

74, Seoicheon-ro 578beon-gil, Majang-myeon, Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA TEL: +82-31-645-6300 FAX: +82-31-645-6401 FCC Sub6 REPORT

Class II Permissive Change

Applicant Name:

SAMSUNG Electronics Co., Ltd.

Address:

129, Samsung-ro, Yeongtong-gu,

Suwon-si, Gyeonggi-do, 16677, Rep. of Korea

Date of Issue:

October 16, 2020

Location:

HCT CO., LTD.,

74, Seoicheon-ro 578beon-gil, Majang-myeon,

Icheon-si, Gyeonggi-do, 17383, Rep. of KOREA Report No.: HCT-RF-2010-FC003

FCC ID: A3LSMT878U

APPLICANT: SAMSUNG Electronics Co., Ltd.

SM-T878U Model(s): **EUT Type:** Tablet

FCC Classification: PCS Licensed Transmitter (PCB)

FCC Rule Part(s): §27, §2

		Emission		E	RP
Mode (MHz)	Tx Frequency (MHz)	Designator	Modulation	Max. Power (W)	Max. Power (dBm)
		17M9G7D	PI/2 BPSK	0.211	23.24
		17M9G7D	QPSK	0.209	23.20
Sub6 n41 (20)	2506.020 – 2679.990	17M9W7D	16QAM	0.177	22.49
		17M9W7D	64QAM	0.137	21.37
		17M9W7D	256QAM	0.074	18.71
		35M8G7D	PI/2 BPSK	0.235	23.72
		35M7G7D	QPSK	0.233	23.68
Sub6 n41 (40)	2516.010 – 2670.000	35M8W7D	16QAM	0.190	22.78
		35M7W7D	64QAM	0.153	21.86
		35M8W7D	256QAM	0.084	19.24
		45M8G7D	PI/2 BPSK	0.215	23.32
		46M0G7D	QPSK	0.213	23.28
Sub6 n41 (50)	2521.020 – 2664.990	46M0W7D	16QAM	0.181	22.58
		45M8W7D	64QAM	0.137	21.38
		45M8W7D	256QAM	0.074	18.72
		57M9G7D	PI/2 BPSK	0.232	23.66
		57M8G7D	QPSK	0.230	23.62
Sub6 n41 (60)	2526.000 – 2659.980	57M8W7D	16QAM	0.193	22.86
		57M8W7D	64QAM	0.148	21.70
		57M8W7D	256QAM	0.080	19.03
		77M3G7D	PI/2 BPSK	0.242	23.84
		77M3G7D	QPSK	0.240	23.80
Sub6 n41 (80)	2536.020 – 2649.990	77M3W7D	16QAM	0.196	22.93
		77M3W7D	64QAM	0.153	21.86
		77M2W7D	256QAM	0.083	19.21
		87M3G7D	PI/2 BPSK	0.257	24.10
		86M8G7D	QPSK	0.254	24.05
Sub6 n41 (90)	2541.000 – 2644.980	87M0W7D	16QAM	0.215	23.33
		86M9W7D	64QAM	0.170	22.30
		86M5W7D	256QAM	0.090	19.52
		96M8G7D	PI/2 BPSK	0.249	23.97
		96M5G7D	QPSK	0.244	23.87
Sub6 n41 (100)	2546.010 – 2640.000	96M5W7D	16QAM	0.208	23.18
		96M2W7D	64QAM	0.166	22.19
		96M5W7D	256QAM	0.088	19.45

The measurements shown in this report were made in accordance with the procedures specified in CFR47 section §2.947. I assume full responsibility for the accuracy and completeness of these measurements, and for the qualifications of all persons taking them. HCT CO., LTD. Certifies that no party to this application has subject to a denial of Federal benefits that includes FCC benefits pursuant to section 5301 of the Anti-Drug Abuse Act of 1998,21 U.S. C.853(a)

Report No.: HCT-RF-2010-FC003

FCC ID: A3LSMT878U

REVIEWED BY

4 Mes.

Report prepared by: Jae Mun Do **Engineer of Telecommunication Testing Center** Report approved by: Kwon Jeong Manager of Telecommunication Testing Center

This test results were applied only to the test methods required by the standard.

This laboratory is not accredited for the test results marked *. The above Test Report is the accredited test result by (KS Q) ISO/IEC 17025 and KOLAS(Korea Laboratory Accreditation Scheme), which signed the ILAC-MRA. (HCT Accreditation No.: KT197)

^{*} The report shall not be reproduced except in full(only partly) without approval of the laboratory.

Version

TEST REPORT NO. DATE		DESCRIPTION	
HCT-RF-2010-FC003	October 16, 2020	- First Approval Report	

The result shown in this test report refer only to the sample(s) tested unless otherwise stated.

Report No.: HCT-RF-2010-FC003

Table of Contents

REVIEWED BY	2
1. GENERAL INFORMATION	5
2. INTRODUCTION	6
2.1. DESCRIPTION OF EUT	6
2.2. MEASURING INSTRUMENT CALIBRATION	6
2.3. TEST FACILITY	6
3. DESCRIPTION OF TESTS	7
3.1 TEST PROCEDURE	7
3.2 RADIATED POWER	8
3.3 RADIATED SPURIOUS EMISSIONS	9
3.4 PEAK- TO- AVERAGE RATIO	10
3.5 OCCUPIED BANDWIDTH	12
3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL	13
3.7 CHANNEL EDGE	14
3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE	16
3.9 WORST CASE(RADIATED TEST)	17
3.10 WORST CASE(CONDUCTED TEST)	18
4. LIST OF TEST EQUIPMENT	20
5. MEASUREMENT UNCERTAINTY	21
6. SUMMARY OF TEST RESULTS	22
7. SAMPLE CALCULATION	
8. TEST DATA (E.I.R.P & Radiated Spurious Emissions)	26
8.1 EQUIVALENT ISOTROPIC RADIATED POWER	26
8.2 RADIATED SPURIOUS EMISSIONS	26
8.3 CHANNEL EDGE	27
0 ANNEY A TEST SETUD PHOTO	20

FCC ID: A3LSMT878U

MEASUREMENT REPORT

1. GENERAL INFORMATION

Applicant Name:	SAMSUNG Electronics Co., Ltd.
Address:	129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
FCC ID:	A3LSMT878U
Application Type:	Class II Permissive Change
FCC Classification:	PCS Licensed Transmitter (PCB)
FCC Rule Part(s):	§27, §2
Too Kule Part(3).	921, 92
EUT Type:	Tablet
Model(s):	SM-T878U
(1)	
SCS(kHz):	30
Bandwidth(MHz):	20, 40, 50, 60, 80, 90, 100
Waveform:	CP-OFDM, DFT-S-OFDM
	· · · · · · · · · · · · · · · · ·
Modulation:	DFT-S-OFDM: PI/2 BPSK, QPSK, 16QAM, 64QAM, 256QAM
	CP-OFDM: QPSK, 16QAM, 64QAM, 256QAM
Tx Frequency(SCS 30kHz):	2506.020 – 2679.990 : 20 MHz
	2516.010 – 2670.000 : 40 MHz
	2521.020 – 2664.990 : 50 MHz
	2526.000 – 2659.980 : 60 MHz
	2536.020 – 2649.990 : 80 MHz
	2541.000 – 2644.980 : 90 MHz
	2546.010 – 2640.000 : 100 MHz
Date(s) of Tests:	Oct 08, 2020 ~ Oct 16, 2020

2. INTRODUCTION

2.1. DESCRIPTION OF EUT

The EUT was a Tablet with UMTS and LTE, Sub6.

It also supports IEEE 802.11 a/b/g/n/ac/ax (HT20/40/80), Bluetooth, BT LE, WPT, mmWave(n260/261).

2.2. MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

2.3. TEST FACILITY

The Fully-anechoic chamber and conducted measurement facility used to collect the radiated data are located at the **74**, **Seoicheon-ro 578beon-gil**, **Majang-myeon**, **Icheon-si**, **Gyeonggi-do**, **17383**, **Rep. of KOREA**.

3. DESCRIPTION OF TESTS

3.1 TEST PROCEDURE

Test Description	Test Procedure Used
Occurried Dandwidth	- KDB 971168 D01 v03r01 – Section 4.3
Occupied Bandwidth	- ANSI C63.26-2015 – Section 5.4.4
Ohannal Edua	- KDB 971168 D01 v03r01 – Section 6.0
Channel Edge	- ANSI C63.26-2015 – Section 5.7
Spurious and Harmonic Emissions at Antenna	- KDB 971168 D01 v03r01 – Section 6.0
Terminal	- ANSI C63.26-2015 – Section 5.7
Conducted Output Power	- N/A (See SAR Report)
	- KDB 971168 D01 v03r01 – Section 5.7
Peak- to- Average Ratio	- ANSI C63.26-2015 – Section 5.2.3.4
	- ANSI C63.26-2015 – Section 5.2.6(only GSM)
Frequency stability	- ANSI C63.26-2015 – Section 5.6
Effective Radiated Power/	- KDB 971168 D01 v03r01 – Section 5.2 & 5.8
Effective Isotropic Radiated Power	- ANSI/TIA-603-E-2016 - Section 2.2.17
Dedicted Courieus and Hamsonia Fusicaisus	- KDB 971168 D01 v03r01 – Section 6.2
Radiated Spurious and Harmonic Emissions	- ANSI/TIA-603-E-2016 – Section 2.2.12

3.2 RADIATED POWER

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

The equipment under test is placed on a non-conductive table 3-meters away from the receive antenna in accordance with ANSI/TIA-603-E-2016 Clause 2.2.17.

Test Settings

- Radiated power measurements are performed using the signal analyzer's "channel power" measurement capability for signals with continuous operation.
- 2. RBW = 1 5% of the expected OBW, not to exceed NormalHz
- 3. VBW ≥ 3 x RBW
- 4. Span = 1.5 times the OBW
- 5. No. of sweep points > 2 x span / RBW
- 6. Detector = RMS
- 7. Trigger is set to "free run" for signals with continuous operation with the sweep times set to "auto".
- 8. The integration bandwidth was roughly set equal to the measured OBW of the signal for signals with continuous operation.
- 9. Trace mode = trace averaging (RMS) over 100 sweeps
- 10. The trace was allowed to stabilize

Test Note

- 1. The turntable is rotated through 360 degrees, and the receiving antenna scans in order to determine the level of the maximized emission.
- 2. A half wave dipole is then substituted in place of the EUT. For emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The power is calculated by the following formula;

$$P_{d(dBm)} = Pg_{(dBm)} - cable loss_{(dB)} + antenna gain_{(dB)}$$

Where: P_dis the dipole equivalent power and P_gis the generator output power into the substitution antenna.

- 3. The maximum value is calculated by adding the forward power to the calibrated source plus its appropriate gain value.

 These steps are repeated with the receiving antenna in both vertical and horizontal polarization, the difference between the gain of the horn and an isotropic antenna are taken into consideration
- 4. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- 5. All measurements are performed as RMS average measurements while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies.

3.3 RADIATED SPURIOUS EMISSIONS

Test Overview

Radiated tests are performed in the Fully-anechoic chamber.

Radiated Spurious Emission Measurements at 3 meters by Substitution Method according to ANSI/TIA-603-E-2016.

Test Settings

- 1. RBW = 100kHz for emissions below 1GHz and NormalHz for emissions above 1GHz
- 2. VBW ≥ 3 x RBW
- 3. Span = 1.5 times the OBW
- 4. No. of sweep points > 2 x span / RBW
- 5. Detector = Peak
- 6. Trace mode = Max Hold
- 7. The trace was allowed to stabilize
- 8. Test channel: Low/ Middle/ High
- 9. Frequency range: We are performed all frequency to 10th harmonics from 9 kHz.

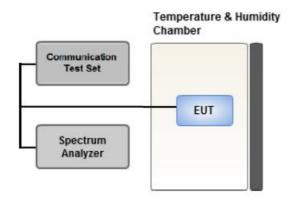
Test Note

- Measurements value show only up to 3 maximum emissions noted, or would be lesser
 if no specific emissions from the EUT are recorded (ie: margin > 20 dB from the applicable limit)
 and considered that's already beyond the background noise floor.
- 2. The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.

 The worst case emissions are reported with the EUT positioning, modulations, RB sizes and offsets,
 and channel bandwidth configurations shown in the test data
- 3. For spurious emissions above 1GHz, a horn antenna is substituted in place of the EUT. The substitute antenna is driven by a signal generator and the previously recorded signal was duplicated.

The spurious emissions is calculated by the following formula;

 $Result_{(dBm)} = Pg_{(dBm)} - cable loss_{(dB)} + antenna gain_{(dBi)}$


Where: Pgis the generator output power into the substitution antenna.

If the fundalmatal frequency is below 1GHz, RF output power has been converted to EIRP.

 $EIRP_{(dBm)} = ERP_{(dBm)} + 2.15$

3.4 PEAK- TO- AVERAGE RATIO

Test setup

① CCDF Procedure for PAPR

Test Settings

- 1. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- 2. Set the number of counts to a value that stabilizes the measured CCDF curve;
- 3. Set the measurement interval as follows:
 - .- for continuous transmissions, set to 1 ms,
 - .- or burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize and set the measurement interval to a time that is less than or equal to the burst duration.
- 4. Record the maximum PAPR level associated with a probability of 0.1%.
- ② Alternate Procedure for PAPR

Use one of the procedures presented in 5.2(ANSI C63.26-2015) to measure the total peak power and record as P_{Pk}.

Use one of the applicable procedures presented 5.2(ANSI C63.26-2015) to measure the total average power and record as P_{Avg}. Determine the P.A.R. from:

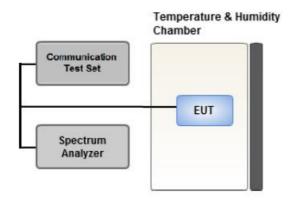
 $P.A.R_{(dB)} = P_{Pk(dBm)} - P_{Avg(dBm)}$ ($P_{Avg} = Average Power + Duty cycle Factor)$

Test Settings(Peak Power)

The measurement instrument must have a RBW that is greater than or equal to the OBW of the signal to be measured and a VBW \geq 3 × RBW.

- 1. Set the RBW ≥ OBW.
- 2. Set VBW ≥ 3 × RBW.
- 3. Set span ≥ 2 × OBW.
- 4. Sweep time ≥ 10 × (number of points in sweep) × (transmission symbol period).
- 5. Detector = peak.
- 6. Trace mode = max hold.
- 7. Allow trace to fully stabilize.
- 8. Use the peak marker function to determine the peak amplitude level.

Test Settings(Average Power)


- 1. Set span to 2 x to 3 x the OBW.
- 2. Set RBW ≥ OBW.
- 3. Set VBW ≥ 3 × RBW.
- 4. Set number of measurement points in sweep ≥ 2 × span / RBW.
- 5. Sweep time:

Set ≥ [10 × (number of points in sweep) × (transmission period)] for single sweep (automation-compatible) measurement. The transmission period is the (on + off) time.

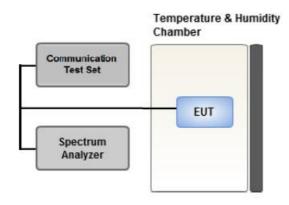
- 6. Detector = power averaging (rms).
- 7. Set sweep trigger to "free run."
- 8. Trace average at least 100 traces in power averaging (rms) mode if sweep is set to auto-couple. (To accurately determine the average power over the on and off period of the transmitter, it can be necessary to increase the number of traces to be averaged above 100 or, if using a manually configured sweep time, increase the sweep time.)
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. Add [10 log (1/duty cycle)] to the measured maximum power level to compute the average power during continuous transmission. For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is a constant 25%.

3.5 OCCUPIED BANDWIDTH.

Test setup

The width of a frequency band such that, below the lower and above the upper frequency limits, the mean powers emitted are each equal to a specified percentage 0.5 % of the total mean power of a given emission.

The EUT makes a call to the communication simulator.

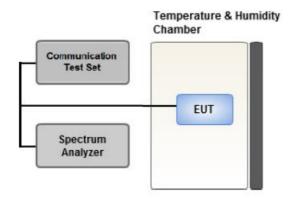

The conducted occupied bandwidth used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer.

The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth

- 1. The signal analyzer's automatic bandwidth measurement capability was used to perform the 99% occupied bandwidth and the 26dB bandwidth. The bandwidth measurement was not influenced by any intermediate power nulls in the fundamental emission.
- 2. RBW = 1 5% of the expected OBW
- 3. VBW ≥ 3 x RBW
- 4. Detector = Peak
- 5. Trace mode = max hold
- 6. Sweep = auto couple
- 7. The trace was allowed to stabilize
- 8. If necessary, steps 2 7 were repeated after changing the RBW such that it would be within
 - 1-5% of the 99% occupied bandwidth observed in Step 7

3.6 SPURIOUS AND HARMONIC EMISSIONS AT ANTENNA TERMINAL

Test setup


Test Overview

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to a frequency including its 10th harmonic. All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

- 1. RBW = 1 MHz
- 2. VBW ≥ 3 MHz
- 3. Detector = Peak
- 4. Trace Mode = max hold
- 5. Sweep time = auto
- 6. Number of points in sweep ≥ 2 x Span / RBW

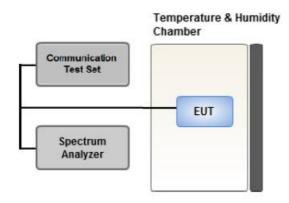
3.7 CHANNEL EDGE

Test setup

Test Overview

All out of band emissions are measured with a spectrum analyzer connected to the antenna terminal of the EUT while the EUT is operating at its maximum duty cycle, at maximum power, and at the appropriate frequencies. All data rates were investigated to determine the worst case configuration. All modes of operation were investigated and the worst case configuration results are reported in this section.

- 1. Start and stop frequency were set such that the band edge would be placed in the center of the plot
- 2. Span was set large enough so as to capture all out of band emissions near the band edge
- 3. Within 1MHz of the channel edge the RBW should be 2% of EBW, then 1 MHz after that.
- 4. VBW > 3 x RBW
- 5. Detector = RMS
- 6. Number of sweep points ≥ 2 x Span/RBW
- 7. Trace mode = trace average
- 8. Sweep time = auto couple
- 9. The trace was allowed to stabilize



Test Notes

- 1. The attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge,
- 2. 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge.
- 3. 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge.
- 4. The attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz.
- 5. 55 + 10 log (P) dB at or below 2490.5 MHz.
- 6. X is the greater of 6MHz or the actual emission bandwidth
- 7. The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer

3.8 FREQUENCY STABILITY / VARIATION OF AMBIENT TEMPERATURE

Test setup

Test Overview

Frequency stability testing is performed in accordance with the guidelines of ANSI C63.26-2015.

The frequency stability of the transmitter is measured by:

1. Temperature:

The temperature is varied from -30°C to +50°C in 10°C increments using an environmental chamber.

- 2. Primary Supply Voltage:
 - .- Unless otherwise specified, vary primary supply voltage from 85% to 115% of the nominal value for other than hand carried battery equipment.
 - .- For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the battery operating end point, which shall be specified by the manufacturer.

- The carrier frequency of the transmitter is measured at room temperature (20°C to provide a reference).
- 2. The equipment is turned on in a "standby" condition for fifteen minutes before applying power to the transmitter. Measurement of the carrier frequency of the transmitter is made within one minute after applying power to the transmitter.
- 3. Frequency measurements are made at 10°C intervals ranging from -30°C to +50°C. A period of at least one half-hour is provided to allow stabilization of the equipment at each temperature level.

3.9 WORST CASE(RADIATED TEST)

- Waveform : All Waveform of operation were investigated and the worst case configuration results are reported. (Worst case: DFT-S-OFDM)
- The EUT was tested in three orthogonal planes(X, Y, Z) and in all possible test configurations and positioning.
- All modes of operation were investigated and the worst case configuration results are reported.
- Radiated Spurious emissions are measured while operating in EN-DC mode with Sub 6 NR carrier as well as an LTE carrier (anchor).

All EN-DC mode of operation were investigated and the worst case configuration results are reported. (Worst case: 2A-n41A)

- All RB sizes, offsets of operation were investigated and the worst case configuration results are reported. Please refer to the table below.

[Worst case]

Test Description	Modulation	RB size	RB offset	Axis
Effective Isotropic Radiated Power	PI/2 BPSK,			
	QPSK,			
	16QAM,	1	1	Z
	64QAM,			
	256QAM			
Radiated Spurious and Harmonic Emissions	PI/2 BPSK	1	1	Z

3.10 WORST CASE(CONDUCTED TEST)

- Waveform : All Waveform of operation were investigated and the worst case configuration results are reported.

(Worst case: DFT-S-OFDM)

- Modulation : All Modulation of operation were investigated and the worst case configuration results are reported.

(Worst case: PI/2 BPSK)

- All RB sizes, offsets of operation were investigated and the worst case configuration results are reported.

Please refer to the table below.

[Worst case]

Test Description	Modulation	Bandwidth (MHz)	Frequency	RB size	RB offset
	PI/2 BPSK,				
	QPSK,	20, 40, 50,			
Occupied Bandwidth	16QAM,	60, 80,	Mid	Full RB	0
	64QAM,	90 ,100			
	256QAM				
	PI/2 BPSK,				
	QPSK,	20, 40, 50,			
Peak-To-Average Radio	16QAM,	60, 80,	Mid	Full RB	0
	64QAM,	90 ,100			
	256QAM				
		20	Low	1	0
			High	1	50
		40	Low	1	0
			High	1	105
		50	Low	1	0
			High	1	132
		60	Low	1	0
			High	1	161
Channel Edge	PI/2 BPSK	80	Low	1	0
			High	1	216
		00	Low	1	0
		90	High	1	244
		465	Low	1	0
		100	High	1	272
		20, 40, 50,	Low,		
		60, 80,	Mid,	Full RB	0
		90 ,100	High		

Spurious and Harmonic Emissions at Antenna Terminal		20, 40, 50,	Low,		
	PI/2 BPSK	60, 80,	Mid,	1	1
		90 ,100	High		

4. LIST OF TEST EQUIPMENT

Manufacture	Model/ Equipment	Serial Number	Calibration Date	Calibrati on Interval	Calibration Due
T&M SYSTEM	FBSR-02B(WHK1.2/15G-10EF)/H.P.F	-	03/09/2020	Annual	03/09/2021
T&M SYSTEM	FBSR-02B(WHK3.3/18G-10EF)/H.P.F	-	03/09/2020	Annual	03/09/2021
Hewlett Packard	11667B / Power Splitter(DC~26.5 GHz)	11275	04/27/2020	Annual	04/27/2021
Hewlett Packard	E3632A/DC Power Supply	MY40004427	09/16/2020	Annual	09/16/2021
Schwarzbeck	UHAP/ Dipole Antenna	557	03/29/2019	Biennial	03/29/2021
Schwarzbeck	UHAP/ Dipole Antenna	558	03/29/2019	Biennial	03/29/2021
ESPEC	SU-642 / Chamber	93008124	03/18/2020	Annual	03/18/2021
Schwarzbeck	BBHA 9120D/ Horn Antenna(1~18GHz)	147	08/29/2019	Biennial	08/29/2021
Schwarzbeck	BBHA 9120D/ Horn Antenna(1~18GHz)	9120D-1298	09/25/2019	Biennial	09/25/2021
Schwarzbeck	BBHA 9170/ Horn Antenna(15~40GHz)	BBHA9170342	04/29/2019	Biennial	04/29/2021
Schwarzbeck	BBHA 9170/ Horn Antenna(15~40GHz)	BBHA9170124	02/11/2020	Biennial	02/11/2022
Agilent	N9020A/Signal Analyzer(10Hz~26.5GHz)	MY51110063	04/27/2020	Annual	04/27/2021
Hewlett Packard	8493C/ATTENUATOR(20dB)	17280	06/04/2020	Annual	06/04/2021
REOHDE & SCHWARZ	FSV40/Spectrum Analyzer(10Hz~40GHz)	100931	10/14/2020	Annual	10/14/2021
Agilent	8960 (E5515C)/ Base Station	MY48360800	08/26/2020	Annual	08/26/2021
Schwarzbeck	FMZB1513/ Loop Antenna(9kHz~30MHz)	1513-175	04/26/2019	Biennial	04/26/2021
Schwarzbeck	VULB9160/ Bilog Antenna	3150	03/12/2019	Biennial	03/12/2021
Schwarzbeck	VULB9160/ Hybrid Antenna	760	03/22/2019	Biennial	03/22/2021
Anritsu Corp.	MT8821C/Wideband Radio Communication Tester	6262116770	07/22/2020	Annual	07/22/2021
Anritsu Corp.	MT8820C/Wideband Radio Communication Tester	6201026545	01/22/2020	Annual	01/22/2021
REOHDE & SCHWARZ	SMB100A/ SIGNAL GENERATOR (100kHz~40GHz)	177633	07/13/2020	Annual	07/13/2021
KEYSIGHT	N9030B / Signal Analyzer(5Hz~40.0GHz)	MY55480167	06/04/2020	Annual	06/04/2021
HCT CO., LTD.,	FCC LTE Mobile Conducted RF Automation Test Software	-	-	-	-

Note:

- 1. Equipment listed above that has a calibration due date during the testing period, the testing is completed before equipment expiration date.
- 2. Espectially, all antenna for measurement is calibrated in accordance with the requirements of C63.5 (Version : 2017).

5. MEASUREMENT UNCERTAINTY

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI C63.4:2014. All measurement uncertainty values are shown with a coverage factor of k = 2 to indicate a 95 % level of confidence. The measurement data shown herein meets or exceeds the U_{CISPR} measurement uncertainty values specified in CISPR 16-4-2 and, thus, can be compared directly to specified limits to determine compliance.

Parameter	Expanded Uncertainty (±dB)
Conducted Disturbance (150 kHz ~ 30 MHz)	1.82
Radiated Disturbance (9 kHz ~ 30 MHz)	3.40
Radiated Disturbance (30 MHz ~ 1 GHz)	4.80
Radiated Disturbance (1 GHz ~ 18 GHz)	5.70
Radiated Disturbance (18 GHz ~ 40 GHz)	5.05

6. SUMMARY OF TEST RESULTS

6.1 Test Condition: Conducted Test

Test Description	FCC Part Section(s)	Test Limit	Test Result	Status
Occupied Bandwidth	§2.1049	N/A	PASS	NT
Band Edge / Spurious and Harmonic Emissions at Antenna Terminal.	§2.1051, §27.53(m)(4)	 < 40 + 10log10 (P[Watts]) at Channel edges < 43 + 10log10 (P[Watts]) between 5 and X MHz from Channel edges < 55 + 10log10 (P[Watts]) beyond X MHz beyond from Channel edges < 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz 	PASS	C ^{Note4}
Conducted Output Power	§2.1046	N/A	See Note1	C ^{Note5}
Frequency stability / variation of ambient temperature	§2.1055, §27.54	Emission must remain in band	PASS	NT

Note:

- 1. See SAR Report
- 2. C = Comply, NT = Not Tested, NA = Not Applicable, NC = Not Comply
- C2PC models are electrically identical to the Original models.
 The Product Equality Declaration includes detailed information about the changes between the devices.
- 4. The data from that application has been verified through appropriate spot checks to demonstrate compliance for this device as shown in the test result of section 8
- 5. Output power was verified to be within the expected tune up tolerances prior to performing the spot checks for radiated spurious emissions, E.R.P and E.I.R.P to confirm that the proposed changes to the digital circuitry had not adversely affected the previously reported values in the original filing.

6.2 Test Condition: Radiated Test

Test Description	FCC Part Section(s)	Test Limit	Test Result	Status
Equivalent Isotropic Radiated Power	§27.50(h)(2)	< 2 Watts max. EIRP	PASS	C ^{Note3}
Radiated Spurious and Harmonic Emissions	§2.1053, §27.53(m)(4)	< 55 + 10log10 (P[Watts])	PASS	C ^{Note3}

Note:

- 1. C = Comply, NT = Not Tested, NA = Not Applicable, NC = Not Comply
- 2. C2PC models are electrically identical to the Original models.

The Product Equality Declaration includes detailed information about the changes between the devices.

3. The data from that application has been verified through appropriate spot checks to demonstrate compliance for this device as shown in the test result of section 8

Test scenario

: The test scenario for spot check is based on the worst-case of original report results.

7. SAMPLE CALCULATION

7.1 ERP Sample Calculation

Ch.	/ Freq.	Measured Substitute Ant. Ga		Ant. Gain	C.L	Pol.	ERP	
channel	Freq.(MHz)	Level(dBm)	Level(dBm)	Level(dBm) (dBd)		POI.	W	dBm
128	824.20	-21.37	38.40	-10.61	0.95	Н	0.483	26.84

ERP = Substitute LEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of effective radiated power.

7.2 EIRP Sample Calculation

Ch	/ Freq.	Measured Substitute A		Ant. Gain	C.L	Pol.	EIRP	
channel	Freq.(MHz)	Level(dBm)	Level(dBm)	(dBi)	0.2		W	dBm
518598	2593.0	-15.75	18.45	9.90	1.76	Н	0.456	26.59

EIRP = Substitute LEVEL(dBm) + Ant. Gain - CL(Cable Loss)

- 1) The EUT mounted on a non-conductive turntable is 2.5 meter above test site ground level.
- 2) During the test, the turn table is rotated until the maximum signal is found.
- 3) Record the field strength meter's level.
- 4) Replace the EUT with dipole/Horn antenna that is connected to a calibrated signal generator.
- 5) Increase the signal generator output till the field strength meter's level is equal to the item (3).
- 6) The signal generator output level with Ant. Gain and cable loss are the rating of equivalent isotropic radiated power.

7.3. Emission Designator

GSM Emission Designator EDGE Emission Designator

Emission Designator = 249KGXW Emission Designator = 249KG7W

GSM BW = 249 kHz

G = Phase Modulation

GSM BW = 249 kHz

G = Phase Modulation

X = Cases not otherwise covered 7 = Quantized/Digital Info

W = Combination (Audio/Data) W = Combination (Audio/Data)

WCDMA Emission Designator QPSK Modulation

Emission Designator = 4M17F9W Emission Designator = 4M48G7D

WCDMA BW = 4.17 MHz

F = Frequency Modulation

LTE BW = 4.48 MHz

G = Phase Modulation

9 = Composite Digital Info 7 = Quantized/Digital Info

W = Combination (Audio/Data) D = Data transmission; telemetry; telecommand

<u>16QAM Modulation</u> <u>64QAM Modulation</u>

Emission Designator = 4M48W7D Emission Designator = 4M48W7D

LTE BW = 4.48 MHz LTE BW = 4.48 MHz

W = Amplitude/Angle Modulated W = Amplitude/Angle Modulated

7 = Quantized/Digital Info 7 = Quantized/Digital Info

D = Data transmission; telemetry; telecommand D = Data transmission; telemetry; telecommand

8. TEST DATA (E.I.R.P & Radiated Spurious Emissions)

8.1 EQUIVALENT ISOTROPIC RADIATED POWER

Freq	Mod/ Bandwidth	Measured Substitute Ant.		C.L	Pol	Limit	EII	RP		
(MHz)	[SCS (kHz)]		Level (dBm)	Level (dBm)	Gain(dBi)			w	w	dBm
	Sub6 41/									
2644.980	90 MHz	PI/2 BPSK	-22.39	14.96	11.09	2.57	V	< 2.00	0.223	23.48
	[30 kHz]									

Modulation	Frequency		Mod/	Original	C2PC	Deviation	
Wodulation	MHz	Ch.	Bandwidth	(dBm)	(dBm)	(dB)	
Sub6 41/ [30 kHz]	2644.980	528996	PI/2 BPSK (90M)	24.10	23.48	0.62	

8.2 RADIATED SPURIOUS EMISSIONS

Ch	Freq (MHz)	Measured Level (dBm)	Ant. Gain (dBi)	Substitute Level (dBm)	C.L	Pol	Result (dBm)	Limit (dBm)
532998 (2664.990)	5 329.98	-30.63	13.35	-40.77	3.73	Н	-31.15	-25.00

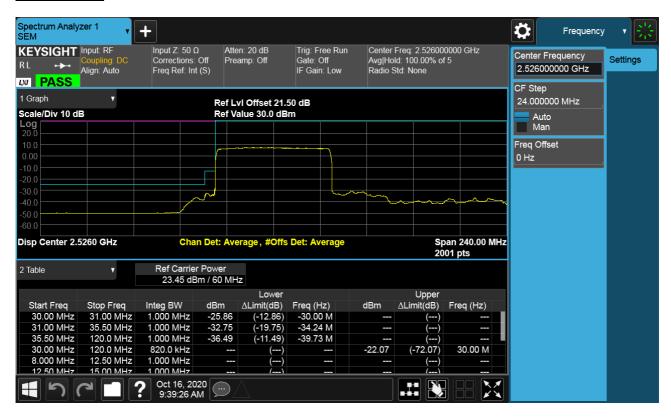
Modulation	Frequency Modulation		Mod/ Bandwidth	Original (dBm)	C2PC (dBm)	Deviation (dB)	
	MHz	Ch.	Bandwidth	(dBiii)	(dBiii)	(45)	
Sub6 41/ [30 kHz]	5329.98	532998	PI/2 BPSK (50M)	-28.87	-31.15	2.28	

8.3 CHANNEL EDGE

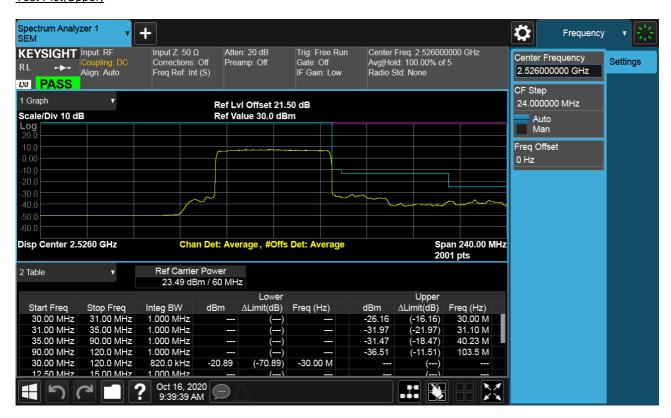
	2 495 MHz ~ 2 496 MHz	C.E ~ (C.E + 1MHz)	2 490.5 MHz ~ 2 495 MHz	(C.E + 1 MHz) ~ (C.E + 5 MHz)	Below 2 490.5 MHz	(C.E + 5 MHz) ~ (C.E + X MHz)	Above (C.E + X MHz)
	Lower	Upper	Lower	Upper	Lower	Upper	Upper
Original (dBm)	-19.24	-21.75	-27.38	-28.94	-26.25	-26.15	-35.22
C2PC (dBm)	-25.86	-26.16	-32.75	-31.97	-36.49	-31.47	-36.51
Deviation (dB)	6.62	4.41	5.37	3.03	10.24	5.32	1.29
Limit (dBm)	-13.0	-10.0	-13.0	-10.0	-25.0	-13.0	-25.0

Note:

1. Test BW: 60MHz


2. Test Frequency: 2526 MHz

Modulation: BPSK
 RB Size: Full RB
 C.E = Channel Edge


6. X = X is the greater of 6MHz or the actual emission bandwidth

7. X = 60MHz(60MHz Bandwidth)

Test Plot(Lower)

Test Plot(Upper)

9. ANNEX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-2010-FC003-P