

Page:

1

of

44

Report Number: F690501-RF-RTL000914-2

TEST REPORT
of
FCC Part 15 Subpart C §15.247
FCC ID: A3LSMT875
TOO ID. ASESIMITO75
1. Equipment Under Test : Portable Tablet
2. Model Name : SM-T875
3. Variant Model Name(s) : -
4. Applicant : Samsung Electronics Co., Ltd.
5. Date of Receipt : 2020.06.04
6. Date of Test(s) : 2020.06.05 ~ 2020.07.09
7. Date of Issue : 2020.07.20
In the configuration tested, the EUT complied with the standards specified above. This test report does not assure KOLAS accreditation.
 The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as receive
Tested by: Jinhyoung Cho Technical Manager: Jungmin Yang
SGS Korea Co., Ltd. Gunpo Laboratory

RTT5041-19(2020.03.02)(2)

Report Number: F690501-RF-RTL000914-2

Table of contents

1. (General Information	3
2	Transmitter Radiated Spurious Emissions and Conducted Spurious Emissions	8
3. (6 dB Bandwidth	29
4.	Maximum Peak Conducted Output Power	33
5.	Power Spectral Density	36
6. /	AC Power Line Conducted Emission	40
7. /	Antenna Requirement	44

1. General Information

1.1. Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

- 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- Designation number: KR0150

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>.

Phone No. : +82 31 688 0901

1.2. Details of Applicant

Applicant	:	Samsung Electronics Co., Ltd.
Address	:	129, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16677, Rep. of Korea
Contact Person	:	Seo, Deok-ho
Phone No.	:	+82 10 3955 6246

1.3. Description of EUT

Kind of Product	Portable Tablet
Model Name	SM-T875
Power Supply	DC 3.86 V
Frequency Range	2 402 M [™] ~ 2 480 M [™] (Bluetooth Low Energy)
Modulation Technique	GFSK
Number of Channels	40 channels (Bluetooth Low Energy)
Antenna Type	Metal Frame Antenna
Antenna Gain	-5.10 dB i

Report Number: F690501-RF-RTL000914-2

Page: 4 of

44

1.4. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Interval	Cal. Due
Signal Generator	R&S	SMR40	100272	Jun. 18, 2020	Annual	Jun. 18, 2021
Signal Generator	R&S	SMBV100A	255834	Jun. 03, 2020	Annual	Jun. 03, 2021
Spectrum Analyzer	R&S	FSV30	103210	Dec. 05, 2019	Annual	Dec. 05, 2020
Spectrum Analyzer	Agilent	N9020A	MY53421758	Sep. 11, 2019	Annual	Sep. 11, 2020
Attenuator	MCLI	FAS-23-20	23834	Dec. 04, 2019	Annual	Dec. 04, 2020
High Pass Filter	Wainwright Instrument GmbH	WHK3.0/18G-10SS	344	May 18, 2020	Annual	May 18, 2021
High Pass Filter	Wainwright Instrument GmbH	WHNX7.5/26.5G-6SS	15	Jun. 05, 2020	Annual	Jun. 05, 2021
Low Pass Filter	Mini-Circuits	NLP-1200+	V 9500401023-2	Jun. 01, 2020	Annual	Jun. 01, 2021
Power Sensor	R&S	NRP-Z81	101421	Dec. 26, 2019	Annual	Dec. 26, 2020
DC Power Supply	Agilent	U8002A	MY50060028	Mar. 03, 2020	Annual	Mar. 03, 2021
Preamplifier	H.P.	8447F	2944A03909	Aug. 07, 2019	Annual	Aug. 07, 2020
Signal Conditioning Unit	R&S	SCU-18	10117	Jun. 10, 2020	Annual	Jun. 10, 2021
Preamplifier	MITEQ Inc.	JS44-18004000-35-8P	1546891	May 08, 2020	Annual	May 08, 2021
Loop Antenna	Schwarzbeck Mess-Elektronik	FMZB 1519	1519-039	Aug. 22, 2019	Biennial	Aug. 22, 2021
Bilog Antenna	Schwarzbeck Mess-Elektronik	VULB 9163	396	Mar. 21, 2019	Biennial	Mar. 21, 2021
Horn Antenna	R&S	HF906	100326	Feb. 14, 2020	Annual	Feb. 14, 2021
Horn Antenna	Schwarzbeck Mess-Elektronik	BBHA 9170	BBHA9170431	Sep. 10, 2018	Biennial	Sep. 10, 2020
Test Receiver	R&S	ESU26	100109	Feb. 18, 2020	Annual	Feb. 18, 2021
Turn Table	Innco systems GmbH	DS 1200 S	N/A	N.C.R.	N/A	N.C.R.
Controller	Innco systems GmbH	CONTROLLER CO3000-4P	CO3000/963/383 30516/L	N.C.R.	N/A	N.C.R.
Antenna Mast	Innco systems GmbH	MA4640-XP-ET	MA4640/536/383 30516/L	N.C.R.	N/A	N.C.R.
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	N/A	N.C.R.	N/A	N.C.R.
Test Receiver	R&S	ESCI 7	100911	Feb. 19, 2020	Annual	Feb. 19, 2021
Two-Line V-Network	R&S	ENV216	100190	May 08, 2020	Annual	May 08, 2021
Shield Room	SY Corporation	L × W × H (6.5 m × 3.5 m × 3.5 m)	N/A	N.C.R.	N/A	N.C.R.
Coaxial Cable	RFONE	PL520-NMNM-4M (4 m)	20200324001	May 06, 2020	Semi- annual	Nov. 06, 2020
Coaxial Cable	RFONE	PL520-NMNM-10M (10 m)	20200324001	May 06, 2020	Semi- annual	Nov. 06, 2020
Coaxial Cable	Rosenberger	LA1-C006-1500	131014 10/20	Feb. 23, 2020	Semi- annual	Aug. 23, 2020

Report Number: F690501-RF-RTL000914-2

1.5. Summary of Test Results

The EUT has been tested according to the following specifications:

	APPLIED STANDARD: FCC Part15 Subpart C	
Section	Test Item(s)	Result
15.205(a) 15.209 15.247(d)	Transmitter Radiated Spurious Emissions and Conducted Spurious Emission	Complied
15.247(a)(2)	6 dB Bandwidth	Complied
15.247(b)(3)	Maximum Peak Conducted Output Power	Complied
15.247(e)	Power Spectral Density	Complied
15.207	AC Power Line Conducted Emission	Complied

1.6. Test Report Revision

Revision	Report Number	Date of Issue	Description
0	F690501-RF-RTL000914	2020.07.09	Initial
1	F690501-RF-RTL000914-1	2020.07.15	Revised worst case in section 1.10 with highest output power, added note for below 30 Mz test site, modified the equipment under test.
2	F690501-RF-RTL000914-2	2020.07.20	Modified the details of applicant.

1.7. Test Procedure(s)

The measurement procedures described in the American National Standard of Procedure for Compliance Testing of unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 15.247 Meas Guidance v05r02 were used in the measurement of the DUT.

1.8. Sample Calculation

Where relevant, the following sample calculation is provided:

1.8.1. Conducted Test

Offset value (dB) = Attenuator (dB) + Cable loss (dB)

1.8.2. Radiation Test

Field strength level (dBµV/m) = Measured level (dBµV) + Antenna factor (dB) + Cable loss (dB) - Amplifier gain (dB) + Duty factor (dB)

1.9. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty
Conducted Disturbance	± 3.45 dB
Radiated Emission, 9 kltz to 30 Mtz	± 3.59 dB
Radiated Emission, below 1 GHz	± 5.88 dB
Radiated Emission, above 1 GHz	± 5.94 dB

Uncertainty figures are valid to a confidence level of 95 %.

1.10. Conclusion of worst-case (Bluetooth 5.0)

Modulation	Mode	Frequency (畑)	Packet length (Byte)	RF Output Power (dBm)
	125k Coded		37	6.18
	125K Coded		255	<u>6.27</u>
			37	6.26
0501/	500k Coded	0.400	255	6.22
GFSK		2 480	37	6.19
	PHY 1M		255	6.18
			37	6.32
	PHY 2M		255	<u>6.32</u>

Remark;

All modes were investigated.

For PHY 2M, 255 bytes is tested as worst condition.

For all of 1M modes (125k Coded, 500k Coded, PHY 1M), 255 bytes at 125k Coded is tested as worst condition.

1.11. Duty Cycle of EUT

Regarding to KDB 558074 D01 15.247 Meas Guidance v05r02, 6, the maximum duty cycles of all modes were investigated and set the spectrum analyzer as below;

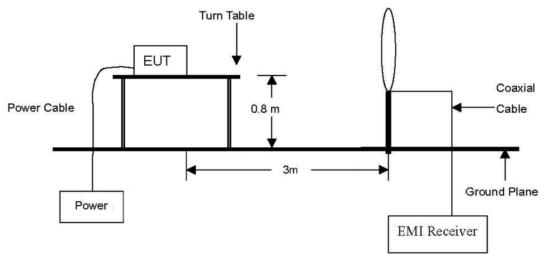
Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100.

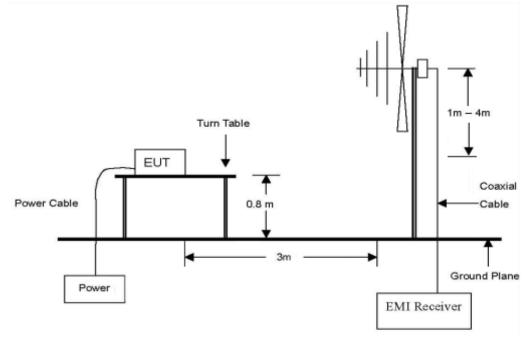
Test Mode	125k Coded	PHY 2M
Duty Cycle (%)	97.44	57.45
Correction Factor (dB)	0.11	2.41

Remark;

- 1. Duty Cycle (%) = (Tx on time / Tx on + off time) x 100
- 2. Correction Factor (dB) = 10 log (1 / Duty Cycle)

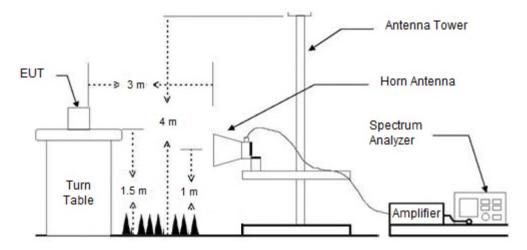
- Test plots


	Spectrum Ref Level 6.00 dBm	RBW 3 MHz		
	Att 25 dB 🖷 SWT	50 ms 👄 VBW 3 MHz		
	TDF 1Pk View			
			M1[1]	-5.15
	0 dBm		D023	9.500
	-10 dBm		₩D2[1]	0.1
	-20 dBm			
	120 dBii			
	-30 dBm			
	-40 dBm			V
	-50 dBm-			
	-60 dBm			
	-70 dBm			
	-80 dBm-			
	-90 dBm			
	-90 dBm CF 2.44 GHz	1001	nts	5.0 1
	Marker	1001	PC3	3.01
		value Y-value	Function	Function Result
	M1 1		m	
		9.5 ms -5.15 dB	in l	
PHY 2M	02 M1 1 03 M1 1 Spectrum Spectrum Ref Level 5.00 dBm	17.1 ms 0.16 c 17.55 ms 0.23 c n 3 8 • RBW 3 MHz	B B B B B B B B B B B B B B B B B B B	na (1999) (1999)
PHY 2M	02 M1 1 03 M1 1 Spectrum Spectrum Ref Level 5.00 dBm	17.1 ms 0.16 c 17.55 ms 0.23 c		(mana) 44
PHY 2M	D2 M1 1 D3 M1 1 Spectrum Spectrum Ref Level 5.00 dBm Att 25 dB SWT TDF 91Pk View	17.1 ms 0.16 c 17.55 ms 0.23 c n 3 8 • RBW 3 MHz		20 - 5 25
PHY 2M	D2 M1 1 D3 M1 1 Spectrum Spectrum Ref Level 5.00 dBm Att 25 dB • SWT TDF 5	17.1 ms 0.16 c 17.55 ms 0.23 c • RBW 3 MHz 10 ms • VBW 3 MHz	M1[1]	-5.25 950.1
PHY 2M	D2 M1 1 D3 M1 1 Spectrum Spectrum Ref Level 5.00 dBm Att 25 dB Swr TDF IPk View 0 dBm 0 dBm Sector Sector	17.1 ms 0.16 c 17.55 ms 0.23 c • RBW 3 MHz 10 ms • VBW 3 MHz		950.0
PHY 2M	D2 M1 1 D3 M1 1 Spectrum Spectrum Ref Level 5.00 dBm Att 25 dB SWT TDF IPK View 0 dBm 122 -10 dBm 122 122 123	17.1 ms 0.16 c 17.55 ms 0.23 c • RBW 3 MHz 10 ms • VBW 3 MHz	M1[1]	950.0
PHY 2M	D2 M1 1 D3 M1 1 Spectrum Spectrum Ref Level 5.00 dBm Att 25 dB SWT TDF IPk View 0 dBm Oddsm C2 C2	17.1 ms 0.16 c 17.55 ms 0.23 c • RBW 3 MHz 10 ms • VBW 3 MHz	M1[1]	950.0
PHY 2M	D2 M1 1 D3 M1 1 Spectrum Spectrum Ref Level 5.00 dBm Att 25 dB SWT TDF IPK View 0 dBm 122 -10 dBm 122 122 123	17.1 ms 0.16 c 17.55 ms 0.23 c • RBW 3 MHz 10 ms • VBW 3 MHz	M1[1]	950.0
PHY 2M	D2 M1 1 D3 M1 1 D3 M1 1 Spectrum Spectrum Ref Level 5.00 dBm Att 25 dB SWT TDF 1Pk View 0 dBm 12 0 dBm 12 2 10 dBm 12 -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm	17.1 ms 0.16 c 17.55 ms 0.23 c RBW 3 MHz 10 ms VBW 3 MHz 0 ms VBW 3 MHz	M1[1]	950. 0.1 1.0800
PHY 2M	D2 M1 1 D3 M1 1 D3 M1 1 Spectrum Spectrum Ref Level 5.00 dBm Att Att 25 dB • SWT TDF • 1Pk View 0 dBm -0 dBm -20 dBm -20 dBm -80 dBm -40 dBm	17.1 ms 0.16 c 17.55 ms 0.23 c RBW 3 MHz 10 ms VBW 3 MHz 0 ms VBW 3 MHz	M1[1]	950.0
PHY 2M	D2 M1 1 D3 M1 1 D3 M1 1 Spectrum Spectrum Ref Level 5.00 dBm Att 25 dB SWT TDF 1Pk View 0 dBm 12 0 dBm 12 2 10 dBm 12 -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm	17.1 ms 0.16 c 17.55 ms 0.23 c RBW 3 MHz 10 ms VBW 3 MHz 0 ms VBW 3 MHz	M1[1]	950. 0.1 1.0800
PHY 2M	D2 M1 1 D3 M1 1 D3 M1 1 Spectrum Spectrum Ref Level 5.00 dBm Att Att 25 dB • SWT TDF • 1Pk View 0 dBm -0 dBm -20 dBm -20 dBm -80 dBm -40 dBm	17.1 ms 0.16 c 17.55 ms 0.23 c RBW 3 MHz 10 ms VBW 3 MHz 0 ms VBW 3 MHz	M1[1]	950. 0.1 1.0800
PHY 2M	D2 M1 1 D3 M1 1 D3 M1 1 Spectrum Spectrum Ref Level 5.00 dBm Att 25 dB SWT D f 91Pk View 0 0 O dBm 2 -10 dBm 2 -10 dBm 2 -2 -10 dBm -2 -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm	17.1 ms 0.16 c 17.55 ms 0.23 c RBW 3 MHz 10 ms VBW 3 MHz 0 ms VBW 3 MHz	M1[1]	950. 0.1 1.0800
PHY 2M	D2 M1 1 D3 M1 1 D3 M1 1 Spectrum Spectrum Ref Level 5.00 dBm Att 25 dB SWT D dBm D 2 -10 dBm 2 -10 dBm -2 -20 dBm -20 dBm -2 -20 dBm -50 dBm -50 dBm -70 dBm -70 dBm	17.1 ms 0.16 c 17.55 ms 0.23 c RBW 3 MHz 10 ms VBW 3 MHz 0 ms VBW 3 MHz	M1[1]	950. 0.1 1.0800
PHY 2M	D2 M1 1 D3 M1 1 D3 M1 1 Spectrum Spectrum Ref Level 5.00 dBm Att 25 dB SWT D f 91Pk View 0 0 O dBm 2 -10 dBm 2 -10 dBm 2 -2 -10 dBm -2 -50 dBm -50 dBm -50 dBm -50 dBm -60 dBm	17.1 ms 0.16 c 17.55 ms 0.23 c RBW 3 MHz 10 ms VBW 3 MHz 0 ms VBW 3 MHz	M1[1]	950. 0.1 1.0800
PHY 2M	D2 M1 1 D3 M1 1 D3 M1 1 Spectrum Spectrum Ref Level 5.00 dBm Att 25 dB SWT D dBm D 2 -10 dBm 2 -10 dBm -2 -20 dBm -20 dBm -2 -20 dBm -50 dBm -50 dBm -70 dBm -70 dBm	17.1 ms 0.16 c 17.55 ms 0.23 c RBW 3 MHz 10 ms VBW 3 MHz 0 ms VBW 3 MHz	M1[1]	950. 0.1 1.0800
PHY 2M	D2 M1 1 D3 M1 1 D3 M1 1 Spectrum Spectrum Ref Level 5.00 dBm Att 25 dB SWT D dBm 22 dB SWT O dBm 22 0 0 Bm -20 dBm 22 0 dBm 23 0 dBm -80 dBm -90 dBm -90 dBm -90 dBm -90 dBm -60 dBm -60 dBm -90 dBm <th< td=""><td>17.1 ms 0.16 c 17.55 ms 0.23 c RBW 3 MHz RBW 3 MHz 10 ms VBW 3 MHz 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>M1[1]</td><td>950. 0.3 1.0800</td></th<>	17.1 ms 0.16 c 17.55 ms 0.23 c RBW 3 MHz RBW 3 MHz 10 ms VBW 3 MHz 0 0 0 0 0 0 0 0 0 0 0 0 0	M1[1]	950. 0.3 1.0800
PHY 2M	D2 M1 1 D3 M1 1 D3 M1 1 Spectrum Spectrum Rof Level 5.00 dBm Att 25 dB SWT D f 9 1Pk View 0 O dBm C2 -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -50 dBm -50 dBm -60 dBm -70 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm	17.1 ms 0.16 c 17.55 ms 0.23 c RBW 3 MHz 10 ms VBW 3 MHz 0 ms VBW 3 MHz	M1[1]	950. 0.1 1.0800
PHY 2M	D2 M1 1 D3 M1 1 D3 M1 1 Spectrum Spectrum Ref Level 5.00 dBm Att 25 dB Att 25 dB SWT D dBm 2 -10 dBm 2 -10 dBm 2 -10 dBm 2 -20 dBm -2 -10 dBm -2 -50 dBm -20 dBm -2 -10 dBm -50 dBm -20 dBm -2 -10 dBm -50 dBm -30 dBm -30 dBm -30 dBm -60 dBm -50 dBm -7 -11 dBm -70 dBm -90 dBm -2 -2 -10 dBm -2 -30 dBm -30 dBm -20 dBm -30 dBm -30 dBm -30 dBm -10 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30 dBm -30	17.1 ms 0.16 c 17.55 ms 0.23 c RBW 3 MHz 10 ms VBW 3 MHz 03 04 04 04 04 04 04 04 04 04 04	M1[1] D2[1]	950. 0.3 1.0800
PHY 2M	D2 M1 1 D3 M1 1 D3 M1 1 Spectrum Spectrum Ref Level 5.00 dBm Att 25 dB SWT TDF IPk View 0 dBm 12 -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -80 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm -90 dBm	17.1 ms 0.16 c 17.55 ms 0.23 c RBW 3 MHz RBW 3 MHz 10 ms VBW 3 MHz 0 10 ms VBW 3 MHz 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 ms 10 m	M1[1] D2[1] pts Function	950, 0.3 1.0800 1.0800 1.0800


2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emissions

2.1. Test Setup

2.1.1. Transmitter Radiated Spurious Emissions



The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz emissions.

The diagram below shows the test setup that is utilized to make the measurements for emission .The spurious emissions were investigated form 1 \times to the 10th harmonic of the highest fundamental frequency or 40 \times , whichever is lower.

Page: 10 of 44

2.1.2. Conducted Spurious Emissions

2.2. Limit

According to §15.247(d), in any 100 klb bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 klb bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emission which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to §15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (₩₂)	Field Strength (<i>µ</i> V/m)	Measurement Distance (Meters)
0.009-0.490	2 400/F(kHz)	300
0.490-1.705	24 000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mz, 76-88 Mz, 174-216 Mz or 470-806 Mz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates in section 11.11 & 11.12 of ANSI C63.10-2013 and only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

2.3.1. Test Procedures for emission below 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum Hold Mode.

Note;

Although these tests were performed other than open field test site, adequate comparison measurements were confirmed against 30 meter open field test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788 D01 Radiated Test Site v01r01.

2.3.2. Test Procedures for emission from above 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site below 1 GHz and 1.5 meters above the ground at a 3 meter anechoic chamber test site above 1 GHz. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a bi-log antenna, a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Report Number: F690501-RF-RTL000914-2

Note;

1. Unwanted Emissions into Non-Restricted Frequency Bands

- The Reference Level Measurement refer to section 11.11.2 Set analyzer center frequency to DTS channel center frequency, SPAN \ge 1.5 times the DTS bandwidth, the RBW = 100 km and VBW \ge 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold.

- Unwanted Emissions Level Measurement refer to section 11.11.3 Set the center frequency and span to encompass frequency range to be measured, the RBW = 100 kHz and VBW \ge 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold.

2. Unwanted Emissions into Restricted Frequency Bands

- Peak Power measurement procedure refer to section 11.12.2.4 Set RBW = as specified in Table 9, VBW \geq 3 x RBW, Detector = Peak, Sweep time = auto, Trace = Max hold.

Table 9 – RBW as a fund	ction of frequency
Frequency	RBW
9 kHz to 150 kHz	200 Hz to 300 Hz
0.15 Mz to 30 Mz	9 kHz to 10 kHz
30 MHz to 1 000 MHz	100 kHz to 120 kHz
> 1 000 MHz	1 MHz

If the peak – detected amplitude can be shown to comply with the average limit, then it is not necessary to perform a separate average measurement.

- Average Power measurements procedure refer to section 11.12.2.5.2

The EUT shall be configured to operate at the maximum achievable duty cycle.

Measure the duty cycle D of the transmitter output signal as described in section 11.6.

Set RBW = 1 M/z, VBW \ge 3 x RBW, Detector = RMS, if span / (# of points in sweep) \le (RBW/2).

Satisfying this condition may require increasing the number of points in the sweep or reducing the span. If this condition cannot be satisfied then the detector mode shall be set to peak.

Averaging type = power (i.e., RMS).

As an alternative the detector and averaging type may be set for linear voltage averaging.

Some instruments require linear display mode in order to use linear voltage averaging. Log or dB averaging shall not be used. Sweep time = auto, Perform a trace average of at least 100 traces.

A correction factor shall be added to the measurement results prior to comparing to the emission limit in order to compute the emission level that would have been measured had the test been performed at 100 percent duty cycle. The correction factor is computed as follows:

- 1) If power averaging (rms) mode was used in step f), then the applicable correction factor is [10 log (1 / D)], where D is the duty cycle.
- 3. Definition of DUT Axis.

Definition of the test orthogonal plan for EUT was described in the test setup photo. The test orthogonal plan of EUT is $\underline{Z} - \underline{axis}$ during radiation test.

2.3.3. Test Procedures for Conducted Spurious Emissions

Per the guidance of ANSI C63.10-2013, section 11.11.1 & 11.11.2 & 11.11.3, the reference level for out of band emissions is established from the plots of this section since the band edge emissions are measured with a RBW of 100 kHz. This reference level is then used as the limit in subsequent plots for out of band spurious emissions shown in section 2.4.3. The limit for out of band spurious emission at the band edge is 20 dB below the fundamental emission level measured in a 100 kHz bandwidth.

- 1. Conducted Emissions at Band Edge
- The Measurement refer to section 11.11.2 Set the center frequency and span to encompass frequency range to be measured, the RBW = 100 kHz and VBW ≥ 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace mode = Max hold, The trace was allowed to stabilize.
- 2. Conducted Spurious Emissions
 - The Measurement refer to section 11.11.3 Start frequency was set to 9 kl/₂ and stop frequency was set to 25 GH₂ (separated into two plots per channel), RBW = 1 Ml₂, VBW ≥ 3 x RBW, Detector = Peak, Sweep time = Auto couple, Trace = Max hold, The trace was allowed to stabilize.
- 3. TDF function

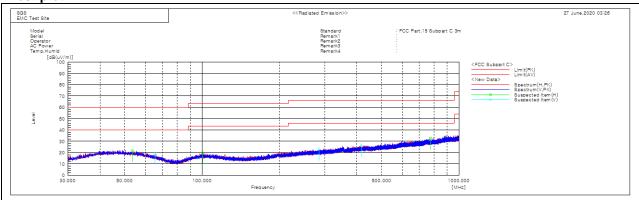
- For plots showing conducted spurious emissions from 9 kt/z to 25 Gt/z, all path loss of wide frequency range was investigated and compensated to spectrum analyzer as TDF function. So, the reading values shown in plots were final result.

2.4. Test Results

Ambient temperature	:	(23	± 1) ℃
Relative humidity	:	47	% R.H.

2.4.1. Radiated Spurious Emission below 1 000 Mb

The frequency spectrum from 9 kHz to 1 000 MHz was investigated. All reading values are peak values.


Test mode: PHY 2M

Radiated Emissions			Ant	Correctio	n Factors	Total Limit		it
Frequency (Mb)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dBµV/m)	Limit (dBµN/m)	Margin (dB)
53.40	29.40	Peak	н	19.72	-27.37	21.75	40.00	18.25
416.22	30.90	Peak	V	21.92	-26.41	26.41	46.00	19.59
775.12	31.50	Peak	Н	26.50	-24.92	33.08	46.00	12.92
Above 800.00	Not detected	-	-	-	-	-	-	-

Remark;

- 1. Spurious emissions for all channels were investigated and almost the same below 1 $Gl_{\mathbb{Z}}$.
- 2. Reported spurious emissions are in <u>High channel</u> as worst case among other channels.
- Radiated spurious emission measurement as below. (Actual = Reading + AF + AMP + CL)
- 4. According to §15.31(o), emission levels are not report much lower than the limits by over 20 dB.

- Test plot

2.4.2. Radiated Spurious Emission above 1 000 Mb

The frequency spectrum above 1 000 Mb was investigated. All reading values are peak and average values.

Test mode: 125k Coded

Low Channel (2 402 Mtz)

Radia	ated Emissic	ons	Ant.	Corr	ection Fact	tors	Total	Lim	it
Frequency (쌘)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*2 310.00	17.18	Peak	Н	27.96	8.64	-	53.78	74.00	20.22
*2 310.00	7.61	Average	Н	27.96	8.64	0.11	<u>44.32</u>	54.00	9.68
*2 389.87	19.26	Peak	Н	28.20	7.04	-	54.50	74.00	19.50
*2 375.39	8.74	Average	Н	28.05	7.14	0.11	44.04	54.00	9.96
*2 390.00	18.02	Peak	Н	28.20	7.04	-	53.26	74.00	20.74
*2 390.00	8.26	Average	Н	28.20	7.04	0.11	43.61	54.00	10.39

Radiated Emissions		Ant.	Correction Factors			Total	Limit		
Frequency (肔)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

Middle Channel (2 440 Mz)

Radiated Emissions		Ant.	Correction Factors			Total	Limit		
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµN/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

Report Number: F690501-RF-RTL000914-2

Page: 16 of 44

High Channel (2 480 Mb)

Radia	Radiated Emissions			Corr	ection Fact	tors	Total	Limit	
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*2 483.50	17.68	Peak	Н	28.37	6.50	-	52.55	74.00	21.45
*2 483.50	7.89	Average	Н	28.37	6.50	0.11	42.87	54.00	11.13
*2 491.13	20.37	Peak	н	28.34	6.43	-	55.14	74.00	18.86
*2 494.67	8.89	Average	н	28.32	6.40	0.11	43.72	54.00	10.28
*2 500.00	16.66	Peak	н	28.30	6.35	-	51.31	74.00	22.69
*2 500.00	8.46	Average	Н	28.30	6.35	0.11	43.22	54.00	10.78

Radia	Radiated Emissions		Ant.	Correction Factors			Total	Limit	
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµN/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

Report Number: F690501-RF-RTL000914-2

Test mode: PHY 2M

Low Channel (2 402 Mb)

Radia	ated Emissic	ons	Ant.	Corr	ection Fact	tors	Total	Limit	
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*2 310.00	18.05	Peak	н	27.96	8.64	-	54.65	74.00	19.35
*2 310.00	7.85	Average	Н	27.96	8.64	2.41	46.86	54.00	7.14
*2 332.76	20.44	Peak	Н	27.87	8.27	-	56.58	74.00	17.42
*2 345.36	8.78	Average	Н	27.82	7.87	2.41	<u>46.88</u>	54.00	7.12
*2 390.00	18.88	Peak	Н	28.20	7.04	-	54.12	74.00	19.88
*2 390.00	8.01	Average	н	28.20	7.04	2.41	45.66	54.00	8.34

Radiated Emissions		Ant.	Correction Factors			Total	Limit		
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµV/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

Middle Channel (2 440 Mz)

Radia	ted Emissic	ons	Ant.	Correction Factors		Total	Lin	nit	
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

Report Number: F690501-RF-RTL000914-2

Page: 18 of 44

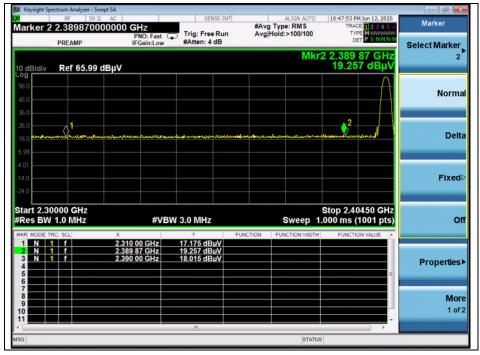
High Channel (2 480 Mb)

Radia	Radiated Emissions		Ant.	Correction Factors		Total	Lim	it	
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*2 483.50	18.00	Peak	Н	28.37	6.50	-	52.87	74.00	21.13
*2 483.50	7.99	Average	Н	28.37	6.50	2.41	45.27	54.00	8.73
*2 487.60	19.44	Peak	Н	28.35	6.46	-	54.25	74.00	19.75
*2 488.37	8.88	Average	н	28.35	6.46	2.41	46.10	54.00	7.90
*2 500.00	17.74	Peak	н	28.30	6.35	-	52.39	74.00	21.61
*2 500.00	8.23	Average	Н	28.30	6.35	2.41	45.29	54.00	8.71

Radi	Radiated Emissions		Ant.	Correction Factors		Total	Lim	it	
Frequency (Mb)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
Above 1 000.00	Not detected	-	-	-	-	-	-	-	-

Remarks;

- 1. "*" means the restricted band.
- 2. Measuring frequencies from 1 Gth to the 10th harmonic of highest fundamental frequency.
- 3. Radiated emissions measured in frequency above 1 000 № were made with an instrument using peak/average detector mode.
- 4. Actual = Reading + AF + CL + (DF) or Reading + AF + AMP + CL + (DF).
- 5. According to § 15.31(o), emission levels are not reported much lower than the limits by over 20 dB.
- 6. The maximized peak measured value complies with the average limit, to perform an average measurement is unnecessary.
- 7. AF = Antenna Factor, CL = Cable Loss, DF = Duty Correction Factor.

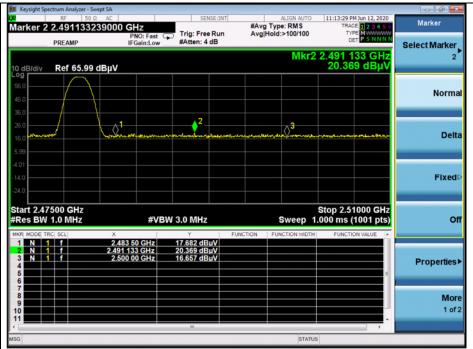


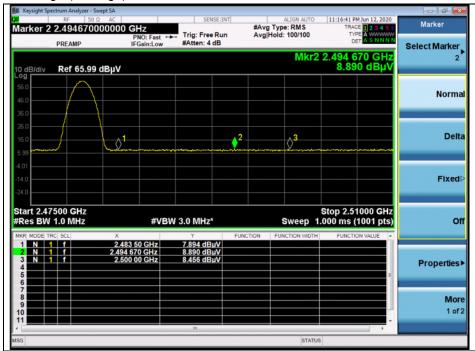
Report Number: F690501-RF-RTL000914-2


- Test plots (Band-edge)

Test mode: 125k Coded

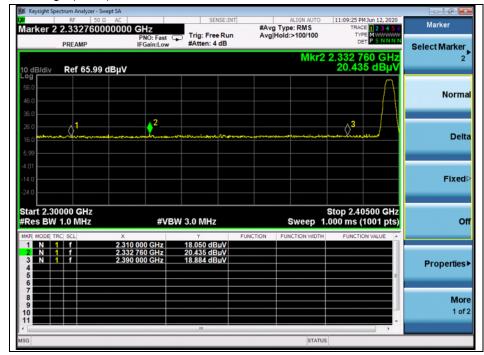
Low channel Band edge (Peak)


Low channel Band edge (Average)



Report Number: F690501-RF-RTL000914-2

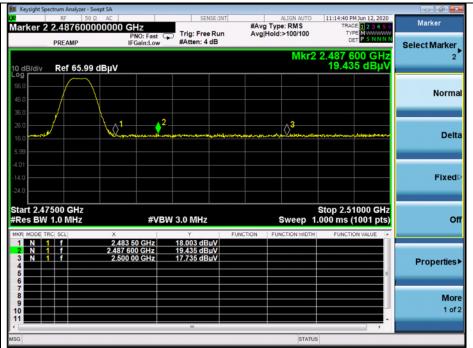
High channel Band edge (Peak)


High channel Band edge (Average)

Report Number: F690501-RF-RTL000914-2

Test mode: PHY 2M

Low channel Band edge (Peak)

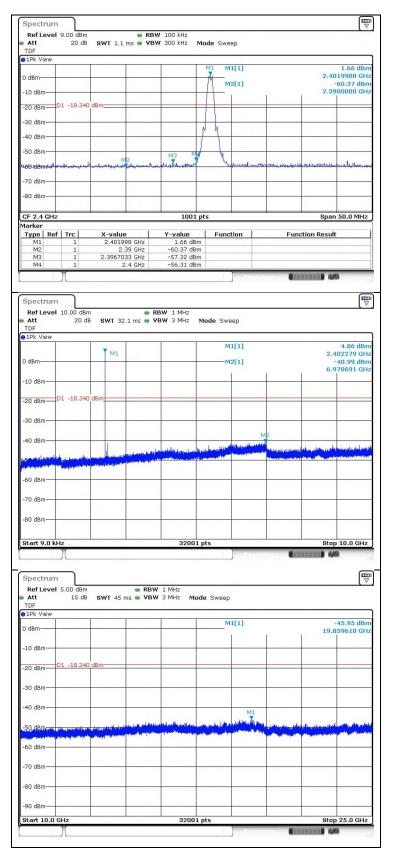

Low channel Band edge (Average)



Report Number: F690501-RF-RTL000914-2

High channel Band edge (Peak)

High channel Band edge (Average)


Report Number: F690501-RF-RTL000914-2

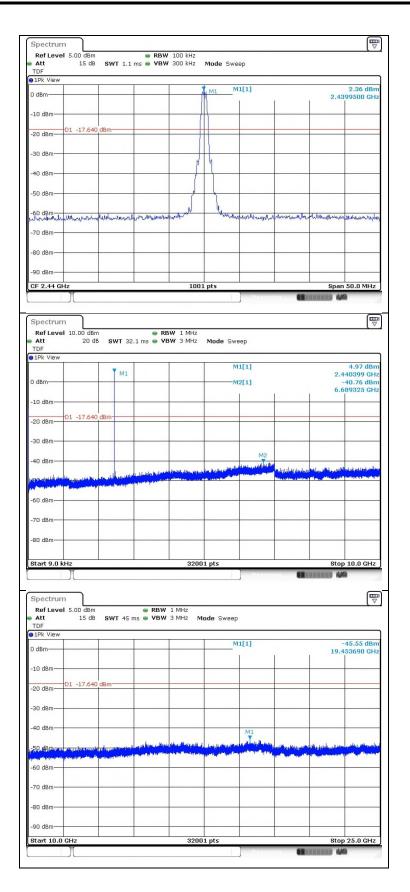
Page: 23 of 44

2.4.3. Plot of Conducted Spurious Emissions

Test mode: 125k Coded

Low Channel

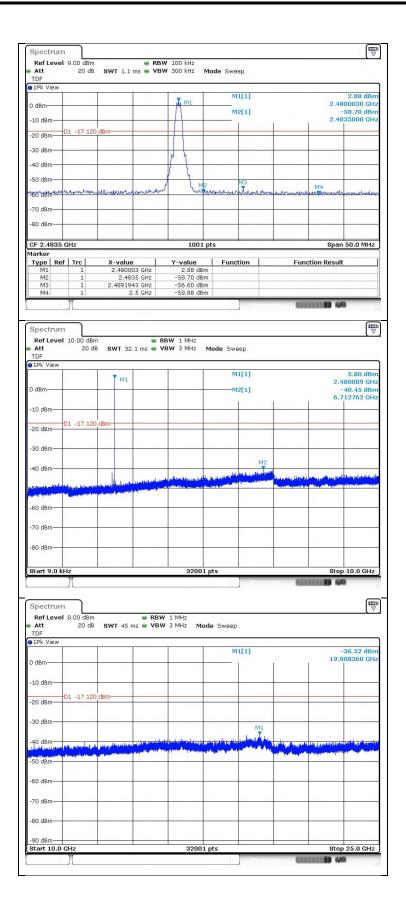
Page:


24

of

44

Report Number: F690501-RF-RTL000914-2


Middle Channel

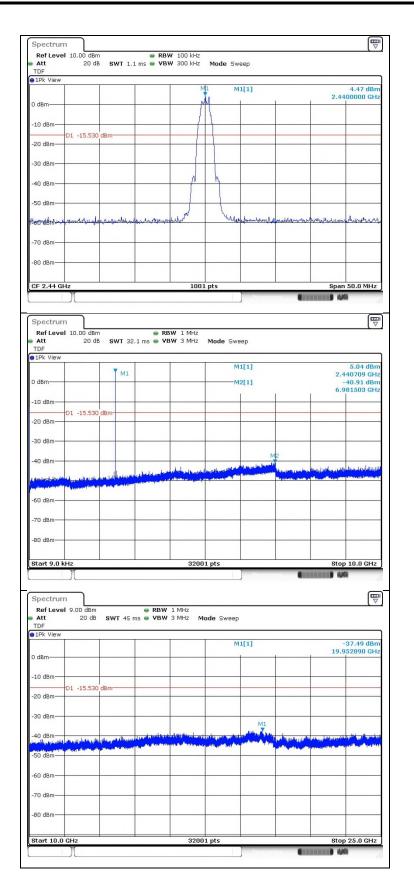
Report Number: F690501-RF-RTL000914-2


High Channel

Report Number: F690501-RF-RTL000914-2

Test mode: PHY 2M Low Channel

Page:

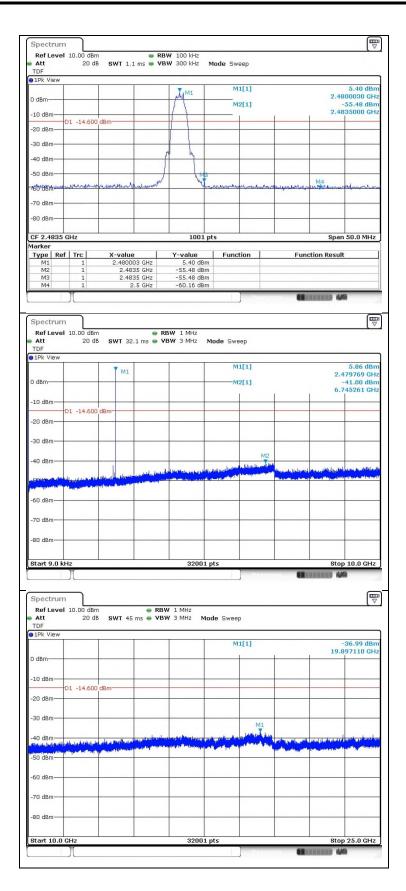

27

of

44

Report Number: F690501-RF-RTL000914-2

Middle Channel



Report Number: F690501-RF-RTL000914-2

Page: 28 of 44

High Channel

3. 6 dB Bandwidth

3.1. Test Setup

3.2. Limit

According to \$15.247(a)(2), systems using digital modulation techniques may operate in the 902-928 Mb, 2 400-2 483.5 Mb, and 5 725-5 850 Mb bands. The minimum 6 dB bandwidth shall be at least 500 kb.

3.3. Test Procedure

All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section.

The test follows section 11.8 DTS bandwidth of ANSI C63.10-2013. Tests performed using section 11.8.1 Option 1.

- Option 1:
- 1. Set RBW to = 100 kHz.
- 2. Set the VBW \geq [3 x RBW].
- 3. Detector = peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

Report Number: F690501-RF-RTL000914-2

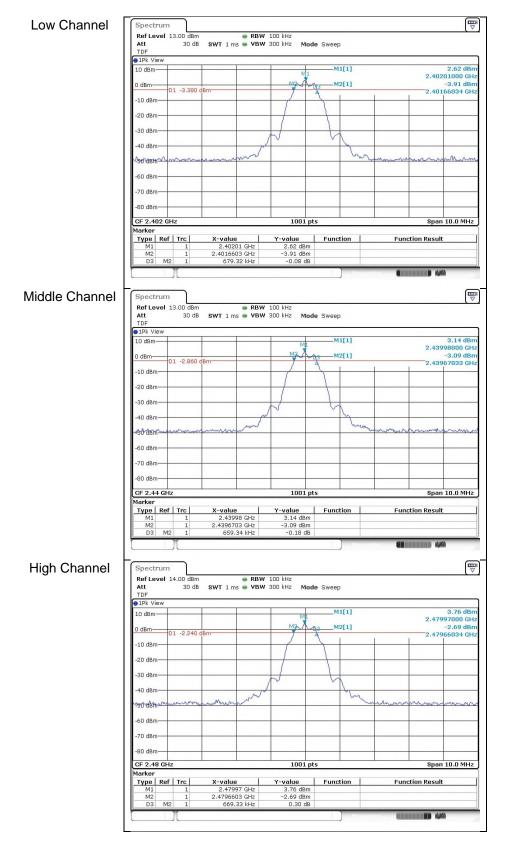
3.4. Test Results

Ambient temperature	:	(23	± 1) °C
Relative humidity	:	47	% R.H.

Test mode: 125k Coded

Mode	Channel	Frequency (Mb)	6 dB Bandwidth (M৳)	Minimum Bandwidth (胐)
	Low	2 402	0.679	
GFSK	Middle	2 440	0.659	500
	High	2 480	0.669	

Test mode: PHY 2M

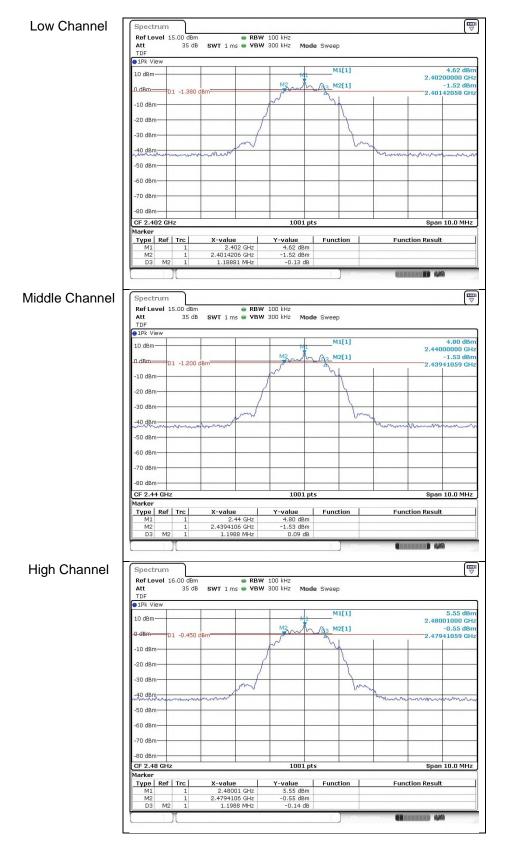

Mode	Channel	Frequency (脞)	6 dB Bandwidth (M批)	Minimum Bandwidth (朏)
	Low	2 402	1.189	
GFSK	Middle	2 440	1.199	500
	High	2 480	1.199	

Report Number: F690501-RF-RTL000914-2

- Test plots

Test mode: 125k Coded

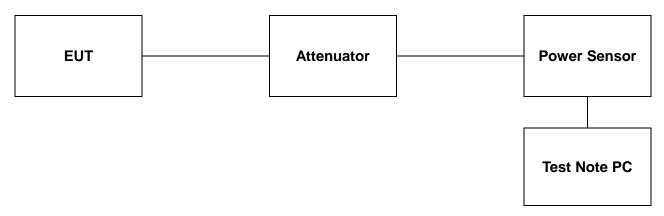
Page:


32

of

44

Report Number: F690501-RF-RTL000914-2


Test mode: PHY 2M

4. Maximum Peak Conducted Output Power

4.1. Test Setup

4.2. Limit

According to §15.247(b)(3), for systems using digital modulation in the 902-928 Mb, 2 400-2 483.5 Mb, and 5 725-5 850 Mb bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to \$15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraph (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

4.3. Test Procedure

The test follows section 11.9.1.3 of ANSI C63.10-2013.

PKPM1 Peak-reading power meter method

- The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

The test follows section 11.9.2.3.2 of ANSI C63.10-2013.

Method AVGPM-G (Measurement using a gated RF average-reading power meter)

- Alternatively, measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required.

Test program: (S/W name: R&S Power Viewer, Version: 3.2.0)

1. Initially overall offset for attenuator and cable loss is measured per frequency.

2. Measured offset is inserted in test program in advance of measurement for output power.

3. Power for each frequency (channel) of device is investigated as final result.

4. Final result reported on this section from R&S power viewer program includes with several factors and test program shows only final result.

Report Number: F690501-RF-RTL000914-2

4.4. Test Results

Test mode: 125k Coded

Mode	Channel	Frequency (Mb)	Average Power Result (dB m)	Peak Power Result (dB m)	Limit (dB m)
	Low	2 402	5.01	5.98	
GFSK	Middle	2 440	4.71	5.59	30
	High	2 480	<u>5.47</u>	<u>6.27</u>	

Test mode: PHY 2M

Mode	Channel	Frequency (Mb)	Average Power Result (dB m)	Peak Power Result (dB m)	Limit (dB m)
	Low	2 402	5.00	5.96	
GFSK	Middle	2 440	4.25	5.66	30
	High	2 480	<u>5.00</u>	<u>6.32</u>	

5. Power Spectral Density

5.1. Test Setup

5.2. Limit

According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dB m in any 3 kt band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

5.3. Test Procedure

The measurements are recorded using the PKPSD measurement procedure in section 11.10.2 of ANSI C63.10-2013.

- This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
- 4. Set the VBW \geq [3 x RBW].
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds requirement, then reduce RBW (but no less than 3 km) and repeat.

Report Number: F690501-RF-RTL000914-2

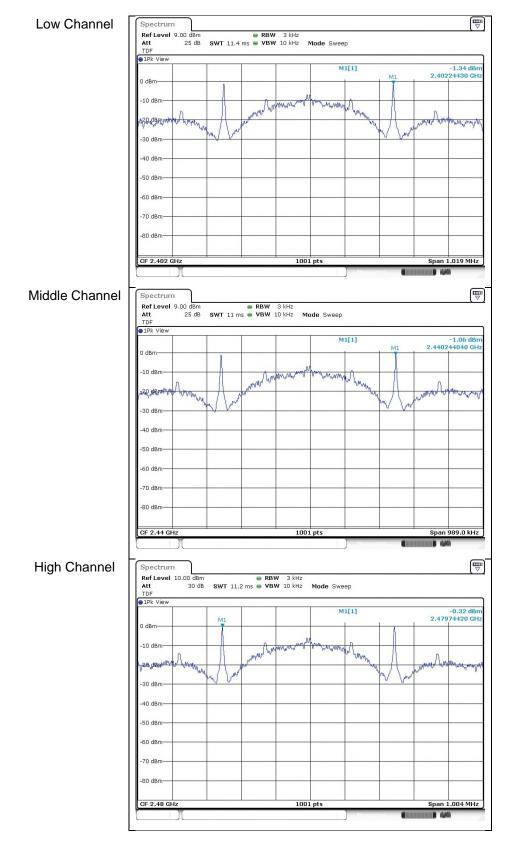
5.4. Test Results

Ambient temperature	:	(23	± 1) °C
Relative humidity	:	47	% R.H.

Test mode: 125k Coded

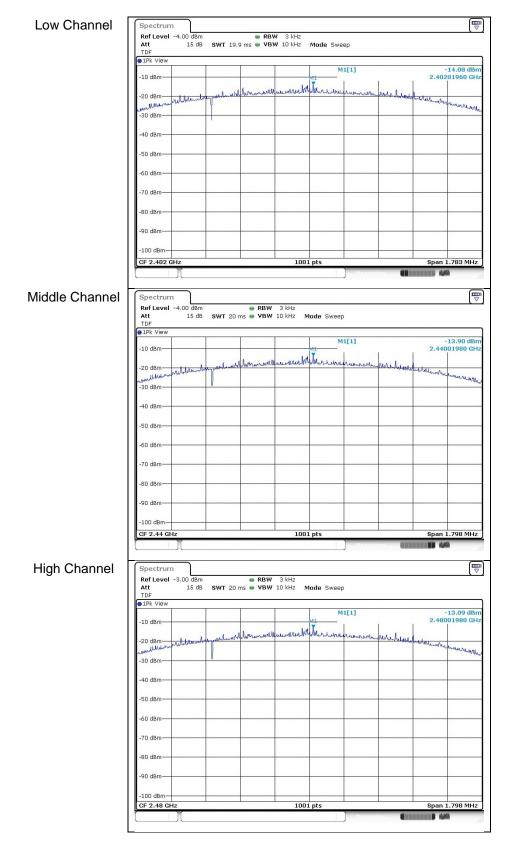
Mode	Channel	Frequency (쌘)	Measured PSD (dB m/3 龇)	Limit (团 m/3 述)
	Low	2 402	-1.34	
GFSK	Middle	2 440	-1.06	8
	High	2 480	-0.32	

Test mode: PHY 2M

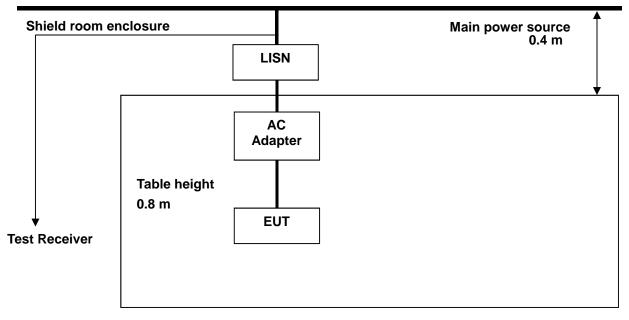

Mode	Channel	Frequency (쌘)	Measured PSD (dB m/3 龇)	Limit (团 m/3 述)
	Low	2 402	-14.08	
GFSK	Middle	2 440	-13.90	8
	High	2 480	-13.09	

Report Number: F690501-RF-RTL000914-2

- Test plots


Test mode: 125k Coded

Report Number: F690501-RF-RTL000914-2


Test mode: PHY 2M

6. AC Power Line Conducted Emission

6.1. Test Setup

6.2. Limit

According to §15.207(a), for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H /50 ohms line impedance stabilization network (LISN).

Compliance with the provision of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

	Conducted limit (dBµN)				
Frequency of emission (脸)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

* Decreases with the logarithm of the frequency.

6.3. Test Procedures

AC conducted emissions from the EUT were measured according to the dictates of ANSI C63.10-2013

- 1. The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane.
- 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room.
- 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room.
- 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission.

44

6.4. Test Results

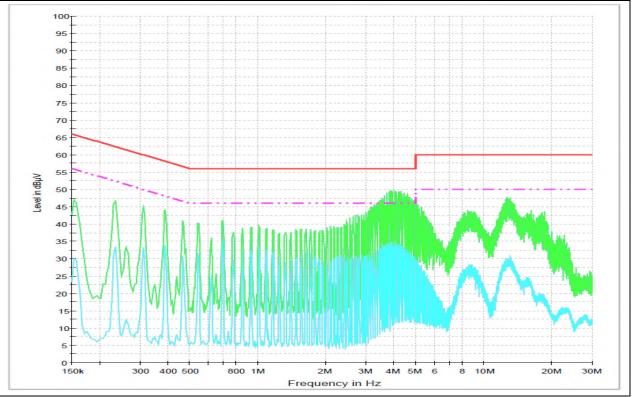
The following table shows the highest levels of conducted emissions on both phase of Hot and Neutral line.

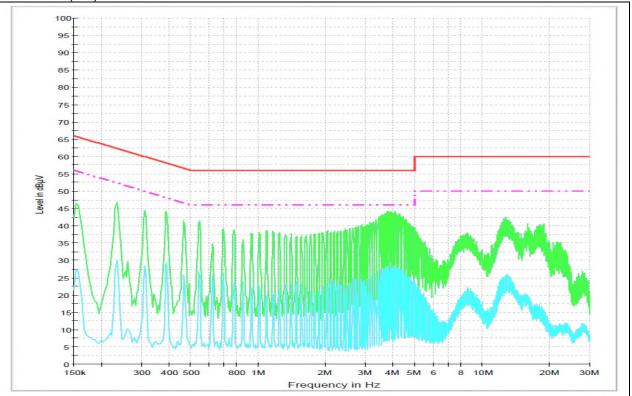
Ambient temperature	: (23 ± 1) ℃
Relative humidity	: 47 % R.H.
Frequency range	: 0.15 MHz - 30 MHz
Measured Bandwidth	: 9 kHz

Test mode: PHY 2M

FREQ.	LEVEL	. (dB,dV)	LIMIT (dB _µ N)		MARGIN (dB)		
(MHz)	Q-Peak	Average		Q-Peak	Average	Q-Peak	Average
0.23	34.00	21.00	N	62.45	52.45	28.45	31.45
0.38	32.40	23.00	N	58.28	48.28	25.88	25.28
1.56	28.60	24.80	N	56.00	46.00	27.40	21.20
4.12	36.90	32.60	N	56.00	46.00	19.10	13.40
8.69	29.30	24.30	N	60.00	50.00	30.70	25.70
12.83	32.50	25.40	N	60.00	50.00	27.50	24.60
0.39	42.00	28.90	Н	58.06	48.06	16.06	19.16
0.78	34.40	17.70	Н	56.00	46.00	21.60	28.30
1.56	34.90	21.00	Н	56.00	46.00	21.10	25.00
4.03	38.90	28.10	н	56.00	46.00	17.10	17.90
8.41	34.90	21.20	н	60.00	50.00	25.10	28.80
12.66	36.80	24.30	Н	60.00	50.00	23.20	25.70

Remark;


- 1. Line (H): Hot, Line (N): Neutral.
- 2. All modes and channels were investigated and the worst-case emissions were reported using <u>High</u> <u>channel.</u>
- 3. The limit for Class B device(s) from 150 kl_2 to 30 Ml_2 are specified in Section of the Title 47 CFR.
- 4. Traces shown in plot were made by using a peak detector and average detector.
- 5. Deviations to the Specifications: None.


Report Number: F690501-RF-RTL000914-2

- Test plots

Test mode: (Neutral)

Test mode: (Hot)

7. Antenna Requirement

7.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section \$15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section \$15.247(b) if transmitting antennas of directional gain greater than 6 dB i are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dB i.

7.2. Antenna Connected Construction

Antenna used in this product is Metal Frame Antenna with gain of -5.10 dB i.