

	ctrum Analyz							
RL	RF	50 Ω AC		SENSE:IN		ALIGN AUTO g Type: RMS	01:05:33 PM May 15 TRACE 1 2 3	
senter F	req 5.0	15000000	PNO: Fast +	Trig: Free Ru		g Type. Kins		
			IFGain:Low	#Atten: 10 dB			DETAAA	
						M	kr1 7.401 8 G	Hz Auto Tun
10 dB/div	Ref 0.	00 dBm					-70.032 dl	Bm
- ^{og}		¥2						
10.0								Center Fre
20.0								5.015000000 GH
30.0							<u> </u>	
40.0								Start Fre
50.0								30.000000 MH
60.0								30.000000 WF
						• • • • •		
-70.0								RMS Stop Fre
-80.0	warmen and the second	and the second second	manut and					10.00000000 GH
90.0								
							Otom 40 000 /	
Start 30	1.0 MH	7	#\/R	W 3.0 MHz		Sween 17	Stop 10.000 (.33 ms (20001	GHz CF Ste pts) 997.000000 MH
			# V D	V4 5.0 141112				Auto Ma
MKR MODE T	RC SCL	X 7	401 8 GHz	-70.032 dBm	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
2 N	1 f	1	851 0 GHz	-4.189 dBm				From Office
3			7					FreqOffs
5								= 0 H
6 7								
8								
9								
11								*
				m				•
SG						In STATUS		

BAND 2. Conducted Spurious_1 (18607ch_1.4MHz_QPSK_RB 1_0)

🗾 Agilent Spectrum Ana								
Center Freq 1	50 Ω AC 5.000000000) GHz	SENSE:INT	#Avg Type:	IGN AUTO RMS	01:05:49 PI TRAC	M May 15, 2019 E 1 2 3 4 5 6 E A MARAAAA	Frequency
10 dB/div Ref	-20.00 dBm	PNO: Fast ↔ IFGain:High	#Atten: 0 dB		Mkr1	18.611	97 GHz 36 dBm	Auto Tune
-30.0								Center Freq 15.00000000 GHz
-40.0								Start Fred 10.000000000 GHa
-60.0								Stop Free 20.000000000 GHz
-90.0							RMS	CF Step 1.00000000 GH: <u>Auto</u> Mar
-100								Freq Offse 0 H:
Start 10.000 GH #Res BW 1.0 M	tz Hz	#VBW	3.0 MHz	Sw	eep 26	Stop 20 .67 ms (4	.000 GHz 0000 pts)	
MSG					STATUS			

BAND 2. Conducted Spurious_2 (18607ch_1.4MHz_QPSK_RB 1_0)

		er - Swept SA						
RL	RF	50 Ω AC		SENSE		ALIGN AUTO	01:07:44 PM May 15, 2 TRACE 1 2 3 4	
enter F	req 5.0	15000000	PNO: Fast	📕 Trig: Free R	un	vg Type. Kins	TYPE A WWW DET A A A A	
			IFGain:Low	#Atten: 10 d	В			
						M	(r1 7.519 0 GI	
0 dB/div	Ref 0.	00 dBm					-75.433 dB	m
. og 10.0		¥ <mark>2</mark>						
								Center Fre
.0.0								5.015000000 GH
0.0								
0.0								Start Fre
0.0								30.000000 MI
50.0				_				
0.0						_1		
30.0								RMS Stop Fre
					and the state of the second			10.00000000 GH
90.0								
tart 30 I	MHz						Stop 10.000 G	Hz CF Ste
	1.0 MH	z	#VB	W 3.0 MHz		Sweep 17	.33 ms (20001 p	ts) 997.000000 Mi
KR MODE T	RC SCL	Х		Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto Ma
1 N	1 f	7	519 0 GHz	-75.433 dBm				1
2 N *	1 f	1	880 4 GHz	-4.460 dBm	l			Freq Offs
4								01
5	++					_		E
7								
8	++							
0								
1				ш				•
G	_					STATU	c	
9						LO STATO	3	

BAND 2. Conducted Spurious_1 (18900ch_1.4MHz_QPSK_RB 1_0)

	trum Analyzer - Swept								
X/RL	RF 50 Ω	AC CLI-		SENSE:INT	#Avg Typ	ALIGN AUTO		May 15, 2019	Frequency
Senter F	req 15.00000	PNO: F		: Free Run	#A48 13b	e. Rais	TYPE		
		IFGain:	ligh #Att	en: 0 dB					A
						Mkr1	18.906 4	47 GHz	Auto Tune
10 dB/div	Ref -20.00 d	Bm					-82.80	7 dBm	
L ^{og}									
									Center Fred
-30.0									15.00000000 GH:
-40.0									Start Fred
									10.00000000 GHz
-50.0									10.00000000 GH2
-60.0									Stop Free
									20.00000000 GH
-70.0									
									0.5.01
-80.0								RMS	CF Step 1.000000000 GH;
				and the second second		in address to the	a supplicit of	with the second second	Auto Mar
-90.0 miles the									
									From Office
-100									Freq Offset
									0 H:
-110									
Start 10.0							Stop 20.	000 GHz	
#Res BW	1.0 MHz		¥VBW 3.0 I	VIHZ	S		6.67 ms (40	000 pts)	
ISG						I STATUS	3		

BAND 2. Conducted Spurious_2 (18900ch_1.4MHz_QPSK_RB 1_0)

	ctrum Analyz			05105.1	. cm				
	_R , req 5.0	50 Ω AC 15000000	PNO: Fast +	SENSE:I	#Avg n	ALIGN AUTO g Type: RMS	TRACE	May 15, 2019 1 2 3 4 5 6 A 444444 A A A A A A A	Frequency
0 dB/div	Ref 0.	00 dBm	IFGain:Low _	#Atten: 10 dE		M	(r1 3.680		Auto Tun
20.0		¥2							Center Fre 5.015000000 GH
40.0 50.0 50.0									Start Fre 30.000000 MH
70.0 80.0 90.0		سبيني أميرس				*~************************************		RMS	Stop Fre 10.00000000 GF
KR MODE T	RC SCL	x		W 3.0 MHz Y	FUNCTION	Sweep 17	Stop 10.0 7.33 ms (20 FUNCTIO	001 pts)	CF Ste 997.000000 MH <u>Auto</u> Ma
2 N 2 3 4 5 5 7 8 9 9		3	680 0 GHz 910 3 GHz	-77.262 dBm -4.180 dBm					Freq Offs 0 F
i1						STATU			

BAND 2. Conducted Spurious_1 (19193ch_1.4MHz_QPSK_RB 1_0)

	trum Analyzer - Swept SA					
Contor F	RF 50 Ω AC req 15.00000000		SENSE:INT	ALIGN AUTO	01:09:57 PM May 15, 2019 TRACE 1 2 3 4 5 6	Frequency
Center T		PNO: Fast ↔ IFGain:High	Trig: Free Run #Atten: 0 dB		TRACE 1 2 3 4 5 6 TYPE A WARAAAA DET A A A A A A 18.914 47 GHz	Auto Tune
10 dB/div Log	Ref -20.00 dBm				-82.377 dBm	
-30.0						Center Freq 15.00000000 GHz
-40.0						Start Fred 10.000000000 GH2
-60.0						Stop Freq 20.000000000 GHz
-80.0					1 RMS	CF Step 1.00000000 GHz <u>Auto</u> Man
-100						Freq Offse 0 H:
Start 10.0	00 GHz				Stop 20.000 GHz	
#Res BW	1.0 MHZ	#VBW	3.0 MHz	Sweep 20	5.67 ms (40000 pts) s	

BAND 2. Conducted Spurious_2 (19193ch_1.4MHz_QPSK_RB 1_0)

		er - Swept SA								
RL enter F	^{RF} req 5.0	50 Ω AC 1500000	00 GHz		ISE:INT	#Avg Typ	ALIGN AUTO	TRAC	M May 15, 2019	Frequency
0 dB/div		00 dBm	PNO: Fast IFGain:Low	#Atten: 10			M	or kr1 7.401	a a a a a a a a a a a a a a a a a a a	Auto Tun
		×2								Center Fre 5.015000000 GH
0.0 0.0 0.0							1			Start Fre 30.000000 Mi
70.0 80.0 90.0	****							-	RMS	Stop Fre 10.00000000 GF
KR MODE T	1.0 MH		x	BW 3.0 MHz			weep 17	7.33 ms (2	.000 GHz 0001 pts)	CF Ste 997.000000 Mi <u>Auto</u> Ma
2 N 2 3 4 5 6 7			7.401 3 GHz 1.851 0 GHz	-69.513 dE -3.800 dE					1	Freq Offs 0 H
8 9 10 11										

BAND 2. Conducted Spurious_1 (18615ch_3MHz_QPSK_RB 1_0)

	ctrum Analyzer - Swept SA					
X RL	RF 50 Ω AC		SENSE:INT	ALIGN AUTO #Avg Type: RMS	01:11:59 PM May 15, 2019 TRACE 2 3 4 5 6	Frequency
	Teq 15.0000000	PNO: Fast ++-	Trig: Free Run			
		IFGain:High	#Atten: 0 dB			Auto Tune
				Mkr	1 18.913 97 GHz -82.070 dBm	Autorune
10 dB/div Log	Ref -20.00 dBm				-82.070 aBm	
						Center Fred
-30.0						15.00000000 GH;
-40.0						
						Start Fred
-50.0						10.00000000 GHz
-60.0						Stop Fred
						20.000000000 GHz
-70.0						
					.1	CF Step
-80.0					RMS	1.000000000 GH
			and the second	A STATE OF THE OWNER OF THE OWNER OF		Auto Mar
90.0			and the second se			
						Freq Offse
-100						0 H:
-110						
Start 10.0	000 GHz				Stop 20.000 GHz	
	1.0 MHz	#VBW	3.0 MHz	Sweep 2	6.67 ms (40000 pts)	
ISG				K STATL	IS	

BAND 2. Conducted Spurious_2 (18615ch_3MHz_QPSK_RB 1_0)

RL	ectrum Analyze RF	50 Ω AC		SENSE	:INT	ALIGN AUTO	01:13:43 PM May	/ 15, 2019	
enter F	req 5.01	500000	0 GHz PNO: Fast IFGain:Low	Trig: Free R #Atten: 10 c	un	vg Type: RMS	TRACE	2 3 4 5 6 A A A A A	Frequency
0 dB/div	Ref 0.0	00 dBm				М	kr1 7.515 5 -75.534	GHz dBm	Auto Tur
og 10.0 20.0 30.0		¥2							Center Fre 5.015000000 GH
i0.0 :0.0 :0.0									Start Fro 30.000000 Mi
70.0 30.0 90.0			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					RMS	Stop Fro 10.000000000 GI
tart 30 Res BW	1.0 MHz	×		W 3.0 MHz	FUNCTION	Sweep 1	Stop 10.00 7.33 ms (2000	1 pts)	CF Ste 997.000000 M uto M
3 4 5 6 7 8 9	1 f 1 f		7.515 5 GHz 1.879 4 GHz	-75.534 dBn -4.218 dBn					Freq Offs 0 F
				m					
G						I STAT	US		

BAND 2. Conducted Spurious_1 (18900ch_3MHz_QPSK_RB 1_0)

	trum Analyzer - Swept SA					
XI RL	RF 50 Ω AC req 15.000000		SENSE:INT	ALIGN AU #Avg Type: RMS	TO 01:13:59 PM May 15, 2019 TRACE 1 2 3 4 5 6	Frequency
enter F	req 15.00000	PNO: Fast 🔸	Trig: Free Run	#Avg Type. Rins	TYPE A WWWW DET A A A A A A	
		IFGain:High	#Atten: 0 dB			Auto Tur
				MI	(r1 18.928 22 GHz	Auto Tune
10 dB/div	Ref -20.00 dBi	m			-82.825 dBm	
						Center Free
-30.0						15.00000000 GH
-40.0						Start Free
						10.00000000 GH:
-50.0						10.0000000000
-60.0						Stop Free
						20.00000000 GH
70.0						
					.1	CF Step
-80.0					RMS	1.00000000 GH
			STALL STATES			Auto Mar
-90.0			State of the local division of the local div			
						Freq Offse
-100						0 H:
-110						
Start 10.0	00 GHz				Stop 20.000 GHz	
#Res BW		#VBW	3.0 MHz	Sweep	26.67 ms (40000 pts)	
ISG				To si		
100				10 51	Allos	

BAND 2. Conducted Spurious_2 (18900ch_3MHz_QPSK_RB 1_0)

RL RL	trum Analyze	50 Ω AC		S	ENSE:INT		ALIGN AUTO	01:15:39 P	M May 15, 2019	
		1500000	0 GHz PNO: Fast IFGain:Low		e Run	#Avg	Type: RMS	TRAC	E 1 2 3 4 5 6 E A WWWW A A A A A A	Frequency
0 dB/div	Ref 0.0	00 dBm					Mk	r1 3.681 -77.1	l 0 GHz 04 dBm	Auto Tur
og 0.0 0.0		* 2								Center Fre 5.015000000 Gi
0.0 0.0 0.0										Start Fr 30.000000 M
0.0				1	-				RMS	Stop Fr 10.000000000 Gi
	1.0 MHz		#VI	3W 3.0 MH			Sweep 17	.33 ms (2		CF Sto 997.000000 M Auto M
KR MODE TF 1 N 1 2 N 1 3		×	3.681 0 GHz 1.910 3 GHz	-77.104 c -3.346 c	Bm	ICTION	FUNCTION WIDTH	FUNCTIO	DN VALUE	Freq Offs
6 6 7 8 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1										
3				m			L ostatus			

BAND 2. Conducted Spurious_1 (19185ch_3MHz_QPSK_RB 1_0)

Agilent Spectrum Analyzer - Swept SA				
²⁰ RL RF 50 Ω AC Center Freq 15.0000000	DOD GHZ PNO: East +++ Trig: Free Run	#Avg Type: RMS	01:15:55 PM May 15, 2019 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref -20.00 dBm	IFGain:High #Atten: 0 dB	Mkr1	18.888 72 GHz -83.019 dBm	Auto Tune
30.0				Center Free 15.000000000 GH
50.0				Start Free 10.000000000 GH
70.0				Stop Fre 20.000000000 GH
80.0			1 RMS	CF Ste 1.000000000 GH <u>Auto</u> Ma
100				Freq Offse 0 H
Start 10.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 26	Stop 20.000 GHz 5.67 ms (40000 pts)	
ISG		STATU		

BAND 2. Conducted Spurious_2 (19185ch_3MHz_QPSK_RB 1_0)

		er - Swept SA	· · · · · · · · · · · · · · · · · · ·							
enter F	req 5.0	50 Ω AC 1500000	0 GHz PNO: Fast			#Avg T	ALIGN AU	TR	PM May 15, 2019 ACE 1 2 3 4 5 6 TYPE A	Frequency
0 dB/div	Ref 0	.00 dBm	IFGain:Low	#Atten: 10				Mkr1 7.4	DET A A A A A A D1 8 GHz 030 dBm	Auto Tun
og 10.0 20.0		¥2								Center Fre 5.015000000 GH
0.0 0.0 0.0							1			Start Fre 30.000000 Mi
					Nangaran yang berhasan				RMS	Stop Fre 10.00000000 GF
	RC SCL	x		3W 3.0 MHz Y			Sweep	17.33 ms	0.000 GHz (20001 pts)	CF Ste 997.000000 MI Auto M
	1 f 1 f		7.401 8 GHz 1.851 0 GHz	-70.030 dE -3.778 dE						Freq Offs 0 F
1 1				ш			K st	T T	•	

BAND 2. Conducted Spurious_1 (18625ch_5MHz_QPSK_RB 1_0)

	trum Analyzer - Swept SA					
XI RL	RF 50 Ω AC req 15.0000000		SENSE:INT	ALIGN AUTO #Avg Type: RMS	01:17:56 PM May 15, 2019 TRACE 1 2 3 4 5 6	Frequency
-enter F	req 15.0000000	PNO: Fast ++-	Trig: Free Run	wrig type. Kino		
		IFGain:High	#Atten: 0 dB			Auto Turo
				Mkr	1 18.915 22 GHz	Auto Tune
10 dB/div Log	Ref -20.00 dBm				-82.862 dBm	
						O
-30.0						Center Fred
-30.0						15.00000000 GH
40.0						
-40.0						Start Free
-50.0						10.00000000 GH:
-50.0						
-60.0						
-00.0						Stop Fred
-70.0						20.00000000 GHz
-70.0						
-80.0					1	CF Step
-00.0				and the second s	RMS	1.00000000 GH
-90.0				and the second	The second s	Auto Mar
visition of	This is not the little of the					
-100						Freq Offse
100						0 H:
-110						
Start 10.0					Stop 20.000 GHz	
#Res BW	1.0 MHz	#VBW	3.0 MHz	11.000	6.67 ms (40000 pts)	
ASG				STATU	JS	

BAND 2. Conducted Spurious_2 (18625ch_5MHz_QPSK_RB 1_0)

RL	ctrum Analyze RF	50 Ω AC		SENS	E:INT		ALIGN AUTO		M May 15, 2019	
enter F	req 5.0′	1500000	0 GHz PNO: Fast IFGain:Low	Trig: Free # #Atten: 10		#Avg Type	e: RMS	TYP	E 1 2 3 4 5 6 E A A A A A A A	Frequency
0 dB/div	Ref 0.	00 dBm					Mk	r1 7.512 -74.79	20 GHz 98 dBm	Auto Tur
. og 10.0 20.0 30.0		¥2								Center Fre 5.015000000 G⊦
i0.0 i0.0 i0.0										Start Fre 30.000000 Mi
70.0 80.0 90.0	Martin Contraction of	_				~~~			RMS	Stop Fre 10.00000000 GF
KR MODE T	RC SCL	x		W 3.0 MHz Y	FUNCT		weep 17 стіом міртн	.33 ms (2	.000 GHz 0001 pts)	CF Ste 997.000000 Mi <u>Auto</u> M
1 N 2 N 2 N 2 N 2 N 2 N 2 N 2 N 2 N 2 N	1 f 1 f		7.512 0 GHz 1.878 4 GHz	<u>-74.798 dBr</u> -3.681 dBr	m m 				E	Freq Offs 0 F
10							2		•	
G							STATUS			

BAND 2. Conducted Spurious_1 (18900ch_5MHz_QPSK_RB 1_0)

International and the second damage of th	to Tune ter Frec
PNO: Fast Ing: Free Run	ter Frec
In Gail High Writen 0 db Mkr1 18.944 72 GHz -83.032 dBm Au 0 dB/div Ref -20.00 dBm -83.032 dBm Cerr 30.0 -9 -9 -9 10	ter Frec
Wikit 16.944 72 GH2 0 dB/div Ref -20.00 dBm -83.032 dBm -09 -83.032 dBm 15.00000 400 -90 -90 400 -90 </th <th>ter Fred</th>	ter Fred
09 00 <	
30.0 Cen 40.0 St 50.0 10.00000 60.0 St 70.0 1	
40.0 50.0 70.0 80.0	
60.0 70.0	artFree
	0000 GH
20.00000	op Fre
-70.0	
80.0	
80.0	
	CF Step
Auto	Mai
Fre	qOffse
.100	0 H
-110	
Start 10.000 GHz Stop 20.000 GHz	
#Res BW 1.0 MHz #VBW 3.0 MHz Sweep 26.67 ms (40000 pts)	
ISG STATUS	

BAND 2. Conducted Spurious_2 (18900ch_5MHz_QPSK_RB 1_0)

RL	ctrum Analyzer RF	50 Ω AC		SEN	SE:INT		ALIGN AUTO		May 15, 2019	
enter F	req 5.01	5000000	PNO: Fast IFGain:Low	Trig: Free #Atten: 10		#Avg Typ	e:RMS	TYP	1 2 3 4 5 6 A WWWWW A A A A A A A	Frequency
) dB/div	Ref 0.0	0 dBm					Mk	r1 3.820 -76.59	0 1 GHz 0 dBm	Auto Tur
		¥2								Center Fre 5.015000000 Gi
0.0 0.0 0.0										Start Fro 30.000000 Mi
0.0		and the second							RMS	Stop Fro 10.000000000 Gi
art 30 F Res BW	1.0 MHz	x	#VE	W 3.0 MHz	FUNCT		weep 17	Stop 10. .33 ms (20	0001 pts)	CF Ste 997.000000 M <u>Auto</u> M
1 N 2 N 3 4 5 5 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		<u>3</u> 1	820 1 GHz 910 3 GHz	-76.590 dB -3.852 dB	m				ш	Freq Offs 0 I
7 8 9 0 1				III .					-	
G							STATUS	6		

BAND 2. Conducted Spurious_1 (19175ch_5MHz_QPSK_RB 1_0)

📕 Agilent Spectrum Analyzer						
Center Freq 15.0	50 Ω AC) GHz	SENSE:INT	ALIGN A #Avg Type: RMS		Frequency
10 dB/div Ref -20	.00 dBm	PNO: Fast ↔ IFGain:High	#Atten: 0 dB	М	kr1 18.937 22 GHz -82.610 dBm	Auto Tune
-30.0						Center Fred 15.00000000 GHz
-40.0						Start Fred 10.000000000 GH2
-60.0						Stop Fred 20.000000000 GH2
-80.0					1 FMS	CF Step 1.00000000 GH Auto Mar
-100						Freq Offse 0 H
Start 10.000 GHz #Res BW 1.0 MHz		#VBW	3.0 MHz	Sween	Stop 20.000 GHz 26.67 ms (40000 pts)	
MSG					TATUS	

BAND 2. Conducted Spurious_2 (19175ch_5MHz_QPSK_RB 1_0)

	ctrum Analyz								
RL Center F	_R , req 5.0	50 Ω AC 1500000	0 GHz PNO: Fast	SENSI	#A	ALIGN AUTO	TRACE	May 15, 2019	Frequency
0 dB/div	Ref 0.	00 dBm	IFGain:Low	#Atten: 10 d		M	kr1 7.402	8 GHz 7 dBm	Auto Tun
og 10.0 20.0 30.0		¥2							Center Fre 5.015000000 G⊦
i0.0 i0.0 i0.0						1-			Start Fre 30.000000 MF
70.0 50.0 90.0							******	RMS	Stop Fre 10.000000000 GF
KR MODE T	RC SCL	X		W 3.0 MHz	FUNCTION		Stop 10. 7.33 ms (20	0001 pts)	CF Ste 997.000000 MH <u>Auto</u> Ma
			7.402 8 GHz 1.851 0 GHz	-70.107 dBn -4.224 dBn					Freq Offs 0 H
				m				•	

BAND 2. Conducted Spurious_1 (18650ch_10MHz_QPSK_RB 1_0)

📕 Agilent Spectrum Analyzer - Sv							
RL RF 50 Center Freq 15.000	0000000 GHz			#Avg Type: RM	AUTO 01:23:53 PI S TRAC	M May 15, 2019 E 1 2 3 4 5 6 E A MARINE T A A A A A A	Frequency
10 dB/div Ref -20.0	IFGain			N	lkr1 18.924		Auto Tune
-30.0							Center Fred 15.00000000 GHz
							Start Fred 10.00000000 GHa
-60.0							Stop Free 20.000000000 GH2
90.0			a in a start to a start			1 RMS	CF Step 1.000000000 GH; Auto Mar
-100							Freq Offse 0 H
Start 10.000 GHz #Res BW 1.0 MHz		#VBW 3.0 MHz		Sweer	Stop 20 26.67 ms (4	.000 GHz 0000 pts)	
MSG					STATUS		

BAND 2. Conducted Spurious_2 (18650ch_10MHz_QPSK_RB 1_0)

RL RL	ctrum Analyz				1 (T)				
		50 Ω AC 15000000	PNO: Fast +	Trig: Free Ru #Atten: 10 dE	#Av	ALIGN AUTO g Type: RMS	TYPE	2 3 4 5 6	Frequency
0 dB/div	Ref 0.	00 dBm	IFGain:Low _	#Atten: 10 de	5	M	(r1 7.503 (-74.961	GHz	Auto Tun
og 10.0 20.0		¥2							Center Fre 5.015000000 GH
0.0 0.0 0.0									Start Fre 30.000000 Mi
70.0 30.0 30.0	torian and a state of the state				ny it and the second		14-14-14-14-14-14-14-14-14-14-14-14-14-1	RMS	Stop Fre 10.00000000 GF
KR MODE T	RC SCL	X		W 3.0 MHz Y	FUNCTION	Sweep 17	Stop 10.00 7.33 ms (200	01 pts)	CF Ste 997.000000 Mi Auto Mi
	1 f 1 f	7	2.503 0 GHz .876 4 GHz	-74.961 dBm -4.098 dBm					Freq Offs 01
9 10 11				117		E STATU	9	,	

BAND 2. Conducted Spurious_1 (18900ch_10MHz_QPSK_RB 1_0)

🔰 Agilent Spectrum Analyzer - Swept SA				
🗱 RL 🛛 RF 50 Ω AC Center Freq 15.00000000	0 GHz	SE:INT ALIGN AUTO	0 01:25:50 PM May 15, 2019 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A A A A A A A	Frequency
10 dB/div Ref -20.00 dBm	PNO: Fast +++ Trig: Free IFGain:High #Atten: 0 d	dB	1 18.918 47 GHz -82.771 dBm	Auto Tune
-30.0				Center Freq 15.00000000 GHz
-40.0				Start Fred 10.000000000 GH
-60.0				Stop Free 20.000000000 GH2
80.0			1 RMS	CF Step 1.00000000 GH: Auto Mar
-100				Freq Offse 0 H
Start 10.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Sween	Stop 20.000 GHz 26.67 ms (40000 pts)	
ISG		K ostat		

BAND 2. Conducted Spurious_2 (18900ch_10MHz_QPSK_RB 1_0)

		er - Swept SA		051405 1	~		01.07.05.011		
	^{RF} req 5.0	50 Ω AC 15000000	PNO: Fast +	Trig: Free Rur #Atten: 10 dB	#Avg	ALIGN AUTO	TYPE	1 2 3 4 5 6 A 444 A A A A A	Frequency
0 dB/div	Ref 0.	00 dBm	IFGain:Low _	#Atten: 10 dB		M	(r1 3.819 -77.02	6 GHz	Auto Tun
og 10.0 20.0		¥2							Center Fre 5.015000000 GH
0.0 0.0 0.0									Start Fre 30.000000 Mi
0.0				1				RMS	Stop Fre 10.000000000 GF
	1.0 MH	x		W 3.0 MHz Y	FUNCTION	Sweep 17	Stop 10.0 7.33 ms (200 FUNCTION	001 pts)	CF Ste 997.000000 Mi Auto M
1 N 2 2 N 2 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 0 - -		<u>3</u> 1.	819 6 GHz 909 8 GHz	-77.025 dBm -4.115 dBm					Freq Offs 01
1				III		L ostatu:			

BAND 2. Conducted Spurious_1 (19150ch_10MHz_QPSK_RB 1_0)

📕 Agilent Spectrum Analyzer							
Center Freq 15.0	50 Ω AC) GHz	SENSE:INT	#Avg Type:		01:27:51 PM May 15, 201 TRACE 1 2 3 4 5 TYPE A WWWW DET A A A A A	9 Frequency
10 dB/div Ref -20	.00 dBm	PNO: Fast +++ IFGain:High	Trig: Free Run #Atten: 0 dB		Mkr1 1	8.911 22 GH -82.872 dBn	Auto Tune
-30.0							Center Fred 15.00000000 GHz
-40.0							Start Free 10.000000000 GHz
-60.0							Stop Fred 20.000000000 GHz
-80.0					mainta	1 Rb	CF Step 1.000000000 GH; <u>Auto</u> Mar
-100							Freq Offse 0 H
Start 10.000 GHz #Res BW 1.0 MHz		#VBW	3.0 MHz	Swi	s eep 26.6	Stop 20.000 GH 7 ms (40000 pts	
MSG					STATUS		u

BAND 2. Conducted Spurious_2 (19150ch_10MHz_QPSK_RB 1_0)

	ctrum Analyz							
RL	RF	50 Ω AC		SENSE:		ALIGN AUTO	01:29:39 PM May 15, TRACE 2 3 4	
enter F	req 5.0	15000000	PNO: Fast +	📕 Trig: Free Ru	in	g Type. Rins	TYPE A WWW DET A A A A	
			IFGain:Low	#Atten: 10 dB	3			
						MI	(r1 7.403 8 G	Auto Tun
0 dB/div	Ref 0.	00 dBm					-70.169 dE	3m
- ^{og}		¥ 2						
10.0								Center Fre
20.0								5.015000000 GH
30.0								
0.0								
50.0								Start Fre
								30.000000 MH
50.0						1		
70.0								RMS Stop Fre
80.0	- all and all all all all all all all all all al				the state of the s		and the second second second	10.00000000 GH
90.0								10.0000000 Gr
start 30							Stop 10.000 G	Hz CF Ste
Res BW	1.0 MH	Z	#VB	W 3.0 MHz		Sweep 17	'.33 ms (20001 p	(ts) 997.000000 MI
KR MODE T		Х		Ŷ	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	Auto Ma
	1 f 1 f	7.	403 8 GHz	-70.169 dBm				
2 N		1.	851 5 GHz	-3.629 dBm				Freq Offs
4								01
5								E
7								
8								
10								
1								•
-	_			III		2		
G							S	

BAND 2. Conducted Spurious_1 (18675ch_15MHz_QPSK_RB 1_0)

	trum Analyzer - Swept SA					
Center Fi	RF 50 Ω AC req 15.00000000	0 GHz	SENSE:INT	ALIGN AUTO #Avg Type: RMS	01:29:55 PM May 15, 2019 TRACE 1 2 3 4 5 6 TYPE A WWWW DET A A A A A A	Frequency
10 dB/div Log	Ref -20.00 dBm	PNO: Fast ↔ IFGain:High	Trig: Free Run #Atten: 0 dB	Mkr1	18.923 72 GHz -82.493 dBm	Auto Tune
-30.0						Center Fred 15.000000000 GHz
-40.0						Start Fred 10.00000000 GHz
-60.0						Stop Free 20.000000000 GH2
-80.0					1 RMS	CF Step 1.00000000 GHz <u>Auto</u> Mar
-100						Freq Offse 0 H:
Start 10.0	00 GHz 1.0 MHz	#VBW	3.0 MHz	Sweep 26	Stop 20.000 GHz 5.67 ms (40000 pts)	
MSG				to statu:		

BAND 2. Conducted Spurious_2 (18675ch_15MHz_QPSK_RB 1_0)

RL	ctrum Analyz RF	er - Swept SA 50 Ω AC		051105.1					
		50 Ω AC 15000000) GHz PNO: Fast ← IFGain:Low	Trig: Free Ru #Atten: 10 dB	#Av n	ALIGN AUTO g Type: RMS	TYPE	1 2 3 4 5 6 A WWWWW A A A A A A A	Frequency
0 dB/div	Ref 0.	00 dBm	IFGain:Low	#Atten: 10 de		M	kr1 7.494 -73.35	0 GHz 5 dBm	Auto Tun
20.0		¥2							Center Fre 5.015000000 G⊦
10.0 50.0 50.0									Start Fre 30.000000 MH
70.0 80.0 90.0								RMS	Stop Fre 10.000000000 GH
	1.0 MH	X		W 3.0 MHz Y	FUNCTION	Sweep 1	Stop 10.0 7.33 ms (20	001 pts)	CF Ste 997.000000 Mi <u>Auto</u> Mi
2 N 4 5 6 7 8 9		7	2494 0 GHz .874 0 GHz	-73.355 dBm -4.263 dBm				ш	Freq Offs 0 F
10 11				m		L STATU			

BAND 2. Conducted Spurious_1 (18900ch_15MHz_QPSK_RB 1_0)

📕 Agilent Spectrum Analyze						
Center Freq 15.0	50 Ω AC	0 GHz	SENSE:INT	#Avg Type: RM	S TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref -20	0.00 dBm	PNO: Fast ↔ IFGain:High	#Atten: 0 dB	N	Ikr1 18.850 47 GHz -82.988 dBm	Auto Tune
-30.0						Center Freq 15.000000000 GHz
-40.0						Start Fred 10.000000000 GH
-60.0						Stop Fred 20.000000000 GH2
-80.0					1 RMS	CF Step 1.000000000 GH; Auto Mar
-100						Freq Offse 0 H
Start 10.000 GHz #Res BW 1.0 MHz		#VBW	3.0 MHz	Sweer	Stop 20.000 GHz 26.67 ms (40000 pts)	
MSG					STATUS	

BAND 2. Conducted Spurious_2 (18900ch_15MHz_QPSK_RB 1_0)

	ctrum Analyz							- 6 - ×
enter F	^{RF} rea 5.0	50 Ω AC 15000000	GHz	SENSE:I	#Av	ALIGN AUTO g Type: RMS	01:33:41 PM May 15, TRACE 2 3 4	Frequency
0 dB/div		00 dBm	PNO: Fast • IFGain:Low	Trig: Free Ru #Atten: 10 dE		M	rr1 3.819 1 G -76.604 dB	Auto Tun
og 10.0 20.0		¥2						Center Fre 5.015000000 GH
40.0 50.0 50.0								Start Fre 30.000000 MH
70.0 30.0 90.0						· · · · · ·		Stop Fre 10.000000000 GH
	1.0 MH	х		W 3.0 MHz Y	FUNCTION	Sweep 17	Stop 10.000 G .33 ms (20001 p	Hz CF Ste 997.000000 MH Auto Ma
2 N 7 3 4 5 5 6 7 8 9 9 0		3. 1.	819 1 GHz 909 8 GHz	-76.604 dBm -3.775 dBm				Freq Offs 01
				m				*
G							S	

BAND 2. Conducted Spurious_1 (19125ch_15MHz_QPSK_RB 1_0)

🗾 Agilent Spectrum An						
Center Freq 1	50 Ω AC	0 GHz	SENSE:INT	ALIGN AL #Avg Type: RMS	TO 01:33:57 PM May 15, 2019 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref	-20.00 dBm	PNO: Fast ↔ IFGain:High	Trig: Free Run #Atten: 0 dB	М	TRACE 2 3 4 5 6 TYPE A AAAAAA DET A AAAAAAA Kr1 18.894 97 GHz -82.891 dBm	Auto Tune
-30.0						Center Fred 15.000000000 GHz
-40.0						Start Fred 10.000000000 GHz
-60.0						Stop Freq 20.000000000 GHz
-80.0					1 RMS	CF Step 1.00000000 GHz <u>Auto</u> Mar
-100						Freq Offse 0 H:
Start 10.000 GI #Res BW 1.0 N	Hz	#VBW	3.0 MHz	Sweep	Stop 20.000 GHz 26.67 ms (40000 pts)	
MSG					TATUS	

BAND 2. Conducted Spurious_2 (19125ch_15MHz_QPSK_RB 1_0)

	ctrum Analyz			a stuar					
	_R , req 5.0	50 Ω AC 15000000	O GHz PNO: Fast	Trig: Free R	#Av	ALIGN AUTO	TRAC	May 15, 2019 E 2 3 4 5 6 E A WWWWW	Frequency
0 dB/div	Ref 0.	00 dBm	IFGain:Low	#Atten: 10 d	B	M	kr1 7.404	8 GHz 4 dBm	Auto Tun
og 10.0 20.0		*2							Center Fre 5.015000000 G⊦
i0.0 i0.0 i0.0						1-			Start Fre 30.000000 Mi
70.0 80.0 90.0		and the second			and the second	~		RMS	Stop Fre 10.000000000 GF
KR MODE T	RC SCL	X		W 3.0 MHz Y	FUNCTION	Sweep 1	7.33 ms (2)		CF Ste 997.000000 MH <u>Auto</u> Ma
2 N 3 4 5 6 7 8 9	1 f 1 f		7.404 8 GHz 1.851 5 GHz	-69.574 dBm -3.241 dBm					Freq Offs 0 F
10 11				ш		STATU		, •	

BAND 2. Conducted Spurious_1 (18700ch_20MHz_QPSK_RB 1_0)

📕 Agilent Spectrum Analyzer - Swept SA				
Center Freq 15.000000		E:INT ALIGN AUTO #Avg Type: RMS	01:36:06 PM May 15, 2019	Frequency
Center Fred 15.00000	PNO: Fast +++ Trig: Free R IFGain:High #Atten: 0 dl	Run	TRACE 1 2 3 4 5 6 TYPE A WWWW DET A A A A A A	
10 dB/div Ref -20.00 dB	m	Mkr	1 18.931 47 GHz -82.736 dBm	Auto Tune
-30.0				Center Freq 15.00000000 GHz
-40.0				Start Free 10.000000000 GHz
-60.0				Stop Freq 20.000000000 GHz
-80.0			1 RMS	CF Step 1.00000000 GHz <u>Auto</u> Man
-100				Freq Offse 0 Ha
-110 Start 10.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Swan 2	Stop 20.000 GHz 26.67 ms (40000 pts)	
	#VBW 5.0 WIN2	Sweep 2		

BAND 2. Conducted Spurious_2 (18700ch_20MHz_QPSK_RB 1_0)

RL RL	ctrum Analyz RF	er - Swept SA 50 Ω AC			14.00				
		50 Ω AC 15000000	PNO: Fast +	SENSE:	#A un	ALIGN AUTO	01:37:51 PM May TRACE		Frequency
0 dB/div	Ref 0.	00 dBm	IFGain:Low _	#Atten: 10 dl	3	MI	(r1 7.485 1 -73.466	GHz	Auto Tun
og 10.0 20.0		¥2							Center Fre 5.015000000 G⊦
0.0 0.0 0.0									Start Fre 30.000000 Mi
70.0 30.0 90.0								RMS 1	Stop Fre 0.000000000 G⊦
KR MODE T	1.0 MH	X		W 3.0 MHz Y	FUNCTION	Sweep 17	Stop 10.000 7.33 ms (2000 FUNCTION VA	1 pts)	CF Ste 997.000000 Mi ito Ma
		7. 1.	.485 1 GHz .872 0 GHz	-73.466 dBm -3.874 dBm					Freq Offs 0 F
0 1 G				m		In STATU		, -	

BAND 2. Conducted Spurious_1 (18900ch_20MHz_QPSK_RB 1_0)

	trum Analyzer - Swept								- 6 x
X/RL	RF 50 Ω req 15.00000		SEN	ISE:INT	#Avg Typ	ALIGN AUTO		M May 15, 2019 E 1 2 3 4 5 6	Frequency
	req 15.00000	PNO: Fa	st 🛶 Trig: Free				TYP		
		IFGain:Hi	gh #Atten: 0	dB					Auto Tune
						Mkr1	18.912	22 GHz	Auto Tune
10 dB/div Log	Ref -20.00 d	Bm					-82.4	32 dBm	
									O
-30.0									Center Free
-30.0									15.00000000 GH
40.0									
-40.0									Start Free
50 G									10.00000000 GH
-50.0									
-60.0									Stop Free
									20.00000000 GH:
-70.0									-
								1	CF Step
80.0								RMS	1.00000000 GH
								And Breaking and	<u>Auto</u> Mar
90.0		And the second s							
									Freq Offse
-100									0 H:
-110									
Start 10.0	00 GHz						Stop 20	.000 GHz	
Res BW		#	VBW 3.0 MHz		s	weep 26	.67 ms (4	0000 pts)	
ISG						E STATUS			
00						Sintos			

BAND 2. Conducted Spurious_2 (18900ch_20MHz_QPSK_RB 1_0)

	ectrum Analyz								
enter F	^{RF} req 5.0	50 Ω AC 15000000) GHz PNO: Fast	SENSE	#Av	ALIGN AUTO	TYPE	1 2 3 4 5 6 A WWWW	Frequency
0 dB/div	Ref 0.	.00 dBm	IFGain:Low	#Atten: 10 d		M	cr1 3.818 -76.14	6 GHz	Auto Tun
og 10.0 20.0		¥2							Center Fre 5.015000000 GF
0.0 0.0 0.0									Start Fre 30.000000 Mi
0.0			~~~~~			~~~~		RMS	Stop Fre 10.000000000 GR
	TRC SCL	X		W 3.0 MHz	FUNCTION	Sweep 17	Stop 10.0 7.33 ms (200 FUNCTION	001 pts)	CF Ste 997.000000 M Auto M
	1 f 1 f	<u>33</u> 1	9.818 6 GHz 909 3 GHz	-76.146 dBm -4.190 dBm					Freq Offs 01
1				m		E STATU		•	

BAND 2. Conducted Spurious_1 (19100ch_20MHz_QPSK_RB 1_0)

🔰 Agilent Spectrum Analyzer - Swept SA				
Center Freq 15.000000	000 GHz	#Avg Type: F	SN AUTO 01:36:06 PM May 15, 2019 CMS TRACE 1 2 3 4 5 6 TYPE A WWWW DET A A A A A A	Frequency
10 dB/div Ref -20.00 dB	PNO: Fast Trig: Fre IFGain:High #Atten: (Mkr1 18.931 47 GHz -82.736 dBm	Auto Tune
-30.0				Center Fred 15.000000000 GHz
-40.0				Start Fred 10.000000000 GHz
-60.0				Stop Free 20.000000000 GH;
-80.0			1 RMS	CF Step 1.00000000 GH <u>Auto</u> Mar
-100				Freq Offse 0 H
Start 10.000 GHz #Res BW 1.0 MHz	#VBW 3.0 MH2	z Swe	Stop 20.000 GHz ep 26.67 ms (40000 pts)	
MSG			STATUS	

BAND 2. Conducted Spurious_2 (19100ch_20MHz_QPSK_RB 1_0)

10. APPENDIX A_ TEST SETUP PHOTO

Please refer to test setup photo file no. as follows;

No.	Description
1	HCT-RF-1905-FC035-P