DASY5 Validation Report for Head TSL Date: 16.09.2020 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1026 Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.08$ S/m; $\varepsilon_r = 36.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN3503; ConvF(7.73, 7.73, 7.73) @ 3700 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1003 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 70.74 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 19.3 W/kg SAR(1 g) = 6.74 W/kg; SAR(10 g) = 2.44 W/kg Smallest distance from peaks to all points 3 dB below = 8.2 mm Ratio of SAR at M2 to SAR at M1 = 73.4% Maximum value of SAR (measured) = 13.2 W/kg 0 dB = 13.2 W/kg = 11.21 dBW/kg ### Impedance Measurement Plot for Head TSL #### **DASY5 Validation Report for Body TSL** Date: 18.09.2020 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2 - SN:1026 Communication System: UID 0 - CW; Frequency: 3700 MHz Medium parameters used: f = 3700 MHz; $\sigma = 3.48 \text{ S/m}$; $\varepsilon_r = 50.1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.31, 7.31, 7.31) @ 3700 MHz; Calibrated: 31.12.2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 27.12.2019 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) ### Dipole Calibration for Body Tissue/Pin=100 mW, d=10mm, f=3700MHz/Zoom Scan. dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 64.01 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.1 W/kg ### SAR(1 g) = 6.29 W/kg; SAR(10 g) = 2.27 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 75.2% Maximum value of SAR (measured) = 12.1 W/kg 0 dB = 12.1 W/kg = 10.83 dBW/kg ### Impedance Measurement Plot for Body TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland 결 - Schweizerischer Kalibrierdienst - Service suisse d'étalonnage - Servicio svizzero di taratura Accreditation No.: SCS 0108 S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL Korea (Dymstec)** Certificate No: D3900V2-1069_Apr21 # **CALIBRATION CERTIFICATE** Object D3900V2 - SN:1069 Calibration procedure(s) QA CAL-22.v6 Calibration Procedure for SAR Validation Sources between 3-10 GHz Calibration date: April 21, 2021 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 09-Apr-21 (No. 217-03291/03292) | Apr-22 | | Power sensor NRP-Z91 | SN: 103244 | 09-Apr-21 (No. 217-03291) | Apr-22 | | Power sensor NRP-Z91 | SN: 103245 | 09-Apr-21 (No. 217-03292) | | | Reference 20 dB Attenuator | SN: BH9394 (20k) | 09-Apr-21 (No. 217-03343) | Apr-22 | | Type-N mismatch combination | SN: 310982 / 06327 | 09-Apr-21 (No. 217-03344) | Apr-22 | | Reference Probe EX3DV4 | SN: 3503 | 30-Dec-20 (No. EX3-3503_Dec20) | Apr-22 | | DAE4 | SN: 601 | 02-Nov-20 (No. DAE4-601_Nov20) | Dec-21 | | | | 02 110V 20 (110: DAL4-001_110V20) | Nov-21 | | Secondary Standards | ID# | Check Date (in house) | 0.1 | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Oct-20) | Scheduled Check | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Power sensor HP 8481A | SN: MY41092317 | | In house check: Oct-22 | | RF generator R&S SMT-06 | SN: 100972 | 07-Oct-15 (in house check Oct-20) | In house check: Oct-22 | | Network Analyzer Agilent E8358A | SN: US41080477 | 15-Jun-15 (in house check Oct-20) | In house check: Oct-22 | | , | 1011.00410 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-21 | | | Name | Function | Signature | | Calibrated by: | Jeffrey Katzman | Laboratory Technician | Signature | | | | East atory recinician | 164 | | | | | O. Din | | Approved by: | Katja Pokovic | Technical Manager | m ni | | | | | al as | | | | | | Issued: April 23, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D3900V2-1069_Apr21 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL N/A tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z not applicable or not measured # Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook # **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D3900V2-1069_Apr21 # **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | | |------------------------------|------------------------------|-----------------------------------|--| | Extrapolation | Advanced Extrapolation | | | | Phantom | Modular Flat Phantom | | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | | Frequency | 3900 MHz ± 1 MHz | 2.3000 Figure 2 1.4 (2 direction) | | # **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 37.5 | 3.32 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.6 ± 6 % | 3.23 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.02 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 70.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.44 W/ka | | SAR for nominal Head TSL parameters | normalized to 1W | 24.3 W/kg ± 19.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS 0108) # **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 46.6 Ω - 4.4 ϳΩ | |--------------------------------------|-----------------| | Return Loss | - 24.7 dB | # General Antenna Parameters and Design | Electrical Delay (one direction) | | |-----------------------------------|-----------| | Electrical Delay (offe direction) | 1.104 ns | | | 1.104 118 | | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | ٢ | | | |---|-----------------------|-------| | 1 | Manufactured by | | | L | That is a state of by | SPEAG | | | | | Certificate No: D3900V2-1069_Apr21 # **DASY5 Validation Report for Head TSL** Date: 21.04.2021 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2 - SN:1069 Communication System: UID 0 - CW; Frequency: 3900 MHz Medium parameters used: f = 3900 MHz; $\sigma = 3.23$ S/m; $\epsilon_r = 36.6$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ## DASY52 Configuration: Probe: EX3DV4 - SN3503; ConvF(7.39, 7.39, 7.39) @ 3900 MHz; Calibrated: 30.12.2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 02.11.2020 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) Dipole Calibration for Head Tissue/Pin=100 mW, d=10mm, f=3900MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.29 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 19.9 W/kg SAR(1 g) = 7.02 W/kg; SAR(10 g) = 2.44 W/kg Smallest distance from peaks to all points 3 dB below = 8 mm Ratio of SAR at M2 to SAR at M1 = 74% Maximum value of SAR (measured) = 13.9 W/kg 0 dB = 13.9 W/kg = 11.44 dBW/kg # Impedance Measurement Plot for Head TSL ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 Client **UL Korea (Dymstec)** Certificate No: D5GHzV2-1209_Feb20 ### CALIBRATION CERTIFICATE Object D5GHzV2 - SN:1209 Calibration procedure(s) **QA CAL-22.v4** Calibration Procedure for SAR Validation Sources between 3-6 GHz Calibration date: February 27, 2020 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 \pm 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |---------------------------------|--------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 03-Apr-19 (No. 217-02892/02893) | Apr-20 | | Power sensor NRP-Z91 | SN: 103244 | 03-Apr-19 (No. 217-02892) | Apr-20 | | Power sensor NRP-Z91 | SN: 103245 | 03-Apr-19 (No. 217-02893) | Apr-20 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 04-Apr-19 (No. 217-02894) | Apr-20 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 04-Apr-19 (No. 217-02895) | Apr-20 | | Reference Probe EX3DV4 | SN: 3503 | 31-Dec-19 (No. EX3-3503_Dec19) | Dec-20 | | DAE4 | SN: 601 | 27-Dec-19 (No. DAE4-601_Dec19) | Dec-20 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB39512475 | 30-Oct-14 (in house check Feb-19) | In house check: Oct-20 | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-18) | In house check: Oct-20 | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-18) | In house check: Oct-20 | | Network Analyzer Agilent E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-19) | In house check: Oct-20 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | de Ilux | | Approved by | | | | | Approved by: | Katja Pokovic | Technical Manager | elles. | | | | | | Issued: February 27, 2020 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D5GHzV2-1209_Feb20 Page 1 of 13 # Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** C Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D5GHzV2-1209_Feb20 Page 2 of 13 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.4 | |------------------------------|--|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, $dy = 4.0$ mm, $dz = 1.4$ mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | # Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.0 ± 6 % | 4.53 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.05 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.5 ± 6 % | 4.88 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | # SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.6 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.38 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.6 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.3 ± 6 % | 5.03 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.09 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.2 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.28 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.6 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1209_Feb20 # Body TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.36 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.3 ± 6 % | 5.52 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5250 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.34 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 73.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.06 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.5 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.7 ± 6 % | 5.99 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | ± | | # SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.69 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 76.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.2 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.3 | 5.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.4 ± 6 % | 6.20 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5750 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.46 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 74.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | : | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.08 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.6 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1209_Feb20 # Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 51.6 Ω - 3.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.3 dB | ### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 52.5 Ω + 1.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 30.2 dB | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | 53.5 Ω + 4.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.7 dB | ### Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | 49.3 Ω - 1.7 jΩ | |--------------------------------------|-----------------| | Return Loss | - 34.7 dB | ## Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 51.4 Ω + 3.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.5 dB | ### Antenna Parameters with Body TSL at 5750 MHz | Impedance, transformed to feed point | 53.5 Ω + 3.1 jΩ | |--------------------------------------|-----------------| | Return Loss | - 26.9 dB | ## **General Antenna Parameters and Design** | Floatring Delay (and dispersion) | | |----------------------------------|----------| | Electrical Delay (one direction) | 1.201 ns | | | 1.20118 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | | Manufactured by | SPEAG | |---|-----------------|-------| | Į | | OFEAG | | | | | ### **DASY5 Validation Report for Head TSL** Date: 26.02.2020 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1209 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.53$ S/m; $\epsilon_r = 35$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.88$ S/m; $\epsilon_r = 34.5$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.03$ S/m; $\epsilon_r = 34.3$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.5, 5.5, 5.5) @ 5250 MHz, ConvF(5.1, 5.1, 5.1) @ 5600 MHz, ConvF(5.08, 5.08, 5.08) @ 5750 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 78.10 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 28.2 W/kg ### SAR(1 g) = 8.05 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 6.8 mm Ratio of SAR at M2 to SAR at M1 = 69.6% Maximum value of SAR (measured) = 17.9 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 77.83 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 31.7 W/kg ### SAR(1 g) = 8.42 W/kg; SAR(10 g) = 2.38 W/kg Smallest distance from peaks to all points 3 dB below = 6.9 mm Ratio of SAR at M2 to SAR at M1 = 67.3% Maximum value of SAR (measured) = 19.2 W/kg Certificate No: D5GHzV2-1209_Feb20 # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 75.83 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 32.3 W/kg SAR(1 g) = 8.09 W/kg; SAR(10 g) = 2.28 W/kg Smallest distance from peaks to all points 3 dB below = 6.9 mm Ratio of SAR at M2 to SAR at M1 = 65.2% Maximum value of SAR (measured) = 19.0 W/kg 0 dB = 17.9 W/kg = 12.54 dBW/kg ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 27.02.2020 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1209 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.52$ S/m; $\epsilon_r = 47.3$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.99$ S/m; $\epsilon_r = 46.7$; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.20$ S/m; $\epsilon_r = 46.4$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.26, 5.26, 5.26) @ 5250 MHz, ConvF(4.79, 4.79, 4.79) @ 5600 MHz, ConvF(4.66, 4.66, 4.66) @ 5750 MHz; Calibrated: 31.12.2019 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 27.12.2019 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.4(1527); SEMCAD X 14.6.14(7483) # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.26 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 28.1 W/kg ### SAR(1 g) = 7.34 W/kg; SAR(10 g) = 2.06 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 66.7% Maximum value of SAR (measured) = 17.7 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0.5 Merchanists 1.4mm 1. dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.95 V/m; Power Drift = -0.08 dB Peak SAR (extrapolated) = 32.9 W/kg ### SAR(1 g) = 7.69 W/kg; SAR(10 g) = 2.14 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 63.2% Maximum value of SAR (measured) = 19.2 W/kg Certificate No: D5GHzV2-1209_Feb20 ## Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.30 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 33.2 W/kg SAR(1 g) = 7.46 W/kg; SAR(10 g) = 2.08 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 61.7% Maximum value of SAR (measured) = 18.9 W/kg 0 dB = 17.7 W/kg = 12.48 dBW/kg ## Impedance Measurement Plot for Body TSL #### **Justification for Extended SAR Dipole Calibrations** Instead of the typical annual calibration recommended by measurement standards, longer calibration intervals of up to three years may be considered when it is demonstrated that the SAR target, impedance and return loss of a dipole have remain stable according to the following requirements #### KDB 865664 D01v01r04 requirements - a) return loss : < 20 dB, within 20% of previous measurement - b) impedance : within 5 Ω from previous measurement | Dipole Antenna | Head/Body | Date of
Measurement | Return
Loss(dB) | Δ% | Impedance (Ω) | ΔΩ | |-------------------|-----------|------------------------|--------------------|-------|----------------------|------| | D5GHzV2-SN : 1209 | Head | 2020-02-27 | -29.33 | | 51.62 | 2.87 | | | | 2021-02-15 | -28.47 | 3.03 | 48.75 | | | | | 2020-02-27 | -30.25 | | 52.52 | 3.12 | | | | 2021-02-15 | -27.33 | 10.68 | 49.41 | | | | | 2020-02-27 | -25.68 | | 53.51 | 2.92 | | | | 2021-02-15 | -27.96 | -8.15 | 50.59 | | #### c) extrapolated peak SAR: within 10% of that reported in the calibration data | Dipole Antenna | Head/Body | Date of
Measurement | extrapolated
peak SAR
(W/kg) | Δ% | | |-------------------|-----------|------------------------|------------------------------------|-------|--| | D5GHzV2-SN : 1209 | | 2020-02-27 | 79.90 | -3.25 | | | | Head | 2021-02-15 | 77.30 | -3.23 | | | | | 2020-02-27 | 83.60 | -7.30 | | | | | 2021-02-15 | 77.50 | | | | | | 2020-02-27 | 80.20 | -8.23 | | | | | 2021-02-15 | 73.60 | | | Stop 6 GHz Pwr -10 dBm Bw 10 kHz Ch1 Start 5 GHz