 4.5217     |
|      |               |                    | 256-QAM    |                        |                             | 4.5362     |
|      |               |                    | QPSK       |                        |                             | 9.0137     |
|      | 10 MIL        |                    | 16-QAM     | F0                     |                             | 8.9998     |
|      | 10 MHz        |                    | 64-QAM     | 50                     |                             | 9.0097     |
|      |               |                    | 256-QAM    |                        |                             | 9.0061     |

# Note:

1. Plots of the EUT's Occupied Bandwidth are shown Page 52 ~ 67.

F-TP22-03 (Rev. 06) Page 29 of 104



#### **8.5 CONDUCTED SPURIOUS EMISSIONS**

| Band | Band<br>Width<br>(MHz) | Frequency<br>(MHz) | Frequency of<br>Maximum Harmonic<br>(GHz) | Factor<br>(dB) | Measurement<br>Maximum Data<br>(dBm) | Result<br>(dBm) | Limit<br>(dBm) |
|------|------------------------|--------------------|-------------------------------------------|----------------|--------------------------------------|-----------------|----------------|
|      |                        | 824.7              | 5.9622                                    | 28.591         | -57.586                              | -28.995         |                |
|      | 1.4                    | 836.5              | 3.6790                                    | 27.976         | -57.762                              | -29.786         |                |
|      |                        | 848.3              | 3.7089                                    | 27.976         | -58.224                              | -30.248         |                |
|      |                        | 826.5              | 3.7089                                    | 27.976         | -57.687                              | -29.711         |                |
|      | 3                      | 836.5              | 7.2981                                    | 28.591         | -58.290                              | -29.699         | 12.00          |
| 5    |                        | 846.5              | 3.7488                                    | 27.976         | -57.038                              | -29.062         |                |
| 5    |                        | 826.5              | 3.1706                                    | 27.976         | -58.471                              | -30.495         | -13.00         |
|      | 5                      | 836.5              | 3.2005                                    | 27.976         | -57.605                              | -29.629         |                |
|      |                        | 846.5              | 3.7089                                    | 27.976         | -58.177                              | -30.201         |                |
|      |                        | 829.0              | 3.6990                                    | 27.976         | -57.946                              | -29.970         |                |
|      | 10                     | 836.5              | 3.6790                                    | 27.976         | -57.803                              | -29.827         |                |
|      |                        | 844.0              | 3.7089                                    | 27.976         | -57.425                              | -29.449         |                |

# Note:

- 1. Plots of the EUT's Conducted Spurious Emissions are shown Page  $68 \sim 79$ .
- 2. Conducted Spurious Emissions was Tested QPSK Modulation, Resource Block Size 1 and Resource Block Offset 0
- 3. Result (dBm) = Measurement Maximum Data (dBm) + Factor (dB)
- 4. Factor (dB) = Cable Loss + Attenuator + Power Splitter

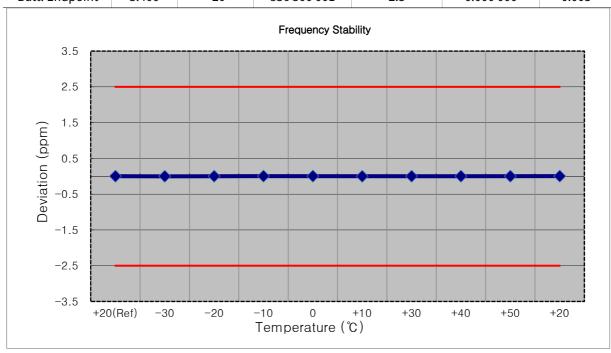
| Frequency Range (GHz) | Factor [dB] |
|-----------------------|-------------|
| 0.03 - 1              | 25.270      |
| 1 - 5                 | 27.976      |
| 5 - 10                | 28.591      |
| 10 - 15               | 29.116      |
| 15 - 20               | 29.489      |
| Above 20(26.5)        | 30.131      |

# 8.6 BAND EDGE

- Plots of the EUT's Band Edge are shown Page 80  $^{\sim}$  103.

F-TP22-03 (Rev. 06) Page 30 of 104




# 8.7 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

■ MODE: <u>LTE B5</u>

■ OPERATING FREQUENCY: 836,500,000 Hz
 ■ CHANNEL: 20525 (1.4 MHz)
 ■ REFERENCE VOLTAGE: 3.860 VDC

■ DEVIATION LIMIT:  $\pm 0.000 25 \%$  or 2.5 ppm

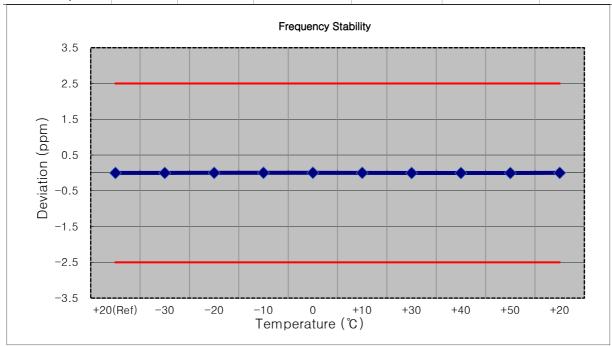
| Voltage        | Power | Temp.    | Frequency   | Frequency  | Deviation |        |
|----------------|-------|----------|-------------|------------|-----------|--------|
| (%)            | (VDC) | (°C)     | (Hz)        | Error (Hz) | (%)       | ppm    |
| 100 %          |       | +20(Ref) | 836 499 998 | 0.0        | 0.000 000 | 0.000  |
| 100 %          |       | -30      | 836 499 996 | -1.9       | 0.000 000 | -0.002 |
| 100 %          |       | -20      | 836 500 000 | 1.5        | 0.000 000 | 0.002  |
| 100 %          |       | -10      | 836 500 001 | 2.4        | 0.000 000 | 0.003  |
| 100 %          | 3.860 | 0        | 836 500 000 | 2.0        | 0.000 000 | 0.002  |
| 100 %          |       | +10      | 836 499 997 | -1.7       | 0.000 000 | -0.002 |
| 100 %          |       | +30      | 836 500 000 | 1.3        | 0.000 000 | 0.002  |
| 100 %          |       | +40      | 836 500 000 | 1.6        | 0.000 000 | 0.002  |
| 100 %          |       | +50      | 836 500 000 | 1.5        | 0.000 000 | 0.002  |
| Batt. Endpoint | 3.400 | +20      | 836 500 001 | 2.3        | 0.000 000 | 0.003  |



F-TP22-03 (Rev. 06) Page 31 of 104



■ MODE: <u>LTE B5</u>


■ OPERATING FREQUENCY: 836,500,000 Hz

■ CHANNEL: 20525(3 MHz)

■ REFERENCE VOLTAGE: 3.860 VDC

■ DEVIATION LIMIT:  $\pm 0.00025\%$  or 2.5 ppm

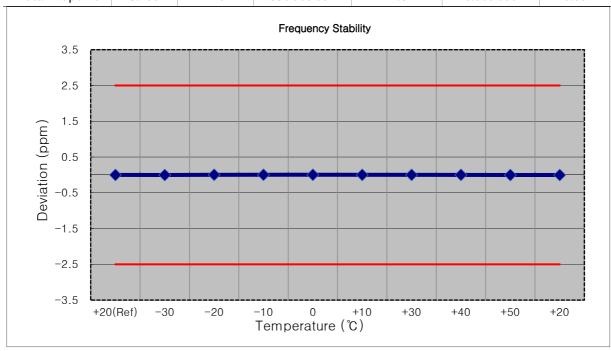
| Voltage        | Power | Temp.    | Frequency   | Frequency  | Deviation | ppm    |
|----------------|-------|----------|-------------|------------|-----------|--------|
| (%)            | (VDC) | (°C)     | (Hz)        | Error (Hz) | (%)       |        |
| 100 %          | 3.860 | +20(Ref) | 836 500 003 | 0.0        | 0.000 000 | 0.000  |
| 100 %          |       | -30      | 836 500 002 | -1.1       | 0.000 000 | -0.001 |
| 100 %          |       | -20      | 836 500 005 | 2.1        | 0.000 000 | 0.003  |
| 100 %          |       | -10      | 836 500 006 | 2.8        | 0.000 000 | 0.003  |
| 100 %          |       | 0        | 836 500 006 | 3.0        | 0.000 000 | 0.004  |
| 100 %          |       | +10      | 836 500 004 | 1.4        | 0.000 000 | 0.002  |
| 100 %          |       | +30      | 836 500 001 | -2.1       | 0.000 000 | -0.003 |
| 100 %          |       | +40      | 836 500 001 | -2.1       | 0.000 000 | -0.003 |
| 100 %          |       | +50      | 836 500 001 | -1.8       | 0.000 000 | -0.002 |
| Batt. Endpoint | 3.400 | +20      | 836 500 005 | 1.9        | 0.000 000 | 0.002  |



F-TP22-03 (Rev. 06) Page 32 of 104



■ MODE: <u>LTE B5</u>


■ OPERATING FREQUENCY: 836,500,000 Hz

■ CHANNEL: 20525(5 MHz)

■ REFERENCE VOLTAGE: 3.860 VDC

■ DEVIATION LIMIT:  $\pm 0.00025\%$  or 2.5 ppm

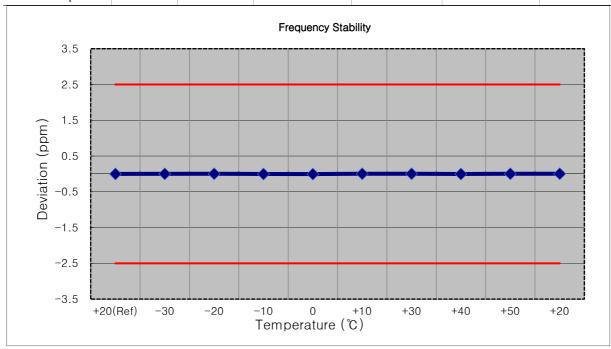
|                | _     |          |             | _          |           |        |
|----------------|-------|----------|-------------|------------|-----------|--------|
| Voltage        | Power | Temp.    | Frequency   | Frequency  | Deviation | - ppm  |
| (%)            | (VDC) | (°C)     | (Hz)        | Error (Hz) | (%)       |        |
| 100 %          | 3.860 | +20(Ref) | 836 500 002 | 0.0        | 0.000 000 | 0.000  |
| 100 %          |       | -30      | 836 500 000 | -1.9       | 0.000 000 | -0.002 |
| 100 %          |       | -20      | 836 500 005 | 2.8        | 0.000 000 | 0.003  |
| 100 %          |       | -10      | 836 500 006 | 3.9        | 0.000 000 | 0.005  |
| 100 %          |       | 0        | 836 500 005 | 2.7        | 0.000 000 | 0.003  |
| 100 %          |       | +10      | 836 500 004 | 2.0        | 0.000 000 | 0.002  |
| 100 %          |       | +30      | 836 500 005 | 2.2        | 0.000 000 | 0.003  |
| 100 %          |       | +40      | 836 500 005 | 2.2        | 0.000 000 | 0.003  |
| 100 %          |       | +50      | 836 500 001 | -1.8       | 0.000 000 | -0.002 |
| Batt. Endpoint | 3.400 | +20      | 836 500 001 | -1.8       | 0.000 000 | -0.002 |



F-TP22-03 (Rev. 06) Page 33 of 104



■ MODE: <u>LTE B5</u>


■ OPERATING FREQUENCY: 836,500,000 Hz

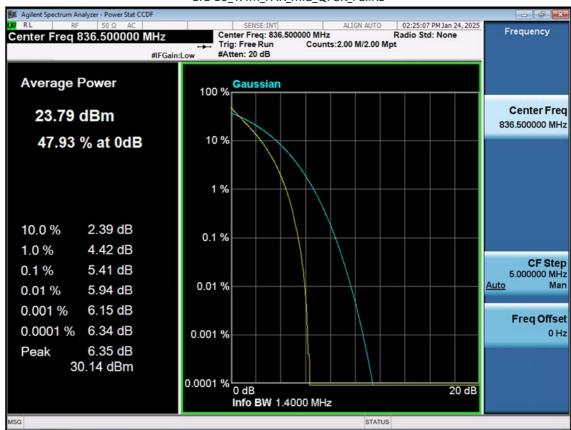
■ CHANNEL: 20525(10 MHz)

■ REFERENCE VOLTAGE: 3.860 VDC

■ DEVIATION LIMIT:  $\pm 0.00025\%$  or 2.5 ppm

|                |       |          | 1           |            | 1         |        |
|----------------|-------|----------|-------------|------------|-----------|--------|
| Voltage        | Power | Temp.    | Frequency   | Frequency  | Deviation | - ppm  |
| (%)            | (VDC) | (°C)     | (Hz)        | Error (Hz) | (%)       |        |
| 100 %          | 3.860 | +20(Ref) | 836 500 004 | 0.0        | 0.000 000 | 0.000  |
| 100 %          |       | -30      | 836 500 006 | 2.2        | 0.000 000 | 0.003  |
| 100 %          |       | -20      | 836 500 007 | 3.0        | 0.000 000 | 0.004  |
| 100 %          |       | -10      | 836 500 002 | -2.1       | 0.000 000 | -0.003 |
| 100 %          |       | 0        | 836 500 000 | -3.8       | 0.000 000 | -0.005 |
| 100 %          |       | +10      | 836 500 007 | 3.4        | 0.000 000 | 0.004  |
| 100 %          |       | +30      | 836 500 007 | 3.1        | 0.000 000 | 0.004  |
| 100 %          |       | +40      | 836 500 002 | -1.5       | 0.000 000 | -0.002 |
| 100 %          |       | +50      | 836 500 007 | 2.7        | 0.000 000 | 0.003  |
| Batt. Endpoint | 3.400 | +20      | 836 500 007 | 2.8        | 0.000 000 | 0.003  |

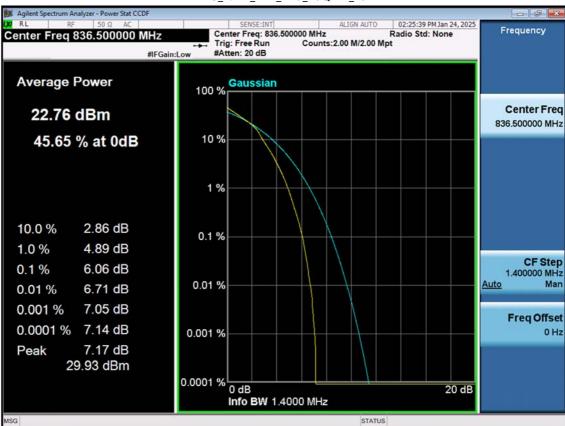



F-TP22-03 (Rev. 06) Page 34 of 104



# 9. TEST PLOTS

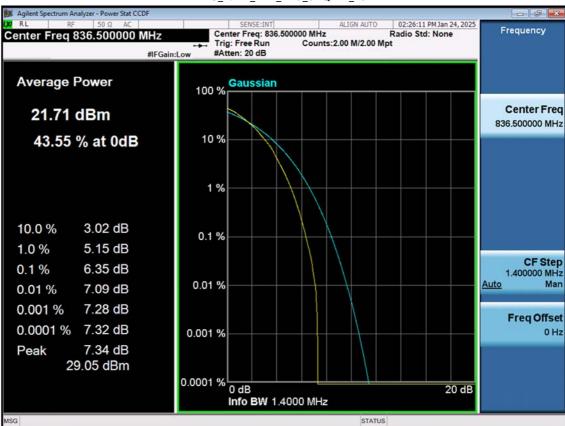
F-TP22-03 (Rev. 06) Page 35 of 104






LTE B5\_1.4M\_PAR\_Mid\_QPSK\_FullRB

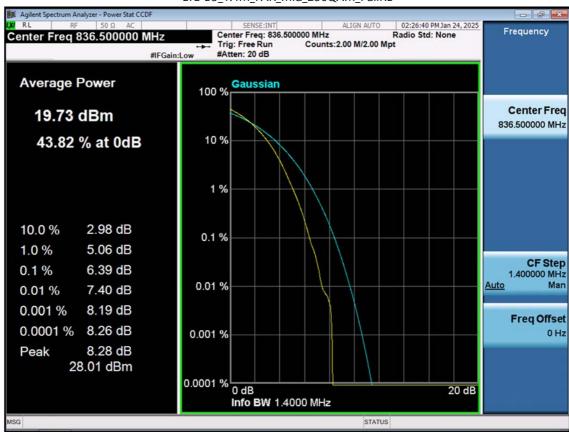
F-TP22-03 (Rev. 06) Page 36 of 104






LTE B5\_1.4M\_PAR\_Mid\_16QAM\_FullRB

F-TP22-03 (Rev. 06) Page 37 of 104

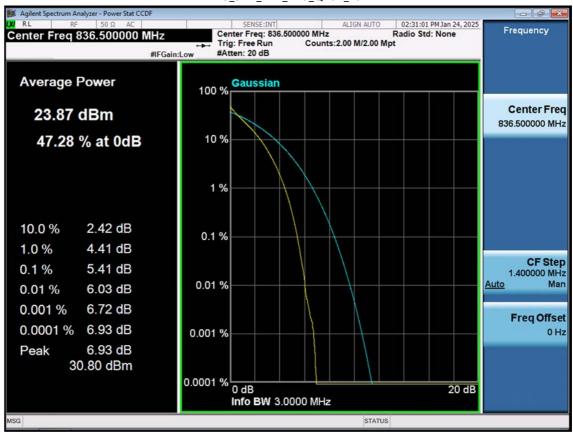





LTE B5\_1.4M\_PAR\_Mid\_64QAM\_FullRB

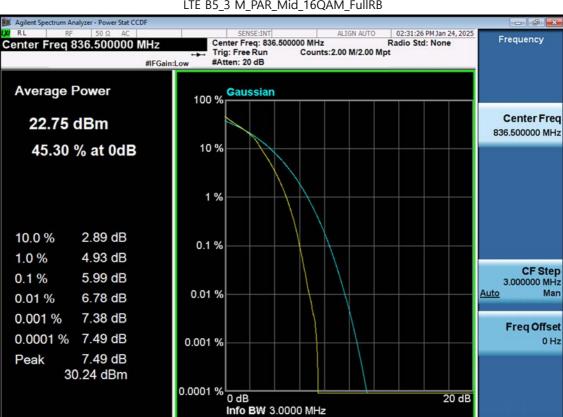
F-TP22-03 (Rev. 06) Page 38 of 104






LTE B5\_1.4M\_PAR\_Mid\_256QAM\_FullRB

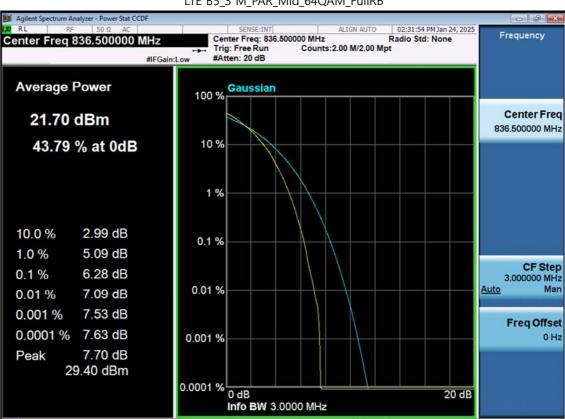
F-TP22-03 (Rev. 06) Page 39 of 104




# LTE B5\_3 M\_PAR\_Mid\_QPSK\_FullRB



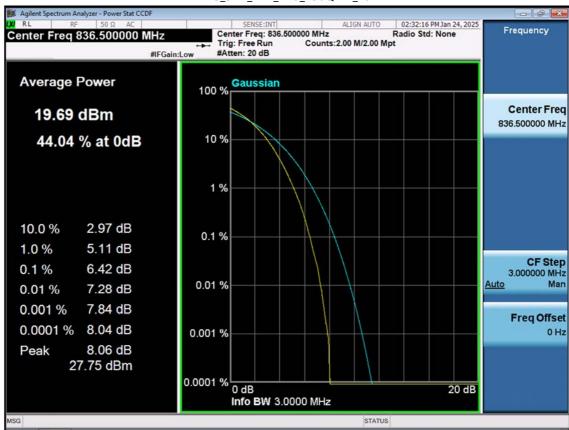
F-TP22-03 (Rev. 06) Page 40 of 104






LTE B5\_3 M\_PAR\_Mid\_16QAM\_FullRB

F-TP22-03 (Rev. 06) Page 41 of 104






LTE B5\_3 M\_PAR\_Mid\_64QAM\_FullRB

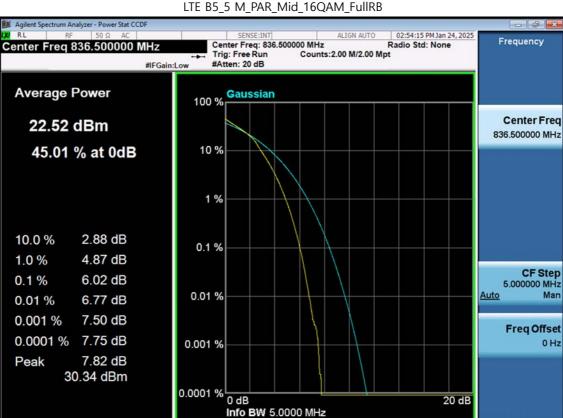
F-TP22-03 (Rev. 06) Page 42 of 104





LTE B5\_3 M\_PAR\_Mid\_256QAM\_FullRB

F-TP22-03 (Rev. 06) Page 43 of 104




# LTE B5\_5 M\_PAR\_Mid\_QPSK\_FullRB



F-TP22-03 (Rev. 06) Page 44 of 104





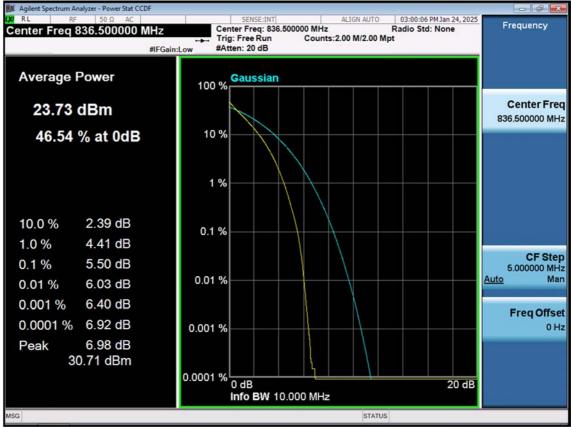
F-TP22-03 (Rev. 06) Page 45 of 104





F-TP22-03 (Rev. 06) Page 46 of 104






LTE B5\_5 M\_PAR\_Mid\_256QAM\_FullRB

F-TP22-03 (Rev. 06) Page 47 of 104



# LTE B5\_10 M\_PAR\_Mid\_QPSK\_FullRB

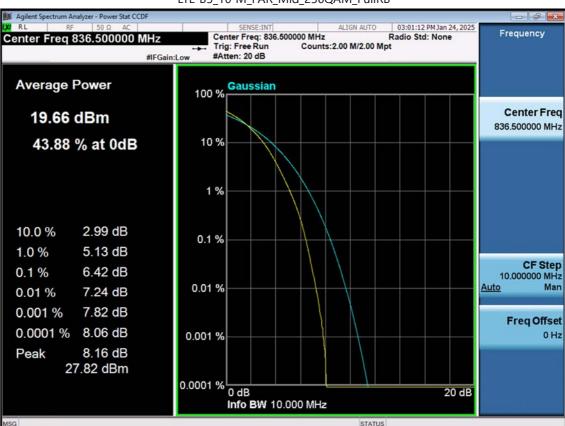


F-TP22-03 (Rev. 06) Page 48 of 104





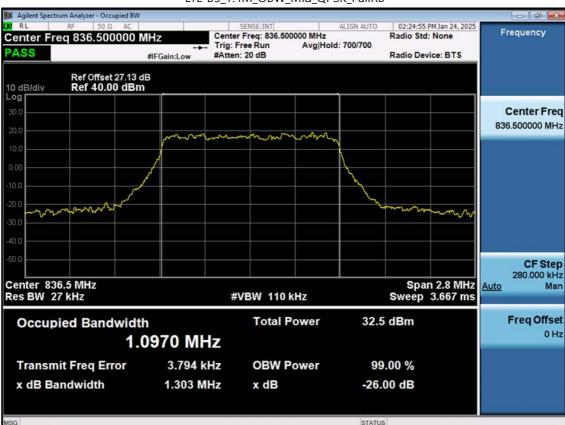
LTE B5\_10 M\_PAR\_Mid\_16QAM\_FullRB


F-TP22-03 (Rev. 06) Page 49 of 104





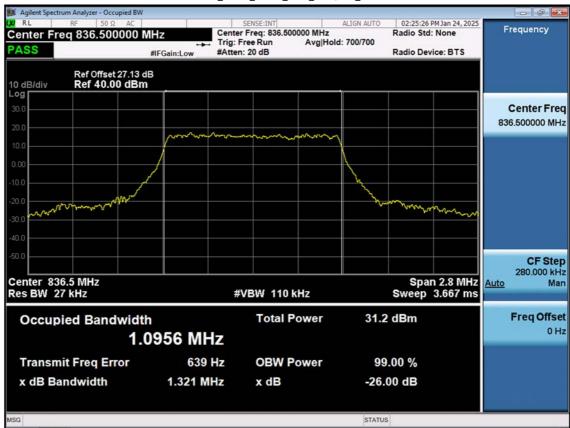
F-TP22-03 (Rev. 06) Page 50 of 104






LTE B5\_10 M\_PAR\_Mid\_256QAM\_FullRB

F-TP22-03 (Rev. 06) Page 51 of 104






# LTE B5\_1.4M\_OBW\_Mid\_QPSK\_FullRB

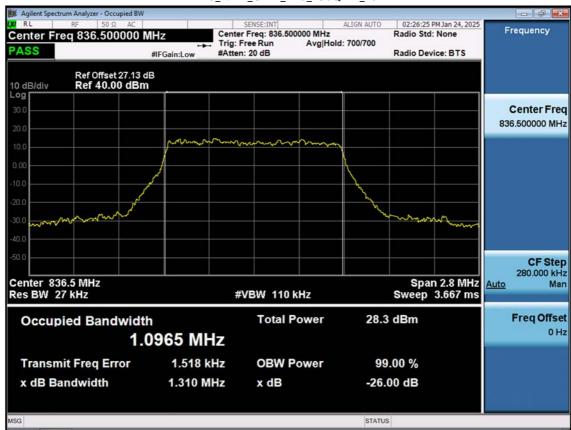
F-TP22-03 (Rev. 06) Page 52 of 104





LTE B5\_1.4M\_OBW\_Mid\_16QAM\_FullRB

F-TP22-03 (Rev. 06) Page 53 of 104






LTE B5 1.4M OBW Mid 64QAM FullRB

F-TP22-03 (Rev. 06) Page 54 of 104

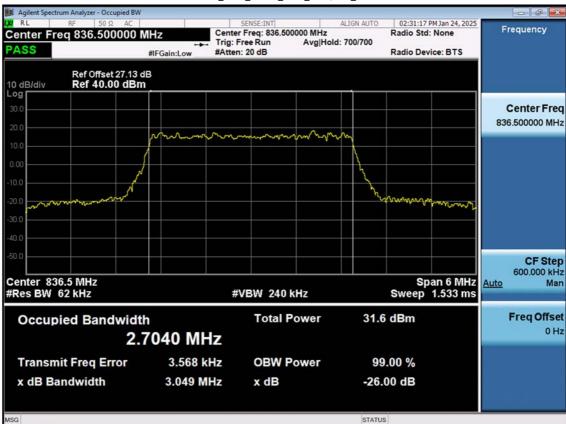




LTE B5\_1.4M\_OBW\_Mid\_256QAM\_FullRB

F-TP22-03 (Rev. 06) Page 55 of 104

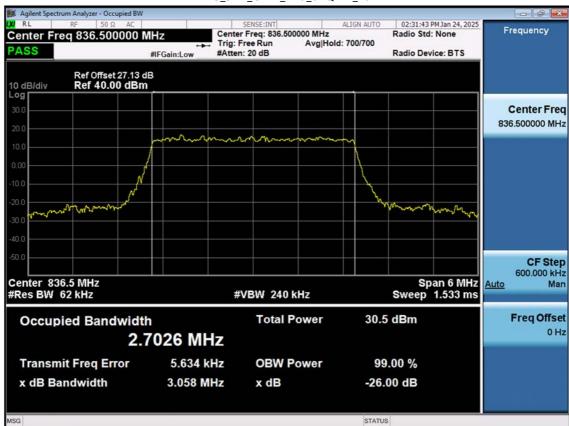



#### ALIGN AUTO 02:30:51 PM Jan 24, 2025 Center Freq: 836.500000 MHz Trig: Free Run Avg|Ho #Atten: 20 dB Frequency Center Freq 836.500000 MHz Radio Std: None Avg|Hold: 700/700 **PASS** Radio Device: BTS #IFGain:Low Ref Offset 27.13 dB Ref 40.00 dBm 10 dB/div Log Center Freq 836.500000 MHz **CF Step** 600.000 kHz Center 836.5 MHz #Res BW 62 kHz Span 6 MHz Sweep 1.533 ms Auto Man #VBW 240 kHz **Total Power** 32.4 dBm Freq Offset **Occupied Bandwidth** 0 Hz 2.7152 MHz 5.985 kHz **Transmit Freq Error OBW Power** 99.00 % x dB Bandwidth 3.121 MHz -26.00 dB x dB

STATUS

# LTE B5\_3 M\_OBW\_Mid\_QPSK\_FullRB

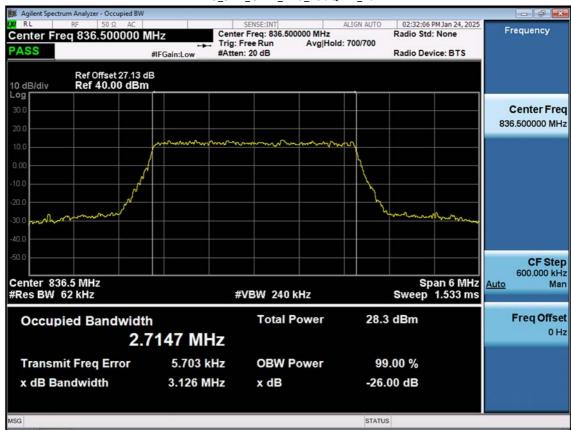
F-TP22-03 (Rev. 06) Page 56 of 104






# LTE B5\_3 M\_OBW\_Mid\_16QAM\_FullRB

F-TP22-03 (Rev. 06) Page 57 of 104






LTE B5 3 M OBW Mid 64QAM FullRB

F-TP22-03 (Rev. 06) Page 58 of 104






LTE B5\_3 M\_OBW\_Mid\_256QAM\_FullRB

F-TP22-03 (Rev. 06) Page 59 of 104

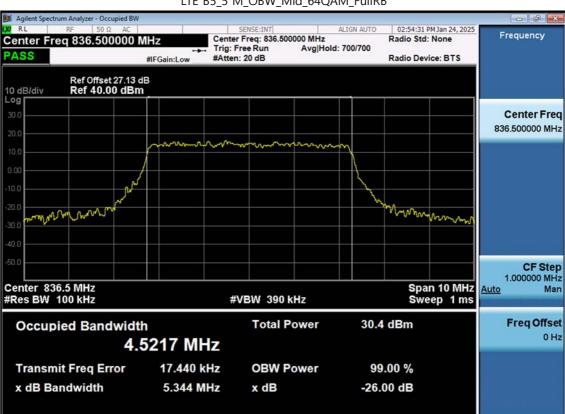


# LTE B5\_5 M\_OBW\_Mid\_QPSK\_FullRB



F-TP22-03 (Rev. 06) Page 60 of 104




#### ALIGN AUTO 02:54:06 PM Jan 24, 2025 Frequency Center Freq: 836.500000 MHz Trig: Free Run Avg|Ho #Atten: 20 dB Center Freq 836.500000 MHz Radio Std: None Avg|Hold: 700/700 **PASS** Radio Device: BTS #IFGain:Low Ref Offset 27.13 dB Ref 40.00 dBm 10 dB/div Log Center Freq 836.500000 MHz whentherwhy **CF Step** 1.000000 MHz Center 836.5 MHz #Res BW 100 kHz Span 10 MHz Sweep 1 ms Auto Man #VBW 390 kHz 31.3 dBm Freq Offset Occupied Bandwidth **Total Power** 0 Hz 4.5106 MHz 5.459 kHz **Transmit Freq Error OBW Power** 99.00 % x dB Bandwidth 5.284 MHz -26.00 dB x dB

STATUS

# LTE B5\_5 M\_OBW\_Mid\_16QAM\_FullRB

F-TP22-03 (Rev. 06) Page 61 of 104





#### LTE B5 5 M OBW Mid 64QAM FullRB

F-TP22-03 (Rev. 06) Page 62 of 104

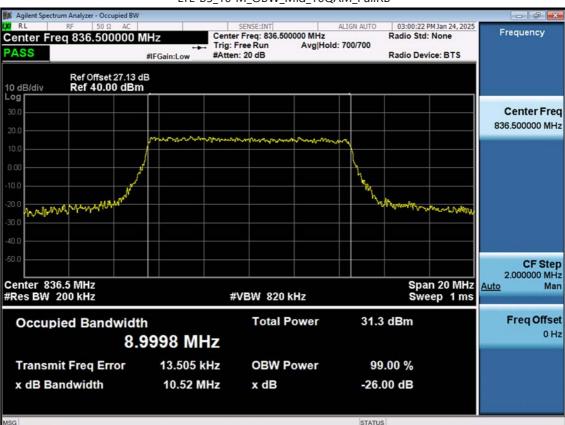




LTE B5\_5 M\_OBW\_Mid\_256QAM\_FullRB

F-TP22-03 (Rev. 06) Page 63 of 104




#### ALIGN AUTO 02:59:59 PM Jan 24, 2025 Center Freq: 836.500000 MHz Trig: Free Run Avg|Ho #Atten: 20 dB Frequency Center Freq 836.500000 MHz Radio Std: None Avg|Hold: 700/700 **PASS** Radio Device: BTS #IFGain:Low Ref Offset 27.13 dB Ref 40.00 dBm 10 dB/div Log Center Freq 836.500000 MHz **CF Step** 2.000000 MHz Center 836.5 MHz #Res BW 200 kHz Span 20 MHz Sweep 1 ms Auto Man #VBW 820 kHz **Total Power** 32.4 dBm Freq Offset Occupied Bandwidth 0 Hz 9.0137 MHz 22.561 kHz **Transmit Freq Error OBW Power** 99.00 % x dB Bandwidth 10.44 MHz -26.00 dB x dB

STATUS

# LTE B5\_10 M\_OBW\_Mid\_QPSK\_FullRB

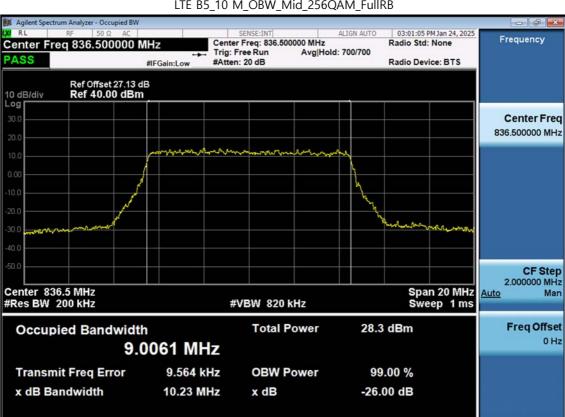
F-TP22-03 (Rev. 06) Page 64 of 104





# LTE B5\_10 M\_OBW\_Mid\_16QAM\_FullRB

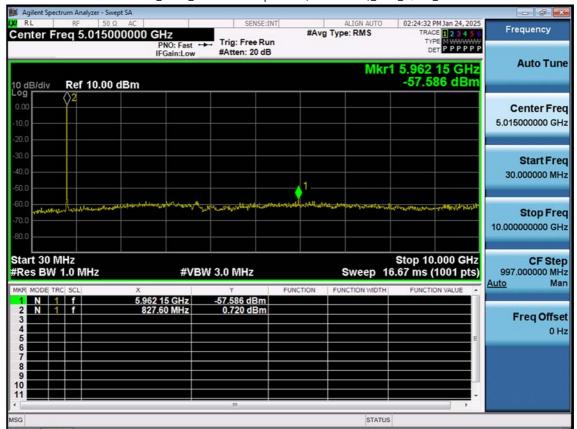
F-TP22-03 (Rev. 06) Page 65 of 104






LTE B5\_10 M\_OBW\_Mid\_64QAM\_FullRB

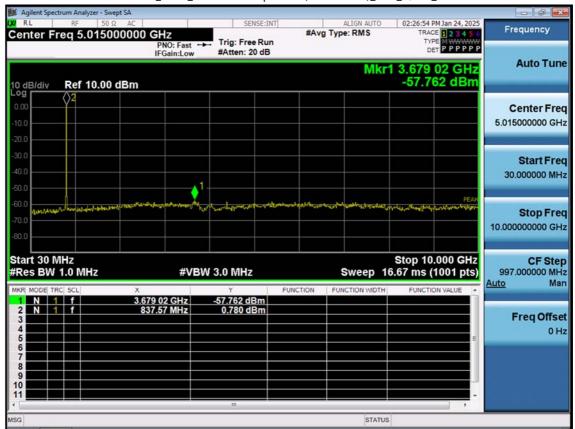
F-TP22-03 (Rev. 06) Page 66 of 104






# LTE B5\_10 M\_OBW\_Mid\_256QAM\_FullRB

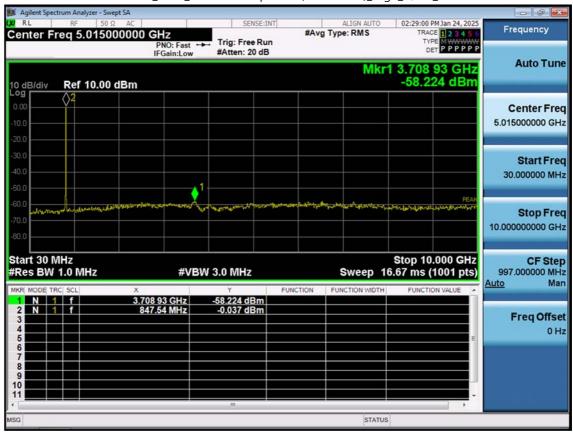
F-TP22-03 (Rev. 06) Page 67 of 104






LTE B5\_1.4M\_Conducted Spurious(30 M-10 G)\_Low\_QPSK\_1RB

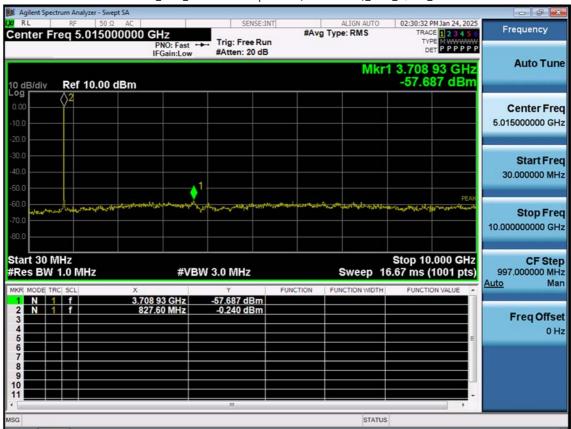
F-TP22-03 (Rev. 06) Page 68 of 104






LTE B5\_1.4M\_Conducted Spurious(30 M-10 G)\_Mid\_QPSK\_1RB

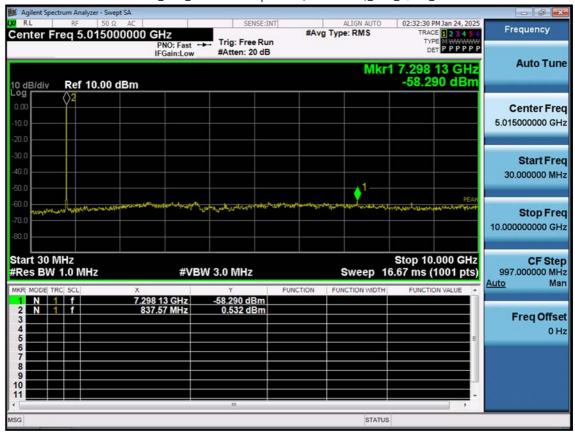
F-TP22-03 (Rev. 06) Page 69 of 104






LTE B5\_1.4M\_Conducted Spurious(30 M-10 G)\_High\_QPSK\_1RB

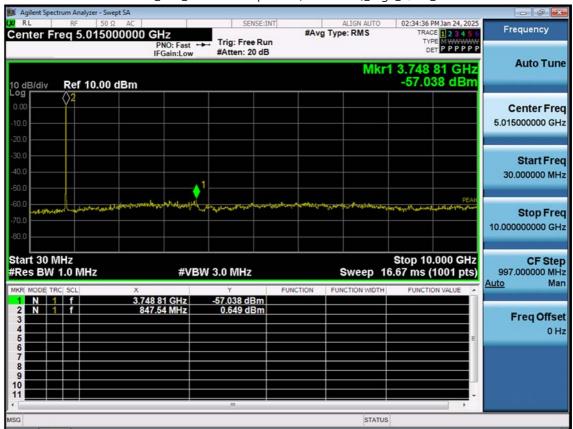
F-TP22-03 (Rev. 06) Page 70 of 104






LTE B5\_3 M\_Conducted Spurious(30 M-10 G)\_Low\_QPSK\_1RB

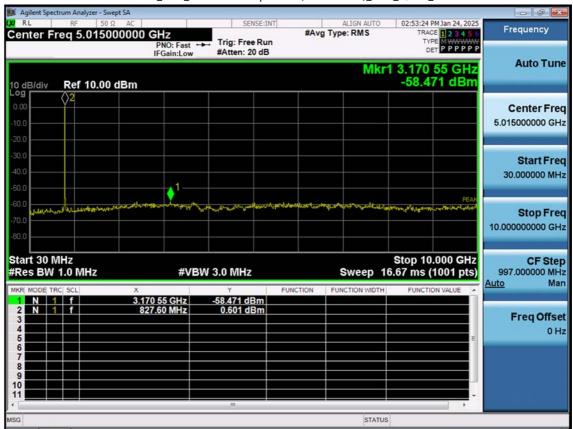
F-TP22-03 (Rev. 06) Page 71 of 104






LTE B5\_3 M\_Conducted Spurious(30 M-10 G)\_Mid\_QPSK\_1RB

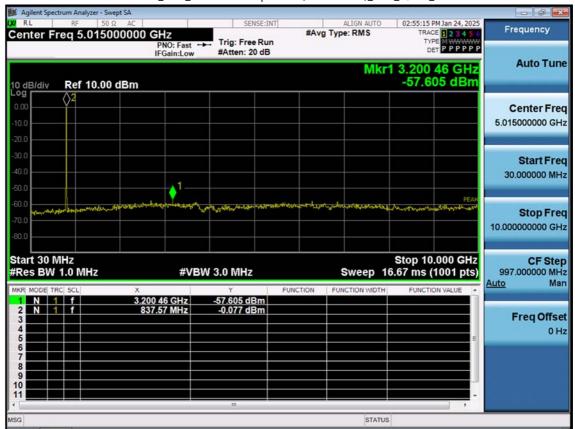
F-TP22-03 (Rev. 06) Page 72 of 104






LTE B5\_3 M\_Conducted Spurious(30 M-10 G)\_High\_QPSK\_1RB

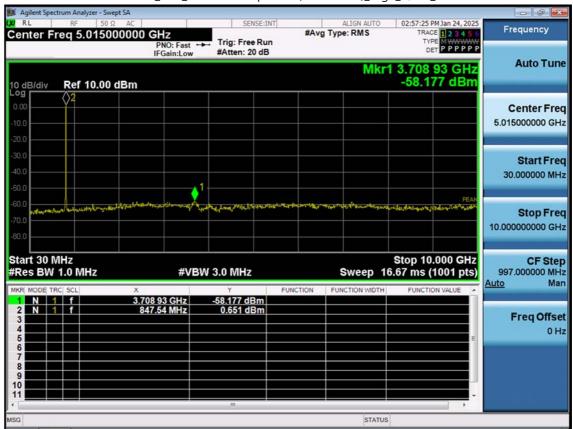
F-TP22-03 (Rev. 06) Page 73 of 104






LTE B5\_5 M\_Conducted Spurious(30 M-10 G)\_Low\_QPSK\_1RB

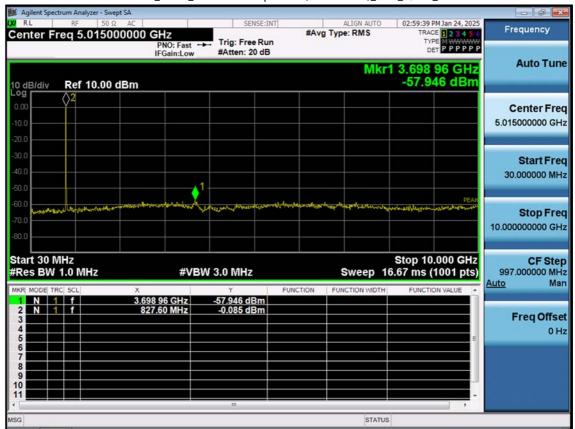
F-TP22-03 (Rev. 06) Page 74 of 104






LTE B5\_5 M\_Conducted Spurious(30 M-10 G)\_Mid\_QPSK\_1RB

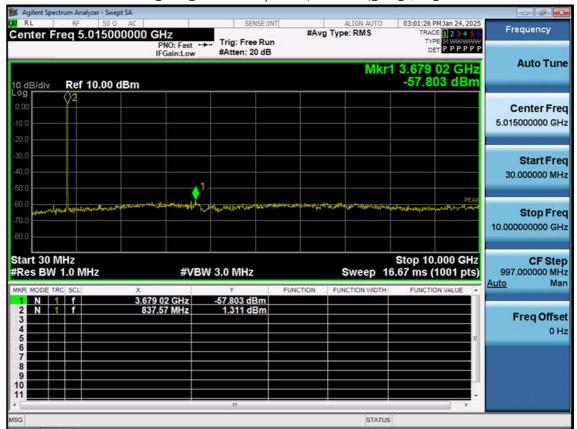
F-TP22-03 (Rev. 06) Page 75 of 104






LTE B5\_5 M\_Conducted Spurious(30 M-10 G)\_High\_QPSK\_1RB

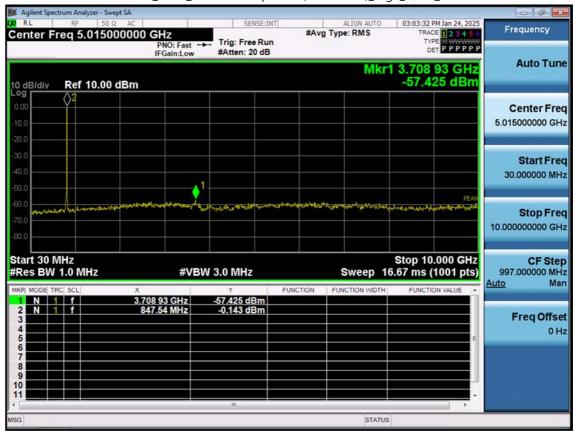
F-TP22-03 (Rev. 06) Page 76 of 104






LTE B5\_10 M\_Conducted Spurious(30 M-10 G)\_Low\_QPSK\_1RB

F-TP22-03 (Rev. 06) Page 77 of 104






LTE B5\_10 M\_Conducted Spurious(30 M-10 G)\_Mid\_QPSK\_1RB

F-TP22-03 (Rev. 06) Page 78 of 104





LTE B5\_10 M\_Conducted Spurious(30 M-10 G)\_High\_QPSK\_1RB

F-TP22-03 (Rev. 06) Page 79 of 104





LTE B5\_1.4M\_Band Edge\_Low\_QPSK\_1RB

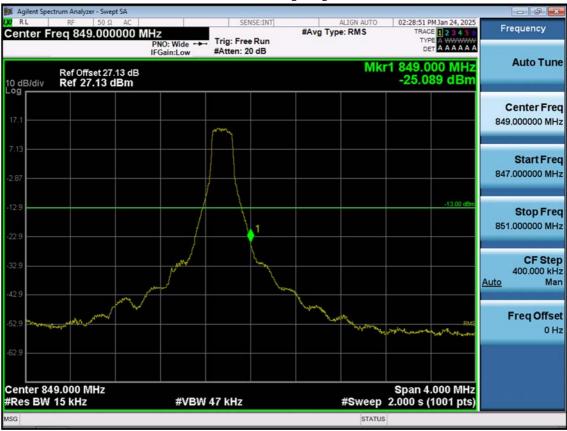
F-TP22-03 (Rev. 06) Page 80 of 104





LTE B5\_1.4M\_Band Edge\_Low\_QPSK\_FullRB

F-TP22-03 (Rev. 06) Page 81 of 104






LTE B5\_1.4M\_Extended Band Edge\_Low\_QPSK\_FullRB

F-TP22-03 (Rev. 06) Page 82 of 104





LTE B5\_1.4M\_Band Edge\_High\_QPSK\_1RB

F-TP22-03 (Rev. 06) Page 83 of 104





LTE B5\_1.4M\_Band Edge\_High\_QPSK\_FullRB

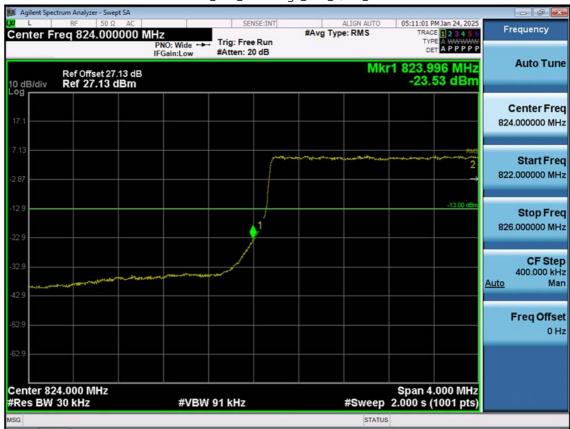
F-TP22-03 (Rev. 06) Page 84 of 104





LTE B5\_1.4M\_Extended Band Edge\_High\_QPSK\_FullRB

F-TP22-03 (Rev. 06) Page 85 of 104






LTE B5\_3 M\_Band Edge\_Low\_QPSK\_1RB

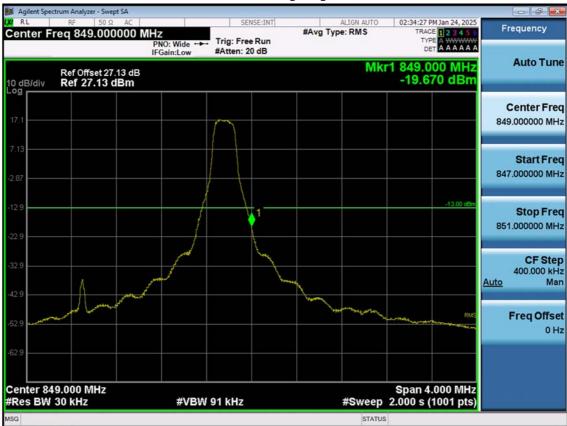
F-TP22-03 (Rev. 06) Page 86 of 104





LTE B5\_3 M\_Band Edge\_Low\_QPSK\_FullRB

F-TP22-03 (Rev. 06) Page 87 of 104






LTE B5\_3 M\_Extended Band Edge\_Low\_QPSK\_FullRB

F-TP22-03 (Rev. 06) Page 88 of 104





LTE B5\_3 M\_Band Edge\_High\_QPSK\_1RB

F-TP22-03 (Rev. 06) Page 89 of 104





LTE B5\_3 M\_Band Edge\_High\_QPSK\_FullRB

F-TP22-03 (Rev. 06) Page 90 of 104