

FCC BT REPORT

Certification

Applicant Name: SAMSUNG Electronics Co., Ltd.

Address:

129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea Date of Issue: May 08, 2019

Test Site/Location: HCT CO., LTD., 74,Seoicheon-ro 578beon-gil,Majangmyeo,Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA

Report No.: HCT-RF-1905-FC009

FCC ID: A3LSMV310

APPLICANT: SAMSUNG Electronics Co., Ltd.

Model:	SM-V310
EUT Type:	Al Speaker
Max. RF Output Power:	12.386 dBm (17.32 mW)
Frequency Range:	2402 MHz - 2480 MHz (Bluetooth)
Modulation type	GFSK(Normal), π /4DQPSK and 8DPSK(EDR)
FCC Classification:	FCC Part 15 Spread Spectrum Transmitter
FCC Rule Part(s):	Part 15 subpart C 15.247

Engineering Statement:

The measurements shown in this report were made in accordance with the procedures indicated, and the emissions from this equipment were found to be within the limits applicable. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. It is further stated that upon the basis of the measurements made, the equipment tested is capable of operation in accordance with the requirements of the FCC Rules under normal use and maintenance.

Report prepared by : Jeong Ho Kim Engineer of Telecommunication testing center

Ad

Approved by : Kwon Jeong Manager of Telecommunication testing center

This report only responds to the tested sample and may not be reproduced, except in full, without written approval of the HCT Co., Ltd.

Version

TEST REPORT NO.	DATE	DESCRIPTION	
HCT-RF-1905-FC009	May 08, 2019	- First Approval Report	

Table of Contents

1.	EUT DES	SCRIPTION	4
2.	Requirer	nents for Bluetooth transmitter(15.247)	5
3.	TEST ME	ETHODOLOGY	6
	EUT CO	NFIGURATION	6
	EUT EXE	ERCISE	6
	GENERA	AL TEST PROCEDURES	6
	DESCRI	PTION OF TEST MODES	6
4.	INSTRU	MENT CALIBRATION	7
5.	FACILITI	ES AND ACCREDITATIONS	7
	FACILITI	ES	7
	EQUIPM	ENT	7
6.	ANTENN	IA REQUIREMENTS	8
7.	MEASUF	REMENT UNCERTAINTY	8
8.	DESCRI	PTION OF TESTS	9
9.	SUMMA	RY OF TEST RESULTS	5
10.		TEST RESULT	6
	10.1	PEAK POWER	6
	10.2	BAND EDGES	7
	10.3	FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)	4
	10.4	NUMBER OF HOPPING FREQUENCY 42	2
	10.5	TIME OF OCCUPANCY (DWELL TIME)	6
	10.6	SPURIOUS EMISSIONS	2
	10.6.	1 CONDUCTED SPURIOUS EMISSIONS	2
	10.6.	2 RADIATED SPURIOUS EMISSIONS	0
	10.6.	3 RADIATED RESTRICTED BAND EDGES	5
	10.7 POV	VERLINE CONDUCTED EMISSIONS	8
11		LIST OF TEST EQUIPMENT	2
12		ANNEX A_ TEST SETUP PHOTO	4

1. EUT DESCRIPTION

Model	SM-V310
EUT Type	Al Speaker
Power Supply	DC 9.0 V
Data cable	Model : ECB-DU2EBE Manufacture: KSD
Travel Adapter Information	Model : EP-TA200 Manufacture: Dogyang E&P, SoluM, RFTECH, HAEM
Frequency Range	2402 MHz - 2480 MHz
Max. RF Output Power	12.386 dBm (17.32 mW)
BT Operating Mode	Normal, EDR, AFH
Modulation Type	GFSK(Normal), π/4DQPSK and 8DPSK(EDR)
Modulation Technique	FHSS
Number of Channels	79Channels, Minimum 20 Channels(AFH)
Antenna Specification	Antenna type: PIFA (Planar Inverted F Antenna) Peak Gain : 0.10 dBi
Date(s) of Tests	April 11, 2019~ May 07, 2019

2. Requirements for Bluetooth transmitter(15.247)

This Bluetooth module has been tested by a Bluetooth Qualification Lab, and we confirm the following:

- 1) This system is hopping pseudo-randomly.
- 2) Each frequency is used equally on the average by each transmitter.
- 3) The receiver input bandwidths that match the hopping channel bandwidths of their corresponding transmitters
- 4) The receiver shifts frequencies in synchronization with the transmitted signals.

• 15.247(g): The system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this Section 15.247 should the transmitter be presented with a continuous data (or information) stream.

• 15.247(h): The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

3. TEST METHODOLOGY

The measurement procedure described in the American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Device (ANSI C63.10-2013, KDB 558074) is used in the measurement of the test device.

EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

EUT EXERCISE

The EUT was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements. According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2 of ANSI C63.10. (Version :2013) Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane below 1GHz. Above 1GHz with 1.5m using absorbers between the EUT and receive antenna. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3.75 m away from the receiving antenna, which varied from 1 m to 4 m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 6.6.5 of ANSI C63.10. (Version: 2013). To record the final measurements, the analyzer detector function was set to CISPR quasi-peak mode and the bandwidth of the spectrum analyzer was set to 120 kHz for frequencies below 1 GHz or 1 MHz for frequencies above 1 GHz. For average measurements above 1 GHz, the analyzer was set to peak detector with a reduced VBW setting(RBW = 1 MHz, VBW = 1/T Hz, where T = Pulse width).

DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition. Test program used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been

calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipments, which is traceable to recognized national standards.

Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

5. FACILITIES AND ACCREDITATIONS FACILITIES

The SAC(Semi-Anechoic Chamber) and conducted measurement facility used to collect the radiated data are located at the 74, Seoicheon-ro 578beon-gil,

Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA.

The site is constructed in conformance with the requirements of ANSI C63.4. (Version :2014) and CISPR Publication 22.

Detailed description of test facility was submitted to the Commission and accepted dated April 02, 2018 (Registration Number: KR0032).

EQUIPMENT

Radiated emissions are measured with one or more of the following types of Linearly polarized antennas: tuned dipole, bi-conical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers. Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6. ANTENNA REQUIREMENTS

According to FCC 47 CFR §15.203:

"An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section."

* The antennas of this E.U.T are permanently attached.

* The E.U.T Complies with the requirement of §15.203

7. MEASUREMENT UNCERTAINTY

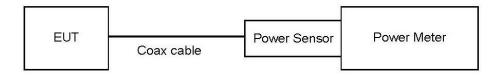
The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.10-2013.

All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence.

The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70
Radiated Disturbance (18 GHz ~ 40 GHz)	5.71

8. DESCRIPTION OF TESTS


8.1. Conducted Maximum Peak Output Power

<u>Limit</u>

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 W. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 W.
- 2. The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi.

Test Configuration

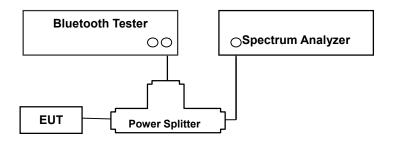
Test Procedure

The transmitter output is connected to the Power Meter.

- Peak Power (Procedure 11.9.1.3 in ANSI 63.10-2013)
- : Measure the peak power of the transmitter.

Sample Calculation

Conducted Output Power(Peak) = Reading Value + ATT loss + Cable loss



8.2. Conducted Band Edge(Out of Band Emissions)

<u>Limit</u>

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

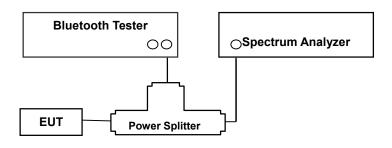
Test Configuration

Test Procedure

This test is performed with hopping off and hopping on.

The Spectrum Analyzer is set to (6.10.4 in ANSI 63.10-2013 & Procedure 8.5 and 8.6 in KDB 558074 v05r02)

- 1) Span: Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation
- Reference level: As required to keep the signal from exceeding the maximum instrument input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level.
- 3) Attenuation: Auto (at least 10 dB preferred).
- 4) Sweep time: Coupled.
- 5) RBW: 100 kHz
- 6) VBW: 300 kHz
- 7) Detector: Peak
- 8) Trace: Max hold



8.3. Frequency Separation & 20 dB Bandwidth

<u>Limit</u>

According to §15.247(a)(1), Frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

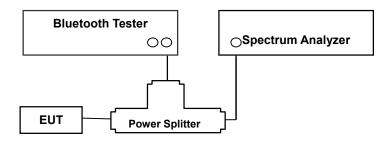
Test Configuration

Test Procedure

The Channel Separation test is performed with hopping on. And the 20 dB Bandwidth test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.2 in ANSI 63.10-2013 & Procedure 10(b)(6)(iii) in KDB 558074 v05r02)

- 1) Span: Wide enough to capture the peaks of two adjacent channels
- 2) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- 3) VBW ≥ RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) All the trace to stabilize.
- 8) Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.



8.4. Number of Hopping Frequencies

<u>Limit</u>

According to §15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands shall use at least 15 hopping frequencies.

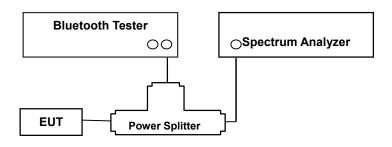
Test Configuration

Test Procedure

The Bluetooth frequency hopping function of the EUT was enabled.

The Spectrum Analyzer is set to (7.8.3 in ANSI 63.10-2013 & Procedure 10(b)(4) in KDB 558074 v05r02)

- 1) Span: the frequency band of operation
- 2) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 3) VBW ≥ RBW
- 4) Sweep: Auto
- 5) Detector: Peak
- 6) Trace: Max hold
- 7) Allow the trace to stabilize.



8.5. Time of Occupancy

<u>Limit</u>

According to \$15.247(a)(1)(iii), Frequency hopping systems operating in the 2400 MHz ~ 2483.5 MHz bands. The average time of occupancy on any channels shall not greater than 0.4 s within a period 0.4 s multiplied by the number of hopping channels employed.

Test Configuration

Test Procedure

This test is performed with hopping off.

The Spectrum Analyzer is set to (7.8.4 in ANSI 63.10-2013 & Procedure 10(b)(6)(iv) in KDB 558074 v05r02)

- 1) Span: Zero span, centered on a hopping channel
- RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3) Sweep = as necessary to capture the entire dwell time per hopping channel
- 4) Detector: Peak
- 5) Trace: Max hold

The marker-delta function was used to determine the dwell time.

Sample Calculation

The following calculation process is not relevant to our measurement results. It is just an example.

* Non-AFH Mode

- DH 5 (GFSK) : 2.890 * (1600/6)/79 * 31.6 = 308.27 (ms)
- 2-DH 5 (π/4DQPSK) : 2.890 * (1600/6)/79 * 31.6 = 308.27 (ms)
- 3-DH 5 (8DPSK) : 2.890 * (1600/6)/79 * 31.6 = 308.27 (ms)

* AFH Mode

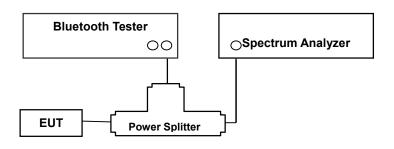
- DH 5 (GFSK) : 2.890 * (800/6)/20 * 8.0 = 154.13 (ms)
- 2-DH 5 (π/4DQPSK) : 2.890 * (800/6)/20 * 8.0 = 154.13 (ms)
- 3-DH 5 (8DPSK) : 2.890 * (800/6)/20 * 8.0 = 154.13 (ms)

Note :

DH5 Packet need 5 time slot for transmitting and 1 time slot for receiving.

Then the system makes worst case 1600/6 hops per second with 79 channels. So the system have each channel 3.3755 times per second and so for 31.6 seconds the system have 106.667 times of appearance. Each tx-time per appearance of DH5 is 2.890 ms.

Dwell time = Tx-time * 106.667 = 308.27 (ms)



8.6. Conducted Spurious Emissions

<u>Limit</u>

Conducted > 20 dBc

Test Configuration

Test Procedure

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer.

The Spectrum Analyzer is set to (7.8.8 in ANSI 63.10-2013 & Procedure 8.5 and 8.6 in KDB 558074 v05r02)

- 1) Span: 30 MHz to 10 times the operating frequency in GHz.
- 2) RBW: 100 kHz
- 3) VBW: 300 kHz
- 4) Sweep: Coupled
- 5) Detector: Peak

Measurements are made over the 30 MHz to 25 GHz range with the transmitter set to the lowest, middle, and highest channels.

This test is performed with hopping off.

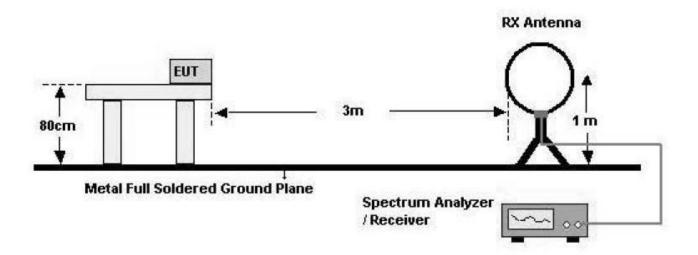
Factors for frequency

Freq(MHz)	Factor(dB)
30	27.14
100	26.31
200	27.00
300	26.54
400	26.22
500	25.91
600	26.13
700	26.30
800	26.68
900	27.04
1000	27.34
2000	27.17
2400*	27.36
2500*	27.40
3000	27.84
4000	28.91
5000	29.53
6000	26.64
7000	29.95
8000	28.30
9000	29.57
10000	30.43
11000	28.92
12000	29.69
13000	28.80
14000	29.46
15000	31.50
16000	28.10
17000	31.69
18000	29.67
19000	30.36
20000	31.65
21000	30.68
22000	32.27
23000	29.81
24000	32.48
25000	31.03
26000	30.46

Note : 1. '*' is fundamental frequency range.

2. Factor = Cable loss + Splitter loss

8.7. Radiated Test

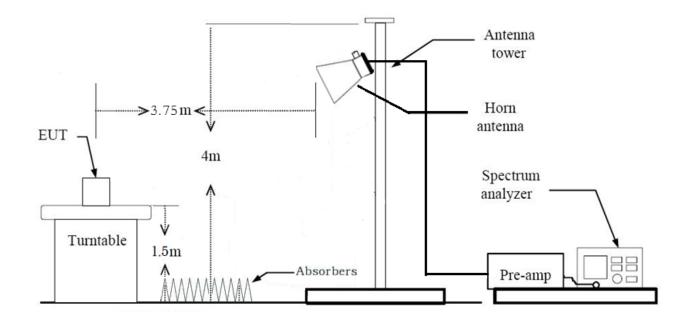

<u>Limit</u>

FCC

Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30	30	30


Test Configuration

Below 30 MHz



30 MHz - 1 GHz

Above 1 GHz

Test Procedure of Radiated spurious emissions(Below 30 MHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The loop antenna was placed at a location 3m from the EUT
- 3. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 4. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 5. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 6. Distance Correction Factor(0.009 MHz 0.490 MHz) = $40*\log(3 \text{ m}/300 \text{ m}) = -80 \text{ dB}$
 - Measurement Distance : 3 m
- 7. Distance Correction Factor(0.490 MHz 30 MHz) = 40*log(3 m/30 m) = 40 dB
 - Measurement Distance : 3 m
- 8. Spectrum Setting
 - Frequency Range = 9 kHz ~ 30 MHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 9 kHz
 - VBW ≥ 3*RBW
- 9. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
- 10. The test results for below 30 MHz is correlated to an open site.

The result on OFS is about 2 dB higher than semi-anechoic chamber(10 m chamber)

Test Procedure of Radiated spurious emissions(Below 1GHz)

- 1. The EUT was placed on a non-conductive table located on semi-anechoic chamber.
- 2. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 100 kHz
 - VBW ≥ 3*RBW
 - (2) Measurement Type(Quasi-peak):
 - Measured Frequency Range : 30 MHz 1 GHz
 - Detector = Quasi-Peak
 - RBW = 120 kHz
 - *In general, (1) is used mainly
- 6. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L)

Test Procedure of Radiated spurious emissions (Above 1 GHz)

- 1. Radiated test is performed with hopping off.
- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 6. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
 *Distance extrapolation factor = 20*log (test distance / specific distance) (dB)
- 7. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 8. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 9. The unit was tested with its standard battery.
- 10. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW ≥ 3*RBW
 - (2) Measurement Type(Average):
 - We performed using a reduced video BW method was done with the analyzer in linear mode
 - Measured Frequency Range : 1 GHz 25 GHz
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW \ge 1/T Hz, where T = pulse width in seconds
 - The actual setting value of VBW = 1 kHz
- 11. Measurement value only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit) and considered that's already beyond the background noise floor.
- 12. Total = Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) Amp Gain(G) + Distance Factor(D.F)

Test Procedure of Radiated Restricted Band Edge

- 1. Radiated test is performed with hopping off.
- 2. The EUT is placed on a turntable, which is 1.5 m above ground plane.
- 3. We have done x, y, z planes in EUT and horizontal and vertical polarization in detecting antenna.
- 4. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 5. EUT is set 3.75 m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 6. According to SVSWR requirement in ANSI 63.4-2014, We performed the radiated test at 3.75 m distance from center of turn table. So, we applied the distance factor(reference distance : 3 m).
 *Distance extrapolation factor = 20*log (test distance / specific distance) (dB)
- 7. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 8. The unit was tested with its standard battery.
- 9. Spectrum Setting
 - (1) Measurement Type(Peak):
 - Detector = Peak
 - Trace = Maxhold
 - RBW = 1 MHz
 - VBW ≥ 3*RBW
 - (2) Measurement Type(Average):
 - Average value of pulsed emissions
 - Unless otherwise specified, when the radiated emission limits are expressed in terms of the average value of the emission and pulsed operation is employed, the average measurement shall determined from the peak field strength after correcting for the worst-case duty cycle as described in 7.5 in ANSI 63.10-2013 & Procedure 9(b) in KDB 558074 v05r01
 - DCCF = 20*log₁₀(Pulse width / Period of the pulse train)
- 10. Total(Measurement Type : Peak)
 - = Peak Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)

Total(Measurement Type : Average)

- = Peak Reading Value + Antenna Factor(A.F) + Cable Loss(C.L) + Distance Factor(D.F)
 - + Duty Cycle Correction Factor

- 11. Duty Cycle Correction Factor (79 channel hopping)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 79 channels = 229.100 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = $H \rightarrow$ Round up to next highest integer, H ' =1
 - c. Worst Case Dwell Time = τ [ms] x H ' = 2.9 ms
 - d. Duty Cycle Correction = 20log (Worst Case Dwell Time/ 100ms) dB = -30.752 dB
- 12. Duty Cycle Correction Factor(AFH mode minimum channel number case 20 channels)
 - a. Time to cycle through all channels= Δ t= τ [ms] x 20 channels = 58.00 ms, where τ = pulse width
 - b. 100 ms/ Δt [ms] = $H \rightarrow$ Round up to next highest integer, H' = 2
 - c. Worst Case Dwell Time = T [ms] x H ' = 5.800 ms
 - d. Duty Cycle Correction(AFH) = 20log (Worst Case Dwell Time/ 100ms) dB = -24.7314 dB

8.8. AC Power line Conducted Emissions

<u>Limit</u>

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN).

	Limits (dBµV)		
Frequency Range (MHz)	Quasi-peak	Average	
0.15 to 0.50	66 to 56*	56 to 46*	
0.50 to 5	56	46	
5 to 30	60	50	

*Decreases with the logarithm of the frequency.

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

Test Configuration

See test photographs attached in Annex A for the actual connections between EUT and support equipment.

Test Procedure

- 1. The EUT is placed on a wooden table 80 cm above the reference ground plane.
- 2. The EUT is connected via LISN to a test power supply.
- 3. The measurement results are obtained as described below:
- 4. Detectors : Quasi Peak and Average Detector.
- 5. The EUT is the device operating below 30 MHz.
 - For unterminated the Antenna, the AC line conducted tests are performed with the antenna connected
 - For terminated the Antenna, the AC line conducted tests are performed with a dummy load connected to the EUT antenna output terminal.

Sample Calculation

Quasi-peak(Final Result) = Reading Value + Correction Factor

8.9. Worst case configuration and mode

Radiated spurious emissions

- 1. EUT Axis
 - Radiated Spurious Emissions : X
- 2. All data rate of operation were investigated and the test results are worst case in highest datarate of each mode.
 - GFSK : DH5
 - $\pi/4DQPSK$: 2-DH5
 - 8DPSK : 3-DH5

Radiated Restricted Band Edge

- 1. EUT Axis
 - Radiated Restricted Band Edge : X
- 2. We applied DCCF in the test result which hopping channel number is 20.
- 3. All data rate of operation were investigated and the test results are worst case in highest datarate of each mode.
 - GFSK : DH5
 - $\pi/4DQPSK$: 2-DH5
 - 8DPSK : 3-DH5

Conducted test

- 1. The EUT was configured with data rate of highest power.
 - GFSK : DH5
 - $\pi/4DQPSK$: 2-DH5
 - 8DPSK : 3-DH5
- 2. AFH & Non-AFH were tested and the worst case results are reported.
 - (Worst case : Non-AFH)

9. SUMMARY OF TEST RESULTS

Test Description	FCC Part Section(s)	Test Limit	Test Condition	Test Result
20 dB Bandwidth	§15.247(a)(1)	N/A		PASS
Occupied Bandwidth	N/A	N/A		N/A
Conducted Maximum Peak Output Power	§15.247(b)(1)	< 0.125 W		PASS
Carrier Frequency Separation	§15.247(a)(1)	> 25 kHz or >2/3 of the 20dB BW		PASS
Number of Hopping Frequencies	§15.247(a)(1)(iii)	≥ 15	≥ 15 Conducted	
Time of Occupancy	§15.247(a)(1)(iii)	< 400 ms		PASS
Conducted Spurious Emissions	§15.247(d)	> 20 dB for all out-of band emissions		PASS
Band Edge (Out of Band Emissions)	§15.247(d)	> 20 dB for all out-of band emissions		PASS
AC Power line Conducted Emissions	§15.207(a)	cf. Section 8.8		N/A (Note1)
Radiated Spurious Emissions	§15.247(d), 15.205, cf. Section 8.7 15.209			PASS
Radiated Restricted Band Edge	§15.247(d), 15.205, 15.209	cf. Section 8.7	Radiated	PASS
Receiver Spurious Emissions	N/A	cf. Section 8.9		PASS

10. TEST RESULT

10.1 PEAK POWER

Channel (MUL-)		Output Power (GFSK)		Limit
(IV	(INITZ)	(MHz) (dBm)	(mW)	(mW)
Low	2402	9.836	9.63	
Mid	2441	11.369	13.71	125
High	2480	8.914	7.79	

Channel			Output Power (8DPSK)		
	(MHz)	(dBm)	(mW)	(mW)	
Low	2402	10.808	12.04		
Mid	2441	12.386	17.32	125	
High	2480	9.718	9.37		

Channel Frequency		Output Power (π/4DQPSK)		Limit
(MHz)		(dBm)	(mW)	(mW)
Low	2402	10.132	10.31	
Mid	2441	11.706	14.81	125
High	2480	9.252	8.42	

Note:

1. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB.

Actual value of loss for the splitter and cable combination is 27.36 dB at 2402 MHz

and is 27.4 dB at 2480 MHz.

So, 27.4 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.

10.2 BAND EDGES

Without hopping

Outside Erequency Rend	GFSK	8DPSK	π/4DQPSK	Limit
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)
Lower	56.873	53.014	52.385	20
Upper	63.757	62.933	63.284	20

With hopping

Outside Frequency Dand	GFSK	8DPSK	π/4DQPSK	Limit	
Outside Frequency Band	(dB)	(dB)	(dB)	(dBc)	
Lower	Lower 59.671		52.564	20	
Upper	65.500	64.717	64.033	20	

Note :

1. Spectrum reading values are not plot data.

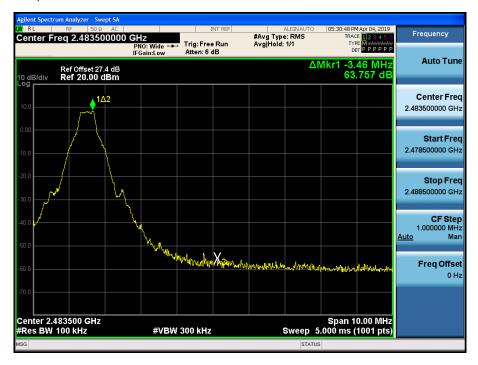
The power results in plot is already including the actual values of loss for the splitter and cable combination.

2. We apply to the offset in the 2.4 GHz range that was rounded off to the closest tenth dB.

Actual value of loss for the splitter and cable combination is 27.36 dB at 2402 MHz


and is 27.4 dB at 2480 MHz.

So, 27.4 dB is offset. And the offset gap in the 2.4 GHz range do not affect the conducted peak power final result.



Test Plots without hopping (GFSK)

Band Edges (CH.0)

Test Plots without hopping (GFSK) Band Edges (CH.78)

Test Plots without hopping (8DPSK)

Band Edges (CH.0)

Test Plots without hopping (8DPSK) Band Edges (CH.78)

Test Plots without hopping (π /4DQPSK)

Band Edges (CH.0)

Test Plots without hopping (π /4DQPSK) Band Edges (CH.78)

Test Plots with hopping (GFSK)

Band Edges (CH.0)


Test Plots with hopping (GFSK) Band Edges (CH.78)

Test Plots with hopping (8DPSK)

Band Edges (CH.0)

Test Plots with hopping (8DPSK) Band Edges (CH.78)

Test Plots with hopping (π /4DQPSK)

Band Edges (CH.0)

Test Plots with hopping (π /4DQPSK) Band Edges (CH.78)

10.3 FREQUENCY SEPARATION / OCCUPIED BANDWIDTH (99% BW)

99% BW (kHz)									
Channel	Channel GFSK 8DPSK π/4DQPSK								
CH.0	906.87	1195.9	1191.0						
CH.39	914.37	1194.5	1191.5						
CH.78	902.20	1209.4	1199.5						

20dB BW (kHz)									
Channel	Channel GFSK 8DPSK π/4DQPSK								
CH.0	1047	1317	1332						
CH.39	1051	1320	1329						
CH.78	1040	1326	1333						

	Limit						
GFSK	GFSK 8DPSK π/4DQPSK						
			>25 kHz				
1001	988	991	or				
			>2/3 of the 20dB BW				

Test Plots (GFSK)

Channel Separation

Agilent Spectr	um An RE	alyzer - Swep 50 Ω			The	T REF		ALIGNAUTO	05:06:00 PA	1 Apr 04, 2019		
Center Fr			0000 GHz				#Avg Typ Avg Hold	e: RMS	TRAC	E 1 2 3 4 5 6	Fre	quency
				Wide ↔ n:Low	#Atten: 20		Arginor		DE	Е Милилии ТРРРРР		
10 dB/div		Offset 27.4 20.00 dl						ΔN	1kr3 1.0 0.	41 MHz 056 dB		Auto Tune
10.0	~~	<mark>√/X2</mark>	John John John John John John John John	~~~~		1∆2 4~	~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u></u> 3∆4			enter Freq 000000 GHz
-20.0 -30.0 -40.0												Start Freq 500000 GHz
-50.0 -60.0 -70.0												Stop Freq 500000 GHz
Center 2.4 #Res BW				#VBW	100 kHz			Sweep	Span 3. 3.176 ms	.000 MHz (900 pts)	; Auto	CF Step 300.000 kHz Man
MKR MODE TF	C SCL	(A)	× 1 001 t	/Hz (Δ)	∀ -0.109 d	FUNC	TION FU	NCTION WIDTH	FUNCTIO	N VALUE	Auto	Wan
2 F 1 3 Δ4 1 4 F 1	f f f	(<u>Δ</u>)	2.440 017 0	GHz MHz (Δ)	8.426 dB 0.056 d 8.317 dB	m B					F	req Offset 0 Hz
5 6 7 8										=		
9 10 11					m					~		
мsg 🧼 Point	s cha	nged; all tra	aces cleared					STATUS	6			

Test Plots (8DPSK) Channel Separation

	RF 50 Ω A	000 GHz		INT REF	#Avg 1	ALIGNAUTO	TRAC	Apr 04, 2019	Fred	quency
dB/div	tef Offset 27.4 d				AvgļH		ΔMkr3 9	88 kHz 488 dB	A	luto Tune
og 0.0 0.00 0.00	X2~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1∆2 Adv_^		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3∆4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~ ~~~		enter Fre 000000 GH
0.0										Start Fre 00000 G⊦
i0.0 i0.0 i0.0										Stop Fre 00000 G⊦
enter 2.44 Res BW 30	kHz	#\ ×	/BW 100 kHz		ICTION	Sweep	Span 3. 3.176 ms		3 <u>Auto</u>	CF Ste 00.000 kH Ma
2 F 1 3 Δ4 1 4 F 1 5	f (Δ)	1.168 MHz 2.439 827 GHz 988 kHz 2.440 995 GHz	4.981 c	Bm dB					Fi	r eq Offs 0 F
6 7 8 9 0 1										
								>		

Test Plots (π/4DQPSK)

Channel Separation

	um Analyzer - Swe									
Center Fi	RF 50 Ω req 2.44100	0000 GH	Z 0: Wide +++		T REF	#Avg Typ AvgiHold		TRAC	1 Apr 04, 2019 E 1 2 3 4 5 6 E M 444444	Frequency
10 dB/div	Ref Offset 27. Ref 20.00 d	IFG 4 dB	Sain:Low	#Atten: 20	dB		ΔN	lkr3 1.1	68 MHz 609 dB	Auto Tune
Log 10.0 0.00	X2nm	A	~~~~	Λ1Δ2	\sim	~~~~	~~~^	304	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Center Freq 2.441000000 GHz
-20.0 -30.0 -40.0										Start Freq 2.439500000 GHz
-50.0 -60.0 -70.0										Stop Freq 2.442500000 GHz
Center 2.4 #Res BW	441000 GHz 30 kHz		#VBW	100 kHz			Sweep	Span 3 3.176 ms	.000 MHz (900 pts)	CF Step 300.000 kHz Auto Man
MKR MODE TH	RC SCL	× 99	1 kHz (Δ)	∀ -0.678 d	FUNC	TION FU	NCTION WIDTH	FUNCTIO	N VALUE	Auto Mari
2 F 1 3 <u>A</u> 4 1 4 F 1 5	f f (Δ)	2.439 837	7 GHz 3 MHz (Δ)	6.986 dB 0.609 d 6.308 dB	m B					Freq Offset 0 Hz
6 7 8 9										
11				Ш					~	
MSG 🔱 Point	ts changed; all tr	aces cleare	ed				STATUS			



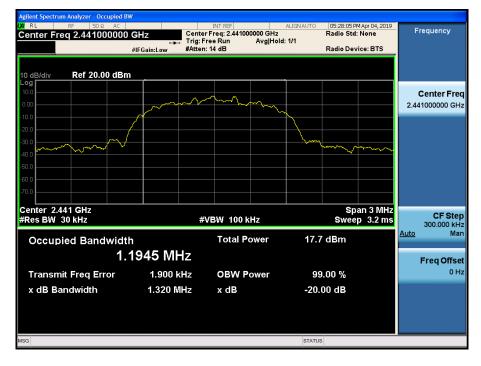
Test Plots (GFSK)

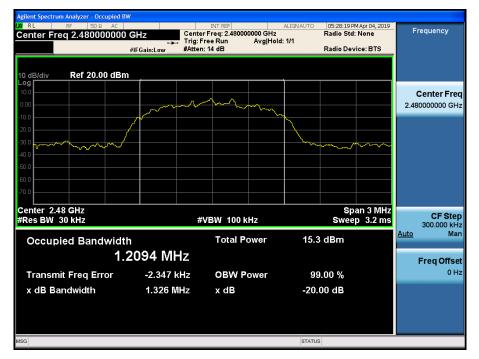
20 dB Bandwidth & Occupied Bandwidth (CH.0)

Test Plots (GFSK) 20 dB Bandwidth & Occupied Bandwidth (CH.39)

Test Plots (GFSK)

20 dB Bandwidth & Occupied Bandwidth (CH.78)

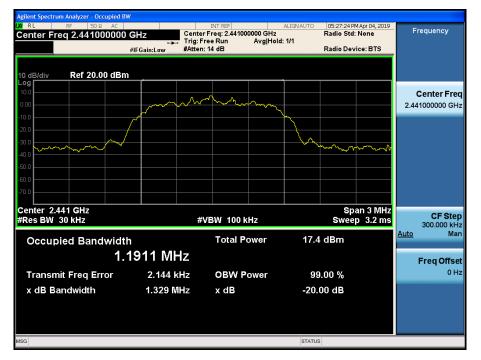

Test Plots (8DPSK) 20 dB Bandwidth & Occupied Bandwidth (CH.0)


Test Plots (8DPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.39)

Test Plots (8DPSK)


20 dB Bandwidth & Occupied Bandwidth (CH.78)


Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.0)

Test Plots (π/4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.39)

Test Plots (π /4DQPSK)

20 dB Bandwidth & Occupied Bandwidth (CH.78)

10.4 NUMBER OF HOPPING FREQUENCY

GFSK	8DPSK	Limit	
79	79	79	>15

Note :

In case of AFH mode, minimum number of hopping channels is 20.

Test Plots (GFSK)

Number of Channels (2.4 GHz - 2.441 GHz)

Test Plots (GFSK)

Number of Channels (2.441 GHz - 2.4835 GHz)

Test Plots (8DPSK)

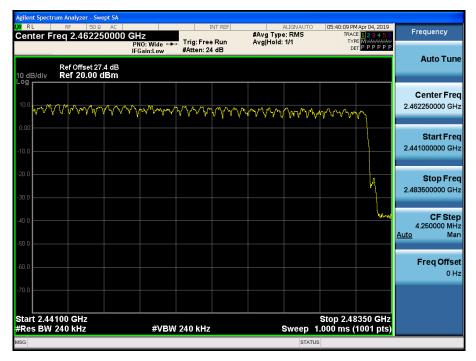
Number of Channels (2.4 GHz - 2.441 GHz)

Agilent Spectrum Analyzer - Swept SA	INT RE	F ALIGNAUTO	05:40:45 PM Apr 04, 2019	
Center Freq 2.420500000		#Avg Type: RMS	TRACE 123456	Frequency
Ref Offset 27.4 dB 10 dB/div Ref 20.00 dBm	IFGain:Low #Atten: 24 dB		DET PPPPP	Auto Tune
	YWWYYWWY WW	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	wwww	Center Freq 2.420500000 GHz
-10.0				Start Freq 2.400000000 GHz
-20.0				Stop Freq 2.441000000 GHz
-40.0				CF Step 4.100000 MHz <u>Auto</u> Man
-60.0				Freq Offset 0 Hz
Start 2.40000 GHz #Res BW 240 kHz	#VBW 240 kHz	Sweep 1	Stop 2.44100 GHz .000 ms (1001 pts)	
MSG		STATU		

Test Plots (8DPSK)

Number of Channels (2.441 GHz - 2.4835 GHz)

RL RF 50Ω AC enter Freq 2.462250000	CHZ PNO: Wide +++ Trig: Free Run	ALIGNAUTO #Avg Type: RMS Avg Hold: 1/1	05:41:20 PM Apr 04, 2019 TRACE 1 2 3 4 5 6 TYPE MWWWWW	Frequency
Ref Offset 27.4 dB	IFGain:Low #Atten: 24 dB		DET PPPPP	Auto Tur
a ᠈᠃ ᢧᡪᡎᢦᡐᡇ᠊᠋ᡩ᠘ᡀᢧ᠕ᢕᡧᡪ	Mr. M.	ᡗ᠕᠕ᡙᠬ᠋ᡎ᠕᠕᠕	ᡙᠰᢧᡊᡟᡳ᠕᠕	Center Fre 2.462250000 GF
0.0				Start Fr 2.441000000 G
D.0				Stop Fr 2.483500000 G
.0			harger 	CF Sto 4.250000 M <u>Auto</u> M
				Freq Offs 0
tart 2.44100 GHz Res BW 240 KHz	#VBW 240 kHz	Sweep 1	Stop 2.48350 GHz .000 ms (1001 pts)	


Test Plots (π/4DQPSK)

Number of Channels (2.4 GHz - 2.441 GHz)

Agilent Spectrum Analyzer - Swept SA XI RL RF 50 Ω AC		INT REF	ALIGNAUTO	05:39:34 PM Apr 04, 2019	Frequency
Center Freq 2.420500000	GHZ PNO: Wide ↔ Trig: Fre IFGain:Low #Atten: 2	e Run Avg Hol	pe: RMS d: 1/1	TRACE 1 2 3 4 5 6 TYPE MIAWAAAA DET P P P P P	
Ref Offset 27.4 dB 10 dB/div Ref 20.00 dBm	IFGail.Low #Rectific				Auto Tune
	ᠰᡊᠰᢦᠰᢦ᠆ᢦᡥᡟᠰ	ᢣᡊᢕᡙᠬ᠆᠆ᠬ᠕᠆ᠰᠣᠶ	ᠰᠰᡳᠰᠰ	ᡶ᠕᠇ᡘᢇᠰᠬᡎᡳᡢᡟ	Center Freq 2.420500000 GHz
-10.0					Start Freq 2.400000000 GHz
-20.0					Stop Fred 2.441000000 GHz
-40.0					CF Step 4.100000 MH: <u>Auto</u> Mar
60.0					Freq Offse 0 H:
-70.0 Start 2.40000 GHz #Res BW 240 kHz	#VBW 240 kHz		Sween_1	Stop 2.44100 GHz 000 ms (1001 pts)	
MSG			STATUS	voorme groot proj	

Test Plots (π/4DQPSK)

Number of Channels (2.441 GHz - 2.4835 GHz)

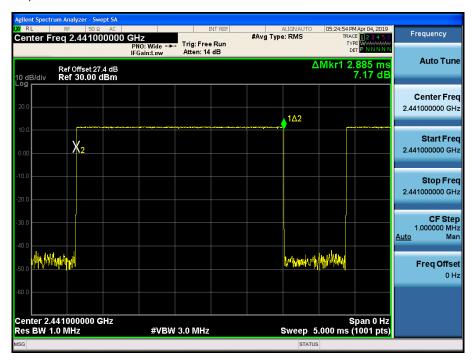
10.5 TIME OF OCCUPANCY (DWELL TIME)

	Channel	GFSK	8DPSK	π/4DQPSK
Pulse Time	Low	2.885	2.890	2.890
(ms)	Mid	2.885	2.890	2.890
	High	2.885	2.895	2.890

Non-AFH Mode

	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)
Total of Dwell	Low	307.73	308.27	308.27	31.6	
(ms)	Mid	307.73	308.27	308.27	31.6	400
	High	307.73	308.80	308.27	31.6	

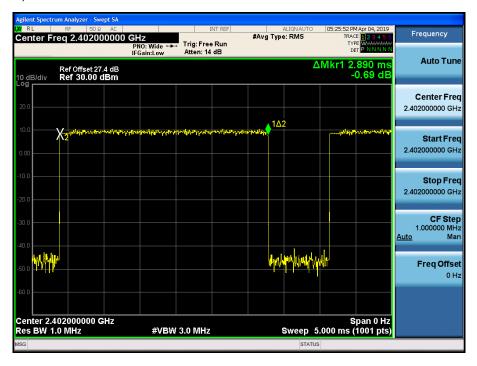
AFH Mode


	Channel	GFSK	8DPSK	π/4DQPSK	Period Time (s)	Limit (ms)
Total of Dwell	Low	153.87	154.14	154.14	8.0	
(ms)	Mid	153.87	154.14	154.14	8.0	400
	High	153.87	154.40	154.14	8.0	

Test Plots (GFSK) Dwell Time (CH.0)

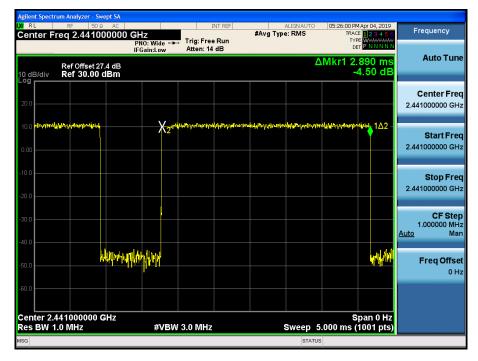
Agilent Spectrum Analyzer - Swept SA		INT REF	ALIGNAUTO 05:24:4	6 PM Apr 04, 2019	
Center Freq 2.402000000	GHz PNO: Wide Trig: Free	#Avg Type e Run	e: RMS T	RACE 123456 TYPE WANNAMA	Frequency
	IFGain:Low Atten: 14	l dB		2.885 ms	Auto Tune
Ref Offset 27.4 dB 10 dB/div Ref 30.00 dBm				10.53 dB	
					Center Freq
20.0		142			2.402000000 GHz
10.0		1Δ2			
0.00					Start Freq 2.402000000 GHz
X2					
-10.0					Stop Freq
-20.0					2.402000000 GHz
					CF Step
-30.0					1.000000 MHz Auto Man
-40.0			1		
-50.0		(p), (t)	HAMAN AND AND AND AND AND AND AND AND AND A		Freq Offset
					0 Hz
-60.0					
Center 2.402000000 GHz				Span 0 Hz	
Res BW 1.0 MHz	#VBW 3.0 MHz		Sweep 5.000 m	s (1001 pts)	
MSG			STATUS		

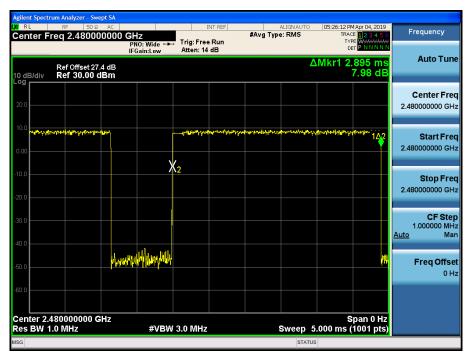
Test Plots (GFSK) Dwell Time (CH.39)



Test Plots (GFSK) Dwell Time (CH.78)

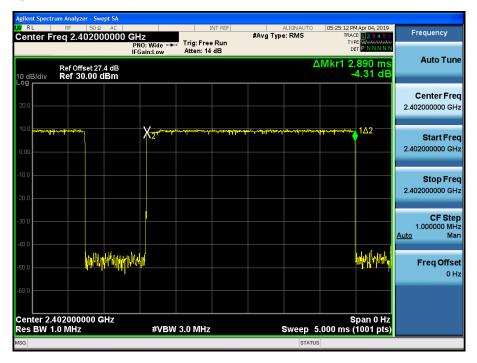
	NO Wide ++ 1	Trig: Free A Atten: 14 d		#Avg Typ		TYPE DET	123456 WWWWWWW PNNNNN	Frequency Auto Tur Center Fre 2.480000000 GH
offset 27.4 dB 30.00 dBm	X	2					5.97 dB	Center Fre 2.48000000 GF Start Fre
	X	2					142	2.480000000 GF Start Fre
	X	2	····				142	
								2.48000000 GF
								Stop Fr 2.480000000 Gi
								CF Ste 1.000000 Mi <u>Auto</u> Mi
infidiji ja	Appt you the Apply						, ,	Freq Offs 0 I
0000 GHz						Si	pan 0 Hz	
Z	#VBW 3.	.0 MHz			Sweep 5	.000 ms (1	1001 pts)	
	0000 GHz		0000 GHz	0000 GHz	0000 GHz	0000 GHz z #VBW 3.0 MHz Sweep 5	0000 GHz S	0000 GHz Span 0 Hz z #VBW 3.0 MHz Sweep 5.000 ms (1001 pts)


Test Plots (8DPSK) Dwell Time (CH.0)



Test Plots (8DPSK)

Dwell Time (CH.39)



Test Plots (8DPSK) Dwell Time (CH.78)

Test Plots (π/4DQPSK) Dwell Time (CH.0)

Test Plots (π/4DQPSK) Dwell Time (CH.39)

Test Plots (π /4DQPSK)

Dwell Time (CH.78)

RL RF Center Freq 2.		∩ Wide 🛶 Tr	INT REF	#Avg Type: Ri	IAUTO 05:25:39 PM MS TRACE TYPI DE	Apr 04, 2019 1 2 3 4 5 6 WAMANAN P N N N N N	Frequency
	ffset 27.4 dB 80.00 dBm	am:Luw o			ΔMkr1 2.	890 ms 3.40 dB	Auto Tur
20.0							Center Fre 2.480000000 GF
10.0 10.0 0.00	······································	X ₂	undergen and the state of the s	าสารางเหตุสระบรรณ	nhandre have and all and all and a		Start Fre 2.480000000 Gi
20.0							Stop Fr 2.48000000 G
40.0							CF Sto 1.000000 M <u>Auto</u> M
50.0	Mppindy	n hyper				(W)	Freq Offs 0
Center 2.480000		#VBW 3.0	MHz	Swi	S eep 5.000 ms (*	oan 0 Hz 1001 pts)	

10.6 SPURIOUS EMISSIONS

10.6.1 CONDUCTED SPURIOUS EMISSIONS

Test Result : please refer to the plot below.

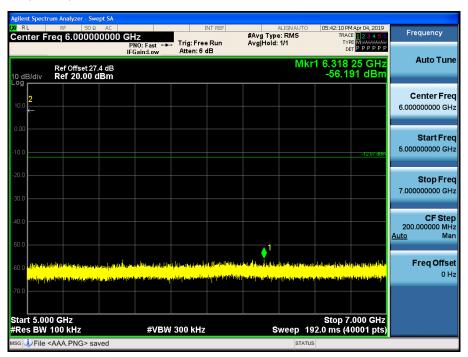
In order to simplify the report, attached plots were only the worst case channel and data rate.

Test Plots (8DPSK)- 30 MHz - 1 GHz Spurious Emission (CH.39)

RL	rum Analyzer - Swept S. RF 50 Ω A0		INT REF	ALIGN AUTO	05:41:49 PM Apr 04, 2019	
enter F	req 515.00000			#Avg Type: RMS Avg Hold: 1/1	TRACE 23456 TYPE MWWWWW DET PPPPP	Frequency
dB/div	Ref Offset 27.4 di Ref 20.00 dBn			N	1kr1 945.14 MHz -58.707 dBm	Auto Tun
					2 →	Center Fre 515.000000 MH
.00 D.0					-12.07 ddm	Start Fre 30.000000 M⊦
).0).0						Stop Fre 1.000000000 G⊦
						CF Ste 97.000000 MH <u>Auto</u> Ma
1.0 <mark>(Freedel</mark>	skennen og fillenet op fillenet og som er som	n <mark>a f</mark> hfan i yn deladau gestaf wed		la baya da bara jida ya kasa bada shi da barih sansin Mala ya ja sa		Freq Offs 0 F
art 30.0		Managa Serah Kananga Sanang Kabupatén Kabupatén Kabupatén Kabupatén Kabupatén Kabupatén Kabupatén Kabupatén Kab			Stop 1.0000 GHz	
tes BW	100 kHz	#VBW	300 kHz	Sweep 9	3.33 ms (20000 pts)	

Test Plots (8DPSK)- 1 GHz – 3 GHz Spurious Emission (CH.39)

	rum Analyzer - Sw							
Contor E	RF 50Ω req 2.00000		INT F		ALIGNAUTO Type: RMS	05:41:39 PM Apr 04, 20 TRACE 1 2 3 4		Frequency
Genter F	req 2.00000	PNO: Fast			Hold: 1/1	TYPE MWWWWW DET P P P P	6666	
		IFGain:Low	Attent 6 dB		Miles	4 0 005 05 01		Auto Tune
10 dB/div	Ref Offset 27 Ref 20.00				IVIKI	1 2.995 65 GH -56.143 dB		
Log 10.0					\¢ ²			Center Freq
0.00								2.000000000 GHz
-10.0						-12.07 c	Bm	
-20.0								Start Freq
-30.0 -40.0								1.000000000 GHz
-40.0							1	
-60.0 margar p	and a state of the second state	an dalamatan da manang pana sarah sarah		and a state of the ball	des de la <mark>belande de la composición de la com</mark>	la biord in color la tradició de la constat		Stop Freq 3.00000000 GHz
-70.0 -70.0	allens. Ta in southfill a shirt but	and an	أنأذاك أفتك فكر فتعتملون والروديد					3.00000000 GHz
Start 1.00						Stop 3.000 GI		CF Step
#Res BW	100 kHz	#V	BW 300 kHz		Sweep 19	2.0 ms (40001 pt		200.000000 MHz
MKR MODE T		× 2.995 65 GHz	۲ -56.143 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE		<u>Auto</u> Man
2 N 4		2.440 95 GHz	7.934 dBm					Freq Offset
4								0 Hz
6							=	
8								
10								
<						>	Ĩ	
мsg 🤹 Poin	ts changed; all	traces cleared			STATU	S		

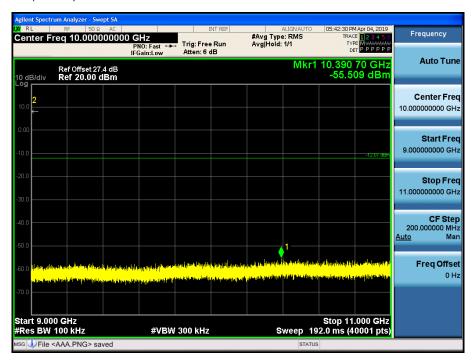


Test Plots(8DPSK)- 3 GHz - 5 GHz

Spurious Emission (CH.39)

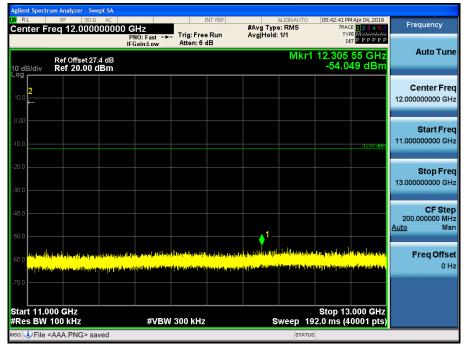
RL RF 50 Ω AC enter Freg 4.00000000		INT REF	ALIGNAUTO #Avg Type: RMS	05:42:00 PM Apr 04, 2019 TRACE 123456	Frequency
	PNO: Fast +++ IFGain:Low	Trig: Free Run Atten: 6 dB	Avg Hold: 1/1	TYPE MIMMMM DET PPPPPP	
Ref Offset 27.4 dB dB/div Ref 20.00 dBm			Mkr	1 3.637 95 GHz -55.118 dBm	Auto Tune
2 					Center Fre 4.000000000 GH
0.0				-12.07 abm	Start Fre 3.000000000 GH
0.0					Stop Fre 5.000000000 GH
					CF Ste 200.000000 MH <u>Auto</u> Ma
0.0 dette in dette indexemple	head and the based of the second	ta Principal and a tradition of the state of	da la se la cia pote e distrita engene en esta da la da da s	at the low manufactory of the state of the s	Freq Offs
, ^{Alfere} ration (Halfall), ^H alfall, ^H alfall), ^H alfall, ^H a			lagt nyaataa saataa sadaa sa ay aa adagaa dagaa dag		
art 3.000 GHz Res BW 100 kHz	#VBW 3		Swoon 10	Stop 5.000 GHz 2.0 ms (40001 pts)	

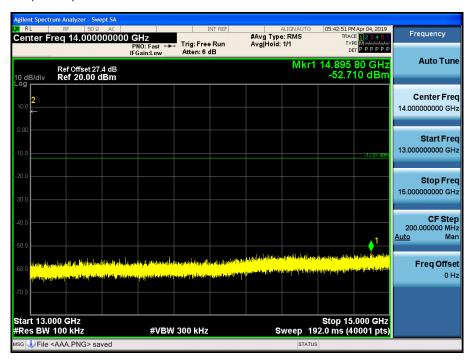
Test Plots (8DPSK)- 5 GHz - 7 GHz Spurious Emission (CH.39)



Test Plots(8DPSK)- 7 GHz - 9 GHz Spurious Emission (CH.39)

RL	RF 50 Ω			- 1	INT REF	#Avg Typ	ALIGNAUTO		1 Apr 04, 2019 E 1 2 3 4 5 6	Frequency
enter F	req 8.00000	Р	Z 10: Fast ↔ Gain:Low	Trig: Free Atten: 6		Avg Hold:		TYP	E M WWWWWW T P P P P P P	
0 dB/div	Ref Offset 27. Ref 20.00 d						Mkr	1 7.061 -55.1	60 GHz 68 dBm	Auto Tur
09 10.0 ←										Center Fre 8.00000000 G⊦
0.00									-12.07 dBm	Start Fre 7.000000000 GF
0.0										Stop Fre 9.000000000 GH
0.0										CF Ste 200.000000 Mi <u>Auto</u> Mi
	nest ki pinski ta pos dikad na pisatelja osnatelja o n					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	angelation Hild Har Mangelation and Angela	land and have a state	and the second second	Freq Offs 01
0.0									.000 GHz	
	100 kHz		#VBW	300 kHz		s	weep 19	2.0 ms (4	0000 GH2 0001 pts)	

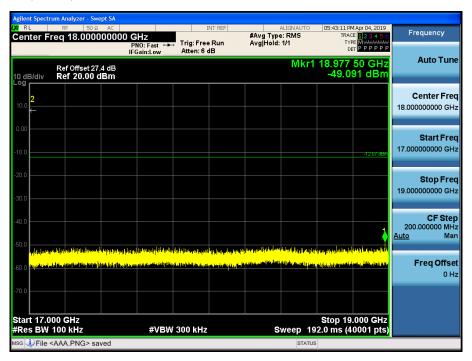

Test Plots(8DPSK)- 9 GHz - 11 GHz Spurious Emission (CH.39)



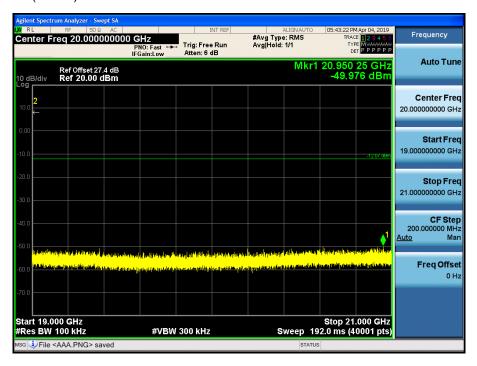
Test Plots(8DPSK) 11 GHz - 13 GHz

Spurious Emission (CH.39)

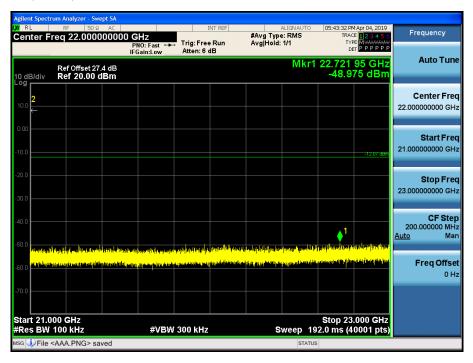
Test Plots (8DPSK)- 13 GHz – 15 GHz Spurious Emission (CH.39)



Test Plots(8DPSK)– 15 GHz - 17 GHz Spurious Emission (CH.39)


DV RL RF |5000 RL Center Freq 16.000000000 GHz PN0:Fast ↔→ Trig:Free Run IFGain:Low Atten:6 dB Frequency #Avg Type: RMS Avg|Hold: 1/1 DET P P P P P Auto Tune Mkr1 15.731 30 GHz -52.272 dBm Ref Offset 27.4 dB Ref 20.00 dBm 10 dB/div **Center Freq** 16.00000000 GHz Start Freq 15.00000000 GHz Stop Freq 17.00000000 GHz CF Step 200.000000 MHz uto ø Freq Offset 0 Hz Start 15.000 GHz #Res BW 100 kHz Stop 17.000 GHz Sweep 192.0 ms (40001 pts) #VBW 300 kHz File <AAA.PNG> saved

Test Plots(8DPSK)- 17 GHz - 19 GHz Spurious Emission (CH.39)



Test Plots (8DPSK)- 19 GHz - 21 GHz Spurious Emission (CH.39)

Test Plots (8DPSK)- 21 GHz - 23 GHz Spurious Emission (CH.39)

Test Plots (8DPSK)- 23 GHz - 25 GHz Spurious Emission (CH.39)

RL	RF 50 Ω			1	NT REF		ALIGNAUTO		Apr 04, 2019	Frequency
enter F	req 24.0000	F	Hz NO:Fast ↔ Gain:Low	Trig: Free Atten: 6		#Avg Type Avg Hold:		TYP	E 123456 E M WWWWWW T P P P P P P	rrequency
0 dB/div	Ref Offset 27. Ref 20.00 d	4 dB	Gameow				Mkr1	24.136 -43.9	05 GHz 94 dBm	Auto Tur
09 10.0 <mark>2</mark> ←										Center Fre 24.000000000 GH
0.0									-12.07 dBm	Start Fre 23.000000000 GF
0.0										Stop Fre 25.000000000 GF
	wasallah jipasa saka	l. o. da condectividad	htteri by donitik	a <mark>hi na kana kana kana kana kana kana kana </mark>	1.		anten an Andreasa	ord he at the other	. Ali mana majina	CF Ste 200.000000 Mł <u>Auto</u> Mi
	an a		fents, ji ingitira (8)	passes and the loss	<mark>, kapatén k</mark> angali	(^{Delisi} (Ratential	abhtanarana	d praway tagantistik.	ngeranger of the	Freq Offs
0.0										01
	000 GHz 100 kHz		#VBW	300 kHz		s	weep 19	Stop 25 2.0 ms (4	.000 GHz 0001 pts)	

10.6.2 RADIATED SPURIOUS EMISSIONS

Frequency Range : 9 kHz – 30MHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB
			No Critical p	eaks found			

Note:

1. The reading of emissions are attenuated more than 20 dB below the permissible

limits or the field strength is too small to be measured.

- 2. Distance extrapolation factor = 40*log (specific distance / test distance) (dB)
- 3. Limit line = specific Limits (dBuV) + Distance extrapolation factor
- 4. Radiated test is performed with hopping off.
- 5. The test results for below 30 MHz is correlated to an open site.

The result on OFS is about 2 dB higher than semi-anechoic chamber(10 m chamber)

Frequency Range : Below 1 GHz

Frequency	Reading	Ant. factor	Cable loss	Ant. POL	Total	Limit	Margin
MHz	dBuV/m	dBm/m	dBm	(H/V)	dBuV/m	dBuV/m	dB
No Critical peaks found							

Note:

- 1. Radiated emissions measured in frequency range from 30 MHz to 1000 MHz were made with an instrument using Quasi peak detector mode.
- 2. Radiated test is performed with hopping off.

Frequency Range : Above 1 GHz

Frequency	Reading	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4804	50.95	1.83	V	52.78	73.98	21.20	PK
4804	36.26	1.83	V	38.09	53.98	15.89	AV
7206	49.91	9.65	V	59.56	73.98	14.42	PK
7206	36.54	9.65	V	46.19	53.98	7.79	AV
4804	51.04	1.83	Н	52.87	73.98	21.11	PK
4804	36.28	1.83	н	38.11	53.98	15.87	AV
7206	49.94	9.65	Н	59.59	73.98	14.39	PK
7206	36.56	9.65	Н	46.21	53.98	7.77	AV

Operation Mode: CH Low(GFSK)

Operation Mode: CH Low(8DPSK)

Frequency [MHz]	Reading [dBuV]	A.F + C.L - A.G + D.F [dB]	Pol. [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
4804	50.71	1.83	V	52.54	73.98	21.44	PK
4804	36.21	1.83	V	38.04	53.98	15.94	AV
7206	49.90	9.65	V	59.55	73.98	14.43	PK
7206	36.52	9.65	V	46.17	53.98	7.81	AV
4804	50.69	1.83	Н	52.52	73.98	21.46	PK
4804	36.22	1.83	Н	38.05	53.98	15.93	AV
7206	49.93	9.65	Н	59.58	73.98	14.40	PK
7206	36.54	9.65	Н	46.19	53.98	7.79	AV

Operation Mode: CH Low(π/4DQPSK)

Frequency	Reading	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4804	50.88	1.83	V	52.71	73.98	21.27	PK
4804	36.23	1.83	V	38.06	53.98	15.92	AV
7206	49.74	9.65	V	59.39	73.98	14.59	PK
7206	36.51	9.65	V	46.16	53.98	7.82	AV
4804	50.96	1.83	Н	52.79	73.98	21.19	PK
4804	36.26	1.83	н	38.09	53.98	15.89	AV
7206	49.88	9.65	Н	59.53	73.98	14.45	PK
7206	36.54	9.65	Н	46.19	53.98	7.79	AV

Operation Mode: CH Mid(GFSK)

Frequency [MHz]	Reading [dBuV]	A.F + C.L - A.G + D.F [dB]	Pol. [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
4882	50.68	2.31	V	52.99	73.98	20.99	PK
4882	36.96	2.31	V	39.27	53.98	14.71	AV
7323	49.95	9.96	V	59.91	73.98	14.07	PK
7323	36.20	9.96	V	46.16	53.98	7.82	AV
4882	50.85	2.31	Н	53.16	73.98	20.82	PK
4882	37.02	2.31	Н	39.33	53.98	14.65	AV
7323	50.26	9.96	Н	60.22	73.98	13.76	PK
7323	36.24	9.96	Н	46.20	53.98	7.78	AV

Operation Mode: CH Mid(8DPSK)

Frequency	Reading	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4882	50.50	2.31	V	52.81	73.98	21.17	PK
4882	36.93	2.31	V	39.24	53.98	14.74	AV
7323	49.95	9.96	V	59.91	73.98	14.07	PK
7323	36.13	9.96	V	46.09	53.98	7.89	AV
4882	50.88	2.31	Н	53.19	73.98	20.79	PK
4882	37.02	2.31	Н	39.33	53.98	14.65	AV
7323	50.20	9.96	Н	60.16	73.98	13.82	PK
7323	36.16	9.96	Н	46.12	53.98	7.86	AV

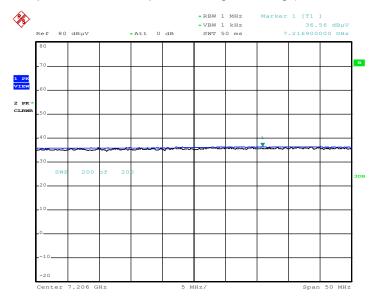
Operation Mode: CH Mid(π /4DQPSK)

Frequency	Reading	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4882	50.47	2.31	V	52.78	73.98	21.20	PK
4882	36.95	2.31	V	39.26	53.98	14.72	AV
7323	49.92	9.96	V	59.88	73.98	14.10	PK
7323	36.07	9.96	V	46.03	53.98	7.95	AV
4882	50.86	2.31	Н	53.17	73.98	20.81	PK
4882	37.01	2.31	Н	39.32	53.98	14.66	AV
7323	50.17	9.96	Н	60.13	73.98	13.85	PK
7323	36.15	9.96	Н	46.11	53.98	7.87	AV

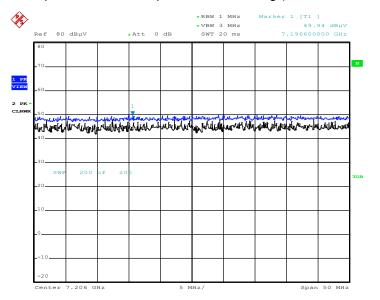
Operation Mode: CH High(GFSK)

Frequency [MHz]	Reading [dBuV]	A.F + C.L - A.G + D.F [dB]	Pol. [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
4960	50.62	2.26	V	52.88	73.98	21.10	PK
4960	37.05	2.26	V	39.31	53.98	14.67	AV
7440	49.57	9.78	V	59.35	73.98	14.63	PK
7440	36.02	9.78	V	45.80	53.98	8.18	AV
4960	50.56	2.26	Н	52.82	73.98	21.16	PK
4960	37.01	2.26	Н	39.27	53.98	14.71	AV
7440	49.62	9.78	Н	59.40	73.98	14.58	PK
7440	36.05	9.78	Н	45.83	53.98	8.15	AV

Operation Mode: CH High(8DPSK)


Frequency	Reading	A.F + C.L - A.G + D.F	Pol.	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dBuV/m]	[dBuV/m]	[dB]	Туре
4960	50.60	2.26	V	52.86	73.98	21.12	PK
4960	37.01	2.26	V	39.27	53.98	14.71	AV
7440	49.66	9.78	V	59.44	73.98	14.54	PK
7440	36.03	9.78	V	45.81	53.98	8.17	AV
4960	50.60	2.26	Н	52.86	73.98	21.12	PK
4960	37.05	2.26	Н	39.31	53.98	14.67	AV
7440	49.89	9.78	Н	59.67	73.98	14.31	PK
7440	36.02	9.78	Н	45.80	53.98	8.18	AV

Operation Mode: CH High (π /4DQPSK)


Frequency [MHz]	Reading [dBuV]	A.F + C.L - A.G + D.F [dB]	Pol. [H/V]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
4960	50.66	2.26	V	52.92	73.98	21.06	PK
4960	37.03	2.26	V	39.29	53.98	14.69	AV
7440	49.61	9.78	V	59.39	73.98	14.59	PK
7440	36.02	9.78	V	45.80	53.98	8.18	AV
4960	50.61	2.26	Н	52.87	73.98	21.11	PK
4960	37.04	2.26	Н	39.30	53.98	14.68	AV
7440	49.98	9.78	Н	59.76	73.98	14.22	PK
7440	36.06	9.78	Н	45.84	53.98	8.14	AV

RESULT PLOTS (Worst case : H)

Radiated Spurious Emissions plot – Average Reading (GFSK, Ch.0 3rd Harmonic)

Radiated Spurious Emissions plot - Peak Reading (GFSK, Ch.0 3rd Harmonic)

Date: 5.APR.2019 01:02:33

Note:

Plot of worst case are only reported.

Date: 5.APR.2019 01:01:49

10.6.3 RADIATED RESTRICTED BAND EDGES

Operation ModeNormal(GFSK)Operating Frequency2402 MHz, 2480 MHzChannel NoCH 0, CH 78

Frequency	Reading	A.F + C.L + D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	Туре
2390.0	53.85	0.85	Н	0	54.70	73.98	19.28	PK
2390.0	53.85	0.85	Н	-24.73	29.97	53.98	24.01	AV
2390.0	53.74	0.85	V	0	54.59	73.98	19.39	PK
2390.0	53.74	0.85	V	-24.73	29.86	53.98	24.12	AV
2483.5	60.20	1.13	Н	0	61.33	73.98	12.65	PK
2483.5	60.20	1.13	Н	-24.73	36.60	53.98	17.38	AV
2483.5	60.61	1.13	V	0	61.74	73.98	12.24	PK
2483.5	60.61	1.13	V	-24.73	37.01	53.98	16.97	AV

Operation Mode Operating Frequency Channel No EDR(8DPSK)

CH 0, CH 78

2402 MHz, 2480 MHz

Frequency	Reading	A.F + C.L + D.F	Pol.	Duty Cycle Correction	Total	Limit	Margin	Measurement
[MHz]	[dBuV]	[dB]	[H/V]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	Туре
2390.0	53.69	0.85	Н	0	54.54	73.98	19.44	PK
2390.0	53.69	0.85	Н	-24.73	29.81	53.98	24.17	AV
2390.0	53.62	0.85	V	0	54.47	73.98	19.51	PK
2390.0	53.62	0.85	V	-24.73	29.74	53.98	24.24	AV
2483.5	65.61	1.13	Н	0	66.74	73.98	7.24	PK
2483.5	65.61	1.13	н	-24.73	42.01	53.98	11.97	AV
2483.5	65.38	1.13	V	0	66.51	73.98	7.47	PK
2483.5	65.38	1.13	V	-24.73	41.78	53.98	12.20	AV

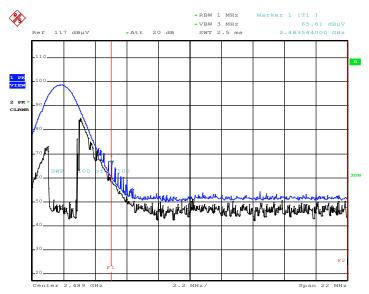
Operation Mode

Channel No

 $EDR(\pi/4DQPSK)$

Operating Frequency

2402 MHz, 2480 MHz


CH 0, CH 78

Frequency [MHz]	Reading [dBuV]	A.F + C.L + D.F [dB]	Pol. [H/V]	Duty Cycle Correction [dB]	Total [dBuV/m]	Limit [dBuV/m]	Margin [dB]	Measurement Type
2390.0	53.75	0.85	Н	0	54.60	73.98	19.38	PK
2390.0	53.75	0.85	Н	-24.73	29.87	53.98	24.11	AV
2390.0	53.77	0.85	V	0	54.62	73.98	19.36	PK
2390.0	53.77	0.85	V	-24.73	29.89	53.98	24.09	AV
2483.5	64.85	1.13	Н	0	65.98	73.98	8.00	PK
2483.5	64.85	1.13	Н	-24.73	41.25	53.98	12.73	AV
2483.5	64.51	1.13	V	0	65.64	73.98	8.34	PK
2483.5	64.51	1.13	V	-24.73	40.91	53.98	13.07	AV

RESULT PLOTS (Worst case : H)

Radiated Restricted Band Edges plot – Peak Reading (8DPSK, Ch.78)

Date: 5.APR.2019 00:12:58

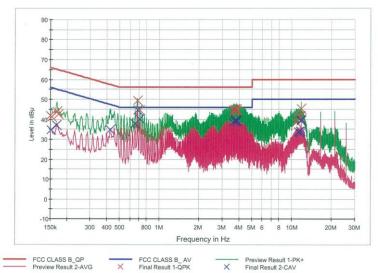
Note:

Plot of worst case are only reported.

10.7 POWERLINE CONDUCTED EMISSIONS

Conducted Emissions (Line 1)

BT_L1


1/2

HCT TEST Report

Common Information

EUT: Manufacturer: Test Site: Operating Conditions: SM-V310 SAMSUNG SHIELD ROOM BT_L1

Final Result 1

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.150000	41.8	9.000	Off	L1	9.7	24.2	66.0
0.154000	41.2	9.000	Off	L1	9.7	24.6	65.8
0.168000	43.9	9.000	Off	L1	9.7	21.2	65.1
0.172000	42.6	9.000	Off	L1	9.7	22.3	64.9
0.684000	49.2	9.000	Off	L1	9.8	6.8	56.0
0.712000	44.6	9.000	Off	L1	9.8	11.4	56.0
3.616000	44.5	9.000	Off	L1	9.9	11.5	56.0
3.704000	44.8	9.000	Off	L1	10.0	11.2	56.0
3.728000	44.9	9.000	Off	L1	10.0	11.1	56.0
3.814000	44.8	9.000	Off	L1	10.0	11.2	56.0
3.818000	45.0	9.000	Off	L1	10.0	11.0	56.0
3.842000	43.9	9.000	Off	L1	10.0	12.1	56.0
10.896000	38.4	9.000	Off	L1	10.3	21.6	60.0
11.248000	41.1	9.000	Off	L1	10.3	18.9	60.0
11.362000	40.7	9.000	Off	L1	10.3	19.3	60.0
11.614000	41.5	9.000	Off	L1	10.3	18.5	60.0
11.648000	41.5	9.000	Off	L1	10.3	18.5	60.0
11.762000	45.4	9.000	Off	L1	10.3	14.6	60.0

2019-05-07

오후 6:26:26

FCC ID: A3LSMV310

BT_L1

2/2

Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.152000	34.7	9.000	Off	L1	9.7	21.2	55.9
0.166000	37.3	9.000	Off	L1	9.7	17.9	55.2
0.424000	34.7	9.000	Off	L1	9.7	12.6	47.4
0.654000	37.8	9.000	Off	L1	9.8	8.2	46.0
0.684000	44.6	9.000	Off	L1	9.8	1.4	46.0
0.712000	40.2	9.000	Off	L1	9.8	5.8	46.0
3.614000	38.5	9.000	Off	L1	9.9	7.5	46.0
3.704000	39.0	9.000	Off	L1	10.0	7.0	46.0
3.758000	39.4	9.000	Off	L1	10.0	6.6	46.0
3.786000	39.7	9.000	Off	L1	10.0	6.3	46.0
3.814000	39.7	9.000	Off	L1	10.0	6.3	46.0
3.844000	38.8	9.000	Off	L1	10.0	7.2	46.0
11.248000	33.8	9.000	Off	L1	10.3	16.2	50.0
11.362000	33.5	9.000	Off	L1	10.3	16.5	50.0
11.648000	34.2	9.000	Off	L1	10.3	15.8	50.0
11.670000	33.0	9.000	Off	L1	10.3	17.0	50.0
11.758000	39.7	9.000	Off	L1	10.3	10.3	50.0
11.762000	39.0	9.000	Off	L1	10.3	11.0	50.0

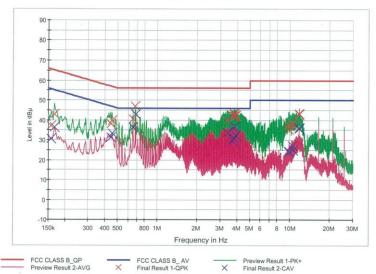
2019-05-07

오후 6:26:26

Conducted Emissions (Line 2)

BT_N

1/2


HCT TEST Report

Common Information

EUT: Manufacturer: Test Site: Operating Conditions:

SM-V310 SAMSUNG SHIELD ROOM BT_N

FCC CLASS B_Exten Cable

Final Result 1

Frequency (MHz)	QuasiPeak (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.158000	37.1	9.000	Off	N	9.8	28.4	65.6
0.166000	42.7	9.000	Off	N	9.8	22.4	65.2
0.444000	38.0	9.000	Off	N	9.9	19.0	57.0
0.454000	40.0	9.000	Off	N	9.9	16.8	56.8
0.654000	40.4	9.000	Off	N	9.9	15.6	56.0
0.682000	47.0	9.000	Off	N	9.9	9.0	56.0
3.356000	39.7	9.000	Off	N	10.1	16.3	56.0
3.782000	42.0	9.000	Off	N	10.2	14.0	56.0
3.786000	43.1	9.000	Off	N	10.2	12.9	56.0
3.814000	43.1	9.000	Off	N	10.2	12.9	56.0
3.842000	42.3	9.000	Off	N	10.2	13.7	56.0
3.928000	42.1	9.000	Off	N	10.2	13.9	56.0
9.766000	37.6	9.000	Off	N	10.4	22.4	60.0
9.822000	35.3	9.000	Off	N	10.4	24.7	60.0
10.448000	38.5	9.000	Off	N	10.5	21.5	60.0
10.574000	37.2	9.000	Off	N	10.5	22.8	60.0
11.758000	43.2	9.000	Off	N	10.5	16.8	60.0
11.762000	42.9	9.000	Off	N	10.5	17.1	60.0

2019-05-07

오후 6:17:25

FCC ID: A3LSMV310

BT_N

2/2

Frequency (MHz)	CAverage (dBuV)	Bandwidth (kHz)	Filter	Line	Corr. (dB)	Margin (dB)	Limit (dBuV)
0.158000	30.7	9.000	Off	N	9.8	24.9	55.6
0.166000	36.3	9.000	Off	N	9.8	18.8	55.2
0.444000	31.5	9.000	Off	N	9.9	15.5	47.0
0.454000	33.3	9.000	Off	N	9.9	13.5	46.8
0.654000	36.3	9.000	Off	N	9.9	9.7	46.0
0.684000	42.8	9.000	Off	N	9.9	3.2	46.0
3.356000	33.6	9.000	Off	N	10.1	12.4	46.0
3.696000	29.7	9.000	Off	N	10.2	16.3	46.0
3.728000	36.2	9.000	Off	N	10.2	9.8	46.0
3.782000	31.0	9.000	Off	N	10.2	15.0	46.0
3.814000	36.7	9.000	Off	N	10.2	9.3	46.0
3.926000	32.4	9.000	Off	N	10.2	13.6	46.0
9.766000	24.5	9.000	Off	N	10.4	25.5	50.0
9.822000	23.8	9.000	Off	N	10.4	26.2	50.0
10.448000	27.5	9.000	Off	N	10.5	22.5	50.0
10.574000	24.9	9.000	Off	N	10.5	25.1	50.0
11.758000	36.2	9.000	Off	N	10.5	13.8	50.0
11.762000	35.7	9.000	Off	N	10.5	14.3	50.0

2019-05-07

오후 6:17:25

11 LIST OF TEST EQUIPMENT

Conducted Test

Manufacturer	Model / Equipment	Calibration	Calibration	Serial No.
		Date	Interval	
Rohde & Schwarz	ENV216 / LISN	12/12/2018	Annual	102245
Rohde & Schwarz	ESCI / Test Receiver	06/27/2018	Annual	100033
ESPAC	SU-642 /Temperature Chamber	03/12/2019	Annual	0093008124
Agilent	N9020A / Signal Analyzer	06/08/2018	Annual	MY51110085
Agilent	N9020A / Signal Analyzer	06/08/2018	Annual	MY52090906
Agilent	N9030A / Signal Analyzer	01/10/2019	Annual	MY49431210
Rohde & Schwarz	OSP 120 / Power Measurement Set	07/26/2018	Annual	101231
Agilent	N1911A / Power Meter	04/10/2019	Annual	MY45100523
Agilent	N1921A / Power Sensor	04/10/2019	Annual	MY52260025
Agilent	87300B / Directional Coupler	11/20/2018	Annual	3116A03621
Hewlett Packard	11667B / Power Splitter	06/07/2018	Annual	05001
Hewlett Packard	E3632A / DC Power Supply	06/26/2018	Annual	KR75303960
Agilent	8493C / Attenuator(10 dB)	07/10/2018	Annual	07560
Rohde & Schwarz	EMC32 / Software	N/A	N/A	N/A
	FCC WLAN&BT&BLE Conducted Test Software	N/A	N/A	N/A
HCT CO., LTD.	v3.0	N/A		IN/A

Note:

- 1. Equipment listed above that calibrated during the testing period was set for test after the calibration.
- 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

Radiated Test

		Calibration	Calibration	
Manufacturer	Model / Equipment	Date	Interval	Serial No.
Innco system	CO3000 / Controller(Antenna mast)	N/A	N/A	CO3000-4p
Innco system	MA4640/800-XP-EP / Antenna Position Tower	N/A	N/A	N/A
Audix	EM1000 / Controller	N/A	N/A	060520
Audix	Turn Table	N/A	N/A	N/A
Rohde & Schwarz	Loop Antenna	08/23/2018	Biennial	1513-175
Schwarzbeck	VULB 9168 / Hybrid Antenna	03/22/2019	Biennial	760
Schwarzbeck	VULB 9168 / Hybrid Antenna	08/09/2018	Annual	3368
Schwarzbeck	BBHA 9120D / Horn Antenna	06/30/2017	Biennial	1300
Schwarzbeck	BBHA9170 / Horn Antenna(15 GHz ~ 40 GHz)	12/04/2017	Biennial	BBHA9170541
Rohde & Schwarz	FSP(9 kHz ~ 40 GHz) / Spectrum Analyzer	07/24/2018	Annual	100843
Wainwright Instruments	WHK3.0/18G-10EF / High Pass Filter	01/03/2019	Annual	F6
Wainwright Instruments	WHFX7.0/18G-8SS / High Pass Filter	05/09/2018	Annual	29
Wainwright Instruments	WRCJV2400/2483.5-2370/2520-60/12SS / Band Reject Filter	06/29/2018	Annual	2
Wainwright Instruments	WRCJV5100/5850-40/50-8EEK / Band Reject Filter	01/03/2019	Annual	2
Weinschel	2-3 / Attenuator (3 dB)	10/10/2018	Annual	BR0617
H+S	5910-N-50-010 / Attenuator(10 dB)	11/08/2018	Annual	NONE
CERNEX	CBLU1183540B-01 / Power Amplifier	12/21/2018	Annual	25540
CERNEX	CBL06185030 / Power Amplifier	03/26/2019	Annual	28550
CERNEX	CBL18265035 / Power Amplifier	01/03/2019	Annual	22966
CERNEX	CBL26405040 / Power Amplifier	06/29/2018	Annual	25956
TESCOM	TC-3000C / Bluetooth Tester	03/26/2019	Annual	3000C000276

Note:

- 1. Equipment listed above that calibrated during the testing period was set for test after the calibration.
- 2. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.

12 ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-1905-FC009-P