

TEST REPORT

EMC Test for SM-X526B

APPLICANT SAMSUNG Electronics Co., Ltd.

REPORT NO. HCT-EM-2502-FC005

DATE OF ISSUE February 17, 2025

Tested by
Wook Yi

Technical Manager
Jeong-Hyun Choi

HCT CO., LTD. Bongjai Huh / CEO

HCT CO.,LTD.

TEST REPORT

FCC Certification

REPORT NO.

HCT-EM-2502-FC005

DATE OF ISSUE

February 17, 2025

FCC ID.

A3LSMX526B

Applicant	SAMSUNG Electronics Co., Ltd. 129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Korea
Product Name Model Name	Tablet SM-X526B
Date of Test	01.24.2025 ~ 02.05.2025
Location of Test	
Test Standard Used	FCC CFR 47 PART 15 Subpart B Class B ANSI C63.4-2014
Test Results	Refer to the present document
Manufacturer	SAMSUNG Electronics Co., Ltd.

F-TP22-03 (Rev. 06) Page 2 of 30

REVISION HISTORY

The revision history for this test report is shown in table.

Revision No.	Date of Issue	Description
0	February 17, 2025	Initial Release

Notice

Content

The results shown in this test report only apply to the sample(s), as received, provided by the applicant, unless otherwise stated.

The test results have only been applied with the test methods required by the standard(s).

The laboratory is not accredited for the test results marked *.

Information provided by the applicant is marked **.

Test results provided by external providers are marked ***.

When confirmation of authenticity of this test report is required, please contact www.hct.co.kr

The test results in this test report are not associated with the ((KS Q) ISO/IEC 17025) accreditation by KOLAS (Korea Laboratory Accreditation Scheme) that are under the ILAC (International Laboratory Accreditation Cooperation) Mutual Recognition Agreement (MRA).

F-TP22-03 (Rev. 06) Page 3 of 30

CONTENTS

1. TESTING LABORATORY	5
1.1 General Information	5
1.2 Location of the Test Site	5
2. GENERAL INFORMATION	6
2.1 Description of EUT	6
2.2 Power Source	6
2.3 Tested System Details	7
2.4 Cable Description	7
2.5 Noise Suppression Parts on Cable (I/O Cable)	8
2.6 Test Facility	8
2.7 Calibration of Measuring Instrument	8
2.8 Measurement Uncertainty	9
3. DESCRIPTION OF TESTING	10
3.1 Measurement of Conducted Emission	10
3.2 Measurement of Radiated Emission	11
3.3 Configuration of Tested System	13
4. OPERATION OF THE EUT	14
5. MEASURING INSTRUMENT	16
6. EMISSION TEST SUMMARY	18
6.1 Conducted Emission	18
6.2 Radiated Emission Below 1 GHz	20
6.3 Radiated Emission Above 1 GHz	25
APPENDIX A. TEST SETUP PHOTO	30

F-TP22-03 (Rev. 06) Page 4 of 30

1. TESTING LABORATORY

1.1 General Information

Organization Name	HCT CO., LTD.
Address	74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do,
	Republic of Korea
Telephone	+82 31 645 6300
FAX	+82 31 645 6401

1.2 Location of the Test Site

The test site is located at the following address.;

Address	74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do,
	Republic of Korea
Telephone	+82 31 645 6300
FAX	+82 31 645 6401

F-TP22-03 (Rev. 06) Page 5 of 30

2. GENERAL INFORMATION

2.1 Description of EUT

FCC ID	A3LSMX526B
Product Name	Tablet
Model Name	SM-X526B
Operating Frequency Band	GSM 850/900/1800/1900, WCDMA FDD 1/2/4/5/8, LTE FDD 1/2/3/4/5/7/8/12/13/17/20/25/26/28/32/66 TDD 38/40/41, 5G FR1 n1/3/5/7/8/20/26/28/38/40/41/66/71/77/78 BT BDR/EDR/LE, WLAN a/b/g/n/ac/ax, GNSS
Testing Frequency Band	GSM 850/1900, WCDMA B2/B4/B5, LTE B2/B4/B5/B12/B13/B17/B25/B26/B41/B66, 5G NR n5/n41/n66/n77/n78, BT BDR/EDR/LE, GNSS, WLAN a/b/g/n/ac/ax
Manufacturer	SAMSUNG Electronics Co., Ltd.

2.2 Power Source

During the test, the following power supply levels are utilized/provided.;

Power supply: AC 120 V, 60 Hz

F-TP22-03 (Rev. 06) Page 6 of 30

2.3 Tested System Details

All equipment descriptions used in the tested system (including inserted cards) are:

Device Type	Model Name	Serial Number	Manufacturer
Tablet	SM-X526B	-	SAMSUNG Electronics Co., Ltd.
TA a)	EP-T2510	-	RFTECH
Data Cable	EP-DN980	-	RFTECH
Earphone	EO-IC100	-	CRESYN
Book Cover Keyboard	EF-DX720	-	SAMSUNG
SPEN	EJ-PX510	-	WACOM

a) Input: 100~240 V, 50~60 Hz, 0.7 A / Output: (PDO)5.0 V, 3.0 A or 9.0 V, 2.77 A (PPS)3.3~11.0 V, 2.25 A

2.4 Cable Description

Product Name	Port	Power Cord Shielded (Y/N)	I/O Cable Shielded (Y/N)	Length (m)
EUT	USB Type C (Data Cable)	Υ	N/A	(P) 1.0
	USB Type C (Earphone)	N/A	N	(D) 1.3
	Pogo Pin (Book Cover Keyboard)	N/A	N/A	N/A

[&]quot;(D)" data cable and "(P)" power cable

F-TP22-03 (Rev. 06) Page 7 of 30

2.5 Noise Suppression Parts on Cable (I/O Cable)

Product Name	Port	Ferrite Bead (Y/N)	Location	Metal Hood (Y/N)	Location
	Data Cable (USB Type C)	N	N/A	Y	Both End
EUT	Earphone (USB Type C)	N	N/A	Υ	EUT End
	Pogo Pin (Book Cover Keyboard)	N/A	N/A	N/A	N/A

2.6 Test Facility

The measurement facilities are constructed in conformance with the requirements of ANSI C63.4-2014. The Normalized site attenuations (30 $\,\text{MHz}$ to 1 $\,\text{GHz}$) and Site validation (1 $\,\text{GHz}$ to 18 $\,\text{GHz}$) were performed in accordance with the standard in ANSI C63.4-2014 and ANSI C63.4a-2017

Our laboratories are accredited and designated in accordance with the provisions of Radio Waves ACT and International Standard ISO/IEC 17025:2017. (National Radio Research Agency, CABID No. KR0032)

2.7 Calibration of Measuring Instrument

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturers recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Especially, all antenna for measurement is calibrated in accordance with the requirements of C63.5:2017.

F-TP22-03 (Rev. 06) Page 8 of 30

2.8 Measurement Uncertainty

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4-2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Test Site	Expanded Uncertainty		
Conducted Emission	EMI Shield Room	1.5 dB		
		30 MHz to 1 GHz: 5.8 dB		
Radiated Emission	3 m Semi Anechoic Chamber #1	1 GHz to 18 GHz: 4.9 dB		
		18 GHz to 40 GHz: 5.9 dB		

F-TP22-03 (Rev. 06) Page 9 of 30

3. DESCRIPTION OF TESTING

3.1 Measurement of Conducted Emission

The test procedure was in accordance with ANSI C63.4-2014, Clause 7.3

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN).
 - If the EUT is connected to the PC through USB, the AC power-line adapter of the PC is directly connected to a line impedance stabilization network (LISN).
 - Other support units were connected to the power mains through another LISN. The two LISNs provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both conducted lines are measured in Quasi-Peak and Average mode, including the worst-case data points for each tested configuration.
- c. The frequency range from 150 kHz to 30 MHz was searched.

Conducted Emission Limits

Frequency (附) Resolution Bandwidth (妣)	Resolution	Class A		Class B	
	Quasi-Peak (dBμV)	Average (dBμV)	Quasi-Peak (dBμV)	Average (dBμV)	
0.15 to 0.5	9	79	66	66 to 56*	56 to 46*
0.5 to 5	9	73	60	56	46
5 to 30	9	73	60	60	50

NOTE. Decreases with the logarithm of the frequency.

F-TP22-03 (Rev. 06) Page 10 of 30

3.2 Measurement of Radiated Emission

The test procedure was in accordance with ANSI C63.4-2014, Clause 8.3

- a. The EUT was placed on the top of a turn table 0.8 meters above the ground at a semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 m away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from 1 m to 4 m above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 m to 4 m and the turn table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 $\,$ GHz.
- f. The test-receiver system was set to Peak and Average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 $\,$ GHz.
- g. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

 (1 GHz to 40 GHz)

Radiated Emission Limits

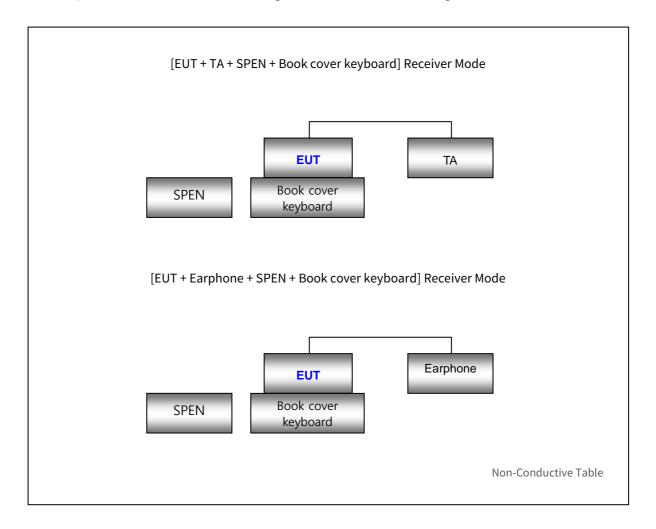
		Class A			Class B		
Frequency (Mtz)	Antenna Distance (m)	Field Strength (µV/m)	Quasi-Peak (dBμV/m)	Antenna Distance (m)	Field Strength (µV/m)	Quasi-Peak (dBµV/m)	
30 to 88	10	90	39.0	3	100	40.0	
88 to 216	10	150	43.5	3	150	43.5	
216 to 960	10	210	46.4	3	200	46.0	
Above 960	10	300	49.5	3	500	54.0	
F	A 4		Class A		Class B		
Frequency (Mtz)		Antenna Distance (m)		Average (dBμV/m)	Peak (dBμV/m)	Average (dBμV/m)	
Above 1 000	3		80	60	74	54	

F-TP22-03 (Rev. 06) Page 11 of 30

Frequency Range of Radiated Measurements

An unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a Radiated Emission limit is specified, up to the frequency shown in the following table

Highest frequency generated or used in the device or on which the device operates or tunes (毗)	Upper frequency of measurement range (附z)
Below 1.705	30
1.705 to 108	1 000
108 to 500	2 000
500 to 1 000	5 000
Above 1 000	5th harmonic of the highest frequency or 40 애, whichever is lower


F-TP22-03 (Rev. 06) Page 12 of 30

3.3 Configuration of Tested System

The EUT was configured in the following manner.

At the request of the manufacturer, the configuration of the tests was arranged.

F-TP22-03 (Rev. 06) Page 13 of 30

4. OPERATION OF THE EUT

During preliminary tests, the following operating mode was investigated.

Receiver mode(GSM 850 Low/Middle/High ch Idle)

Receiver mode(WCDMA B5 Low/Middle/High ch Idle)

Receiver mode(LTE B5_Low/Middle/High ch)

Receiver mode(LTE B12_Low/Middle/High ch)

Receiver mode(LTE B13_Low/Middle/High ch)

Receiver mode(LTE B17_Low/Middle/High ch)

Receiver mode(LTE B26_Low/Middle/High ch)

Receiver mode(5G NR n5_Low/Middle/High ch)

NOTE. The worst case is tested.

4.1 Conducted Emission

Operating Mode: LTE B5+5G NR n5 High ch Idle mode

NOTE. The worst case of operating mode is reported.

F-TP22-03 (Rev. 06) Page 14 of 30

4.2 Radiated Emission

It was final tested the following operating mode, after connecting all peripheral devices.

Operating Mode:

Radiated Emission below 1 GHz

[EUT + TA + SPEN + Book cover keyboard]

LTE B5+5G NR n5 Low ch Idle

LTE B5+5G NR n5 Middle ch Idle

LTE B5+5G NR n5 High ch Idle *

LTE B12(B17)+B13 Low ch Idle

LTE B12(B17)+B13 Middle ch Idle *

LTE B12(B17)+B13 High ch Idle

LTE B26 Low ch Idle

LTE B26 Middle ch Idle *

LTE B26 High ch Idle

[EUT + Earphone + SPEN + Book cover keyboard]

LTE B5+5G NR n5 High ch Idle *

Radiated Emission above 1 6 kg

[EUT + TA + SPEN + Book cover keyboard]

LTE B5+5G NR n5 High ch Idle *

LTE B12(B17)+B13 Middle ch Idle

LTE B26 Middle ch Idle

[EUT + Earphone + SPEN + Book cover keyboard]

LTE B5+5G NR n5 High ch Idle *

NOTE.

- 1. Three orientations have been investigated and the worst-case orientation (x-axis: The display of EUT placed on the table is facing upwards) is reported.
- 2. Frequency bands adjacent to each other are tested as one mode.
- 3. The worst case of operating mode is reported. [*].

F-TP22-03 (Rev. 06) Page 15 of 30

5. MEASURING INSTRUMENT

	Type Model Name		Manufacturer	Serial Number	Cal. Cycle	Next Cal. Date (yy.mm.dd)
Cor	nducted emission					
\boxtimes	EMI Test Receiver	ESR7	Rohde&Schwarz	101910	1 year	2025.08.27
\boxtimes	LISN	ENV216	Rohde&Schwarz	102245	1 year	2025.07.17
\boxtimes	Radio communication analyzer	MT8821C	ANRITSU	6262192376	1 year	2025.10.15
\boxtimes	Radio communication analyzer	MT8000A	ANRITSU	6262208294	1 year	2025.10.14
\boxtimes	Antenna (for Communication)	HyperLOG7060	Aaronia	-	-	-
\boxtimes	Antenna (for Communication)	HyperLOG7060	Aaronia	-	-	-
\boxtimes	Software	EMC32	Rohde & Schwarz	-	-	-
Rac	liated emission below 1	GHz				
\boxtimes	EMI Test Receiver	ESU40	Rohde&Schwarz	100524	1 year	2025.05.07
\boxtimes	Bilog Antenna	VULB9168	Schwarzbeck	255	2 year	2025.03.10
\boxtimes	Antenna master	MA4640-XP-ET	INNCO SYSTEM	-	N/A	-
\boxtimes	Antenna master controller	CO3000	INNCO SYSTEM	CO3000/870 /35990515/L	N/A	-
\boxtimes	Turn Table	1060	INNCO systems	-	N/A	-
\boxtimes	Turn Table controller	CO2000	INNCO SYSTEM	CO2000/095 /7590304/L	N/A	-
	Universal radio communication tester	CMU200	Rohde & Schwarz	107488	1 year	2025.09.24
\boxtimes	Wideband Radio Communication Tester	CMW500	Rohde & Schwarz	103246	1 year	2025.09.02
\boxtimes	Radio Communication Analyzer	MT8820C	Anritsu	6201181706	1 year	2025.03.29
\boxtimes	Radio communication analyzer	MT8821C	ANRITSU	6262192376	1 year	2025.10.15
\boxtimes	Radio communication analyzer	MT8000A	ANRITSU	6262208294	1 year	2025.10.14
\boxtimes	Antenna (for Communication)	HyperLOG7060	Aaronia	-	-	-
\boxtimes	Antenna (for Communication)	HyperLOG7060	Aaronia	-	-	-
\boxtimes	Software	EMC32	Rohde & Schwarz	-	-	-

F-TP22-03 (Rev. 06) Page 16 of 30

	Type Model Name		Manufacturer	Serial Number	Calibration Cycle	Next Calibration Date						
Rac	Radiated emission above 1 @z											
\boxtimes	EMI test receiver	ESU40	Rohde & Schwarz	100524	1 year	2025.05.07						
\boxtimes	Antenna master	MA4640-XP-ET	INNCO SYSTEM	-	N/A	-						
\boxtimes	Antenna master controller	CO3000	INNCO SYSTEM	CO3000/870/ 35990515/L	N/A	-						
\boxtimes	Turn Table	1060	INNCO SYSTEM	-	N/A	-						
\boxtimes	Turn Table controller	CO2000	INNCO SYSTEM	CO2000/095/ 7590304/L	N/A	-						
\boxtimes	Low Noise Amplifier	TK-PA18H	TESTEK	170034-L	1 year	2025.10.14						
\boxtimes	Low Noise Amplifier	TK-PA1840H	TESTEK	170030-L	1 year	2025.02.20						
\boxtimes	Horn Antenna	HF907	Rohde & Schwarz	103160	1 year	2025.10.15						
\boxtimes	Horn Antenna	BBHA 9170	Schwarzbeck	BBHA9170 #786	1 year	2025.10.30						
\boxtimes	Universal radio communication tester	CMU200	Rohde & Schwarz	107488	1 year	2025.09.24						
\boxtimes	Wideband Radio Communication Tester	CMW500	Rohde & Schwarz	103246	1 year	2025.09.02						
\boxtimes	Radio Communication Analyzer	MT8820C	Anritsu	6201181706	1 year	2025.03.29						
\boxtimes	Radio communication analyzer	MT8821C	ANRITSU	6262192376	1 year	2025.10.15						
\boxtimes	Radio communication analyzer	MT8000A	ANRITSU	6262208294	1 year	2025.10.14						
\boxtimes	Antenna (for Communication)	HyperLOG7060	Aaronia	-	-	-						
\boxtimes	Antenna (for Communication)	HyperLOG7060	Aaronia	-	-	-						
\boxtimes	Software	EMC32	Rohde & Schwarz	-	-	-						

F-TP22-03 (Rev. 06) Page 17 of 30

6. EMISSION TEST SUMMARY

6.1 Conducted Emission

6.1.1 Operating Condition

The test results of conducted emission at mains ports provide the following information.;

Date of Test (yy.mm.dd)	2025.02.04	2025.02.04								
Townsulative	min. 18.4 °	C	Dalatina Humiditu	min.	21.9	%				
Temperature	max. 21.8 °C	C	Relative Humidity	max.	25.0	%				
Test Site	EMI Shield Roo	EMI Shield Room								
Test Standard Used		FCC CFR 47 PART 15 Subpart B Class B ANSI C63.4-2014								
Frequency Range	0.15 MHz to 30	MHz								
Detector	Quasi-Peak, CI	ISPR-Ave	erage							
Bandwidth	9 kHz (6 dB)									
Operating Mode	LTE B5+5G NR n5 High ch Idle									

A conducted emission is calculated by the following equation.;

Calculation Formula: A = B + C Where

A: QuasiPeak or CAverage in dBμV

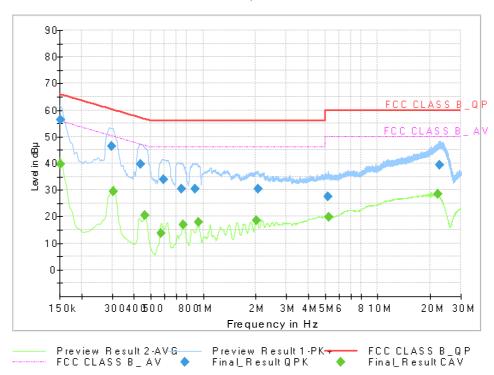
B: Receiver reading in dBμV

C: Corr. in dB (LISN Factor + Cable Loss)

Margin in dB = Limit - QuasiPeak or CAverage

L1 = Live, N = Neutral

The measurements from both Live (L1) and Neutral (N) of the LISN are combined into a single graph.


F-TP22-03 (Rev. 06) Page 18 of 30

6.1.2 Measurement Data

LTE B5+5G NR n5 High ch Idle Mode

Frequency (MHz)	QuasiPeak (dBµV)	Limit (dBμV)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.1523	56.50	65.88	9.38	9.000	N	9.6
0.2985	46.47	60.28	13.81	9.000	N	9.6
0.4380	39.76	57.10	17.34	9.000	L1	9.7
0.5900	33.83	56.00	22.17	9.000	L1	9.7
0.7453	30.32	56.00	25.68	9.000	N	9.7
0.8983	30.35	56.00	25.65	9.000	L1	9.7
2.0548	30.29	56.00	25.71	9.000	L1	9.7
5.1935	27.47	60.00	32.53	9.000	L1	9.9
22.7098	39.39	60.00	20.61	9.000	N	10.6

Frequency (MHz)	CAverage (dBμV)	Limit (dBμV)	Margin (dB)	Bandwidth (kHz)	Line	Corr. (dB)
0.1523	39.76	55.88	16.12	9.000	N	9.6
0.3053	29.30	50.10	20.80	9.000	N	9.6
0.4628	20.59	46.64	26.05	9.000	N	9.6
0.5720	13.86	46.00	32.14	9.000	L1	9.7
0.7678	16.92	46.00	29.08	9.000	N	9.7
0.9410	18.04	46.00	27.96	9.000	L1	9.7
2.0075	18.39	46.00	27.61	9.000	L1	9.7
5.2385	19.94	50.00	30.06	9.000	L1	9.9
22.1225	28.35	50.00	21.65	9.000	N	10.6

F-TP22-03 (Rev. 06) Page 19 of 30

6.2 Radiated Emission Below 1 GHz

6.2.1 Operating Condition

The test results of radiated emission provide the following information:

Date of Test (yy.mm.dd)	2025.01.24 ~ 2025.02.05									
Tomporature	min. 17.4	°C	Dolotivo Urumidita	min.	21.5	%				
Temperature	max. 23.2	°C	Relative Humidity	max.	25.3	%				
Test Site	3 m Semi Anechoic Chamber #1									
Used Test Standard	FCC CFR 47 PART 15 Subpart B Class B ANSI C63.4-2014									
Frequency Range	30 MHz to 1 000 MHz									
Detector	Quasi-Peak									
Bandwidth	120 kHz (6 dB))								
Measurement distance	3 m									
Antenna Height	1 m to 4 m									
Operating Mode	[EUT+TA]	LT	E B5+5G NR n5 High ch	Idle						
		LT	E B12(B17)+B13 Middle	ch Idle						
		LT	E B26 Middle ch Idle							
	[EUT+Earphone] LTE B5+5G NR n5 High ch Idle									

A field strength is calculated by the following equation.;

Calculation Formula: A = B + C Where

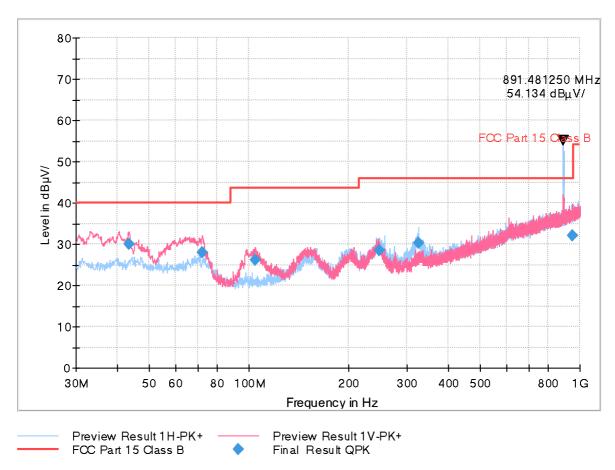
A: Quasi Peak in dBμV/m (Field strength)

B: Receiver reading in dBμV

C: Corr. in dB (Cable loss + Antenna factor)

Margin in dB = Limit - QuasiPeak

The measurements' polarities are H and V, where H stands for horizontal and V stands for vertical.

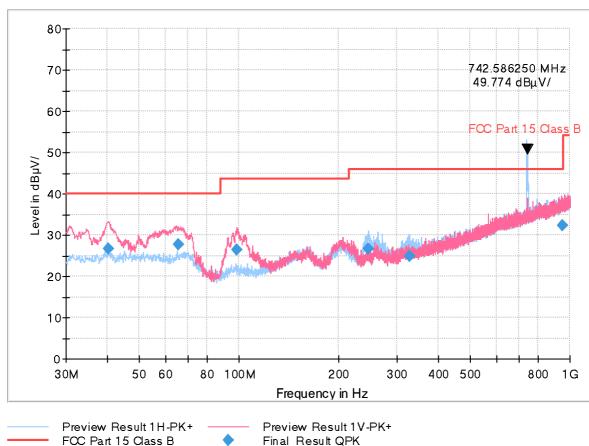

F-TP22-03 (Rev. 06) Page 20 of 30

6.2.2 Measurement Data

[EUT+TA] LTE B5+5G NR n5 High ch Idle mode

Full Spectrum

Carrier Frequency: Rx 891.4812 Mtz. These are signals for fundamental frequency from the base station


Frequency (MHz)	QuasiPeak (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
43.3000	30.03	40.00	9.97	107.4	٧	84.0	19.8
72.4033	27.97	40.00	12.03	125.2	٧	299.0	17.7
104.8201	26.24	43.50	17.26	125.2	٧	133.0	15.9
248.6217	28.35	46.00	17.65	125.2	Н	35.0	19.0
325.9852	30.28	46.00	15.72	100.0	Н	51.0	21.2
952.8699	32.06	46.00	13.94	325.1	٧	2.0	32.1

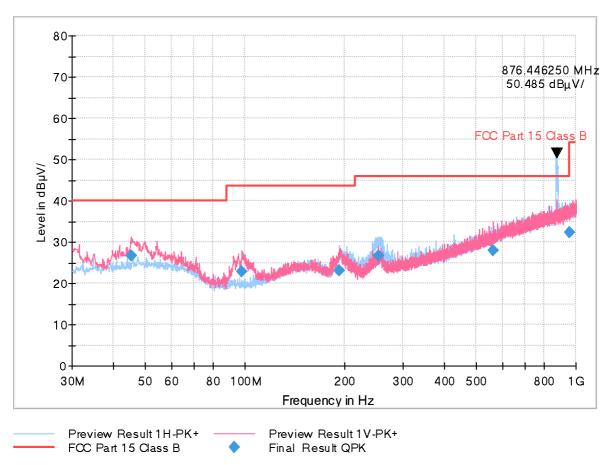
F-TP22-03 (Rev. 06) Page 21 of 30

[EUT+TA] LTE B12(B17)+B13 Middle ch Idle mode

Full Spectrum

FCC Part 15 Class B Final Result QPK

Carrier Frequency: Rx 742.5862 Mtz. These are signals for fundamental frequency from the base station

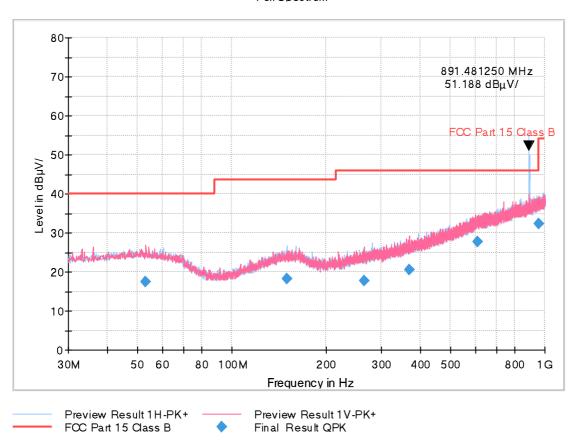

Frequency	QuasiPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBμV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB)
40.2905	26.67	40.00	13.33	100.0	V	285.0	19.6
65.5073	27.65	40.00	12.35	125.2	V	1.0	19.0
98.3538	26.35	43.50	17.15	100.0	V	184.0	15.3
246.5032	26.57	46.00	19.43	106.2	Н	215.0	19.0
328.0552	24.85	46.00	21.15	100.0	Н	41.0	21.2
952.6783	32.23	46.00	13.77	281.3	Н	15.0	32.1

F-TP22-03 (Rev. 06) Page 22 of 30

[EUT+TA] LTE B26 Middle ch Idle mode

Full Spectrum

Carrier Frequency: Rx 876.4462 MHz. These are signals for fundamental frequency from the base station


Frequency	QuasiPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBμV/m)	(dBμV/m)	(dB)	(cm)		(deg)	(dB)
45.2724	26.65	40.00	13.35	100.0	V	64.0	20.0
98.0073	22.90	43.50	20.60	100.0	V	177.0	15.2
192.8039	23.01	43.50	20.49	212.3	Н	220.0	17.6
254.0212	26.56	46.00	19.44	125.0	Н	233.0	19.2
562.1935	27.84	46.00	18.16	100.0	V	86.0	26.7
956.8108	32.29	46.00	13.71	196.1	Н	311.0	32.2

F-TP22-03 (Rev. 06) Page 23 of 30

[EUT+Earphone] LTE B5+5G NR n5 High ch Idle

Full Spectrum

Carrier Frequency: Rx 891.4812 MHz. These are signals for fundamental frequency from the base station

Frequency	QuasiPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBμV/m)	(dBμV/m)	(dB)	(cm)		(deg)	(dB)
53.1223	17.48	40.00	22.52	314.8	٧	153.0	20.2
150.0749	18.12	43.50	25.38	106.1	Н	39.0	19.7
264.8489	17.77	46.00	28.23	325.1	٧	223.0	19.5
368.5583	20.59	46.00	25.41	298.7	٧	110.0	22.3
610.1000	27.68	46.00	18.32	325.2	٧	153.0	27.6
956.3997	32.29	46.00	13.71	212.7	٧	7.0	32.2

F-TP22-03 (Rev. 06) Page 24 of 30

6.3 Radiated Emission Above 1 GHz

6.3.1 Operating Condition

The test results of radiated emission provide the following information:

Date of Test (yy.mm.dd)	2025.0	2.05							
Tomorodouro	min.	20.8	°C	Dolotivo Urmidita	min.	23.4	%		
Temperature	max.	23.1	°C	Relative Humidity	max.	25.2	%		
Test Site	3 m Se	3 m Semi Anechoic Chamber #1							
Used Test Standard	dard FCC CFR 47 PART 15 Subpart B Class B								
	ANSI C	63.4-20	14						
Detector	Peak, CISPR-Average								
Bandwidth	1 MHz								
Highest Frequency	5 885 M	lHz							
Tested Frequency Range	1 GHz to	40 GHz							
Measurement distance	3 m								
Antenna Height	1 m to	4 m							
Operating Mode	[EUT+TA] LTE B5+5G NR n5 High ch Idle								
	[EUT+Earphone] LTE B5+5G NR n5 High ch Idle								

A field strength is calculated by the following equation.;

Calculation Formula: A = B + C Where

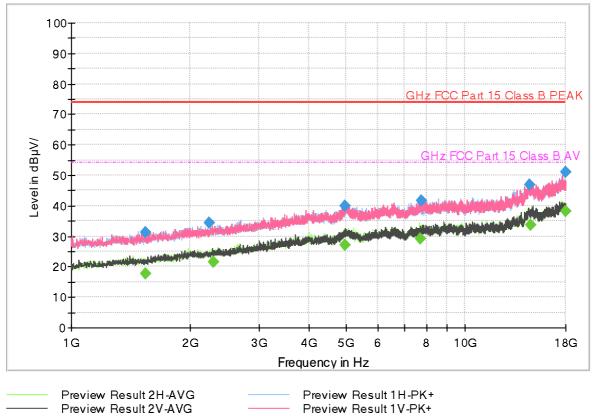
A: Peak or CAverage in dBμV/m (Field strength)

B: Receiver reading in dBμV

C: Corr. in dB (Cable loss + Antenna factor – Amplifier Gain)

Margin in dB = Limit - Peak or CAverage

The measurements' polarities are H and V, where H stands for horizontal and V stands for vertical.

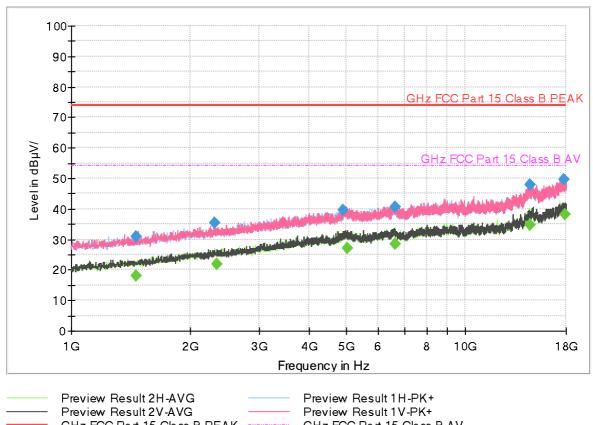

F-TP22-03 (Rev. 06) Page 25 of 30

6.3.2 Measurement Data

1 GHz - 18 GHz [EUT+TA] LTE B5+5G NR n5 High ch Idle mode

Full Spectrum

Frequency	MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB)
1541.4850	31.19	74.00	42.81	224.9	Н	11.0	-28.4
2246.5500	34.42	74.00	39.58	125.0	Н	301.0	-24.7
4961.7100	39.83	74.00	34.17	103.4	Н	211.0	-14.7
7739.9700	41.81	74.00	32.19	102.4	Н	143.0	-10.3
14560.6850	46.71	74.00	27.29	219.8	Н	22.0	0.0
17951.0600	51.09	74.00	22.91	125.2	Н	346.0	6.3


Frequency	CAverage	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBμV/m)	(dB)	(cm)		(deg)	(dB)
1541.1250	17.71	54.00	36.29	193.8	٧	357.0	-28.4
2290.9600	21.60	54.00	32.40	174.2	٧	25.0	-24.5
4967.1250	27.25	54.00	26.75	107.4	٧	25.0	-14.7
7699.7600	29.03	54.00	24.97	174.3	Н	26.0	-10.3
14671.1800	33.78	54.00	20.22	100.0	Н	216.0	0.1
17986.2347	38.26	54.00	15.74	108.8	Н	1.0	6.5

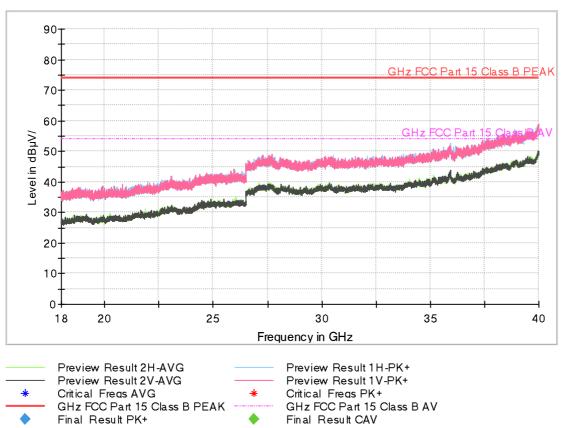
F-TP22-03 (Rev. 06) Page 26 of 30

1 GHz - 18 GHz [EUT+Earphone] LTE B5+5G NR n5 High ch Idle mode

Full Spectrum

 Preview Result 2H-AVG		Preview Result 1H-PK+
 Preview Result 2V-AVG		Preview Result 1V-PK+
GHz FCC Part 15 Class B PEAK		GHz FCC Part 15 Class B AV
Final Result PK+	•	Final Result CAV

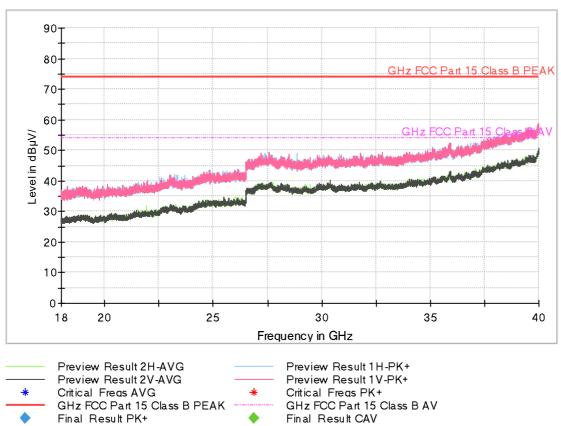
Frequency (MHz)	MaxPeak (dBμV/m)	Limit (dBμV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB)
1462.8000	30.83	74.00	43.17	181.7	٧	348.0	-28.9
2313.8350	35.31	74.00	38.69	102.4	٧	258.0	-24.4
4887.2900	39.75	74.00	34.25	224.9	Н	348.0	-14.9
6616.5750	40.53	74.00	33.47	106.7	٧	246.0	-11.6
14554.1700	47.93	74.00	26.07	224.9	Н	132.0	0.0
17792.6350	49.72	74.00	24.28	125.2	٧	68.0	5.5

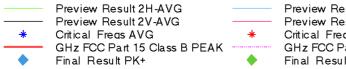

Frequency	CAverage	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBμV/m)	(dBμV/m)	(dB)	(cm)		(deg)	(dB)
1458.7900	18.01	54.00	35.99	121.3	V	300.0	-28.9
2339.2400	21.95	54.00	32.05	174.1	V	23.0	-24.3
5000.7250	27.21	54.00	26.79	195.2	Н	25.0	-14.6
6627.1000	28.39	54.00	25.61	174.1	Н	25.0	-11.6
14568.1150	34.65	54.00	19.35	100.0	Н	1.0	0.1
17915.6700	38.10	54.00	15.90	100.0	Н	126.0	6.1

F-TP22-03 (Rev. 06) Page 27 of 30

18 GHz - 40 GHz [EUT+TA] LTE B5+5G NR n5 High ch Idle mode

Full Spectrum




F-TP22-03 (Rev. 06) Page 28 of 30

18 GHz - 40 GHz [EUT+Earphone] LTE B5+5G NR n5 High ch Idle mode

Full Spectrum

F-TP22-03 (Rev. 06) Page 29 of 30

APPENDIX A. TEST SETUP PHOTO

Please refer to Appendix. A and test setup photo file no. as follows;

File No.	Date of Issue	Description
HCT-EM-2502-FC005-P	February 17, 2025	Initial Release

End of report

F-TP22-03 (Rev. 06) Page 30 of 30